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1 Introduction

Since the seminal work by Lillard and Willis (1978) on the estimation of reduced form earnings

dynamics an extensive literature has emerged. While a very large set of empirical studies estim-

ating ARMA models on earnings residuals have been conducted, the literature has not reached

any consensus on a unique specification of the earnings process (see Meghir and Pistaferri,

2010 for a survey). Most authors admit that a mixed process with individual-specific effects,

autoregressive and moving average components seems necessary to fit the longitudinal change

in earnings dispersion that is commonly observed although they do not agree on the description

of earnings growth. Several papers have considered a beauty contest between a specification in

which earnings growth is random and a specification in which earnings growth is governed by

a linear trend multiplied by a fixed individual effect (see Baker, 1997 and Guvenen, 2009 for

instance). In most of these papers the theoretical background for such reduced form models

are nevertheless unclear while additional structure might be useful so as to distinguish different

reduced forms.

In this paper we develop a simple theoretical model of on-the-job human capital invest-

ments accomodating substantial unobserved heterogeneity and derive a tractable and conveni-

ent reduced form for earnings dynamics. Following Mincer (1974) Accounting identity model as

presented by Heckman Lochner and Todd (2006), we explain differences in earnings trajectories

by heterogenous choices derived from heterogeneous individual characteristics. What interests

us is the second part only of the research by Mincer that is the post schooling wage growth as

taken from the Ben Porath (1967) model used to explain the shape in the mean earnings profile:

earnings increase at the beginning of the working career then decrease slightly before retirement.

It is commonly interpreted as reflecting individuals economic decisions to acquire skills mostly

at the beginning of their career whereas they stop investing during the final years because their

horizon of investment is shortened.

There are two other interesting predictions of the human capital setting which are tested

(Rubinstein and Weiss, 2006). First, the variance of earnings should have an inverted U-shape

along the life-cycle. Comparing earnings trajectories between large-returns investors having a

steep earnings profile and low-returns individuals experiencing a flatter profile provides indica-

tions on the way earnings dispersion increases over time. Second, the autocorrelation of earnings

along the life cycle should be negative. Because investments in human capital are more intensive

at the beginning of the life cycle for the high return investors, there tends to be a negative
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correlation between earning growth and level in cross section at the beginning of the life cycle

and this correlation fades out with time to become positive. A simple endogeneous search model

would predict the contrary. The better paid tend to search less because it is more costly for

them and the level and earnings growth tend to be negatively associated all along the life-cycle.

We start from the main intuition of the post schooling wage growth model describing dif-

ferences in trajectories by, on the one hand, heterogenous characteristics and on the other,

heterogenous choices of investment. Instead of focusing on the mean we investigate the implic-

ations of the theory for the covariance of earnings along the life-cycle profile. We consider as

given school investments and we treat them as an additional source of individual heterogeneity.

We are allowing for a lot of heterogeneity as Alvarez, Browning and Erjnaes (2010) do not only

because it has been recognized that unobserved heterogeneity would bias the rates of return but

also because the amount of unobserved heterogeneity conditions the diagnostics about life-cycle

inequality. We are building up as well on what has been developed times ago by Heckman (see

Heckman, Lochner and Todd, 2006, for a survey) and Card (for instance in the Econometrica

lecture in 2001) for schooling investments in human capital.

In this paper, we specify a model in which individuals differ in three main respects. Firstly, in-

dividuals have different initial human capital levels when they enter the labor market. Secondly,

individuals differ in their returns to skill investments. It can be interpreted as individuals being

more of less productive in transforming invested time in productive skills. As in Mincer’s original

model, heterogeneity in rates of return to investment play a crucial role explaining why indi-

vidual earnings trajectories differ. Our model also assumes that the marginal cost of producing

skills is heterogenous within the population. Finally, we allow the terminal value of human cap-

ital to vary across individuals and infer from these values the implicit horizon of investment that

agents condier from the curvature of the earnings profile. This follows a suggestion by Lillard

and Reville (1999) insisting on this crucial aspect of earnings growth. As a consequence, since

most of these characteristics are not observable for the econometrician, this translates into an

error component structure of the earnings equation, that is highly persistent and whose variance

increases over time.

