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Abstract

This paper considers three distinct hypothesis testing problems that arise in the context
of identification of some nonparametric models with endogeneity. The first hypothesis testing
problem concerns testing necessary conditions for identification in some nonparametric models
with endogeneity involving mean independence restrictions. These conditions are typically re-
ferred to as completeness conditions. The second and third hypothesis testing problems concern
testing identification directly in some nonparametric models with endogeneity involving quantile
independence restrictions. For each of these hypothesis testing problems, we provide conditions
under which any sequence of tests that controls asymptotic size has asymptotic power no greater
than size against any alternative. In this sense, no nontrivial tests for these hypothesis testing
problems exist.
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1 Introduction

Let {Vi}ni=1 be an i.i.d. sequence of random variables with distribution P ∈ P. This paper con-

siders three distinct hypothesis testing problems that arise in the context of identification of some

nonparametric models with endogeneity. As usual, each of these hypothesis testing problems may

be written as

H0 : P ∈ P0 versus H1 : P ∈ P1 , (1)

where P0 is the subset of P for which the null hypothesis holds and P1 = P \ P0. For each of

the three hypothesis testing problems we consider, we provide conditions on P under which any

sequence of tests {φn}∞n=1 that controls size at level α ∈ (0, 1) in the sense that

lim sup
n→∞

sup
P∈P0

EPn [φn] ≤ α (2)

also satisfies

lim sup
n→∞

sup
P∈P1

EPn [φn] ≤ α , (3)

where Pn denotes the n-fold product measure
⊗n

i=1 P . We thus conclude that any test of (1) that

controls size will have trivial power against all alternatives P ∈ P1. In this sense, we establish that

no nontrivial test exists for the hypothesis testing problems under consideration.

In order to describe the first hypothesis testing problem we consider, let Vi = (Xi, Zi) and P

be a set of probability measures on Rdx × Rdz . For Zxi a (possibly empty) subvector of Zi and

Wi = (Xi, Z
x
i ) ∈ Rdw , define

P1 = P \P0 = {P ∈ P : EP [θ(Wi)|Zi] = 0 for θ ∈ Θ(P ) =⇒ θ = 0 P -a.s.} . (4)

Here, Θ(P ) is understood to be a subset of the set of all functions from Rdw to R. If Θ(P ) = L1(P ),

then P1 is the subset of P for which L1(P )-completeness holds. If, on the other hand, Θ(P ) =

L∞(P ), then P1 is the subset of P for which L∞(P )-completeness or P -bounded completeness holds.

See d’Haultfoeuille (2011) and Andrews (2011) for a discussion of different completeness conditions.

Such assumptions are made routinely to achieve identification in a variety of nonparametric models

with endogeneity involving mean independence restrictions. For example, Newey and Powell (2003)

show that L1(P )-completeness is necessary for identification of the model they consider. Blundell

et al. (2007) instead use L∞(P )-completeness to attain identification. See also Hall and Horowitz

(2005) and Darolles et al. (2011). These assumptions have been used to achieve identification in

some measurement error, random coefficient and demand models as well. See, for instance, Hu

and Schennach (2008), Hoderlein et al. (2010), Berry and Haile (2010a) and the references therein.

Our results establish that, under commonly used restrictions for P, no nontrivial test of these

completeness conditions exists. We also contrast this conclusion with the problem of testing rank

conditions that are necessary for identification in some semiparametric models with endogeneity.

See Remark 2.1.
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In order to describe the second hypothesis testing problem we consider, let Vi = (Yi, Xi, Zi) and

P be a set of distributions on R ×Rdx ×Rdz . As before, let Zxi be a (possibly empty) subvector

of Zi and Wi = (Xi, Z
x
i ) ∈ Rdw . Consider the model for an outcome of interest Yi, an endogenous

variable Xi, and an instrumental variable Zi where for each P ∈ P there is some θ ∈ Θ(P ) for

which

Yi = θ(Wi) + εi and P{εi ≤ 0|Zi} = τ w.p.1 under P (5)

for some pre-specified τ ∈ (0, 1). Here, Θ(P ) is a subset of the set of all functions from Rdw to R.

This model has been studied, for example, by Chernozhukov and Hansen (2005), Horowitz and Lee

(2007), Chen and Pouzo (2008) and Chernozhukov et al. (2010). In this setting, it is difficult to

describe necessary conditions for identification in terms of completeness conditions. We therefore

focus instead on the problem of testing for identification in this model. To this end, let

P1 = P \P0 = {P ∈ P : ∃! θ ∈ Θ(P ) s.t. (5) holds under P} , (6)

where uniqueness of θ ∈ Θ(P ) is understood to be up to sets of measure zero under P . Our results

establish that, under commonly used restrictions for P, no nontrivial test of identification exists in

models defined by (5).

The third hypothesis testing problem we consider is closely related to the one described above.

As before, let Vi = (Yi, Xi, Zi), P be a set of distributions on R ×Rdx ×Rdz , Zxi be a (possibly

empty) subvector of Zi, and Wi = (Xi, Z
x
i ) ∈ Rdw . Consider the model for an outcome of interest

Yi, an endogenous variable Xi, and an instrumental variable Zi where for each P ∈ P there is some

θ ∈ Θ(P ) for which

Yi = θ(Wi, εi) and P{θ(Wi, εi)− θ(Wi, τ) ≤ 0|Zi} = τ w.p.1 under P for all τ ∈ (0, 1) . (7)

Here, Θ(P ) denotes a subset of the set of all functions θ : Rdw × [0, 1] → R such that θ(Wi, ·) is

strictly increasing w.p.1 under P . This model has been studied, for example, by Chernozhukov and

Hansen (2005), Imbens and Newey (2009) and Torgovitsky (2011). See also Berry and Haile (2009,

2010b) for how these models arise in the context of generalized regression models and multinomial

choice models, respectively. We again focus on the problem of testing for identification in this

model. To this end, define

P1 = P \P0 = {P ∈ P : ∃! θ ∈ Θ(P ) s.t. (7) holds under P} , (8)

where uniqueness of θ ∈ Θ(P ) is again understood to be up to sets of measure zero under P . Note

that for each fixed τ ∈ (0, 1) this model is equivalent to the model described previously. Our results

establish that, under commonly used restrictions for P, no nontrivial test of identification exists in

models defined by (7) even if we impose that θ(Wi, ·) be strictly increasing w.p.1 under P .

