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Abstract

This paper introduces a new class of multivariate volatility models which is easy to estimate using

covariance targeting. The basic structure is to rotate the returns and then to fit them using a BEKK model

of the time-varying covariance whose long-run covariance is the identity matrix. The extension to DCC

type models is given, enriching this class. Inference for these models is computationally attractive, and

the asymptotics is standard. The techniques are illustrated using recent data on the S&P 500 ETF and

some DJIA stocks.
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1 Introduction

Search is still ongoing for multivariate volatility models with flexible dynamics and ease of application in

moderately large dimensions. Modeling and forecasting multivariate volatility is not only crucial for asset

pricing and optimal portfolio allocation, but also to characterize the systemic risk profile of individual firms.

Brownlees and Engle (2011) illustrate the importance of modeling and forecasting the conditional covari-

ance matrix of asset returns, where they show that a rise in a stock’s return volatility and correlation with

the market magnifies its contribution to their proposed measure of systemic risk. Highly leveraged financial

companies in the recent financial crisis are a case in point.

The crisis forcefully demonstrated the need for more robust models to capture and project financial risk;

in particular to capture correlation dynamics. However in practice, developing new models faces the “curse

of dimensionality” in reference to the - often exponential - increase in the number of model parameters as

the number of assets under study grows. Reviews of the multivariate generalized autoregressive conditional

heteroskedasticity (GARCH) literature are given by, for example, Bauwens et al. (2006), Engle (2009a), Francq

and Zakoian (2010, ch. 11) and Silvennoinen and Teräsvirta (2009).

The seed idea in this paper is to undertake a transformation (in particular, a rotation) of the raw returns,

which enables us to easily extend the idea of variance targeting (Engle and Mezrich (1996)) to covariance tar-

geting in multivariate models of any dimension. The transformation we propose is not novel, and is related

to recent work on the orthogonal GARCH model of Alexander and Chibumba (1996) and Alexander (2001),

and its extensions in van der Weide (2002), Lanne and Saikkonen (2007), Fan et al. (2008) and Boswijk and

van der Weide (2011). The interest in these papers is to find orthogonal or unconditionally uncorrelated

components in the raw returns which can then be modeled individually through univariate volatility mod-

els.1 In contrast, we utilize a closely related transformation enabling us to fit flexible multivariate models to

the rotated returns using covariance targeting.

We focus on the popular BEKK (Engle and Kroner (1995)) and Dynamic Conditional Correlations (DCC)

(Engle (2002)) models, and propose new parameterizations to enrich both models. We focus throughout

1The model of Fan et al. (2008) differs in that the estimated components are also conditionally uncorrelated. We discuss the
relation of our model to orthogonal GARCH models in Section 2.6.
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on diagonal models, to be explained in detail below, and a related parameterization that offers flexibility

in modeling both the volatilities and correlations while economizing on the number of parameters. The

models we discuss are particularly attractive in terms of estimation and inference, and offers computational

advantages compared to existing models.

Interest in diagonal models for the DCC process is demonstrated in a number of recent studies, where

the objective is to introduce more flexible dynamics while also having parameterizations that are feasible in

large dimensions. For p assets, diagonal models in the case of BEKK or DCC, when coupled with covariance

targeting, will have a number of dynamic parameters equal to 2p .2 In addition to the DCC model with scalar

dynamic parameters, Engle (2002) also proposed a generalization with flexible dynamics but it is highly

parameterized. Recent studies which focus on DCC with diagonal structures are, for example, Cappiello

et al. (2006), Billio et al. (2006), Billio and Caporin (2009) and Hafner and Franses (2009).

Within the class of diagonal models, we propose a novel parameterization that may be attractive in large

dimensions. We call it the common persistence (CP) model which imposes common persistence on all

elements of the conditional covariance/correlation matrix. This is motivated by the empirical observation

that parameter estimates of GARCH(1,1) processes tend to show similar persistence across assets, while

exhibiting different levels of smoothness. In addition, the smoothness level seems to change over time;

particularly it tends to decline in volatile periods. Brownlees (2011) reports similar findings in his analysis of

US financial firms during the recent financial crisis. The common persistence model has only p+1 dynamic

parameters, and we show that it performs quite favorably in comparison to diagonal models which have 2p

dynamic parameters.

We show that fitting multivariate volatility models to the rotated returns is essentially the same as fit-

ting models (with different dynamic parameters, in general) to the raw returns; the rotation of the returns

simply provides an easier way to do covariance targeting. This equivalence holds since the difference in the

likelihood depends on the static parameters needed for the transformation, but is invariant to the type of

chosen model. The usefulness of this rotation technique is illustrated using data on the S&P 500 ETF and

2We use the term “dynamic” parameters to denote the parameters of the dynamic equation for the conditional covariance matrix
in the BEKK model, and for the conditional correlation matrix in the DCC model. However, covariance targeting also requires the
estimation of “static” parameters which characterize the unconditional second moment of the returns. Estimation is typically
undertaken in two stages as discussed later.
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some DJIA stocks. We analyze bivariate models as well as a moderately large system with 10 DJIA stocks.

The structure of the paper is as follows: Section 2 discusses the model and its properties. Section 3 shows

how to estimate the model using a two step estimation strategy, providing a simple multivariate extension

of covariance targeting. In Section 4 we apply this model to financial data to illustrate its performance in

comparison to related models. Section 5 draws some conclusions.

2 Modeling Approach

2.1 The Model

First we assume the p -dimensional zero-mean time series

rt , t = 1, ..., T,

is ergodic. The unconditional covariance of the returns is given by

Var[rt ] = H = PΛP ′,

using the spectral decomposition in the second equality, where P is a matrix of eigenvectors, and the eigen-

value matrix Λ is diagonal with non-negative elements λ1,λ2, ...,λp . Throughout we assume that the eigen-

values in Λ are ordered such that λ1 ≥ λ2 ≥ · · · ≥ λp with λp > 0. It follows that P−1 = P ′ and so P ′P = I .

Hence we can define the symmetric square root of H

H
1/2 = PΛ1/2P ′.

Second, letting rt = H
1/2

e t we can define the rotated returns

e t = H
−1/2

rt = PΛ−1/2P ′rt , Var[e t ] = I .
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Then we complete the model by specifying the conditional covariance of the rotated returns

Var[e t |Ft−1] = G t ,

where E[e t |Ft−1] = 0. In order to ease the computational burden, we use a covariance targeting param-

eterization (Engle and Mezrich (1996)), in the univariate case of variance targeting) of a BEKK-type model

(Engle and Kroner (1995)) applied to e t ,

G t =
(

I − AA ′ − B B ′
)
+ Ae t−1e ′t−1A ′ + BG t−1 B ′, G0 = I , (1)

where we assume (
I − AA ′ − B B ′

)
≥ 0,

in the sense of being positive semidefinite.

Covariance stationarity in (1) follows directly from the analysis of BEKK models by Engle and Kroner

(1995) and requires the eigenvalues of (A⊗A)+(B⊗B ) to be less than one in modulus. Thus unconditionally

we can rewrite (1) as

E[G t ]− AE[G t ]A ′ − BE[G t ]B ′ = I − AA ′ − B B ′,

where E[G t ] = I is a solution to this equation implying E[e t e ′t ] = I .

