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Abstract

This paper considers three distinct hypothesis testing problems that arise in the context
of identification of some nonparametric models with endogeneity. The first hypothesis testing
problem concerns testing necessary conditions for identification in some nonparametric models
with endogeneity involving mean independence restrictions. These conditions are typically re-
ferred to as completeness conditions. The second and third hypothesis testing problems concern
testing identification directly in some nonparametric models with endogeneity involving quantile
independence restrictions. For each of these hypothesis testing problems, we provide conditions
under which any sequence of tests that controls asymptotic size has asymptotic power no greater
than size against any alternative. In this sense, no nontrivial tests for these hypothesis testing

problems exist.
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1 Introduction

Let {V;}™; be an i.i.d. sequence of random variables with distribution P € P. This paper con-
siders three distinct hypothesis testing problems that arise in the context of identification of some
nonparametric models with endogeneity. As usual, each of these hypothesis testing problems may
be written as

Hy: P ePgversus Hy : P e Py, (1)
where Py is the subset of P for which the null hypothesis holds and P; = P \ Py. For each of
the three hypothesis testing problems we consider, we provide conditions on P under which any
sequence of tests {¢, }>2; that controls size at level a € (0, 1) in the sense that

limsup sup Epn|¢,] < « (2)
n—oo  PePy

also satisfies

limsup sup Epn[pn] < o, (3)
n—oo PeP,

where P" denotes the n-fold product measure )" ; P. We thus conclude that any test of (1) that
controls size will have trivial power against all alternatives P € P;. In this sense, we establish that

no nontrivial test exists for the hypothesis testing problems under consideration.

In order to describe the first hypothesis testing problem we consider, let V; = (X;, Z;) and P
be a set of probability measures on R% x R%. For Z¥ a (possibly empty) subvector of Z; and
W; = (X;, Z%) € R, define

P, =P\Py={PcP:Ep[d(W;)|Z]=0for § € O(P) =60 =0 P-a.s.} . (4)

Here, ©(P) is understood to be a subset of the set of all functions from R% to R. If ©(P) = L'(P),
then P is the subset of P for which L!(P)-completeness holds. If, on the other hand, ©(P) =
L*>(P), then P is the subset of P for which L>°(P)-completeness or P-bounded completeness holds.
See d’Haultfoeuille (2011) and Andrews (2011) for a discussion of different completeness conditions.
Such assumptions are made routinely to achieve identification in a variety of nonparametric models
with endogeneity involving mean independence restrictions. For example, Newey and Powell (2003)
show that L!(P)-completeness is necessary for identification of the model they consider. Blundell
et al. (2007) instead use L°°(P)-completeness to attain identification. See also Hall and Horowitz
(2005) and Darolles et al. (2011). These assumptions have been used to achieve identification in
some measurement error, random coefficient and demand models as well. See, for instance, Hu
and Schennach (2008), Hoderlein et al. (2010), Berry and Haile (2010a) and the references therein.
Our results establish that, under commonly used restrictions for P, no nontrivial test of these
completeness conditions exists. We also contrast this conclusion with the problem of testing rank
conditions that are necessary for identification in some semiparametric models with endogeneity.
See Remark 2.1.



In order to describe the second hypothesis testing problem we consider, let V; = (Y;, X;, Z;) and

P be a set of distributions on R x R% x R%. As before, let Z?¥ be a (possibly empty) subvector

of Z; and W; = (X;,27) € R%. Consider the model for an outcome of interest Y;, an endogenous

variable X;, and an instrumental variable Z; where for each P € P there is some § € O(P) for
which

Y; = 0(W;) + €; and P{¢; <0|Z;} =7 w.p.1 under P (5)

for some pre-specified 7 € (0,1). Here, ©(P) is a subset of the set of all functions from R% to R.
This model has been studied, for example, by Chernozhukov and Hansen (2005), Horowitz and Lee
(2007), Chen and Pouzo (2008) and Chernozhukov et al. (2010). In this setting, it is difficult to
describe necessary conditions for identification in terms of completeness conditions. We therefore

focus instead on the problem of testing for identification in this model. To this end, let
P,=P\Py={PcP:3160cO(P)s.t. (5) holds under P} , (6)

where uniqueness of 6 € ©(P) is understood to be up to sets of measure zero under P. Our results
establish that, under commonly used restrictions for P, no nontrivial test of identification exists in
models defined by (5).