The remainder of the paper is organized as follows. We begin in Section 2.1 by introducing a

useful lemma that underlies our arguments. We then describe our results for the first hypothesis
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testing problem in Section 2.2. The closely related second and third hypothesis testing problems

are then treated in Section 2.3. We briefly conclude in Section 3.

2 Main Results

2.1 A Useful Lemma

The following lemma underlies all of our arguments. In the statement of the lemma, H(P, P ′)

denotes the Hellinger distance between probability measures P and P ′.

Lemma 2.1. Let M denote the space of Borel probability measures on a metric space A. Suppose

P ⊆M and P0 and P1 satisfy P = P0 ∪P1. If for each P ∈ P1 there exists a sequence {Pk}∞k=1

in P0 with H(P, Pk) = o(1), then every sequence of test functions {φn}∞n=1 satisfies

lim sup
n→∞

sup
P∈P1

EPn [φn] ≤ lim sup
n→∞

sup
P∈P0

EPn [φn] . (9)

Lemma 2.1 is a mild modification of Theorem 1 in Romano (2004). In particular, the hypothesis

of the lemma has been restated in terms of Hellinger distance, as opposed to Total Variation

distance, and the conclusion has been related in terms of a large-sample result, as opposed to a

finite-sample result. Heuristically, Lemma 2.1 states that if each P ∈ P1 is on the boundary of the

set of distributions satisfying the null hypothesis, then, by continuity, the probability of rejection

under any P ∈ P1 must be no larger than the asymptotic size. Theorem 1 in Romano (2004)

establishes that the appropriate topology for this purpose is that induced by the Total Variation

distance. See also Donoho (1988) for related results on the construction of confidence intervals.

In each of the three hypothesis testing problems that we consider, we establish nonexistence of

nontrivial tests for identification by constructing for each P ∈ P1 a sequence {Pk}∞k=1 in P0 with

H(P, Pk) = o(1) and applying Lemma 2.1. In this way, our results are driven by P0 being dense in

P1 with respect to the Hellinger distance in all three settings we examine.

2.2 Testing Completeness

In this section, we develop our results concerning the nonexistence of nontrivial tests for complete-

ness conditions. In order to do so, we require the following notation. Let Mx,z be the set of all

probability measures on Rdx ×Rdz , and, for ν a Borel measure on Rdx ×Rdz , define

Mx,z(ν) ≡ {P ∈Mx,z : P � ν} . (10)

We will make use of the following assumptions:
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Assumption 2.1. ν is a positive σ−finite Borel measure on Rdx ×Rdz .

Assumption 2.2. ν = νx× νz, where νx and νz are Borel measures on Rdx and Rdz , respectively.

Assumption 2.3. The measure νx is atomless (on Rdx).

Note that in the following theorem we impose the requirement that P = Mx,z(ν) for some ν

satisfying Assumptions 2.1, 2.2 and 2.3. Properties of ν therefore translate into restrictions on P.

For instance, if ν has bounded support, then P = Mx,z(ν) implies that the support of (Xi, Zi) under

P is uniformly bounded in P ∈ P. In particular, by choosing νx and νz to be Lebesgue measure on

[0, 1]dx and [0, 1]dz , respectively, we may impose the requirement that the support of (Xi, Zi) under

P is contained in [0, 1]dx × [0, 1]dz for all P ∈ P. See Hall and Horowitz (2005) and Horowitz and

Lee (2007) for examples of the use of such an assumption. It is also worth emphasizing that while

Assumption 2.2 imposes that ν be a product measure, the requirement that P = Mx,z(ν) for some

such ν does not imply that each P ∈ P is itself of such form. On the other hand, the requirement

that P = Mx,z(ν) for some ν satisfying Assumptions 2.2 and 2.3, does imply that P{Xi 6= Zi} > 0

for all P ∈ P. Finally, we point out that if dx > 1, then Assumption 2.3 may be weakened to

instead requiring that at least one component of Xi have an atomless marginal measure. In order

to ease the exposition of our results, however, we impose the stronger than necessary requirement

in Assumption 2.3.

Theorem 2.1. Suppose ν satisfies Assumptions 2.1, 2.2 and 2.3. Define Mx,z(ν) as in (10) and

let P = Mx,z(ν). Further define P0 and P1 as in (4) with Θ(P ) = L∞(P ). If a sequence of test

functions {φn}∞n=1 satisfies (2) for some α ∈ (0, 1), then it also satisfies (3).

Theorem 2.1 establishes the nonexistence of nontrivial tests for P -bounded completeness. The

conclusion of Theorem 2.1 continues to hold if Θ(P ) instead satisfies L∞(P ) ⊆ Θ(P ). Any such

modification only enlarges P0, and hence P0 continues to be dense in P1 with respect to the

Hellinger distance. In particular, by setting Θ(P ) = Lq(P ) for any 1 ≤ q < ∞, we are able to

conclude that there exist no nontrivial tests of Lq(P )-completeness conditions as well.

Remark 2.1. In the context of identification of some linear, semiparametric models with endo-

geneity, full rank requirements on certain matrices arise instead of completeness conditions. In

these settings,

P1 = P \P0 = {P ∈ P : EP [ZiW ′i ] has full rank} .

Tests for this purpose have been proposed, among others, by Anderson (1951), Gill and Lewbel

(1992), Cragg and Donald (1993, 1997), Robin and Smith (2000), and Kleibergen and Paap (2006).