Let Var[rt |Ft−1] = Ht , fitting the covariance targeting BEKK model to rt implies

Ht =
(

H − AHA ′ − BH B ′
)
+ Art−1r ′t−1A ′ + BHt−1 B ′, H0 = H ,

which makes estimation challenging in the case of diagonal (when A and B are diagonal) and full (when A

and B are unrestricted) BEKK models since it is difficult to impose parameter restrictions to ensure that the

target
(

H − AHA ′ − BH B ′
)

is positive semidefinite. Fitting the model to e t instead, as in (1), circumvents

this problem and allows for diagonal and full BEKK models to be easily fitted. In the diagonal case, the

parameter restrictions needed for covariance stationarity in (1) also imply a positive semidefinite target.
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2.2 Dynamic Properties

The dynamic properties can be studied when the model is vectorized, so we have

vec(e t e ′t ) = vec (G t ) + u t , u t = vec
(

e t e ′t −G t

)
,

where

vec (G t ) = vec
(

I − AA ′ − B B ′
)
+ (A ⊗ A)vec

(
e t−1e ′t−1

)
+ (B ⊗ B ) vec

(
G t−1

)
= vec

(
I − AA ′ − B B ′

)
+ {(A ⊗ A) + (B ⊗ B )} vec

(
G t−1

)
+ (A ⊗ A)u t−1,

noting that the vector martingale difference property E[u t |Ft−1] = 0 holds. This implies u t is a vector weak

white noise sequence.

Thus vec (G t ) has a covariance stationary vector autoregression representation while

vec(e t e ′t ) = vec
(

I − AA ′ − B B ′
)
+ (A ⊗ A)vec

(
e t−1e ′t−1

)
+ (B ⊗ B ) vec

(
G t−1

)
+ u t

= vec
(

I − AA ′ − B B ′
)
+ {(A ⊗ A) + (B ⊗ B )} vec(e t−1e ′t−1)

+u t − (B ⊗ B )u t−1,

is a covariance stationary vector autoregressive moving average representation.

2.3 Leading Special Cases

2.3.1 Scalar Model

The scalar model specifies A = α1/2I and B = β1/2I . In this model all elements of G t have the same

dynamic parameters and the dynamic equations are given by

g i i ,t = (1− α− β ) + αe 2
i ,t−1 + β g i i ,t−1, i = 1, ...p ,

g i j ,t = αe i ,t−1e j ,t−1 + β g i j ,t−1, i , j = 1, ...p , i 6= j ,
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where g i j ,t denotes the (i , j )-th element of G t , and we assume α > 0 and β ≥ 0. Note that if α = 0, β is

unidentified and needs to be set equal to zero indicating conditional homoskedasticity in the model, so we

rule out this case. To ensure covariance stationarity, we impose α + β < 1.

2.3.2 Diagonal Model

In this case, A and B are assumed to be diagonal with elements α1/2
i i > 0 and β1/2

i i ≥ 0, respectively. This

model implies variance-targeting GARCH(1,1) models for each element of G t taking the form

g i i ,t = (1− αi i − βi i ) + αi i e 2
i ,t−1 + βi i g i i ,t−1, i = 1, ...p ,

g i j ,t = α
1/2
i i α

1/2
j j e i ,t−1e j ,t−1 + β

1/2
i i β

1/2
j j g i j ,t−1, i , j = 1, ...p , i 6= j .

The cross-equation parameter restrictions between the variance and covariance equations are a feature

of BEKK models. Covariance stationarity in this model is determined by the eigenvalues of the diagonal

matrix:

(A ⊗ A) + (B ⊗ B ) =



α1/2
11 A + β1/2

11 B 0 · · · 0

0 α1/2
22 A + β1/2

22 B
. . .

...

...
. . .

. . . 0

0 · · · 0 α1/2
p p A + β1/2

p p B


.

Define λi j = α
1/2
i i α

1/2
j j + β

1/2
i i β

1/2
j j , where λi j controls the persistence in the (i , j )-th element of G t .3 To

ensure covariance stationarity, we require that

maxλi j < 1, i , j = 1, ...p . (2)

In practice, we impose λi i := αi i + βi i < 1 by reparameterization, which is a necessary and sufficient

condition for (2) to hold; see Engle and Kroner (1995). This means that in the diagonal BEKK model it

suffices to impose covariance stationarity on the conditional variances.

3Recall that the GARCH(1,1) model can be written as g i i ,t = (1 − αi i − βi i ) + (αi i + βi i )g i i ,t−1 + αi i (e 2
i ,t−1 − g i i ,t−1), where

e 2
i ,t−1−g i i ,t−1 is a martingale difference sequence. Thus the persistence in the conditional variance depends on the autoregression

coefficient (αi i + βi i ).
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It will be convenient to introduce heterogeneity measures for the smoothness and persistence levels

of the elements of G t . By smoothness we refer to the coefficients βi i for the conditional variances, and

β1/2
i i β

1/2
j j for the conditional covariances, while λi j is the measure of persistence for the (i , j )-th element of

G t .4 For ease of interpretation, we do this only for the dynamic parameters of the diagonal elements of G t

(i.e. the conditional variances), noting that the dynamic parameters of the conditional covariance between

assets i and j are linked to the dynamic parameters of their conditional variances as shown above. Let µα =

p−1
∑p

i=1 αi i denote the average estimate of αi i , and σα =
√

p−1
∑p

i=1(αi i − µα)2 be a corresponding

measure of heterogeneity. We define similar measures for the smoothness coefficients, βi i , which are µβ

and σβ , and also for the persistence levels, λi i , which are denoted by µλ and σλ. Note that for the scalar

model,σα = σβ = σλ = 0. These measures are useful for motivating the following model.

2.3.3 Common Persistence (CP) Model

In the diagonal case, (A ⊗ A) + (B ⊗ B ) will be a diagonal matrix with diagonal elements given by λi j =

α1/2
i i α

1/2
j j + β

1/2
i i β

1/2
j j . The CP model imposes that

λi j = λ,

for all i , j = 1, ...p , which gives the dynamic equation

G t = (1− λ)I + Ae t−1e ′t−1A ′ + λG t−1 − AG t−1A ′, (3)

where A is a diagonal matrix with diagonal elements 0 < α1/2
i i < 1, and 0 < λ < 1 is a scalar parameter

satisfying λ > maxαi i . This model has p + 1 dynamic parameters as opposed to 2p dynamic parameters in

the diagonal model. It imposes common persistence on all elements of G t through a common eigenvalue,λ,

for the dynamic equation for G t . This can be seen from the implied variance-targeting GARCH(1,1) models

4Brownlees (2011) is interested in similar measures for the conditional variances; however, he defines the smoothness coefficient
as αi i /(αi i + βi i ).

7



for each element of G t given by

g i i ,t = (1− λ) + αi i e 2
i ,t−1 + (λ− αi i )g i i ,t−1, i = 1, ...p ,

g i j ,t = α
1/2
i i α

1/2
j j e i ,t−1e j ,t−1 + (λ− α1/2

i i α
1/2
j j )g i j ,t−1, i , j = 1, ...p , i 6= j .

The condition for covariance stationarity in this model is simply thatλ < 1, which also implies a positive

definite target. The model allows the different elements of G t to load freely on the lagged variances/covari-

ances and the corresponding shocks allowing them to have different smoothness levels; however it restricts

them to have common persistence through λ. In contrast to the diagonal model, here we have σλ = 0,

whileσα 6= 0 which also impliesσβ 6= 0.

This model is motivated by the empirical observation that persistence levels in the conditional vari-

ances of asset returns are less heterogeneous compared to their smoothness levels. For instance, Brownlees

(2011) studies a large cross section of U.S. financial firms during the 2007-2009 financial crises, and finds

the cross-sectional variation in λi i to be negligible, while smoothness, captured by βi i in our model, tends

to decline with the leverage of the company. Hafner and Franses (2009) make a related observation by not-

ing that heterogeneity in αi i is greater than that in βi i , and in one of their models they impose a common

smoothing parameter β . We conjecture that imposing a common eigenvalue, λ, is more intuitive since as-

sets with different αi i coefficients are also likely to display varying levels of smoothness through βi i . In

addition, the advantage of our specification is that a single parameter, λ, controls both covariance station-

arity and positive definiteness of the target regardless of the dimensionality of the system. It also preserves

the correlation targeting property which is not the case in the model of Hafner and Franses (2009).