The third hypothesis testing problem we consider is closely related to the one described above.
As before, let V; = (Y;, X;, Z;), P be a set of distributions on R x R% x R%, Z¥ be a (possibly
empty) subvector of Z;, and W; = (X;, Z¥) € R%. Consider the model for an outcome of interest
Y;, an endogenous variable X;, and an instrumental variable Z; where for each P € P there is some
0 € O(P) for which

Y; = 0(W;,¢;) and P{O(W;,¢;) —O(W;,7) <0|Z;} =7 w.p.1 under P for all 7 € (0,1) . (7)

Here, ©(P) denotes a subset of the set of all functions 6 : R% x [0,1] — R such that §(W;,") is
strictly increasing w.p.1 under P. This model has been studied, for example, by Chernozhukov and
Hansen (2005), Imbens and Newey (2009) and Torgovitsky (2011). See also Berry and Haile (2009,
2010b) for how these models arise in the context of generalized regression models and multinomial
choice models, respectively. We again focus on the problem of testing for identification in this
model. To this end, define

P,=P\Py={PecP:310ecO(P)s.t. (7) holds under P} , (8)

where uniqueness of § € ©(P) is again understood to be up to sets of measure zero under P. Note
that for each fixed 7 € (0, 1) this model is equivalent to the model described previously. Our results
establish that, under commonly used restrictions for P, no nontrivial test of identification exists in

models defined by (7) even if we impose that 8(W;, ) be strictly increasing w.p.1 under P.

The remainder of the paper is organized as follows. We begin in Section 2.1 by introducing a

useful lemma that underlies our arguments. We then describe our results for the first hypothesis



testing problem in Section 2.2. The closely related second and third hypothesis testing problems

are then treated in Section 2.3. We briefly conclude in Section 3.

2 Main Results

2.1 A Useful Lemma

The following lemma underlies all of our arguments. In the statement of the lemma, H(P, P’)

denotes the Hellinger distance between probability measures P and P’.

Lemma 2.1. Let M denote the space of Borel probability measures on a metric space A. Suppose
P C M and Py and Py satisfy P = PqUPy. If for each P € Py there exists a sequence {P;}7°
in Py with H(P, P,) = o(1), then every sequence of test functions {¢n}o2, satisfies

limsup sup Epn|[p,] < limsup sup Epn[dy] . 9)
n—oo PePy n—oo  PePy

Lemma 2.1 is a mild modification of Theorem 1 in Romano (2004). In particular, the hypothesis
of the lemma has been restated in terms of Hellinger distance, as opposed to Total Variation
distance, and the conclusion has been related in terms of a large-sample result, as opposed to a
finite-sample result. Heuristically, Lemma 2.1 states that if each P € Py is on the boundary of the
set of distributions satisfying the null hypothesis, then, by continuity, the probability of rejection
under any P € P; must be no larger than the asymptotic size. Theorem 1 in Romano (2004)
establishes that the appropriate topology for this purpose is that induced by the Total Variation

distance. See also Donoho (1988) for related results on the construction of confidence intervals.

In each of the three hypothesis testing problems that we consider, we establish nonexistence of
nontrivial tests for identification by constructing for each P € Py a sequence {P}}°, in Pg with
H(P, P;) = o(1) and applying Lemma 2.1. In this way, our results are driven by P being dense in

P, with respect to the Hellinger distance in all three settings we examine.

2.2 Testing Completeness

In this section, we develop our results concerning the nonexistence of nontrivial tests for complete-
ness conditions. In order to do so, we require the following notation. Let M, . be the set of all

probability measures on R% x R% and, for v a Borel measure on R% x R% define

M,.v)={PeM,,:P<Lv}. (10)

We will make use of the following assumptions:



Assumption 2.1. v is a positive o—finite Borel measure on R% x R%.
Assumption 2.2. v = v, X v, where v, and v, are Borel measures on R% and R%, respectively.

Assumption 2.3. The measure v, is atomless (on R% ).

Note that in the following theorem we impose the requirement that P = M, ,(v) for some v
satisfying Assumptions 2.1, 2.2 and 2.3. Properties of v therefore translate into restrictions on P.
For instance, if v has bounded support, then P = M,, ,(v) implies that the support of (X;, Z;) under
P is uniformly bounded in P € P. In particular, by choosing v, and v, to be Lebesgue measure on
[0, 1]% and [0, 1]9=, respectively, we may impose the requirement that the support of (X;, Z;) under
P is contained in [0, 1]% x [0,1]% for all P € P. See Hall and Horowitz (2005) and Horowitz and
Lee (2007) for examples of the use of such an assumption. It is also worth emphasizing that while
Assumption 2.2 imposes that v be a product measure, the requirement that P = M, .(v) for some
such v does not imply that each P € P is itself of such form. On the other hand, the requirement
that P = M, .(v) for some v satisfying Assumptions 2.2 and 2.3, does imply that P{X; # Z;} > 0
for all P € P. Finally, we point out that if d, > 1, then Assumption 2.3 may be weakened to
instead requiring that at least one component of X; have an atomless marginal measure. In order
to ease the exposition of our results, however, we impose the stronger than necessary requirement

in Assumption 2.3.

Theorem 2.1. Suppose v satisfies Assumptions 2.1, 2.2 and 2.3. Define M, .(v) as in (10) and
let P =M, .(v). Further define Py and Py as in (4) with ©(P) = L*(P). If a sequence of test
functions {¢n}22, satisfies (2) for some a € (0,1), then it also satisfies (3).