We treat search and job mobility as frictions under the form of exogenous shocks. Indeed

what Postel-Vinay and Turon (2010) nicely explicits in their presentation is that the dynamics of

the earnings process is partly controled by two other processes which are individual productivity

in the current match and outside offers that the individual receives while on the job. Three

things can happen: either the earnings remains within the two bounds defined by these processes;
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or the earnings is equal to the productivity process because adverse shocks on that process made

employee and employer renegociate the wage contract; or finally, the wage is equal to the outside

offer in the case the employee can either renegociate with his employer or take the outside offer if

the productivity is lower that the outside option. We do not impose these structural constraints

in this paper and we treat them as an element of idiosyncratic shocks.

We estimate the model on a very long panel for a single cohort of male French wage earners

observed from 1977 to 2007. DADS data is an administrative dataset collecting earnings in

the private sector for social security records and that has many advantages for our purpose.

First, it includes enough observations so that we can study a single cohort of individuals who

enter the labor market simultaneously and face the same economic environment over their life-

cycle, contrary to most studies of earnings dynamics that must pull different cohorts to collect

samples large enough. Secondly, as the data come from social security records, we expect fewer

measurement errors than in usual surveys or other administrative data. Finally, the DADS

data are long and homogeneous enough to study the dynamics of earnings over a long period of

time. It has also some shortcomings as well since first, few other individual characteristics than

age and broad skill groupings. Second, the panel data is incomplete at the periods during

which individuals leave the private sector because of unemployment, self-employment, non-

participation or because they are working in the public sector. This explains why we choose to

use male earning data only.

We first estimate the model by random effect maximum likelihood (Alvarez and Arellano,

2004) and derive the fixed effect estimates. Using the latter estimates, we evaluate structural

restrictions and compute estimates of the structural unobserved factors. We can construct

counterfactuals measuring the impact of changes in those structural estimates. We find that

surprisingly an increase in post retirement returns to human capital decrease the variances of

earnings in late years although increases in pre retirement returns unambiguosly increase this

variance.

In the next section we describe the model of human capital accumulation. In section 3 we

consider the econometric framework and offer a literature review of empirical earning equations

and the way dynamic panel data methods are used to estimate them. Data are described in

section 4. Section 5 presents the results. After a discussion of a possible extension, a final section

concludes.
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2 The Model

We present a model of human capital investment in which agents face individual specific costs,

individual specific rates of return and individual specific terminal values. We characterize the

optimal sequence of human capital investments over the life cycle and we derive the reduced

form of life cycle earnings equation.We then analyze the transformation between parameters of

the reduced and structural forms.

2.1 The set up

As in Ben Porath (1967) and Mincer (1974) we suppose that the retirement date is fixed at

t = R. The model starts when individuals enter the labor market normalized at time t = 0.

The entry decision in the labour market is endogenous and depends on previous human capital

accumulation. We take these initial conditions as given and depending on a unobserved variable,

the human capital stock at entry, which is potentially correlated with all shocks affecting the

life-cycle dynamics of earnings.

From period 0 to R agents can acquire human capital through part-time on-the-job training.

Human capital is supposed to be single-dimensional and potential individuals earnings, yPi (t)

are given by individual human capital times an individual specific rental rate that is yPi (t) =

exp(δi(t))Hi(t). Individuals face uncertainty through the variability of the rental rate of human

capital δi(t) which is mainly affected by aggregate shocks but also by individual ones if there

are some frictions in the labor market. Firms might temporarily value human capital differently

than the market in order to attract, retain or discourage specific individuals. The rental rate is

supposed to follow a stochastic process and δi(t) is fully revealed at period t to the agent. We do

not provide a market analysis of the wage equilibrium process and take it as a given (in terms

of its distribution).

By deducting chosen human capital investments, actual individual earnings are assumed to

be given by:

yi(t) = exp(δi(t))Hi(t) exp(−τ i(t))

where 1 − exp(−τ i(t)) can be interpreted as the fraction of working time devoted to investing
in human capital as in the original Ben Porath formulation. It might also be interpreted as

the level of effort put in the acquisition of human capital at the cost of losing some potential

earnings. With no loss of generality, we denote τ i(t) at time t the level of investment in human

capital instead of working with investment time. Note in particular that if τ i(t) = 0, actual
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earnings are equal to potential earnings.