2.3.4 Orthogonal Parameter Matrices Model

Another interesting case, which we outline here but do not pursue empirically, is when A and B are made

up of orthogonal vectors

A = (a 1, ..., a p )′, B = (b1, ..., bp )′

8



and so (
AA ′
)

i j
= a ′i a j = αi j 1[i=j ],

(
B B ′

)
i j
= b ′i b j = βi j 1[i=j ], i , j = 1, 2, ..., p ,

where 1[·] is the indicator function. Note that orthogonality of A and B implies that I−AA ′−B B ′ is diagonal.

It also implies that vec(AA ′) = vec(Λα), where Λα = d i a g
(
α11, ...,αp p

)
, and similarly for vec(B B ′).

Example 1. Suppose p = 2 and we parameterize the orthogonal case as

A =

 α1/2
11 −cα1/2

11

cα1/2
22 α1/2

22

 , Ae t−1 =

 α1/2
11

cα1/2
22

 e1,t−1 +

 −cα1/2
11

α1/2
22

 e2,t−1,

then A is orthogonal and AA ′ is diagonal with first element α11

(
1 + c 2

)
, and second element α22

(
1 + c 2

)
.

When c = 0 then A is diagonal. In this diagonal case suppose α1/2
11 = 0.275, β1/2

11 = 0.950, α1/2
22 = 0.200,

β1/2
22 = 0.980. Figure 1 shows the sample path of G t for 1, 000 simulated observations assuming e1,t and

e2,t are GARCH(1,1) processes with unconditional variance equal to 1, and persistence levels 0.995 and

0.985, respectively. Top left is g 11,t , top right is g 12,t , bottom left is g 22,t while bottom right is the implied

conditional correlation.
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Figure 1: Sample path of G t for 1,000 simulations.

2.4 Implied BEKK Parameterization

The model in (1) implies that

Var[rt |Ft−1] = Ht = H
1/2

G t H
1/2

= CC
′ + Art−1r ′t−1A

′ + BHt−1 B
′
,

where

A = H
1/2

AH
−1/2

, B = H
1/2

BH
−1/2

, CC
′ = H

1/2 (
I − AA ′ − B B ′

)
H
−1/2

. (4)

So this is a particular parameterization of the Engle and Kroner (1995) BEKK model constructed so it is

relatively easy to estimate. It is also clear that this structure does not reproduce an entirely general Engle

and Kroner (1995) model; rather it is a constrained version.
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Example 2. Suppose A is diagonal, then A = PΛ1/2P ′APΛ−1/2P ′ which is not symmetric in general. The

same applies to B when B is diagonal.

This means that when fitting diagonal models to e t , this implies rather rich dynamics since the implied

model for rt will be a fully parameterized BEKK of the same order. When the asymmetric square root is

used (to retrieve the standardized principal components of the data) as in the OGARCH model of Alexander

(2001), a diagonal model implies A = PΛ1/2AΛ−1/2P ′ = PAP ′ which is diagonal, and B will also be diagonal.

Thus, we prefer the symmetric square root, PΛ1/2P ′, since it will always give a fit that is at least as good as

the fit using the asymmetric square root PΛ1/2.

Example 3. If A = α1/2I , then A = α1/2PΛ1/2P ′PΛ−1/2P ′ = α1/2I , and the same applies to B . Hence in the

scalar case we recover the scalar BEKK model.

It is worth noting that we use BEKK models to model the persistence in G t , which offers an advantage

over the OGARCH and GOGARCH models since the latter models assume that G t is diagonal; these models

are discussed in detail later in Section 2.6. However, we focus on fitting diagonal BEKK models which means

the parameters are estimated to fit both the conditional variances and covariances. To the extent that the

different elements of G t have different dynamics, the diagonal BEKK model could potentially lead to a worse

fit compared to OGARCH/GOGARCH since the former imposes cross-equation parameter restrictions be-

tween the variance and covariance equations. The class of DCC models, which we discuss next, offers more

flexibility in this regard and our empirical results indicate its superiority to both BEKK and OGARCH/GOG-

ARCH models.

2.5 DCC Models

2.5.1 Scalar DCC Dynamics

One shortcoming of diagonal and common persistence BEKK models is that the dynamics of g i j ,t is linked

to the dynamics of g i i ,t and g j j ,t for all i and j through cross-equation parameter restrictions. This is

partly overcome in the DCC model of Engle (2002), which allows for the speed of change in the conditional
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correlations to be different than that seen for the individual volatilities, and also allows for models to be fit

in quite large dimensions. See the discussion in Engle (2009a).

DCC models work through first modeling the marginal conditional variances,

Var[ri ,t |F ri
t−1] = σ

2
i ,t , i = 1, 2, ..., p ,

as univariate GARCH processes. This is an important constraint since in effect it is modeling the conditional

variance using its own univariate natural filtration, F ri
t−1. It then computes the standardized potentially

correlated innovations

vi ,t = ri ,t /σi ,t , i = 1, 2, ..., p .

Let vt =
(

v1,t , v2,t , ..., vp ,t

)′
and the unconditional covariance

ΠC = Var[vt ],

then we model

c i j ,t = Corr[vi ,t , v j ,t |Ft−1], i , j = 1, 2, ..., p .

The scalar DCC model decomposes C t = [c i j ,t ] as

C t = (Qt ◦ I )−
1
2 Qt (Qt ◦ I )−

1
2 ,

where ◦ denotes the Hadamard (element-wise) product, and Qt follows a targeted scalar BEKK model

Qt =
(

1− α− β
)
ΠC + αvt−1v ′t−1 + βQt−1,

where α and β satisfy restrictions similar to the scalar BEKK model; see Section 2.3.1. This ensures that

C t is a genuine correlation matrix.5 We will call this a scalar DCC model and denote it by S-DCC. The

predecessor to the DCC model is the Constant Conditional Correlations (CCC) model of Bollerslev (1990)

5See Aielli (2006) for a twist on the usual DCC dynamics which has better theoretical properties.
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which sets C t = C , where C is the unconditional correlation matrix of vt .

2.5.2 Flexible DCC Dynamics

The more flexible BEKK-type specifications discussed above suggest similar extensions to the scalar DCC

model. Note that a generalization of the scalar DCC is already mentioned in Engle (2002) but it is not pur-

sued empirically. Cappiello et al. (2006) propose more flexible dynamics to the scalar DCC model with

asymmetric effects, and they estimate a diagonal DCC model for a group of 34 assets. Billio et al. (2006) and

Billio and Caporin (2009) fit a restricted diagonal DCC model to 20 assets assuming a sector-specific block

structure in A and B such that each matrix has only 3 parameters. Hafner and Franses (2009) introduce a

flexible diagonal DCC specification, and apply it to 39 stocks. They overcome the estimation challenge in

this high dimension by using a pooled estimator based on Engle et al. (2008).

Based on the standardized returns, vt , let

ΠC = Var[vt ] = PCΛC P ′C ,

where PC contains the eigenvectors and ΛC has the eigenvalues on the main diagonal. Then we construct

the rotated innovations

w t = PCΛ
−1/2
C P ′C vt .

The virtue of this approach is that Var[w t ] = I . Then we model

Var[w t |Ft−1] = Q∗t ,

where

Q∗t =
(

I − AA ′ − B B ′
)
+ Aw t−1w ′t−1A + BQ∗t−1 B , Q∗0 = I .