Theorem 2.1 establishes the nonexistence of nontrivial tests for P-bounded completeness. The
conclusion of Theorem 2.1 continues to hold if O(P) instead satisfies L>°(P) C O(P). Any such
modification only enlarges Py, and hence Py continues to be dense in P; with respect to the
Hellinger distance. In particular, by setting ©(P) = L%(P) for any 1 < ¢ < oo, we are able to

conclude that there exist no nontrivial tests of LI(P)-completeness conditions as well.

Remark 2.1. In the context of identification of some linear, semiparametric models with endo-
geneity, full rank requirements on certain matrices arise instead of completeness conditions. In
these settings,

P, =P\ Py ={P e P: Ep[Z;W/] has full rank} .

Tests for this purpose have been proposed, among others, by Anderson (1951), Gill and Lewbel
(1992), Cragg and Donald (1993, 1997), Robin and Smith (2000), and Kleibergen and Paap (2006).
In contrast to the conclusion of Theorem 2.1, nontrivial tests that satisfy (2) do exist, for example,

if the support of (Xj, Z;) under P is bounded uniformly in P € P. m



Remark 2.2. In establishing Theorem 2.1, we construct for each P € Py a sequence {P}72, in
Py such that H(P, P;) = o(1). This approach requires us to exhibit for each Py a corresponding
function 6 € ©(P) such that 0, # 0 Py-a.s. and Ep, [0;(X;)|Z;] = 0. While the 6 that appear in
the proof are not differentiable everywhere, it is worth emphasizing this is not an essential feature
of the argument. In particular, by using Lemma 2.1 in Santos (2010), the P, may be chosen so
that each corresponding 6 is in fact infinitely differentiable. Therefore, no nontrivial test exists

even if O(P) is further restricted to be a smooth class of functions, such as a Sobolev space. B

Remark 2.3. Under additional restrictions, the requirement that v, be atomless in Assumption 2.3
may be relaxed to it being a mixture of an atomless and a discrete measure. However, the conclusion
of Theorem 2.1 may not apply if v, is a purely discrete measure. For example, suppose that v,
and v, have finite support {x1,...,xs} and {z1,..., 2}, respectively. Let II(P) be the s x ¢t matrix
with entry II(P);, = P{X; = zj|Z; = z.}. Theorem 2.4 in Newey and Powell (2003) establishes
that P satisfies L!(P)-completeness if and only if the rank of TI(P) is s and s < t. In this setting,
nontrivial tests for L!(P)-completeness can therefore be constructed using, for example, uniform
confidence regions for II(P). See Anderson (1967) and Romano and Wolf (2000) for relevant results

about confidence regions for a univariate mean. m

2.3 Testing Identification

In this section, we develop our results concerning the nonexistence of nontrivial tests for identifica-
tion in certain nonparametric models with endogeneity involving quantile independence restrictions.
In order to do so, we require the following notation. By analogy with the notation used in the pre-

ceding section, let M, , . be the set of all probability measures on R x R% x R% and define

where v is a Borel measure on R x R% x R%. Further let T denote the set of all functions
0 : R% x [0,1] — R, and define

T(P) = {0 € T : (W, -) is strictly increasing and supg<,<1[|0(-, 7)|[ oo (p) < oo} . (12)

We will make use of the following assumptions:
Assumption 2.4. v is a positive o—finite Borel measure on R x R% x R%.

Assumption 2.5. v = vy X v, X v, where vy, v, and v, are Borel measures on R, R% and R%,

respectively.

Assumptions 2.4 and 2.5 are modifications of Assumptions 2.1 and 2.2 from the previous section

to account for the fact that here the random variables take values in R x R% x R% rather than



just R% x R%. Note that in the following two theorems we impose the requirement that P C
M, . -(v) for some v satisfying Assumptions 2.3, 2.4 and 2.5. As in the previous section, properties
of v therefore translate into restrictions on P. See the discussion preceding Theorem 2.1. The
requirement P C M, , .(v) together with Assumption 2.3, rule out X; being discrete under any
P € P, such as in quantile treatment effect models with discrete treatments. See Lehmann (1975)
and Chernozhukov and Hansen (2005). Finally, note that in each of the following two theorems

Assumption 2.3 may also be relaxed in the same way as described preceding Theorem 2.1.

Theorem 2.2. Suppose v satisfies Assumptions 2.3, 2.4 and 2.5. Define M ;. .(v) as in (11) and
let P be the mazimal subset of My . .(v) such that for each P € P there is some 6 € ©(P) = L*>(P)
for which (5) holds. Further define Py and Py as in (6). If a sequence of test functions {¢pn}5 4
satisfies (2) for some a € (0,1), then it also satisfies (3).