In contrast to the conclusion of Theorem 2.1, nontrivial tests that satisfy (2) do exist, for example,

if the support of (Xi, Zi) under P is bounded uniformly in P ∈ P.
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Remark 2.2. In establishing Theorem 2.1, we construct for each P ∈ P1 a sequence {Pk}∞k=1 in

P0 such that H(P, Pk) = o(1). This approach requires us to exhibit for each Pk a corresponding

function θk ∈ Θ(P ) such that θk 6= 0 Pk-a.s. and EPk
[θk(Xi)|Zi] = 0. While the θk that appear in

the proof are not differentiable everywhere, it is worth emphasizing this is not an essential feature

of the argument. In particular, by using Lemma 2.1 in Santos (2010), the Pk may be chosen so

that each corresponding θk is in fact infinitely differentiable. Therefore, no nontrivial test exists

even if Θ(P ) is further restricted to be a smooth class of functions, such as a Sobolev space.

Remark 2.3. Under additional restrictions, the requirement that νx be atomless in Assumption 2.3

may be relaxed to it being a mixture of an atomless and a discrete measure. However, the conclusion

of Theorem 2.1 may not apply if νx is a purely discrete measure. For example, suppose that νx
and νz have finite support {x1, . . . , xs} and {z1, . . . , zt}, respectively. Let Π(P ) be the s× t matrix

with entry Π(P )jk = P{Xi = xj |Zi = zk}. Theorem 2.4 in Newey and Powell (2003) establishes

that P satisfies L1(P )-completeness if and only if the rank of Π(P ) is s and s ≤ t. In this setting,

nontrivial tests for L1(P )-completeness can therefore be constructed using, for example, uniform

confidence regions for Π(P ). See Anderson (1967) and Romano and Wolf (2000) for relevant results

about confidence regions for a univariate mean.

2.3 Testing Identification

In this section, we develop our results concerning the nonexistence of nontrivial tests for identifica-

tion in certain nonparametric models with endogeneity involving quantile independence restrictions.

In order to do so, we require the following notation. By analogy with the notation used in the pre-

ceding section, let My,x,z be the set of all probability measures on R×Rdx ×Rdz and define

My,x,z(ν) ≡ {P ∈My,x,z : P � ν} , (11)

where ν is a Borel measure on R × Rdx × Rdz . Further let T denote the set of all functions

θ : Rdw × [0, 1]→ R, and define

T(P ) ≡
{
θ ∈ T : θ(Wi, ·) is strictly increasing and sup0≤τ≤1‖θ(·, τ)‖L∞(P ) <∞

}
. (12)

We will make use of the following assumptions:

Assumption 2.4. ν is a positive σ−finite Borel measure on R×Rdx ×Rdz .

Assumption 2.5. ν = νy × νx × νz, where νy, νx and νz are Borel measures on R, Rdx and Rdz ,

respectively.

Assumptions 2.4 and 2.5 are modifications of Assumptions 2.1 and 2.2 from the previous section

to account for the fact that here the random variables take values in R ×Rdx ×Rdz rather than
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just Rdx × Rdz . Note that in the following two theorems we impose the requirement that P ⊆
My,x,z(ν) for some ν satisfying Assumptions 2.3, 2.4 and 2.5. As in the previous section, properties

of ν therefore translate into restrictions on P. See the discussion preceding Theorem 2.1. The

requirement P ⊆ My,x,z(ν) together with Assumption 2.3, rule out Xi being discrete under any

P ∈ P, such as in quantile treatment effect models with discrete treatments. See Lehmann (1975)

and Chernozhukov and Hansen (2005). Finally, note that in each of the following two theorems

Assumption 2.3 may also be relaxed in the same way as described preceding Theorem 2.1.

Theorem 2.2. Suppose ν satisfies Assumptions 2.3, 2.4 and 2.5. Define My,x,z(ν) as in (11) and

let P be the maximal subset of My,x,z(ν) such that for each P ∈ P there is some θ ∈ Θ(P ) = L∞(P )

for which (5) holds. Further define P0 and P1 as in (6). If a sequence of test functions {φn}∞n=1

satisfies (2) for some α ∈ (0, 1), then it also satisfies (3).

In establishing Theorem 2.2, we show that for every P ∈ P1 there exists a sequence {Pk}∞k=1 in

P0 such that H(P, Pk) = o(1). Our construction does not exploit the fact that P ∈ P1, but rather

just the fact that P ∈ My,x,z(ν). It therefore follows that P0 is actually dense in My,x,z(ν) with

respect to the Hellinger metric. As a result, the conclusion of Theorem 2.2 continues to hold if we

instead set Θ(P ) = Lq(P ) for any 1 ≤ q < ∞. It is worth noting that, in contrast to the setting

of Theorem 2.1, here letting Θ(P ) = Lq(P ) for 1 ≤ q < ∞ enlarges P itself, and so potentially

enlarges not only P0, but also P1.

Remark 2.4. In establishing the denseness of P0 in P1, we construct a sequence {Pk}∞k=1 in P0

such that for each k there exist functions θ(1)
k and θ(2)

k in L∞(Pk) that differ not only on a set with

positive probability under Pk, but in the stronger sense of

EPk
[(1{Yi ≤ θ(1)

k (Xi)} − 1{Yi ≤ θ(2)
k (Xi)})2] > 0 ,

while still satisfying

Pk{Yi ≤ θ
(1)
k (Xi)|Zi} = Pk{Yi ≤ θ

(2)
k (Xi)|Zi} = τ

w.p.1 under Pk. This feature of the proof is noteworthy because it may still be the case that

1{Yi ≤ θ
(1)
k (Xi)} = 1{Yi ≤ θ

(2)
k (Xi)} w.p.1 under Pk for functions θ(1)

k and θ
(2)
k that differ with

positive probability under Pk.

Theorem 2.3. Suppose ν satisfies Assumptions 2.3, 2.4 and 2.5. Define My,x,z(ν) as in (11) and

let P be the maximal subset of My,x,z(ν) such that for each P ∈ P there is some θ ∈ Θ(P ) = T(P )

for which (7) holds, where T(P ) is defined in (12). Further define P0 and P1 as in (8). If a

sequence of test functions {φn}∞n=1 satisfies (2) for some α ∈ (0, 1), then it also satisfies (3).