As shown for the BEKK parameterization, Qt is given by

Qt = PCΛ
1/2
C P ′CQ∗t PCΛ

1/2
C P ′C .
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In the case where A = α1/2I and B = β1/2I , we reproduce the scalar DCC model. However, the previous

sections show we can simply extend this by allowing A and B to be diagonal in the recursion for Q∗t . This

added flexibility may be empirically useful, allowing some aspects of the correlation matrix to move more

rapidly than others. We also consider a version similar to the CP model defined in (3).

To conclude, the scalar DCC model is a scalar BEKK model applied to the standardized residuals after

fitting univariate GARCH models. The diagonal DCC model, denoted by D-DCC, is simply a diagonal BEKK

model applied to the same innovations. The CP model discussed in Section 2.3.3, as a special case of diag-

onal models with only p + 1 dynamic parameters, is somewhat related to one of the proposed models in

Hafner and Franses (2009). The distinction is that Hafner and Franses (2009) impose a common smoothing

parameter β on the system, while we impose common persistence through λ. It is important to note that

the model of Hafner and Franses (2009) loses the correlation targeting property, while our model preserves

this attractive feature.

2.6 Relation to Orthogonal GARCH Models

In this subsection, we take a step back from the different specifications of our model to discuss how it

generally relates to some recent propositions known in the literature as orthogonal GARCH models. In

writing rt = H
1/2

e t and then modeling e t = H
−1/2

rt , we are effectively analyzing the rotated returns. A

number of models have focused on linear transformations of the form

rt = Z e t ,

where Z is some invertible matrix. Consider the polar decomposition

Z = SU , (5)

where S is a symmetric positive definite matrix, and U is an orthogonal matrix. Since Var[e t ] = I , we have

Var[rt ] = ZZ ′ = S2, thus S is the symmetric square root of Var[rt ] given by PΛ1/2P ′. Therefore part of the

matrix Z can be estimated using only unconditional information.
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The orthogonal GARCH (OGARCH) model of Alexander and Chibumba (1996) and Alexander (2001) as-

sumes U = P , hence Z = PΛ1/2, which is the asymmetric square root of Var[rt ]. In this case e t is a vector

of the standardized principal components of rt which are unconditionally uncorrelated by construction.

Alexander (2001) assumes that these standardized principal components are also conditionally uncorre-

lated with a diagonal time-varying covariance matrix. This is a mis-specification since the standardized

principal components will inherit the heteroskedastic properties of the original returns. The generalized

OGARCH model (GOGARCH) of van der Weide (2002) proposes Z = PΛ1/2U∗, where the orthogonal link

matrix, U∗, is to be estimated using conditional information. This is sought to avoid identification prob-

lems; see van der Weide (2002) for details.

Lanne and Saikkonen (2007) propose the polar decomposition in (5) and they use conditional informa-

tion to estimate U under the assumption that some of the estimated components are homoskedastic which

leads to dimension reduction.6 Fan et al. (2008) estimate U under the condition that the resulting com-

ponents, e t , are also conditionally uncorrelated. Compared to Fan et al. (2008), the models of Alexander

(2001), van der Weide (2002) and Lanne and Saikkonen (2007) can all be seen as approximations since they

assume that the components estimated from their models are conditionally uncorrelated, while in fact they

are only unconditionally uncorrelated.

While the model of Fan et al. (2008) is conceptually appealing, a set of conditionally uncorrelated com-

ponents may not exist. Thus, in practice, their model may only give components that are the least condi-

tionally correlated in-sample. It is worth noting that estimating the conditionally uncorrelated components

in Fan et al. (2008) requires solving an O(p 2) optimization problem which may be infeasible for large dimen-

sions. In addition, they note that as p increases, it becomes more difficult to find factors that are condition-

ally uncorrelated using their proposed method. Boswijk and van der Weide (2011) adopt a closely related

approach to estimate conditionally uncorrelated factors, which departs from earlier work on the GOGARCH

model. It is unclear whether their approach guarantees the success of finding conditionally uncorrelated

factors in large dimensions.7

6Lanne and Saikkonen (2007) focus on a reduced-factor model, while here we focus on the dynamics of the full set of returns.
7In all of these studies, the maximum number of assets considered in simulation experiments and for empirical analysis is 12

assets.
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Our model takes a different stand by directly modeling the conditional covariance matrix of e t . Here we

simply set U in (5) equal to I , which means that e t is not going to be the only unique set of components

satisfying Var[e t ] = I . For instance, we can post-multiply H
1/2 = PΛ1/2P ′ by an arbitrary orthogonal matrix

U∗, and still have Var[e t ] = E[e t e ′t ] = E[U∗′H−1/2
rt r ′t H

−1/2
U∗] = I . However, uniqueness (or identifia-

bility) of e t is not crucial since our objective is to simplify estimation and not get unique estimates of e t .

What is important is that for any model for e t , it is straightforward to derive the implied model for rt as we

discussed in Section 2.4.

For the models we fit, we include the OGARCH model of Alexander (2001) for comparison. This is equiv-

alent to the following dynamic equation

G t =
(

I − ÃÃ ′ − B̃ B̃ ′
)
+ ÃÃ ′ ◦

(
e t−1e ′t−1

)
+ B̃ B̃ ′ ◦G t−1, (6)

where Ã and B̃ are diagonal. Note that this equation is for the conditional covariance matrix of the standard-

ized principal components of the returns, i.e. when using the asymmetric square root H
1/2 = PΛ1/2. We

also include results for the GOGARCH model of van der Weide (2002) but modified as proposed by Boswijk

and van der Weide (2011). In this GOGARCH formulation, it is assumed that the transformation matrix, Z ,

is given by

Z = SU (δ) = PΛ1/2P ′U (δ), (7)

where the orthogonal matrix U (δ) is parameterized by a p (p − 1)/2× 1 vector δ, with j -th element−180 ≤

δj ≤ 180 which is a rotation angle.8 The dynamics of the resulting e t = Z−1rt are modeled as in (6). In

models of large dimension, estimatingδ is generally challenging, thus we only include the GOGARCH model

for comparison in our empirical analysis in the bivariate case. Note that our model imposes U (δ) = I , or

equivalently δ = 0.

To summarize, the key feature of OGARCH and GOGARCH models is that conditionally the factors are

8Note that any 2 × 2 orthogonal matrix can be written as a rotation matrix taking the form U (δ) =
(

cosδ − sinδ
sinδ cosδ

)
where

−180 ≤ δ ≤ 180, which is scalar in this example, is a rotation angle. A positive δ indicates counterclockwise rotation. For p > 2,
U (δ) can be represented as the product of p (p − 1)/2 rotation matrices each parameterized with a distinct rotation angle; see
van der Weide (2002) for details.
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assumed to be uncorrelated. This is not true of (1), which assumes they follow a BEKK-type model. The

models are not the same even in the scalar BEKK case, hence these models are non-nested. In (1) when A

and B are diagonal, the diagonal elements of G t follow similar dynamics to the OGARCH/GOGARCH model

as in (6). The models differ by the non-diagonal elements of G t which are always assumed to be zero in

the OGARCH/GOGARCH structure. This means that the marginal likelihoods for the univariate series e i ,t ,

i = 1, ..., p , are the same (holding the parameters equal across the models) but their dependence structure

will be different.

2.7 A Time-Varying-Weight Strict Factor Model Representation

Our model can also be interpreted as a time-varying-weight strict factor model. The model implies

Var[rt |Ft−1] = Ht = H
1/2

G t H
1/2

= PΛ1/2P ′G t PΛ1/2P ′.