In establishing Theorem 2.2, we show that for every P € Py there exists a sequence {FP;}7° in
Py such that H(P, P;) = o(1). Our construction does not exploit the fact that P € Py, but rather
just the fact that P € M, .(v). It therefore follows that Py is actually dense in M, , .(v) with
respect to the Hellinger metric. As a result, the conclusion of Theorem 2.2 continues to hold if we
instead set ©(P) = LY(P) for any 1 < ¢ < oo. It is worth noting that, in contrast to the setting
of Theorem 2.1, here letting ©(P) = L9(P) for 1 < g < oo enlarges P itself, and so potentially

enlarges not only Py, but also P;.
Remark 2.4. In establishing the denseness of Py in P, we construct a sequence {FP;}7°, in Py
such that for each k there exist functions 9,(:) and 0](3) in L>°(Py) that differ not only on a set with

positive probability under Py, but in the stronger sense of
1 2
B [(1{Y: < 67 (X0)} = 1Y < 67 (X)) > 0,

while still satisfying

Pu{Yi < 07(X,)|Z} = P{Y; < 07 (X0)| Zi} = 7
w.p.1 under Pj. This feature of the proof is noteworthy because it may still be the case that
Yy, < H]il)(Xi)} =Y < ‘91(5) (Xi)} w.p.1 under Py for functions 9,(:) and 9,(?2) that differ with
positive probability under Py. m

Theorem 2.3. Suppose v satisfies Assumptions 2.3, 2.4 and 2.5. Define My, .(v) as in (11) and
let P be the mazimal subset of M, , .(v) such that for each P € P there is some 6 € O(P) = T(P)
for which (7) holds, where T(P) is defined in (12). Further define Py and Py as in (8). If a

sequence of test functions {¢n}02 satisfies (2) for some o € (0,1), then it also satisfies (3).

As in Theorem 2.2, our proof implies that Py is dense in M, , . (v) with respect to the Hellinger
metric. It therefore follows that the conclusion of Theorem 2.3 continues to hold if we instead

require that each ¢ € ©(P) be such that 6(W;,-) be strictly increasing and [|0(:,7)| pe(p) < 00

7



for all 7 € [0,1] and any 1 < g < co. Moreover, denseness of Py is established by constructing

sequences {P;}72, in Py such that for each k there exist 9,(:) and 9,&2) in T(Py) satisfying
Ep[(1{Y; <0 (X;, 1)} — 1{Y; < 67 (X;, )12 > 0
P l(H{Y: < 0,7 (Xi,7)} {Yi<0,7(Xi,7)})7] >

for all 7 € (0,1). Thus, 0,&1)(,7) and (9,22)(~,7') differ for every 7 not just on a set with positive
probability under Py, but in the stronger sense of Remark 2.4.

3 Conclusion

This paper has provided conditions under which nontrivial tests do not exist for each of three distinct
hypothesis testing problems that arise in the context of identification of some nonparametric models
with endogeneity. The first hypothesis testing problem considered concerns necessary conditions
for identification in some nonparametric models with endogeneity involving mean independence
restrictions. These conditions are typically referred to as completeness conditions. The second
and third hypothesis testing problems we consider concern testing identification directly in some
nonparametric models with endogeneity involving quantile independence restrictions. Importantly,
our conditions are satisfied under commonly used assumptions. On the other hand, they do not
rule out the existence of reasonable tests under more restrictive assumptions. For instance, our
arguments may not extend easily to cases where 6 is known to satisfy additional shape restrictions
or 6 lies in a (pre-specified) compact subset of a suitable function space. In this way, our results

may help shape the development of nontrivial tests of the hypotheses we consider.



4 Appendix

Throughout the Appendix we employ the following notation, not necessarily introduced in the text.

AAB For two sets A and B, AAB=(A\ B)U(B\A).

|- llzaery For 1 < g < oo, ameasure A, and function f, HquL = [|f(w)|2\(dw).

[ - llzee(ny For a measure A, and function f, ||f||ec = inf{M > O D) f(u)] < M for M-a.s.}.
L1()\) For 1 < ¢ < oo and a measure A, the space LY(\) = {f : || fl[za(x) < 00}

Lemma A.1. Let A C R? be a Borel set, A the Borel o-algebra generated by subsets of A, and
an atomless positive Borel measure satisfying \M{A} < co. Then, there is a map B : [0,1] — A such
that: (i) B(0) =0 and B(1) = A, (ii) B(1) C B(7') for all0 < 7 < 7' <1, (iii) M{B(7)} = TA{A}.
If M{A} > 0, then there is B : [0,1] — A satisfying (i)-(ii) and N{B(t)AB(7)} > 0 ¥ € (0,1).

PRrROOF: We proceed by constructing a map B : [0,1] — A on a dense subset of [0, 1] and extending
it to the entire domain [0, 1]. Towards this end, let 7, = {0, 5 3 2nv 2:1 ey 27;"1, 1}, denote F =

U, F», and define a map I' : A — A that assigns to each C' € A a set I'(C') C C satisfying:

MI(O)} = SMCY (13)

where the existence of such I'(C) is ensured by Corollary 1.12.10 in Bogachev (2007) and A being
atomless. On Fy = {0, 1,1}, then define a map By : 1 — A by setting B1(0) = (), B1(1) = A and
Bi(3) =I'(A). Proceeding inductively, we then construct B, : F,, — A by letting;

if 1 <j<2"is even

£Y
. (14
DN B (URR2))if 1 <5 <27 is odd (14)

iy By1(52
B”(W)_{Bn_l(“ D) ur(B,- ((

where in (14) we have exploited that 7 € F, if and only if 7 = ZJ—n for some integer 1 < j < 2™,

Notice that if 7 € F,,, then it is of the form 237 = 2%% € Fnim for any integer m > 0 and hence:
By ym(7) = By(7) forall T € F, , (15)

as a result of definition (14). We may then define a map B : F — A, pointwise given by:
B(1) = By(1) , (16)

for any n such that 7 € F,,, and note B(7) is uniquely determined due to (15).