As in Theorem 2.2, our proof implies that P0 is dense in My,x,z(ν) with respect to the Hellinger

metric. It therefore follows that the conclusion of Theorem 2.3 continues to hold if we instead

require that each θ ∈ Θ(P ) be such that θ(Wi, ·) be strictly increasing and ‖θ(·, τ)‖Lq(P ) < ∞
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for all τ ∈ [0, 1] and any 1 ≤ q ≤ ∞. Moreover, denseness of P0 is established by constructing

sequences {Pk}∞k=1 in P0 such that for each k there exist θ(1)
k and θ

(2)
k in T(Pk) satisfying

EPk
[(1{Yi ≤ θ(1)

k (Xi, τ)} − 1{Yi ≤ θ(2)
k (Xi, τ)})2] > 0

for all τ ∈ (0, 1). Thus, θ(1)
k (·, τ) and θ

(2)
k (·, τ) differ for every τ not just on a set with positive

probability under Pk, but in the stronger sense of Remark 2.4.

3 Conclusion

This paper has provided conditions under which nontrivial tests do not exist for each of three distinct

hypothesis testing problems that arise in the context of identification of some nonparametric models

with endogeneity. The first hypothesis testing problem considered concerns necessary conditions

for identification in some nonparametric models with endogeneity involving mean independence

restrictions. These conditions are typically referred to as completeness conditions. The second

and third hypothesis testing problems we consider concern testing identification directly in some

nonparametric models with endogeneity involving quantile independence restrictions. Importantly,

our conditions are satisfied under commonly used assumptions. On the other hand, they do not

rule out the existence of reasonable tests under more restrictive assumptions. For instance, our

arguments may not extend easily to cases where θ is known to satisfy additional shape restrictions

or θ lies in a (pre-specified) compact subset of a suitable function space. In this way, our results

may help shape the development of nontrivial tests of the hypotheses we consider.
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4 Appendix

Throughout the Appendix we employ the following notation, not necessarily introduced in the text.

A4B For two sets A and B, A4B ≡ (A \B) ∪ (B \A).

‖ · ‖Lq(λ) For 1 ≤ q ≤ ∞, a measure λ, and function f , ‖f‖qLq(λ) ≡
∫
|f(u)|qλ(du).

‖ · ‖L∞(λ) For a measure λ, and function f , ‖f‖∞ ≡ inf{M > 0 : |f(u)| ≤M for λ-a.s.}.
Lq(λ) For 1 ≤ q ≤ ∞ and a measure λ, the space Lq(λ) ≡ {f : ‖f‖Lq(λ) <∞}.

Lemma A.1. Let A ⊆ Rd be a Borel set, A the Borel σ-algebra generated by subsets of A, and λ

an atomless positive Borel measure satisfying λ{A} <∞. Then, there is a map B̄ : [0, 1]→ A such

that: (i) B̄(0) = ∅ and B̄(1) = A, (ii) B̄(τ) ⊆ B̄(τ ′) for all 0 ≤ τ ≤ τ ′ ≤ 1, (iii) λ{B̄(τ)} = τλ{A}.
If λ{A} > 0, then there is B̃ : [0, 1]→ A satisfying (i)-(iii) and λ{B̄(τ)4B̃(τ)} > 0 ∀τ ∈ (0, 1).

Proof: We proceed by constructing a map B : [0, 1]→ A on a dense subset of [0, 1] and extending

it to the entire domain [0, 1]. Towards this end, let Fn ≡ {0, 1
2n ,

2
2n ,

3
2n , . . . ,

2n−1
2n , 1}, denote F ≡⋃∞

n=1Fn and define a map Γ : A → A that assigns to each C ∈ A a set Γ(C) ⊆ C satisfying:

λ{Γ(C)} =
1
2
λ{C} , (13)

where the existence of such Γ(C) is ensured by Corollary 1.12.10 in Bogachev (2007) and λ being

atomless. On F1 = {0, 1
2 , 1}, then define a map B1 : F1 → A by setting B1(0) = ∅, B1(1) = A and

B1(1
2) = Γ(A). Proceeding inductively, we then construct Bn : Fn → A by letting:

Bn(
j

2n
) =

{
Bn−1( j/2

2n−1 ) if 1 ≤ j ≤ 2n is even

Bn−1( (j−1)/2
2n−1 ) ∪ Γ(Bn−1( (j+1)/2

2n−1 ) \Bn−1( (j−1)/2
2n−1 )) if 1 ≤ j ≤ 2n is odd

, (14)

where in (14) we have exploited that τ ∈ Fn if and only if τ = j
2n for some integer 1 ≤ j ≤ 2n.

Notice that if τ ∈ Fn, then it is of the form j
2n = 2mj

2n+m ∈ Fn+m for any integer m ≥ 0 and hence:

Bn+m(τ) = Bn(τ) for all τ ∈ Fn , (15)

as a result of definition (14). We may then define a map B : F → A, pointwise given by:

B(τ) = Bn(τ) , (16)

for any n such that τ ∈ Fn, and note B(τ) is uniquely determined due to (15).

Next, observe that since B1(0) = ∅ and B1(1) = A, it follows from (16) that B(0) = ∅ and

B(1) = A as well. Moreover, by induction it is also possible to establish that for all n:

λ{Bn(τ)} = τλ{A} for all τ ∈ Fn . (17)
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To see this, note (17) trivially holds for n = 1. Supposing (17) also holds for n − 1, then (14)

verifies it must be satisfied for n and all τ ∈ Fn of the form τ = j
2n with 1 ≤ j ≤ 2n even. On the

other hand, if τ ∈ Fn satisfies τ = j
2n for 1 ≤ j ≤ 2n odd, then by (14) we obtain,

λ{Bn(
j

2n
)} = λ{Bn−1(

(j − 1)
2n

)}+ λ{Γ(Bn−1(
j + 1

2n
) \Bn−1(

j − 1
2n

))}

=
(j − 1)

2n
λ{A}+

1
2

(
(j + 1)