Suppose we take the spectral decomposition of G t at each point in time such that G t = PG
t Λ

G
t (P

G
t )
′, where

PG
t contains the eigenvectors of G t and the diagonal matrix ΛG

t has the eigenvalues of G t along its main

diagonal. Then we can write

Ht = PΛ1/2P ′PG
t Λ

G
t (P

G
t )
′PΛ1/2P ′

= z tΛG
t z ′t ,

where z t is a time-varying weight matrix. This representation is reminiscent of strict factor models where

the factors are not correlated, their conditional variances are given by the diagonal elements of the time-

varying ΛG
t , and there is no approximation error covariance since the number of factors is equal to the

number of assets.

The term strict factor model is usually used to characterize a model where the idiosyncratic components

of asset returns are uncorrelated as in Ross (1976), for example. Here we adapt it to describe a model where
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the factors are uncorrelated both conditionally and unconditionally, and the factor loadings, z t , are time-

varying.

Note that orthogonal GARCH models assume that G t is diagonal, and in this case ΛG
t = G t while PG

t =

I . Thus orthogonal GARCH models impose a fixed weight matrix z t = z . This representation provides

an additional intuition behind our model, and explains why capturing the covariance dynamics of e i ,t ,

i = 1, ..., p , is important. Since we also consider DCC-type parameterizations, this analogy can be extended

to the factor DCC model of Engle and Rangel (2009) which, if reparameterized as above, becomes a time-

varying-weight strict factor model.

3 Inference

3.1 Parameter Vector

We will focus on the two part model, where the first part is

E[rt ] = 0, Var[rt ] = H = PΛP ′, t = 1, 2, ..., T,

and the second is

e t = PΛ−1/2P ′rt , E[e t |Ft−1] = 0, Var[e t |Ft−1] = G t ,

and

G t =
(

I − AA ′ − B B ′
)
+ Ae t−1e ′t−1A ′ + BG t−1 B ′, G0 = I .

Let θA and θB denote the parameters indexing A and B . The parameters in the model are

θ =
(

vech(H )′, θ ′A , θ ′B
)′ = (θ ′H , θ ′∗

)′
.

We call θ∗ the “dynamic” parameters and θH the “static” parameters. The true values of these parameters

are denoted by θ0,∗ and θ0,H , respectively, while θ0 =
(
θ ′

0,H
, θ ′0,∗

)′
. Typically the dimension of θH is large

and potentially massive if p is large since it has O(p 2) elements. The dimension of θ∗ is often small with
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only O(p ) parameters in the specifications we consider.

In the diagonal case, let θ∗,i denote the dynamic parameters which index the dynamics of the i -th series

e i ,t . Thus θ∗,i =
(
αi i ,βi i

)
, and θ∗ =

(
θ ′∗,1, θ ′∗,2, ..., θ ′∗,p

)′
, recalling that p is the number of assets. This

notation will be useful later when discussing the numerical optimization algorithm we use for diagonal

models.

3.2 Two Step Estimation

The structure of the model allows for a two-step estimation strategy to estimate θ . This approach, which

dramatically eases the computational burden, was advocated in the univariate case by Engle and Mezrich

(1996) and has been used for the scalar BEKK and DCC models in many studies.

In the first step we focus solely on the static parameters θH = vech(H ). By construction H = Var[rt ],

thus we use the method of moments estimator

Ĥ =
1

T

T∑
t=1

rt r ′t ,

implying θ̂H . This estimate is then decomposed into P̂ and Λ̂. Then we construct the time series of rotated

returns

e t = P̂Λ̂−1/2P̂ ′rt , t = 1, 2, ..., T.

The second stage estimation is based on the quasi-likelihood

log L(θ∗, θ̂H ) =
T∑

t=1

log L t (θ∗, θ̂H ) = cons t − 1

2

T∑
t=1

log |G t | −
1

2

T∑
t=1

e ′t G−1
t e t , (8)

where

G t =
(

I − AA ′ − B B ′
)
+ Ae t−1e ′t−1A ′ + BG t−1 B ′, G0 = I . (9)

This is optimized solely over θ∗, keeping θ̂H fixed, which delivers θ̂∗. If the dimensionality of the system,

p , becomes very large then it may be worth switching over to use a composite likelihood (Engle et al. 2008,

and Pakel et al., 2011) or the McGyver estimation method (Engle (2009b)), but we will not discuss that here.
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When estimating the OGARCH model, we use e t = Λ̂−1/2P̂ ′rt in (8) while the dynamic equation (9) is

replaced with (6). For GOGARCH we use e t = P̂Λ̂−1/2P̂ ′rt in the following quasi-likelihood

log L(θ∗, θ̂H ) =
T∑

t=1

log L t (θ∗, θ̂H ) = cons t − 1

2

T∑
t=1

log |G t | −
1

2

T∑
t=1

e ′t U (δ)G−1
t U (δ)′e t , (10)

and the dynamic equation for G t is also given by (6). In this case, the additional p (p−1)/2 inδ are contained

in θ∗.9

In terms of asymptotic theory, for fixed p and T → ∞, this is simply a two step moment estimator, e.g.

Newey and McFadden (1994) and Pagan (1986), where the moment conditions are given by the vector

m (θ∗, θH ) =
T∑

t=1

m t (θ∗, θH ), m t (θ∗, θH ) =


θH − vech

(
rt r ′t

)

∂ log L t (θ∗,θH )
∂ θ∗

 ,

m (θ̂∗, θ̂H ) = 0,

and

E

{
m (θ∗, θH )

∣∣
θ∗=θ0,∗;θH=θ0,H

}
= 0,

at the true values. The key feature here is that the first step does not involve θ∗, which simplifies the estima-

tion of the dynamic parameters in the second step.

The asymptotic distribution of this two step estimator has been worked over by many authors in the

context of scalar BEKK models and the DCC model, so we will not discuss it in detail here. Under standard

regularity conditions, as T →∞we have

√
T
(
θ̂ − θ0

)
d→ N (0, I−1J (I−1)′)

9As noted earlier the estimation of δ is challenging when p is large. Thus we only estimate the GOGARCH model in the bivariate
case in our empirical analysis.

20



where θ̂ =
(
θ̂ ′∗, θ̂

′
H

)′
,

J = Var

[
1√
T

T∑
t=1

m t (θ∗, θH )

]
, I = E

[
∂m t (θ∗, θH )

∂ θ ′

]
,

and we use a HAC estimator, e.g. Newey and West (1987), to estimate J .

3.3 Numerical Optimization

General numerical optimization routines can be used to locate θ̂∗. An alternative, which we have used sys-

tematically in the estimation of diagonal models, is to employ a zig-zag algorithm based upon the structure

of θ∗. We optimize

log L(θ∗i , θ∗\i , θ̂H ),

with respect to θ∗i , holding all other elements of θ∗, written as θ∗\i , at the previously best values. We then

cycle over i , repeating the optimization each time. The advantage of this is that each individual optimiza-

tion is only 2-dimensional, and we have found this method to be reliable. The theory for this estimator is

discussed in Fan et al. (2007), while inference is standard as outlined in Section 3.2.

3.4 Model Comparison

We will use a quasi-likelihood criterion for rt to compare the fit of the different models, which means we

will focus on the 1-step prediction ability of the models using a Kullback-Leibler distance. Note that given

the likelihood for e t , it is straightforward to compute the likelihood for rt since the Jacobian of the trans-

formation is ∂ rt
∂ e ′t
= PΛ1/2P ′, and its determinant is

∣∣PΛ1/2P ′
∣∣ = ∣∣Λ1/2

∣∣, where the second equality follows

from P being orthogonal; see Lütkepohl (1996, pp. 48). Thus for a time series of length T , we have that

log L r = log L e − T
2 log |Λ|, where log L r and log L e denote the log-likelihoods for rt and e t , respectively.

This also implies that comparisons based on models for e t is equivalent to comparisons based on equivalent

models for rt . This is because the difference in the likelihood is independent of the dynamic parameters,

and only depends on the static parameters, Λ, which are common to all the models we consider.