Next, observe that since B1(0) = () and By(1) = A, it follows from (16) that B(0) = 0 and
B(1) = A as well. Moreover, by induction it is also possible to establish that for all n:

MBn(1)} =7MA} forallTe F, . (17)



To see this, note (17) trivially holds for n = 1. Supposing (17) also holds for n — 1, then (14)
verifies it must be satisfied for n and all 7 € F,, of the form 7 = 2]7 with 1 < j < 2™ even. On the
other hand, if 7 € F,, satisfies 7 = zj—n for 1 < j < 2" odd, then by (14) we obtain,

]

) AT

SO\ B )

-1 1@ + 1) ( ] ) J
= "o MAT S (M MAY = A AD = oAA) (18)
where the second equality follows by (13) and the induction hypothesis. We conclude (17) holds,

and thus by (16) that A{B(7)} = 7A{A} for all 7 € F. Similarly, we may show inductively

MBa(5)} = MBua

Bn(1) C By(7') forallT <7, 7,7 e€F, . (19)
Property (19) is trivially satisfied by By : F; — A. To establish it holds for n, let 7/ = 27 and
=21 for any integer 1 < j < 2". If j is odd, then by definition (14) we may conclude:
) —1)/2 — 1
B.") 2 B (L2 — g, U~ (). (20)

2?’L
On the other hand, if j is even, then by (14) and the induction hypothesis, we can obtain:

L urBa N B e B =) @

where to derive the inclusion we have used that I'(C') C C for every C' € A. Thus, since 1 < j < 2"
was arbitrary, from (20) and (21), we conclude that (19) holds. By construction, it additionally
follows from (16) that B : F — A satisfies B(7) C B(7') for all 7 < 7/ with 7,7 € F.

B, (1) = Bp—1(

To establish the first claim, we obtain B : [0,1] — A by extending B : F — A. Specifically, for
any 7 € F, let B(tr) = B(7). For any 7 € [0,1] \ F note that 0 € F and F being dense in [0, 1]

imply we may select a sequence {7;}72, with 7; € F for all j, such that 7; T 7. Then define:

B(7) = | B(7y) - (22)
j=1

Notice that the definition of B(7) is independent of the sequence {7152, due to B(r) C B(7') for
any 7 < 7/ with 7,7 € F, and {7;}3° 321 approaching 7 from below. Also note that since {0,1} € F,
B(0) = B(0) = 0 and B(1) = B(1) = A. In addition, by the monotone convergence theorem:

MB(1)} = )\{U B(rj)} = hm )\{B(T])} = hm T])\{A} =1MA}, (23)

j=1
where in the third equality we have exploited A{B(7)} = 7A{A} for all 7 € F. Finally, since F
is dense in [0, 1], we have that for any 0 < 7 < 7/, there exist sequences {7;}32; and {7}}32; with

T 1T, Tj 77" and 7, Tj € F for all j. Selecting a 7 € F such that 7 < 7 < 7/ we then obtaln.

B(r UBT] ) C B(7 G (24)

J=1

10



where we have used that 7; T 7 < 7 implies B(7;) C B(7) for all j, and similarly, that 7} T 7/ > 7
implies B(7) C B(r]) for j sufficiently large. We conclude from (23) and (24) that B:[0,1] - A

additionally satisfies properties (ii) and (iii), and the first claim of the Lemma is established.

In order to establish the second claim of the Lemma, pointwise define B : [0,1] — A by:

B(r)=A\B(1-7). (25)

It is then immediate that B(0) = § and B(1) = A, while \{B(7)} = 7A{A} additionally yields:
MB(T)} = MA\B(1 - 1)} = MA} — (1 —1)MA} =77{A4} . (26)
Furthermore, for any 0 < 7 < 7/ < 1, note that 7 < 7/ implies B(1 —7') C B(1 — 7), and therefore:
B(r)=A\B(1-7)CA\B(1-17")=B(). (27)
Thus, from (26) and (27) we obtain that B : [0,1] — A indeed satisfies properties (i)-(iii). To
conclude, note monotonicity of B implies (A\ B(1—7))\ B(7) = A\ B(max{7,1—7}), and hence:
MB(7)AB(7)} > MB()\ B(7)} = M{A\ B(max{r,1 —7})} = M{A}(1 —max{r,1-7}) . (28)