2n
λ{A} − (j − 1)

2n
λ{A}) =

j

2n
λ{A} , (18)

where the second equality follows by (13) and the induction hypothesis. We conclude (17) holds,

and thus by (16) that λ{B(τ)} = τλ{A} for all τ ∈ F . Similarly, we may show inductively

Bn(τ) ⊆ Bn(τ ′) for all τ ≤ τ ′, τ, τ ′ ∈ Fn . (19)

Property (19) is trivially satisfied by B1 : F1 → A. To establish it holds for n, let τ ′ = j
2n and

τ = j−1
2n for any integer 1 ≤ j ≤ 2n. If j is odd, then by definition (14) we may conclude:

Bn(τ ′) ⊇ Bn−1(
(j − 1)/2

2n−1
) = Bn(

j − 1
2n

) = Bn(τ) . (20)

On the other hand, if j is even, then by (14) and the induction hypothesis, we can obtain:

Bn(τ) = Bn−1(
j − 2

2n
) ∪ Γ(Bn−1(

j

2n
) \Bn−1(

j − 2
2n

)) ⊆ Bn−1(
j/2
2n−1

) = Bn(τ ′) , (21)

where to derive the inclusion we have used that Γ(C) ⊆ C for every C ∈ A. Thus, since 1 ≤ j ≤ 2n

was arbitrary, from (20) and (21), we conclude that (19) holds. By construction, it additionally

follows from (16) that B : F → A satisfies B(τ) ⊆ B(τ ′) for all τ ≤ τ ′ with τ, τ ′ ∈ F .

To establish the first claim, we obtain B̄ : [0, 1]→ A by extending B : F → A. Specifically, for

any τ ∈ F , let B̄(τ) = B(τ). For any τ ∈ [0, 1] \ F note that 0 ∈ F and F being dense in [0, 1]

imply we may select a sequence {τj}∞j=1 with τj ∈ F for all j, such that τj ↑ τ . Then define:

B̄(τ) =
∞⋃
j=1

B(τj) . (22)

Notice that the definition of B̄(τ) is independent of the sequence {τj}∞j=1 due to B(τ) ⊆ B(τ ′) for

any τ ≤ τ ′ with τ, τ ′ ∈ F , and {τj}∞j=1 approaching τ from below. Also note that since {0, 1} ∈ F ,

B̄(0) = B(0) = ∅ and B̄(1) = B(1) = A. In addition, by the monotone convergence theorem:

λ{B̄(τ)} = λ{
∞⋃
j=1

B(τj)} = lim
j→∞

λ{B(τj)} = lim
j→∞

τjλ{A} = τλ{A} , (23)

where in the third equality we have exploited λ{B(τ)} = τλ{A} for all τ ∈ F . Finally, since F
is dense in [0, 1], we have that for any 0 < τ < τ ′, there exist sequences {τj}∞j=1 and {τ ′j}∞j=1 with

τj ↑ τ , τ ′j ↑ τ ′ and τj , τ
′
j ∈ F for all j. Selecting a τ̄ ∈ F such that τ < τ̄ < τ ′ we then obtain:

B̄(τ) =
∞⋃
j=1

B(τj) ⊆ B(τ̄) ⊆
∞⋃
j=1

B(τ ′j) = B̄(τ ′) , (24)

10



where we have used that τj ↑ τ < τ̄ implies B(τj) ⊆ B(τ̄) for all j, and similarly, that τ ′j ↑ τ ′ > τ̄

implies B(τ̄) ⊆ B(τ ′j) for j sufficiently large. We conclude from (23) and (24) that B̄ : [0, 1] → A
additionally satisfies properties (ii) and (iii), and the first claim of the Lemma is established.

In order to establish the second claim of the Lemma, pointwise define B̃ : [0, 1]→ A by:

B̃(τ) = A \ B̄(1− τ) . (25)

It is then immediate that B̃(0) = ∅ and B̃(1) = A, while λ{B̄(τ)} = τλ{A} additionally yields:

λ{B̃(τ)} = λ{A \ B̄(1− τ)} = λ{A} − (1− τ)λ{A} = τλ{A} . (26)

Furthermore, for any 0 ≤ τ ≤ τ ′ ≤ 1, note that τ ≤ τ ′ implies B̄(1− τ ′) ⊆ B̄(1− τ), and therefore:

B̃(τ) = A \ B̄(1− τ) ⊆ A \ B̄(1− τ ′) = B̃(τ ′) . (27)

Thus, from (26) and (27) we obtain that B̃ : [0, 1] → A indeed satisfies properties (i)-(iii). To

conclude, note monotonicity of B̄ implies (A \ B̄(1− τ)) \ B̄(τ) = A \ B̄(max{τ, 1− τ}), and hence:

λ{B̃(τ)4B̄(τ)} ≥ λ{B̃(τ) \ B̄(τ)} = λ{A \ B̄(max{τ, 1− τ})} = λ{A}(1−max{τ, 1− τ}) . (28)

Therefore, it follows from (28) that if λ{A} > 0, then λ{B̃(τ)4B̄(τ)} > 0 for all τ ∈ (0, 1).

Lemma A.2. Suppose Q ∈ M satisfies Q � λ for λ a σ-finite positive Borel measure on R ×
Rdx ×Rdz and let f ≡

√
dQ/dλ. Then, there exists a sequence {fn}∞n=1 of simple functions:

fn(y, x, z) =
Kn∑
i=1

πin1{(y, x, z) ∈ Sin} ,

such that ‖fn−f‖L2(λ) = o(1). Additionally, for all n: (i) fn ≥ 0 and
∫
f2
ndλ = 1, (ii) {Sin}Kn

i=1 is a

partition of [−Mn,Mn]1+dx+dz for some Mn > 0, (iii) For all 1 ≤ i ≤ Kn, Sin = Ain×Bin×Cin for

some Ain ⊆ [−Mn,Mn], Bin ⊆ [−Mn,Mn]dx and Cin ⊆ [−Mn,Mn]dz , (iv) The distinct elements of

{Ain}Kn
i=1, {Bin}Kn

i=1 and {Cin}Kn
i=1 form a partition of [−Mn,Mn], [−Mn,Mn]dx and [−Mn,Mn]dz .