Let log L a ,t denote the t -th observation log-likelihood for rt based on model a . To compare two models,
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a and b , we look at the average log-likelihood difference

l a ,b =
1

T

T∑
t=1

l a ,b ,t , l a ,b ,t = log L a ,t − log Lb ,t . (11)

We then test if l a ,b is statistically significantly different than zero by computing a HAC estimator of the

variance of l a ,b . This predictive ability test was first introduced by Diebold and Mariano (1995). Using

a quasi-likelihood criterion is valid for non-nested and mis-specified models; see Cox (1962) and Vuong

(1989) for in-sample model comparison, and Amisano and Giacomini (2007) for out-of-sample model se-

lection. For comparisons, we choose the diagonal model within each class (BEKK, DCC, OGARCH and

GOGARCH) since it is the most flexible specification, and then test for equal predictive ability. We will use

either OGARCH or GOGARCH in a comparison, but not both since the GOGARCH nests OGARCH and thus

this test would not be appropriate.10

3.5 Copula and Marginal Likelihoods

It is also useful to consider the marginal log-likelihood for the i -th series

log L i =
T∑

t=1

log f (ri ,t |Ft−1),

where we have conditioned on the entire filtration, not just the natural filtration for the i -th series. The

implied copula likelihood is then given by

log L −
p∑

i=1

log L i .

Under the assumption of conditional normality, the copula parameter is the conditional correlation

matrix of the returns. For the copula-margins decomposition in the CCC and DCC models, see, respectively,

equation (6) in Bollerslev (1990) and equation (26) in Engle (2002).

10If interest is in testing nested models, the approach of Giacomini and White (2006) can be adopted by using rolling-window
estimation. This allows for pairwise comparisons of the predictive ability of all the four classes of models as well as the different
variants under each class.
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4 Empirical Analysis

4.1 Data

We use close-to-close daily returns data on Spyder (SPY), an S&P 500 exchange traded fund, and some of

the most liquid stocks in the Dow Jones Industrial Average (DJIA) index. These are: Alcoa (AA), American

Express (AXP), Bank of America (BAC), Coca Cola (KO), Du Pont (DD), General Electric (GE), International

Business Machines (IBM), JP Morgan (JPM), Microsoft (MSFT), and Exxon Mobil (XOM). The sample period

is 1/2/2001 to 31/12/2009 and the source of the data is Yahoo!Finance, which is accessible online. We use

close prices adjusted for dividends and splits.

Our primary empirical example in Section 4.3 focuses on the pair XOM-AA, which we use to present the

models’ main features. In Section 4.4, we analyze stock-index dynamics by studying the pair SPY-XOM. This

sheds light on the conditional correlation of a firm’s stock with the overall market index, and the latter part

of our sample includes the recent financial crisis. This application relates to the recent work of Brownlees

and Engle (2011) and Hansen et al. (2010) where they focus on modeling systemic risk measures using con-

ditional correlations and conditional betas, respectively. See also Noureldin et al. (2011) for a multivariate

volatility model for the same group of assets which utilities high frequency data. In Section 4.5 we estimate

the models using all 10 stocks from the DJIA index.

4.2 Considered Models

4.2.1 BEKK Class

We work with the rotated returns e t = P̂Λ̂−1/2P̂ ′rt , which are unconditionally uncorrelated in-sample and

each has unconditional variance equal to 1. They display, of course, volatility clustering. Then we fit the

covariance targeting BEKK model

Var[e t |Ft−1] = G t =
(

I − AA ′ − B B ′
)
+ Ae t−1e ′t−1A ′ + BG t−1 B ′, G0 = I .

The dynamics are estimated using a Gaussian quasi-likelihood. We fit the following models:
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• Scalar BEKK (S-BEKK). A = α1/2I and B = β1/2I .

• Diagonal BEKK (D-BEKK). A = d i a g (α1/2
11 , ...,α1/2

p p ) and B = d i a g (β1/2
11 , ...,β1/2

p p ).

• Diagonal BEKK with common persistence (D-BEKK-CP). A = d i a g (α1/2
11 , ...,α1/2

p p ) and λ is the com-

mon persistence parameter.

For comparison, we also report results for these three specifications when applied to OGARCH-type and

GOGARCH-type models, where in the latter models it is assumed that G t is diagonal.11 The diagonal OG-

ARCH and GOGARCH models (with unconstrained α1/2
i i and β1/2

i i ) correspond to the models of Alexander

(2001) and Boswijk and van der Weide (2011), respectively, while the other specifications are novel in this

context.

4.2.2 DCC Class

We first fit variance targeting univariate GARCH(1,1) models to the returns, which produces a sequence of

standardized vector innovations vt . Then we model c i j ,t = Corr[vi ,t , v j ,t |Ft−1]. The conditional correlation

matrix C t = [c i j ,t ] is decomposed as

C t = (Qt ◦ I )−
1
2 Qt (Qt ◦ I )−

1
2 .

We first rotate vt to generate w t = PCΛ
−1/2
C P ′C vt , then we model Var[w t |Ft−1] = Q∗t and then take Qt =

PCΛ
1/2
C P ′CQ∗t PCΛ

1/2
C P ′C . The dynamic equation for Q∗t is

Q∗t =
(

I − AA ′ − B B ′
)
+ Aw t−1w ′t−1A + BQ∗t−1 B , Q∗0 = I ,

which is estimated using a Gaussian quasi-likelihood. We estimate the following models:

• Constant conditional correlations (CCC). A = B = 0.

• Scalar DCC (S-DCC). A = α1/2I and B = β1/2I .

11Note that the OGARCH model is for e t = Λ̂−1/2P̂ ′rt , while the GOGARCH model is for e t = P̂Λ̂−1/2P̂ ′rt and the latter’s likelihood
is given by (10).
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Figure 2: XOM and AA series: Top panel plots the daily returns (rt ). Bottom panel plots the rotated returns
(e t ).

• Diagonal DCC (D-DCC). A = d i a g (α1/2
11 , ...,α1/2

p p ) and B = d i a g (β1/2
11 , ...,β1/2

p p ).

• Diagonal DCC with common persistence (D-DCC-CP). A = d i a g (α1/2
11 , ...,α1/2

p p ) and λ is the common

persistence parameter.

4.3 Analyzing the Pair XOM-AA

4.3.1 BEKK, OGARCH and GOGARCH Models

We will start out with a detailed bivariate example: the daily returns of Exxon Mobil (XOM) and Alcoa (AA).

Figure 2 provides summary of the series. The daily returns are in the upper panel while the rotated returns

are in the lower panel. The unconditional covariance matrix of the returns is given in Table 1. The first

eigenvector looks like a market factor, while the second is a long/short portfolio.

The parameter estimates of the BEKK, OGARCH and GOGARCH models are given in Table 2 together
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Returns GARCH(1,1) innovations

Covariance Eigenvectors Covariance Eigenvectors

XOM 3.069 2.918 0.394 -0.919 0.981 0.470 0.706 -0.708

AA 2.918 8.633 0.919 0.394 0.470 0.983 0.708 0.706

Eigenvalues – – 9.882 1.820 – – 1.452 0.512

Table 1: Left-hand side is the unconditional covariance of returns, together with their eigenvalues and (nor-
malized) eigenvectors. On the right-hand side is the unconditional covariance of the innovations from uni-
variate variance targeting GARCH(1,1) models.

with the associated log-likelihood values for the (original, unrotated) returns evaluated at (θ̂∗, θ̂H ). The

joint log-likelihood is decomposed to indicate the performance in terms of the margins and the copula. In

the BEKK class, the D-BEKK model provides a moderate improvement in fit compared to S-BEKK. This is

due to the diagonal parameters freely fitting each conditional variance. The effects are quite considerable

since α1 and α2 are an order of magnitude different than the S-BEKK’s α, so that XOM’s conditional variance

dynamics are much more responsive to its own shock, while the estimates for the conditional variance of

AA are smoother. Of course, these estimates also fit the conditional covariance dynamics given the cross-

equation parameter restrictions of the diagonal BEKK model.