Because of these investments, individuals accumulate human capital in a way that is described

by the following equation

Hi(t+ 1) = Hi(t) exp[ρiτ i(t)− λi(t)] (1)

where Hi(t) is the stock of human capital, ρi an individual specific rate of return of human

capital investments and λi(t) is the depreciation of human capital in period t. This latter

component embeds innovations at the economy level as these innovations depreciate previous

vintages of human capital or embeds individual-specific shocks. The latter can be negative

because of unemployment periods or of layoffs followed by mobility across sectors. These shocks

can also be positive when certain components of human capital acquire more value or because

of voluntary moves across firms or sectors. As δi(t), the variable λi(t) is supposed to be revealed

at period t to the agent and is uncertain before. We also take the stochastic process λi(t) as a

given.

Current-period utility is assumed to be equal to actual log earnings net of investment costs,

ui(t) = δi(t) + log Hi(t)− γi
(
τ i(t) + ci

τ i(t)
2

2

)
where γi and ci represent between-individual differences in the cost of human capital accumu-

lation in utility terms and the cost is quadratic. There are two aspects that depart from a

standard formulation. The simplest objective function would be a function of actual earnings or

their logarithm only:

δi(t) + log Hi(t)− τ i(t). (2)

We neither assume at this stage that γi = 1 nor that the objective function is linear (ci =

0). It adds richness to the setting and it fits well with the interpretation of τ i(t) in terms of

effort exerted for human capital investments and not only time as in the simple specification.

Nonetheless, the costs of investments do not depend on the level of human capitalHi(t). Section 6

proposes a convenient generalization of our setting to the case of increasing costs of investment

with the level of human capital. It comes at the price of having additional factors in the

econometric model.

As individuals maximize their future discounted utility stream, their decision program is

given by the following Bellman equation:

Vt(Hi(t), τ i(t)) = δi(t) + logHi(t)− γi
(
τ i(t) + ci

τ i(t)
2

2

)
+ βEt [Wt+1(Hi(t+ 1))] (3)
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where:

Wt+1(Hi(t+ 1)) = Vt+1(Hi(t+ 1), τ ∗i (t+ 1)) = max
τ i(t+1)

Vt+1(Hi(t+ 1), τ i(t+ 1)),

and where β is the discount factor. We do not tackle the case where the discount factor is

heterogenous between agents.

The dynamic program is completed by the returns to human capital after working life. We

assume directly that the value function or the discounted value of utility stream from date R

onwards is given by:

WR(Hi(R)) = δ∗ + κi logHi(R), (4)

where κ is the capitalized value of one euro over remaining life. It includes the heterogenous

survival probabilities from R onwards that agents anticipate and we restrict our setting so that:

κi <
1

1− β .

This condition is justified by the fact that the discount rate after retirement is smaller than β

because the survival probability is smaller after retirement.

2.2 The life-cycle profile of investments

We first consider the case where human capital investments are always positive over the life-cycle

and the profile of investments is summarized in:

Proposition 1 Suppose that :

βρiκi > γi, (5)

then:

τ i(t) =
1

ci

{
ρi
γi

[
β

1− β + βR−t(κi −
1

1− β )

]
− 1

}
> 0, ∀t < R (6)

Proof. The first order condition of the maximization problem for t < R is

−γi [1 + ciτ i(t)] + βρiHi(t+ 1)Et

[
∂Wt+1

∂Hi(t+ 1)

]
= 0. (7)

The marginal value of human capital is the derivative of the Bellman equation so that by the

envelope theorem:
∂Wt

∂Hi(t)
=

1

Hi(t)
+ βEt

[
∂Wt+1

∂Hi(t+ 1)

]
Hi(t+ 1)

Hi(t)
(8)

For t = R, condition (8) writes more simply as:

∂WR

∂Hi(R)
=

κi
Hi(R)

=⇒ Hi(R)
∂WR

∂Hi(R)
= κi,
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so that, by backward induction, we obtain:

Hi(R− 1)
∂WR−1

∂Hi(R− 1)
= 1 + βκi, Hi(R− 2)

∂WR−2

∂Hi(R− 2)
= 1 + β(1 + βκi)

and so on. This yields:

Hi(t+ 1)
∂Wt+1

∂Hi(t+ 1)
=

1− βR−(t+1)

1− β + βR−(t+1)κi.