Therefore, it follows from (28) that if \{A} > 0, then A{B(7)AB(7)} > 0 for all 7 € (0,1). m

Lemma A.2. Suppose Q € M satisfies Q@ < X\ for A\ a o-finite positive Borel measure on R X
R% x R% and let f = \/dQ/d\. Then, there exists a sequence {f,}%, of simple functions:

Ky
fn(yamvz) = Zﬂml{(y,%z) € Szn} )
i=1

such that || fn,— fllz2(n) = o(1). Additionally, for alln: (i) f, > 0 and [ f2dx=1, (i) {S’m}finl is a
partition of [— M, M, T4+ for some M,, > 0, (iii) For all1 < i < K,,, Sin = Ain X Bin x Cyy, for
some Ay C [—M,, My, Bin C [—M,, M,])% and Cy, C [—M,,, M,]%, (iv) The distinct elements of
{Am}fi’a, {Bm}finl and {Cm}finl form a partition of [—M,, My, [~ M,, M,]% and [—~M,, M,]%.

PROOF: Note that by construction f € L?()). Since X is a Borel regular measure by assumption,
Theorem 13.9 in Aliprantis and Border (2006) implies there exists a sequence { f,, }°%; of continuous,
compactly supported functions such that ||f, — f|| r2(n) = o(1). Moreover, since f > 0 we may
assume without loss of generality that f,, > 0 for all n, while [ fllz2(n) = 1 and | fr — 2y = o(1)
further imply that || f|[z2() — 1. Therefore, defining f, = fn/l| fullz2(1) We obtain that:

1 fn = fllL2on 1

1 = Fllz2en < s e
B = Fall 2y 17l 220

| X [ fllzz2eny = o(1) - (29)

Let 2, € R x R% x R% be the support of fn, which is compact due to f,, being compactly
supported, and select M,, > 0 sufficiently large so that Q,, C [~ M,,, M,,]' T4+ Additionally, select
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€n | 0 such that M [—M,, M,]"t%+d:} = o(¢2), and notice that f,, being uniformly continuous on
[~ M, M,,)"+%=+2= implies there exists a partition {Si, }1" of [~ M,, M,]'t% "+ such that:

max  swp s |fal.m2) — fuldh ) < (30)
1<i<Kn (y,2,2)ESin (¥ ,2',2')ESin

Moreover, without loss of generality, we may construct {Sm}fi " through the product of partitions

of [~M,, M,], [~M,, M,]% and [—M,, M,]% so that conditions (iii)-(iv) are satisfied. Next, let

[(fs, F2dN)/MSim})z  if M{Sin} #0

: (31)
0 if \{Sin} =0

Tin =

We may then obtain the desired functions f, : R x R% x R% — R, defining them pointwise by

Ky
fn(y,-x;z) = Zmnl{(y,x,z) € Szn} . (32)
=1

By construction, m;;, > 0 for all 1 < i < K,, and all n, and hence f,, > 0 as desired. Additionally,
because the support of f,, is contained in [~ M, M,]'*4=+d= = | JEn S, we also obtain by (31):

Ky Kn
2y _ 2 v 2oy = [ Pdy=1.
/ CESDIACHEDY /SmfndA [ rar=1 (33)

Furthermore, for all n and each 1 < ¢ < K, such that A{S;,} > 0, we obtain from (30) and (31):

. LIy
sup |fn(y,$,z)_fn(y,l‘,z)’ = Sup |[f5“17]5 —fn(y,ZL’,Z)| SEH . (34)

(yﬂxVZ)ESZﬂ/ (y,I,Z)ESln )\{SZTL}
Hence, since f,, f» vanish outside [—M,,, M) Fd=Fd= and {Sm}finl is a partition of [—M,,, M| Td=+d:

we may conclude from (34) that sup(, , .y [fn(y, 7, 2) — fuly,z,2)| < &, A-a.s. Thus, we obtain:

/ (f = fn)?d) = /[_M o, U T VA SEMM MY =01) - (35)

where the final equality holds because we selected &, | 0 such that M{[—M,,, M| Td=+d=} = o(¢2).
Combining (29) and (35) then implies || fn, — f||z2(x) = o(1) establishing the claim of the Lemma. m

PRrOOF OF LEMMA 2.1: Fix P € Py and let {P;}?°, satisfy H(Py, P) = o(1) and P, € Py for all
k. For every fixed n, problem 4.18 in Pollard (2006) then implies that:

lim H(P?,P") < lim nH(Ps, P)=0. (36)
k—o0 k—o0

Since P € P; was arbitrary, we conclude from (36) that for every n and P € P; there exists a
sequence {P}7°, in Pg such that H(P]', P") = o(1). Moreover, by Theorem 4.2.37 in Bogachev
(2007), the Hellinger distance induces the same topology on M as the Total Variation metric, and
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therefore it follows by Theorem 1 in Romano (2004) that for every n and bounded function ¢, we

have:

sup Epn [d’n} < sup Epn [an} . (37)
PeP, PcPy

The conclusion of the Lemma is then immediate from (37) holding for all n. m

PROOF OF THEOREM 2.1: Fix P € Py and let f = dP/dv. By Assumption 2.1 and Lemma A.2
applied to A = § x v for 0 a degenerate measure on R, there exists a sequence {fj}2, such that
IVf =V felle2y = o(1), and each fy is a simple function of the form:

Ky
2)=> mpl{(z,2) € S}, (38)
=1

with {Sik}fi’“l a partition of [—My, My]%*% for some M) > 0 and Sjz = By, x Ci, for some
By, C [—Mk,Mk]d”c, Ci. C [—Mk,Mk]dz for all k£ and 1 < i < Kj. Also define,

for all Borel measurable E C R% x R% and note that since f; > 0 and [ frdv = 1 by Lemma A.2,
while P, < v by construction, it follows that P, € P = M, .(v) for all k. Moreover, since v is a
common dominating measure for P and P}, for all k, we obtain H(P, Py) = [|[V/fr. — v/ fllr2() = 0(1),
and hence P, — P with respect to the Hellinger metric.

In what follows, we aim to show that in fact P, € Pg for all k. Towards this end, let {Uik}f)z’“l
denote the collection of distinct elements of {Bg}r%. Assumption 2.3 and Corollary 1.12.10 in
Bogachev (2007), then imply that for each U;i. there exist Borel measurable subsets (Ui(kl), UZ.(,? ))

such that U, = Ui(kl) U Ui(lf), U( 'n U = () and in addition satisfy:

1 2
UL} = U} = S0adUa} (40)
Since {Uik}kD:’“l is a partition of [~ My, My]% by Lemma A.2, we may define a function 6, by:
Dy,
Or(e) =Y (e e UY} - e e UPY), (41)
i=1

and note that v,{x € [~Mjy, My]% : O(x) = 0} = 0 due to (40), and Ul.(kl) N Ui(lf) = () for all
1 < i < Dy. Hence, P, < v, and the support of X; under P, being contained in [—M)}, My]%
implies 0y # 0 Pg-a.s., while 0, being bounded yields 6; € L>(Py). Additionally, for any bounded
z +— 1(z), we obtain from (38), fr = dP;/dv and Assumption 2.3 that:

En (2 Zw,k / / ()00 (@) () (d2)

—ZMZ%{BWU }—um{BkﬁUJ(Z)}/ b(2)v.(dz) =0, (42)

=1
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where for the final equality we have exploited (40) and that for every 1 < i < K}, we have By, = Ujy,
for some 1 < j < Dyg. In particular, (42) must hold for ¢(-) = Ep,[0k(X;)|Z; = -], and hence we
obtain by the law of iterated expectations that Ep, [0;(X;)|Zi] =0, Py-a.s.

Thus, we may conclude from (42) that P, € Py for all k. Hence, since P € P was arbitrary
and H (P, P;) = o(1), the conclusion of the Theorem follows by Lemma 2.1 and (2). m

PROOF OF THEOREM 2.2: Fix P € Py and let f = dP/dv. By Lemma A.2 and Assumption 2.4,
there exists a sequence {fx}32; such that ||\/f — v/fill12() = o(1) and each fy is of the form:

ey, z, 2) Zﬂ'kl{ (y,x,2) € Sir.} (43)

with {Szk}z—l a partition of [— My, M;] T4+ for some M, > 0 and S;, = Ay, X By, x Cy, for some
Aix C [~My,, My], Bix C [—My, My]%, Cyp, C [~ My, My]% for all k and 1 < i < Kj,. Also define,

P(BY = [ fav (44)

for all Borel measurable E C R x R% x R%, and note that since f; > 0 and [ fxdv = 1 by Lemma
A.2, while P, < v by construction, it follows that P, € M, , .(v) for all k. Moreover, since v is a
common dominating measure for P and P, for all k, we obtain H(P, Py) = [[v/fr. =/ fllr2() = 0(1),

and hence P, — P with respect to the Hellinger metric.

Next, let {Ulk} | denote the collection of distinct elements of {sz}z 1. Assumption 2.3 and
Lemma A.1 then 1mp1y there exist collections {Uik (1), Ui(:)( )}D’“ such that for all 1 <i < Dy,

v AUD ()} = 10 {Us} v {UP (D)} = 70 {Ui} (45)

with Ui(]?(T) C Uy, for I € {1,2}, and Vx{Ui(]j)(T)AUZ-(]?)(T)} > 0 for all 1 < i < Dy such that
vp{Uir} > 0. For | € {1,2} we may then define functions (9,(!)(-, 7) pointwise in z by:

Dy,
0 (x,7) = > (@M 1{z € UY (1)} — 2M;1{z € Uy \ UL (1)}) | (46)
=1

where we note that since {Uzk}z | is a partition of [—Mj, Mg]% by Lemma A.2, it follows that
0\ (2,7) € {=2M;,2M}} for all 2 € [—My, My)%. Thus, 6 € L=(P,) for I € {1,2}, while
Y; € [-My, My] Py-a.s., Assumption 2.5 and f = dPy/dv with fi as in (43) additionally imply:
Ep[(1{Y; <6, (X, 7)} - L{Yi < 67 (X:, 7)})’)
= Ep [(1{0\" (Xi, 7) = 2M3.} — 1{0P (X;, 7) = 2M,})?]