Proof: Note that by construction f ∈ L2(λ). Since λ is a Borel regular measure by assumption,

Theorem 13.9 in Aliprantis and Border (2006) implies there exists a sequence {f̄n}∞n=1 of continuous,

compactly supported functions such that ‖f̄n − f‖L2(λ) = o(1). Moreover, since f ≥ 0 we may

assume without loss of generality that f̄n ≥ 0 for all n, while ‖f‖L2(λ) = 1 and ‖f̄n−f‖L2(λ) = o(1)

further imply that ‖f̄n‖L2(λ) → 1. Therefore, defining f̃n ≡ f̄n/‖f̄n‖L2(λ) we obtain that:

‖f̃n − f‖L2(λ) ≤
‖f̄n − f‖L2(λ)

‖f̄n‖L2(λ)

+ |1− 1
‖f̄n‖L2(λ)

| × ‖f‖L2(λ) = o(1) . (29)

Let Ωn ⊂ R ×Rdx ×Rdz be the support of f̃n, which is compact due to f̄n being compactly

supported, and selectMn > 0 sufficiently large so that Ωn ⊆ [−Mn,Mn]1+dx+dz . Additionally, select

11



ξn ↓ 0 such that λ{[−Mn,Mn]1+dx+dz} = o(ξ−2
n ), and notice that f̃n being uniformly continuous on

[−Mn,Mn]1+dx+dz implies there exists a partition {Sin}Kn
i=1 of [−Mn,Mn]1+dx+dz such that:

max
1≤i≤Kn

sup
(y,x,z)∈Sin

sup
(y′,x′,z′)∈Sin

|f̃n(y, x, z)− f̃n(y′, x′, z′)| ≤ ξn . (30)

Moreover, without loss of generality, we may construct {Sin}Kn
i=1 through the product of partitions

of [−Mn,Mn], [−Mn,Mn]dx and [−Mn,Mn]dz so that conditions (iii)-(iv) are satisfied. Next, let

πin =

[(
∫
Sin

f̃2
ndλ)/λ{Sin}]

1
2 if λ{Sin} 6= 0

0 if λ{Sin} = 0
. (31)

We may then obtain the desired functions fn : R×Rdx ×Rdz → R, defining them pointwise by

fn(y, x, z) =
Kn∑
i=1

πin1{(y, x, z) ∈ Sin} . (32)

By construction, πin ≥ 0 for all 1 ≤ i ≤ Kn and all n, and hence fn ≥ 0 as desired. Additionally,

because the support of f̃n is contained in [−Mn,Mn]1+dx+dz =
⋃Kn
i=1 Sin we also obtain by (31):

∫
f2
ndλ =

Kn∑
i=1

π2
inλ{Sin} =

Kn∑
i=1

∫
Sin

f̃2
ndλ =

∫
f̃2
ndλ = 1 . (33)

Furthermore, for all n and each 1 ≤ i ≤ Kn such that λ{Sin} > 0, we obtain from (30) and (31):

sup
(y,x,z)∈Sin

|fn(y, x, z)− f̃n(y, x, z)| = sup
(y,x,z)∈Sin

|[
∫
Sin

f̃2
ndλ

λ{Sin}
]
1
2 − f̃n(y, x, z)| ≤ ξn . (34)

Hence, since fn, f̃n vanish outside [−Mn,Mn]1+dx+dz , and {Sin}Kn
i=1 is a partition of [−Mn,Mn]1+dx+dz

we may conclude from (34) that sup(y,x,z) |fn(y, x, z)− f̃n(y, x, z)| ≤ ξn λ-a.s. Thus, we obtain:∫
(fn − f̃n)2dλ =

∫
[−Mn,Mn]1+dx+dz

(fn − f̃n)2dλ ≤ ξ2nλ{[−Mn,Mn]1+dx+dz} = o(1) , (35)

where the final equality holds because we selected ξn ↓ 0 such that λ{[−Mn,Mn]1+dx+dz} = o(ξ−2
n ).

Combining (29) and (35) then implies ‖fn− f‖L2(λ) = o(1) establishing the claim of the Lemma.

Proof of Lemma 2.1: Fix P ∈ P1 and let {Pk}∞k=1 satisfy H(Pk, P ) = o(1) and Pk ∈ P0 for all

k. For every fixed n, problem 4.18 in Pollard (2006) then implies that:

lim
k→∞

H(Pnk , P
n) ≤ lim

k→∞
nH(Pk, P ) = 0 . (36)

Since P ∈ P1 was arbitrary, we conclude from (36) that for every n and P ∈ P1 there exists a

sequence {Pk}∞k=1 in P0 such that H(Pnk , P
n) = o(1). Moreover, by Theorem 4.2.37 in Bogachev

(2007), the Hellinger distance induces the same topology on M as the Total Variation metric, and

12



therefore it follows by Theorem 1 in Romano (2004) that for every n and bounded function φn we

have:

sup
P∈P1

EPn [φn] ≤ sup
P∈P0

EPn [φn] . (37)

The conclusion of the Lemma is then immediate from (37) holding for all n.

Proof of Theorem 2.1: Fix P ∈ P1 and let f ≡ dP/dν. By Assumption 2.1 and Lemma A.2

applied to λ = δ × ν for δ a degenerate measure on R, there exists a sequence {fk}∞k=1 such that

‖
√
f −
√
fk‖L2(ν) = o(1), and each fk is a simple function of the form:

fk(x, z) =
Kk∑
i=1

π2
ik1{(x, z) ∈ Sik} , (38)

with {Sik}Kk
i=1 a partition of [−Mk,Mk]dx+dz for some Mk > 0 and Sik = Bik × Cik for some

Bik ⊆ [−Mk,Mk]dx , Cik ⊆ [−Mk,Mk]dz for all k and 1 ≤ i ≤ Kk. Also define,

Pk{E} ≡
∫
E
fkdν (39)

for all Borel measurable E ⊆ Rdx×Rdz , and note that since fk ≥ 0 and
∫
fkdν = 1 by Lemma A.2,

while Pk � ν by construction, it follows that Pk ∈ P = Mx,z(ν) for all k. Moreover, since ν is a

common dominating measure for P and Pk for all k, we obtain H(P, Pk) = ‖
√
fk−
√
f‖L2(ν) = o(1),

and hence Pk → P with respect to the Hellinger metric.