Replacing in equation (7) yields:

γi (1 + ciτ i(t)) = βρi

[
1

1− β + βR−(t+1)(κi −
1

1− β )

]
= ρi

[
β

1− β + βR−t(κi −
1

1− β )

]
,

and equation (6) follows. Furthermore, as the second term in (7) is constant, the second order

condition is satisfied if and only if γici > 0.

Furthermore and given that ci > 0, the condition that investments are always positive yields:

ρi
γi

[
β

1− β + βR−t(κi −
1

1− β )

]
− 1 ≥ 0. ∀t < R

As κi− 1
1−β < 0 and β < 1, τ i(t) is decreasing in t because of the term β−t and the RHS attains

its minimum at t = R− 1. This yields condition (5) since:

ρi
γi

[
β

1− β + β(κi −
1

1− β )

]
− 1 ≥ 0⇐⇒ ρi

γi
≥ 1

βκi
.

It is now easy to analyze cases in which investments in human capital stop before the penul-

timate period. Indeed, the level of investment τ i(t) is deterministic and decreasing in t because

of the term in β−t. As expected, it is always better to invest earlier than later given that the

horizon over which investments are valuable is becoming smaller and smaller. No investments in

period t, τ i(t) = 0, imply that no investments would take place later on, τ i(t′) = 0, ∀t′ ≥ t. In

consequence, we can proceed backwards and analyze the conditions under which human capital

investments stop at period t.

Proposition 2 The investment sequence is such that for any t ∈ [1, R− 1]

τ i(t
′) = 0,∀t′ ≥ t+ 1, τ i(t) > 0

if and only if:
1

κit
< β

ρi
γi
≤ 1

κi,t+1

, (9)
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where 1
κR

= +∞, κi,R−1 = κi and κit = 1 + βκi,t+1. Additionally, when condition (9) is satisfied

we can replace period R by period Si = t+ 1 in equation (6) to derive human capital investments

before and including period Si − 1. Period Si is the optimal stopping period for human capital

investments.

Proof. Condition (9) is consistent since κit = 1+βκi,t+1 > κi,t+1 ⇔ κi,t+1 <
1

1−β ⇔ κi,t+2 <
1

1−β

and by repetition κi,R−1 = κi <
1

1−β . We now proceed by backward induction. The content of

Proposition 2 is true at period t = R − 1 because of Proposition 1 and condition (5). Suppose

that this condition is true at periods t′ ≥ t+ 1.

First, assume that τ i(t′) = 0,∀t′ ≥ t + 1 so that the condition τ i(t′) > 0 is violated for any

t′ ≥ t + 1 and therefore β ρi
γi
≤ 1/κi,t+1. Conversely, if β

ρi
γi
≤ 1/κi,t+1 then τ i(t′) = 0,∀t′ ≥ t + 1

because Proposition 2 is true for t′ ≥ t+ 1. Furthermore, the condition τ i(t′) = 0 implies simple

forms for the Bellman equation (3):

Wt(Hi(t
′)) = δi(t

′) + logHi(t
′) + βEt′Wt′+1(Hi(t

′ + 1)),

and the accumulation equation (1):

logHi(t
′ + 1) = logHi(t

′)− λi(t′).

Using equation (4) where we set κiR−1 = κi and the linearity of the previous two equations lead

to the condition derived by induction again:

Wt′(Hi(t
′)) = δ∗(t′) + κi,t′−1 logHi(t

′). (10)

for any t′ ≥ t+ 1 and where κit = 1 + βκi,t+1.