Ky,

= Zﬂ' kVy{Azk}Vz{Czk}/ 1{9 (.CU T)=2M} — 1{9 (:c 7) = 2M;,}) v, (dz)
i=1

>0, (47)
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where we exploited (1{6\"(z, T) = 2My} — Y0 (x,7) = 2M})? = Uz € UY (1) AU (1)} for
every x € Ujy, Vw{U;k (1 )AU]k (1)} > 0 whenever v,{Uj;} > 0, and v,{Uj;} > 0 for some j due
to the support of X; under P} being contained in [—Mj,, M]% = U]D:1 k-

We conclude from (47) that 9(1)( ,7) and 9(2)( ,T) are distinct under |[| - || (p,). Additionally,
for 1 E {1 2}, we have 1{0 (:1: T) = 2Mk} =Nz e U ( )} for every x € Uj;, by (46), and hence
Vx{{ﬁ (x T) = 2Mi} N U} = Vx{U]k( T)} = TVI{UJk}. Since for any 1 < i < Ky, By, = Ujy, for
some 1 < j < Dy, and [— My, M| = Ui:l A;k, it follows that for any bounded z — 1(z) we obtain:

Ep, [W(Z)(1{Y; < 0V (X;,7)} — 7)]

K,
=> 7 /A /C /B D(2)(1{0P (, 7) = 2My} — T)va(da)v. (d2)vy (dy)
i=1 ik ik ik

Ky,
= 2 V. ; — TU. ; 2V Z ).
= 2 mh(rvad Bt = (B /A /C (el )

~0. (48)

In particular, setting ¢(-) = Pp{Y; < 0W(X;,7)|Z; = -} in (48), implies by the law of iterated
expectations that Pi{Y; < 9,5/,” (X, 7)|Z} =7, P, —a.s. for | € {1,2}.

Thus, we may conclude from (42) that P, € Py for all k. Hence, since P € P was arbitrary
and H(P, P;) = o(1), the conclusion of the Theorem follows by Lemma 2.1 and (2). m

PROOF OF THEOREM 2.3: The proof is very similar to that of Theorem 2.2, and we therefore
provide only an outline, emphasizing the differences in the arguments. Fixing P € P, we may
obtain a sequence {P;}32, such that for all k, P, € My, .(v), dP;/dv = fi, for fj as defined in
(43), and |/ fr — Vfllr2) = o(1). To show P € Py for all k, let {Ui} 2% denote the collection
of unique elements of {sz}i:p and for all 1 < ¢ < Dy, let U;; denote the o-algebra generated
by subsets of U;,. By Assumption 2.3 and Lemma A.1, there then exist U(l) : [0,1] — Uy, and
U : 0,1 — Uy, such that for I € {1,2}: (‘) v AUV} = 10, {Us}, (i) U f,?( )y € UV (+) for
all 0 <7 <7/ <1, and (iii) Vl“{Ui(k (1 )AU#C (1)} > 0 for all 7 € (0,1) and 1 < i < Dy, such that
vp{U;r} > 0. Following (46), we can then define the functions 9,2) pointwise by:

Dy,
0 (x,7) = 3 (2 + )My L{z € UY (1)} — (3 — 1) Myl{z € Uy, \ UL (1)}) . (49)
=1

Observe that ]9,(61) (z,7)] < 3My for all (x,7) € R% x [0,1] and hence 6;(X;,7) is bounded Py-a.s.
uniformly in 7 € [0, 1]. Moreover, since Ui(,i) (1) C Ui(,i) (") for 1 € {1,2} and all 0 < 7 <7/ <1 and
1 < i < Dy, it follows from (49) and the support of X; under P, being contained in [— M}, M|% =
U 1 Uji, that H(l) (X;, ) is strictly monotonic in 7 Pg-a.s. In turn, notice that since 7 € [0, 1] and
the support of Y; is contained in [—Mj, M| under Py, we obtain from (49) that for all x € Ui(,i),
WY < 9 (m =1z e Ulk (1)} Px-a.s. Therefore, arguing as in (47) yields that:

EpJ(1{Y; < 0 (Xi, 7)) — 1{Y; < 62 (X;, 1)1 > 0, (50)
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for all 7 € (0,1). Thus, we may conclude from (50) that for all 7 € (0,1) 91(:)("7) differs from
0,(3)(-, 7) under || - || oo (p,)- Similarly, arguing as in (48) further implies P{Y; < 0O(X;, )| Zy =7
for I € {1,2} and all 7 € (0,1) Px-a.s. Therefore, we may conclude Py € Py for all k, and finish the

argument as in the proof of Theorem 2.2. m
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