The parameters of the implied BEKK model for rt , given by (4), are

A = H
1/2

AH
−1/2 =

 0.275 −0.019

0.034 0.182

 , B = H
1/2

BH
−1/2 =

 0.951 0.007

−0.012 0.983

 ,

indicating that a diagonal model for the rotated returns implies a full BEKK model for the unrotated returns.

Recall that this follows from specifying H
1/2

as the symmetric square root using the spectral decomposition.

The D-BEKK-CP model estimates imply roughly the same level of persistence in the elements of G t as the

S-BEKK and D-BEKK models. The picture for OGARCH and GOGARCH is rather similar but indicating a

slightly lower level of persistence.

Interestingly, the GOGARCH model’s estimated rotation angle is very close to zero and statistically in-

significant. This implies that U (δ) ≈ I , making the e t series from the GOGARCH model very close to those

from the BEKK model; see (7). The primary difference between the two models is that GOGARCH assumes
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that g 12,t is zero, which is reflected in BEKK’s superior copula fit.

The BEKK models provide an important increase in the likelihood compared to OGARCH and GOGA-

RCH. The increase in the log-likelihood in BEKK models is primarily due to an increase in the copula fit,

implying that capturing the conditional correlations in the rotated returns (which is not the case in OGA-

RCH and GOGARCH) does improve the modeling of the conditional correlations of the unrotated returns.

There is a small loss in fit in the first margin (XOM) when using the BEKK model, however this is more

than compensated through capturing the conditional correlation dynamics with BEKK models providing

an overall gain in fit.

4.3.2 DCC Models

Table 3 gives estimates of the CCC and DCC models. When estimating the variance targeting GARCH(1,1)

models for the margins, we first standardize the returns of XOM and AA by their respective unconditional

variances, fit variance targeting GARCH(1,1) models for these standardized returns and report the log-

likelihood for the original returns as the marginal log-likelihood. The estimates suggest different dynamics

for the two series, which can already be inferred from the improvement offered by the diagonal models

in Table 2. Not surprisingly, the fit for the margins in this case is better than all the BEKK, OGARCH and

GOGARCH models. For CCC the unconditional correlation of the standardized returns is 0.480. We use the

unconditional correlation to build the time-varying covariance matrix, the dynamics of which are driven

only by the conditional variances in this model.

The estimates for the DCC dynamics suggest only a marginal improvement by the D-DCC and D-DCC-

CP over S-DCC. With the margins fit freely, there seems to be no additional improvement from further en-

riching the DCC dynamics in this case. This is in contrast to the BEKK model results, but it is perhaps

unsurprising since there is a single conditional correlation to model in this case. As we show later, in higher

dimensions the gains from the further flexibility of the D-DCC and D-DCC-CP models can be substantial.

Overall the estimates suggest that the conditional correlation matrix is quite persistent. The log-likelihood

decomposition results indicate a rather significant improvement in the overall fit compared to the BEKK,

OGARCH and GOGARCH models, especially in comparison to OGARCH.

28



DCC

CCC Scalar Diagonal CP

Variance parameters

Margin (XOM) (0.084, 0.901)

Margin (AA) (0.048, 0.948)

Correlation parameters

CCC 0.480 – – –

α – 0.015 – –

β – 0.977 – –

α11 – – 0.006 0.005

α22 – – 0.037 0.054

β11 – – 0.993 –

β22 – – 0.960 –

λ – – – 0.992

LL decomposition

Margin (XOM) -4,026 -4,026 -4,026 -4,026

Margin (AA) -5,096 -5,096 -5,096 -5,096

Copula 293 306 307 307

Total LL -8,829 -8,816 -8,815 -8,815

Table 3: Dataset: XOM and AA daily returns 1/2/2001-31/12/2009. Parameter estimates of the constant
conditional correlations (CCC), and scalar, diagonal and common persistence (CP) parameterizations for
the DCC model. Top panel: estimates of the variance targeting GARCH(1,1) models for the margins. Middle
panel: estimates of the correlation parameters: α and β are the parameters of S-DCC, while (αi i , βi i ), i =
1, 2, are those of D-DCC. For CP, λ (the common persistence parameter) and αi i for each asset are reported.
All parameters are statistically significant at the 5 percent level of significance. Bottom panel: Log-likelihood
decomposition at the estimated parameter values.

Figure 3 plots the conditional correlations from the diagonal models which provided the best fit in each

model class. The D-DCC conditional correlation is the most persistent and lies within a tighter range. It

appears to be generally lower than the conditional correlation from the D-BEKK and D-OGARCH model,

with the exception of the year 2005 where D-OGARCH conditional correlation was noticeably lower. This

observation is perhaps most evident during the latter part of the financial crisis, roughly starting 2009, with

the difference in the implied correlation level being rather significant at times during this period.

We apply the 1-step predictive ability test outlined in Section 3.4 to the D-BEKK, D-OGARCH and D-

DCC models which are the most flexible in each class. Comparing D-BEKK to D-OGARCH gives a t -statistic

of 2.81 which is statistically significant at 1 percent, indicating that D-BEKK provides superior 1-step fore-

casts. Comparing D-DCC to D-BEKK and D-OGARCH gives t -statistics equal to 2.24 and 3.74, respectively,

indicating that D-DCC outperforms both models out of sample. These results are, of course, in line with the
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Figure 3: Conditional correlations from the diagonal BEKK, OGARCH and DCC models.

substantial in-sample gains shown by the DCC models.

4.4 Index-Stock Dynamics: SPY-XOM

The results for SPY-XOM are reported in Table 4. Moving from S-BEKK to D-BEKK leads to a modest im-

provement in fit for the first margin and the copula. This is also the case in OGARCH with gains only in

the first margin. GOGARCH provides considerable gain compared to OGARCH, particularly in the copula

fit, with a statistically significant estimate of the rotation angle at about -130 degrees. Both DCC and BEKK

models improve significantly over OGARCH and GOGARCH, with DCC providing some gain over BEKK in

both margins and the copula.

In terms of predictive ability, the D-BEKK model provides superior 1-step forecasts compared to OG-

ARCH models with a t -statistic of 4.48. The D-DCC also significantly improves over D-OGARCH with a

t -statistic of 4.77; however, its improvement over D-BEKK is statistically insignificant with a t -statistic of
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Figure 4: SPY-XOM conditional variances, correlation and beta from the diagonal OGARCH and DCC mod-
els.

1.12. Again this mirrors the in-sample results of the three models.

Figure 4 shows the conditional volatilities, correlation and beta from D-OGARCH and D-DCC for SPY-

XOM. The conditional variances from the two models seem quite similar, except for the SPY conditional

volatility during 2005-2007 where the difference is mainly one of scale. The path of the conditional cor-

relations is also somewhat similar although the D-OGARCH model attains more spikes. The interesting

difference in this figure is the rather different profile for the conditional beta. From 2005 to mid 2007, the

D-DCC model implies a conditional beta that is consistently larger and typically greater than 1, and it seems

to have moderated gradually during the financial crisis.
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BAC JPM IBM MSFT XOM AA AXP DD GE KO

Eigenvector 1 0.505 0.439 0.182 0.218 0.180 0.360 0.392 0.242 0.292 0.106

Eigenvector 2 -0.584 -0.288 0.177 0.259 0.255 0.582 -0.033 0.223 0.077 0.129

Table 5: Dataset: 10 DJIA stocks daily returns 1/2/2001-31/12/2009. The first two (normalized) eigenvectors
correspond to the two largest eigenvalues of the unconditional covariance matrix of the returns.