Second in addition to the previous statements, assume that τ i(t) > 0. Proposition 1 can

be recast in a set-up where the last period becomes Si = t + 1 instead of R since there are no

further human capital investments after this date and since the value function can be written as

in equation (10) evaluated at t′ = t+ 1. We can adapt equation (6) and obtain:

τ i(t) =
1

ci

{
ρi
γi

[
β

1− β + β(κit −
1

1− β )

]
− 1

}
> 0,

which is equivalent to β ρi
γi
> 1

κit
.

Therefore the equivalence stated in the Proposition is true at period t. It is therefore true at

any date until t = s+ 1.

It is easy to prove that the sequence κit of the previous proposition is:
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Lemma 3

κit =
1

1− β + βR−t−1(κi −
1

1− β ) (11)

Proof. By induction. It is true when t = R − 1 since κi,R−1 = κi. Assume that it is true at

t+ 1 and prove it at t.

We can then summarize the two propositions into the following:

Corollary 4 Suppose that there exists S = 1, ., R such that:

1

κi,S−1

< β
ρi
γi
≤ 1

κiS
,

then:

τ i(t) =
1

ci

{
ρi
γi

[
β

1− β + βR−t(κi −
1

1− β )

]
− 1

}
> 0, ∀t < S

Proof. Form Proposition 2, we know that human capital investments stop the period before S.

We can then use Proposition 1 to derive from equation (6) adapted to period S that:

τ i(t) =
1

ci

{
ρi
γi

[
β

1− β + βS−t(κi,S−1 −
1

1− β )

]
− 1

}
> 0, ∀t < S.

Replace κi,S−1 by its expression (11) to prove the Proposition.

This corollary proves that the profile of life-cycle investments is truncated at zero but there

are no dynamic effects of the truncation. The profile remains similar even if investments stop.

We can also use this corollary by default. In order to have some investments in human capital

along the life cycle we shall have that β ρi
γi
> 1

κiS
and therefore β ρi

γi
> 1− β since κiS < 1

1−β . We

will assume that:
ρi
γi
>

1− β
β

. (12)

2.3 The Lifecycle Profile of Earnings

We start by deriving earnings equations when human capital investments remain positive over

the life-cycle. First, the stock of human capital in period t depends on previous investment

choices and past depreciation that is

Hi(t) = Hi(0) exp

[
t−1∑
l=0

ρiτ i(l)−
t−1∑
l=0

λi(l)

]
for t > 0.

We can write the logarithm of actual earnings in period t as

log yi(t) = δi(t) + log Hi(0) +

t−1∑
l=0

ρiτ i(l)−
t−1∑
l=0

λi(l)− τ i(t). (13)
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First, it shows that returns to human capital δi(t) cannot be distinguished from depreciation

effects
∑t−1

l=0 λi(l) and we will therefore write that transitory earnings are equal to:

δyi (t) = δi(t)−
t−1∑
l=0

λi(l).

Furthermore, inserting the reduced form for τ i(·) from equation (6) into the first sum we get :

E

t−1∑
l=0

ρiτ i(l) =
ρ2
i

ciγi

t−1∑
l=0

[
β

1− β + βR−l(κi −
1

1− β )

]
− ρi
ci

(t),

=
ρ2
i

ciγi

β

1− β (t) +
ρ2
i

ciγi
(κi −

1

1− β )βR
t−1∑
l=0

β−l − ρi
ci

(t)

=

(
ρ2
i

ciγi

β

1− β −
ρi
ci

)
(t) +

ρ2
i

ciγi
(κi −

1

1− β )βR
1− (1/β)t

1− 1/β

= − ρ2
i

ciγi
(κi −

1

1− β )
βR+1

1− β +

(
ρ2
i

ciγi

β

1− β −
ρi
ci

)
(t)

+
ρ2
i

ciγi
(κi −

1

1− β )
βR+1

1− ββ
−t,

which writes as the sum of three factors whereas one factor is in levels, the second one is linear

and the last one is geometric.