In what follows, we aim to show that in fact Pk ∈ P0 for all k. Towards this end, let {Uik}Dk
i=1

denote the collection of distinct elements of {Bik}Kk
i=1. Assumption 2.3 and Corollary 1.12.10 in

Bogachev (2007), then imply that for each Uik there exist Borel measurable subsets (U (1)
ik , U

(2)
ik )

such that Uik = U
(1)
ik ∪ U

(2)
ik , U (1)

ik ∩ U
(2)
ik = ∅ and in addition satisfy:

νx{U (1)
ik } = νx{U (2)

ik } =
1
2
νx{Uik} . (40)

Since {Uik}Dk
k=1 is a partition of [−Mk,Mk]dx by Lemma A.2, we may define a function θk by:

θk(x) =
Dk∑
i=1

(1{x ∈ U (1)
ik } − 1{x ∈ U (2)

ik }) , (41)

and note that νx{x ∈ [−Mk,Mk]dx : θk(x) = 0} = 0 due to (40), and U
(1)
ik ∩ U

(2)
ik = ∅ for all

1 ≤ i ≤ Dk. Hence, Pk � ν, and the support of Xi under Pk being contained in [−Mk,Mk]dx

implies θk 6= 0 Pk-a.s., while θk being bounded yields θk ∈ L∞(Pk). Additionally, for any bounded

z 7→ ψ(z), we obtain from (38), fk = dPk/dν and Assumption 2.3 that:

EPk
[ψ(Zi)θk(Xi)] =

Kk∑
i=1

π2
ik

∫
Cik

∫
Bik

ψ(z)θk(x)νx(dx)νz(dz)

=
Kk∑
i=1

π2
ik(

Dk∑
j=1

νx{Bik ∩ U
(1)
jk } − νx{Bik ∩ U

(2)
jk })

∫
Cik

ψ(z)νz(dz) = 0 , (42)
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where for the final equality we have exploited (40) and that for every 1 ≤ i ≤ Kk, we have Bik = Ujk

for some 1 ≤ j ≤ Dk. In particular, (42) must hold for ψ(·) = EPk
[θk(Xi)|Zi = ·], and hence we

obtain by the law of iterated expectations that EPk
[θk(Xi)|Zi] = 0, Pk-a.s.

Thus, we may conclude from (42) that Pk ∈ P0 for all k. Hence, since P ∈ P1 was arbitrary

and H(P, Pk) = o(1), the conclusion of the Theorem follows by Lemma 2.1 and (2).

Proof of Theorem 2.2: Fix P ∈ P1 and let f ≡ dP/dν. By Lemma A.2 and Assumption 2.4,

there exists a sequence {fk}∞k=1 such that ‖
√
f −
√
fk‖L2(ν) = o(1) and each fk is of the form:

fk(y, x, z) =
Kk∑
i=1

π2
ik1{(y, x, z) ∈ Sik} , (43)

with {Sik}Kk
i=1 a partition of [−Mk,Mk]1+dx+dz for some Mk > 0 and Sik = Aik×Bik×Cik for some

Aik ⊆ [−Mk,Mk], Bik ⊆ [−Mk,Mk]dx , Cik ⊆ [−Mk,Mk]dz for all k and 1 ≤ i ≤ Kk. Also define,

Pk{E} ≡
∫
E
fkdν (44)

for all Borel measurable E ⊆ R×Rdx×Rdz , and note that since fk ≥ 0 and
∫
fkdν = 1 by Lemma

A.2, while Pk � ν by construction, it follows that Pk ∈My,x,z(ν) for all k. Moreover, since ν is a

common dominating measure for P and Pk for all k, we obtain H(P, Pk) = ‖
√
fk−
√
f‖L2(ν) = o(1),

and hence Pk → P with respect to the Hellinger metric.

Next, let {Uik}Dk
i=1 denote the collection of distinct elements of {Bik}Kk

i=1. Assumption 2.3 and

Lemma A.1 then imply there exist collections {U (1)
ik (τ), U (2)

ik (τ)}Dk
i=1 such that for all 1 ≤ i ≤ Dk,

νx{U (1)
ik (τ)} = τνx{Uik} νx{U (2)

ik (τ)} = τνx{Uik} , (45)

with U
(l)
ik (τ) ⊆ Uik for l ∈ {1, 2}, and νx{U (1)

ik (τ)4U (2)
ik (τ)} > 0 for all 1 ≤ i ≤ Dk such that

νx{Uik} > 0. For l ∈ {1, 2} we may then define functions θ(l)
k (·, τ) pointwise in x by:

θ
(l)
k (x, τ) =

Dk∑
i=1

(2Mk1{x ∈ U
(l)
ik (τ)} − 2Mk1{x ∈ Uik \ U

(l)
ik (τ)}) , (46)

where we note that since {Uik}Dk
i=1 is a partition of [−Mk,Mk]dx by Lemma A.2, it follows that

θ
(l)
k (x, τ) ∈ {−2Mk, 2Mk} for all x ∈ [−Mk,Mk]dx . Thus, θ(l)

k ∈ L∞(Pk) for l ∈ {1, 2}, while

Yi ∈ [−Mk,Mk] Pk-a.s., Assumption 2.5 and fk = dPk/dν with fk as in (43) additionally imply:

EPk
[(1{Yi ≤θ(1)

k (Xi, τ)} − 1{Yi ≤ θ(2)
k (Xi, τ)})2]

= EPk
[(1{θ(1)

k (Xi, τ) = 2Mk} − 1{θ(2)
k (Xi, τ) = 2Mk})2]

=
Kk∑
i=1

π2
ikνy{Aik}νz{Cik}

∫
Bik

(1{θ(1)
k (x, τ) = 2Mk} − 1{θ(2)

k (x, τ) = 2Mk})2νx(dx)

> 0 , (47)
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where we exploited (1{θ(1)
k (x, τ) = 2Mk} − 1{θ(2)

k (x, τ) = 2Mk})2 = 1{x ∈ U (1)
jk (τ)4U (2)

jk (τ)} for

every x ∈ Ujk, νx{U
(1)
jk (τ)4U (2)

jk (τ)} > 0 whenever νx{Ujk} > 0, and νx{Ujk} > 0 for some j due

to the support of Xi under Pk being contained in [−Mk,Mk]dx =
⋃Dk
j=1 Ujk.