4.5 Ten Dimensional Example

We now analyze all 10 stocks from the DJIA index. The first two eigenvectors, corresponding to the two

largest eigenvalues of the unconditional covariance matrix of the returns, are reported in Table 5. The first

eigenvector looks roughly like a market factor and the second is a market portfolio that is short (long) in

financial stocks (BAC, JPM and AXP) and long (short) in the other stocks.12 The two largest eigenvalues are

35.93 and 6.85, and they account for 73 percent of the total variation in the returns, where total variation is

measured by the trace of H .

Table 6 shows the estimated parameters for the scalar, diagonal and common persistence models. The

latter are an interesting alternative in moderately large dimensions since they have only p + 1 dynamic pa-

rameters compared to 2p parameters in the diagonal models. Moving from the scalar to the diagonal models

seems to pay off with a considerable improvement in overall fit in D-BEKK, and less so for D-OGARCH. The

BEKK models provide a significant overall gain in the log-likelihood over OGARCH all due to improving the

copula fit. Note that the BEKK loses in the margins to OGARCH as the BEKK parameters provide a fit to both

the variance and covariance elements of G t .

Of course, the DCC models provide the best fit since the margins are freely estimated. The overall gain

compared to BEKK and OGARCH is quite impressive, and the DCC gains are uniform across all margins and

the copula. Unlike BEKK and OGARCH cases, moving from S-DCC to D-DCC does not improve the copula

fit massively. In this moderately large dimension, the favorable performance of the CP model is evident,

particularly in the BEKK and OGARCH cases. In both cases, the diagonal specifications significantly improve

the overall fit (mostly due to the copula contribution) and when fitting the CP model the deterioration in fit

is rather slight. To a lesser extent, this is also the case in the DCC models.

Given that both the scalar and CP specifications are nested in the diagonal model, we can use a likeli-

12Note that when the eigenvalues are distinct, the normalized eigenvectors are unique up to sign.
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hood ratio (LR) test. The scalar model imposes 2p restrictions on the diagonal model, and according to the

LR test, the reduction in fit is statistically significant at 5 percent in all three cases. The CP model imposes

p (p + 1)/2 restrictions on the diagonal model and according to the LR test, the loss in fit when moving from

D-BEKK to D-BEKK-CP is statistically significant at 5 percent, while this is not the case in the OGARCH and

DCC models.

This is an interesting result since the number of dynamic parameters in the CP model is p +1 compared

to 2p dynamic parameters in the diagonal model. This could be due to the differences in the heterogeneity

in the persistence and smoothness levels among the parameters of the diagonal models. For instance, in D-

BEKK the heterogeneity in the parameters is given byσα = 0.014 andσβ = 0.023, while the corresponding

measures in D-DCC are σα = 0.004 and σβ = 0.020. Since both are lower, especially σα = 0.004, it is

expected that imposing a common persistence level in the case of DCC may not substantially affect the

empirical fit, and this what the LR ratio test result suggests.

The picture from the overall log-likelihood analysis is confirmed by the predictive ability tests for the

diagonal models. Compared to the D-OGARCH specifications, D-BEKK produces superior 1-step forecasts

with a statistically significant t -statistic equal to 3.49. The D-DCC model outperforms both D-BEKK and

D-OGARCH with statistically significant t -statistics equal to 2.66 and 7.09, respectively.

5 Conclusion

This paper advocates a rotation technique for raw returns which leads to easy-to-fit multivariate volatility

models via covariance targeting. We discuss the similarities and differences between our approach and the

recent orthogonal GARCH models. In particular, while the early contributions to the OGARCH literature

assumed, for simplicity, that the estimated orthogonal components are also conditionally uncorrelated,

we observe that this is only an approximation since the rotated returns will inherit the conditionally het-

eroskedastic properties of the unrotated returns. Therefore, we advocate using the popular BEKK and DCC

models to study the dynamics of the conditional covariance matrix of the rotated returns. We also discuss

a distinct extension of the diagonal BEKK and DCC models, and draw parallels to the OGARCH model of
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BEKK OGARCH DCC

S D CP S D CP S D CP

Dynamic parameters

α 0.020 – – 0.045 – – 0.007 – –

β 0.978 – – 0.952 – – 0.980 – –

minαi i – 0.009 0.010 – 0.027 0.025 – 0.004 0.002

maxαi i – 0.054 0.054 – 0.097 0.095 – 0.017 0.015

minβi i – 0.905 – – 0.869 – – 0.932 –

maxβi i – 0.989 – – 0.967 – – 0.991 –

λ – – 0.998 – – 0.996 – – 0.987

LL decomposition

Margin (BAC) -4,496 -4,355 -4,373 -4,416 -4,351 -4,361 -4,350 -4,350 -4,350

Margin (JPM) -4,769 -4,719 -4,734 -4,706 -4,695 -4,700 -4,671 -4,671 -4,671

Margin (IBM) -4,058 -4,085 -4,092 -4,025 -4,025 -4,023 -4,011 -4,011 -4,011

Margin (MSFT) -4,449 -4,488 -4,482 -4,438 -4,431 -4,433 -4,424 -4,424 -4,424

Margin (XOM) -4,090 -4,067 -4,084 -4,040 -4,032 -4,035 -4,026 -4,026 -4,026

Margin (AA) -5,115 -5,130 -5,132 -5,097 -5,097 -5,096 -5,096 -5,096 -5,096

Margin (AXP) -4,665 -4,648 -4,652 -4,620 -4,705 -4,654 -4,599 -4,599 -4,599

Margin (DD) -4,249 -4,310 -4,299 -4,231 -4,247 -4,232 -4,228 -4,228 -4,228

Margin (GE) -4,291 -4,299 -4,300 -4,263 -4,327 -4,314 -4,257 -4,257 -4,257

Margin (KO) -3,556 -3,558 -3,562 -3,528 -3,542 -3,542 -3,520 -3,520 -3,520

Copula 4,640 4,860 4,807 3,888 4,040 3,963 4,919 4,946 4,939

Total LL -39,098 -38,798 -38,904 -39,475 -39,413 -39,426 -38,263 -38,236 -38,244

Table 6: Dataset: 10 DJIA stocks daily returns 1/2/2001-31/12/2009. Parameter estimates of the scalar (S),
diagonal (D), and common persistence (CP) models. Top panel: estimates of the dynamic parameters. α
and β are the parameters of the scalar models, while (αi i , βi i ), i = 1, 2, are those of the diagonal models.
For CP, only λ (the common persistence parameter) andαi i are reported. All parameters are statistically sig-
nificant at the 5 percent level of significance. Lower panel: Log-likelihood decomposition at the estimated
parameter values.

Alexander (2001) and the GOGARCH model of van der Weide (2002).

We show that fitting a diagonal BEKK model to the rotated returns implies a full BEKK specification

for the unrotated returns further highlighting the modeling flexibility our approach offers. Estimation and

inference is also computationally attractive, thanks to the convenient form of covariance targeting with

a long-run identity matrix. Using two-step estimation, we end up estimating only O(p ) parameters with

numerical optimization which offers advantages in moderately large dimensions.

Indeed using our approach leads to notable 1-step prediction gains compared to OGARCH and GOGA-

RCH. Capturing the dynamics of the covariances of the rotated returns does improve the prediction of the

conditional correlation. Given their flexibility, the DCC suite of models performs best in the 10 dimensional

example we study. Interestingly, our newly proposed common persistence model performs quite favorably
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in comparison to the diagonal model while being more tightly parameterized.
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