We conclude from (47) that θ(1)
k (·, τ) and θ

(2)
k (·, τ) are distinct under ‖ · ‖L∞(Pk). Additionally,

for l ∈ {1, 2}, we have 1{θ(l)
k (x, τ) = 2Mk} = 1{x ∈ U (l)

jk (τ)} for every x ∈ Ujk by (46), and hence

νx{{θ(l)
k (x, τ) = 2Mk} ∩ Ujk} = νx{U (l)

jk (τ)} = τνx{Ujk}. Since for any 1 ≤ i ≤ Kk, Bik = Ujk for

some 1 ≤ j ≤ Dk, and [−Mk,Mk] =
⋃Kk
i=1Aik, it follows that for any bounded z 7→ ψ(z) we obtain:

EPk
[ψ(Zi)(1{Yi ≤ θ(l)

k (Xi, τ)} − τ)]

=
Kk∑
i=1

π2
ik

∫
Aik

∫
Cik

∫
Bik

ψ(z)(1{θ(l)
k (x, τ) = 2Mk} − τ)νx(dx)νz(dz)νy(dy)

=
Kk∑
i=1

π2
ik(τνx{Bik} − τνx{Bik})

∫
Aik

∫
Cik

ψ(z)νz(dz)νy(dy)

= 0 . (48)

In particular, setting ψ(·) = Pk{Yi ≤ θ(l)(Xi, τ)|Zi = ·} in (48), implies by the law of iterated

expectations that Pk{Yi ≤ θ
(l)
k (Xi, τ)|Z} = τ , Pk − a.s. for l ∈ {1, 2}.

Thus, we may conclude from (42) that Pk ∈ P0 for all k. Hence, since P ∈ P1 was arbitrary

and H(P, Pk) = o(1), the conclusion of the Theorem follows by Lemma 2.1 and (2).

Proof of Theorem 2.3: The proof is very similar to that of Theorem 2.2, and we therefore

provide only an outline, emphasizing the differences in the arguments. Fixing P ∈ P1, we may

obtain a sequence {Pk}∞k=1 such that for all k, Pk ∈ My,x,z(ν), dPk/dν = fk for fk as defined in

(43), and ‖
√
fk −

√
f‖L2(ν) = o(1). To show Pk ∈ P0 for all k, let {Uik}Dk

i=1 denote the collection

of unique elements of {Bik}Kk
i=1, and for all 1 ≤ i ≤ Dk, let Uik denote the σ-algebra generated

by subsets of Uik. By Assumption 2.3 and Lemma A.1, there then exist U (1)
ik : [0, 1] → Uik and

U
(2)
ik : [0, 1] → Uik such that for l ∈ {1, 2}: (i) νx{U (l)

ik (τ)} = τνx{Uik}, (ii) U (l)
ik (τ) ⊆ U

(l)
ik (τ ′) for

all 0 ≤ τ ≤ τ ′ ≤ 1, and (iii) νx{U (1)
ik (τ)4U (2)

ik (τ)} > 0 for all τ ∈ (0, 1) and 1 ≤ i ≤ Dk such that

νx{Uik} > 0. Following (46), we can then define the functions θ(l)
k pointwise by:

θ
(l)
k (x, τ) =

Dk∑
i=1

((2 + τ)Mk1{x ∈ U
(l)
ik (τ)} − (3− τ)Mk1{x ∈ Uik \ U

(l)
ik (τ)}) . (49)

Observe that |θ(l)
k (x, τ)| ≤ 3Mk for all (x, τ) ∈ Rdx × [0, 1] and hence θk(Xi, τ) is bounded Pk-a.s.

uniformly in τ ∈ [0, 1]. Moreover, since U (l)
ik (τ) ⊆ U (l)

ik (τ ′) for l ∈ {1, 2} and all 0 ≤ τ ≤ τ ′ ≤ 1 and

1 ≤ i ≤ Dk, it follows from (49) and the support of Xi under Pk being contained in [−Mk,Mk]dx =⋃Dk
j=1 Ujk that θ(l)

k (Xi, τ) is strictly monotonic in τ Pk-a.s. In turn, notice that since τ ∈ [0, 1] and

the support of Yi is contained in [−Mk,Mk] under Pk, we obtain from (49) that for all x ∈ U (l)
ik ,

1{Yi ≤ θ(l)
k (x, τ)} = 1{x ∈ U (l)

ik (τ)} Pk-a.s. Therefore, arguing as in (47) yields that:

EPk
[(1{Yi ≤ θ(1)

k (Xi, τ)} − 1{Yi ≤ θ(2)
k (Xi, τ)})2] > 0 , (50)
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for all τ ∈ (0, 1). Thus, we may conclude from (50) that for all τ ∈ (0, 1) θ(1)
k (·, τ) differs from

θ
(2)
k (·, τ) under ‖ · ‖L∞(Pk). Similarly, arguing as in (48) further implies Pk{Yi ≤ θ(l)(Xi, τ)|Zi} = τ

for l ∈ {1, 2} and all τ ∈ (0, 1) Pk-a.s. Therefore, we may conclude Pk ∈ P0 for all k, and finish the

argument as in the proof of Theorem 2.2.
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