Finally, using equation (6):

τ i(t) =
1

ci

(
ρi
γi

β

1− β − 1

)
+

ρi
ciγi

βR(κi −
1

1− β )β−t

and rearranging expression (13) we have the following reduced form expression for log earnings

log yi(t) = ηi1 + ηi2t+ ηi3β
−t + δyi (t), (14)

where:

ηi1 = logHi(0)− ρ2
i

ciγi

(
κi −

1

1− β

)
βR+1

1− β −
1

ci

(
ρi
γi

β

1− β − 1

)
, (15)

ηi2 =
ρ2
i

ciγi

β

1− β −
ρi
ci
, (16)

ηi3 =
ρ2
i

ciγi

(
κi −

1

1− β

)
βR+1

1− β −
ρi
ciγi

βR(κi −
1

1− β ). (17)

From that reduced form equation, it is clear that different permanent and transitory factors

contribute to individual earnings trajectories. On the one hand, three types of permanent het-

erogeneities drive earnings dynamics. Firstly, differences in initial capital investment at school,

Hi(0), lead to permanent differences in log earnings. Secondly, between-individual differences in
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marginal return to investment, ρi, and marginal costs γi and ci make earnings growth rate to be

individual specific. Thirdly, the interaction between marginal return and between-individual dif-

ferences in the cost of accumulation, ρi/(ciγi), leads earnings trajectories to differ in amplitude.

We shall look below at the form of transitory earnings.

In the case in which human capital investments stop before the penultimate period, the

previous results can be adapted by replacing period R by period Si as developed in Proposition

2. This affects the definitions of the factors (ηi1, ηi2, ηi3) as derived in equations (15) to (17)

although it does not affect the form of the earnings equation (14) before and including period

Si−1. Nonetheless after period Si, human capital investments are equal to zero and the earnings

equation (14) is derived by using potential earnings and the accumulation equation:

log yi(t) = δi(t) + log Hi(t), log Hi(t+ 1) = log Hi(t)− λi(t),∀t ≥ Si

so that we have:

log yi(t+ 1) = log yi(t) + δi(t+ 1)− δi(t)− λi(t).

Earnings growth becomes stochastic and is no longer determined by the terms ηi2 and ηi3.

In the empirical section, we will assume that we never observe the second regime since at the

end of the period of observation we are still far from any retirement period.

2.4 Reduced and Structural Forms

One of the purpose of the paper is not only to impose the three-factor structure on the reduced

form but also to recover the distribution of unobserved heterogeneity components. Equation

(15) which refers to unobserved hetogeneity in levels allows us to identify the level of initial

human capital if the other individual specific terms are fixed. It thus imposes no constraint in

the data. Equations (16) and (17) are more interesting and can be specifically rewritten as:

ηi2 =
ρi
ci

(
ρi
γi

β

1− β − 1

)
, (18)

ηi3 =
ρi
ciγi

βR(κi −
1

1− β )

(
ρi

β

1− β − 1

)
. (19)

This is a non linear system of two equations with four unknowns: ρi, γi, ci and κi. The

structural form cannot be identified as such and some restriction must be adopted. Because it

has a natural interpretation in terms of costs, we are going to assume that γi = 1. The two
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equations above as well as the investment equation simplify to:

ηi2 = ρi
ci

(
ρi

β
1−β − 1

)
,

ηi3 = ρi
ci
βR(κi − 1

1−β )
(
ρi

β
1−β − 1

)
,

τ i(t) = 1
ci

{
ρi

[
β

1−β + βR−t(κi − 1
1−β )

]
− 1
}

= 1
ci

(
ρi

β
1−β − 1

)
+ ρi

ci
βR(κi − 1

1−β )β−t.

Structural restrictions are:

κi ∈ [0,
1

1− β ], ci > 0, ρi > 0, τ i(t) ≥ 0 for any t ≤ R− 10.

As taking the ratio of the second and the first equation yields:

ηi3
ηi2

= βR(κi −
1

1− β )

we derive the restriction that:
ηi3
ηi2
∈ [− βR

1− β , 0]. (20)

Conversely, if this restriction is valid then κi ∈ [0, 1
1−β ].

The remaining equations are: ηi2 = ρi
ci

(
ρi

β
1−β − 1

)
,

τ i(t) = 1
ci

(
ρi

β
1−β − 1

)
+ ρi

ci
β−t ηi3

ηi2
.

Solving each equation in ρi yields:{
ρi = 1−β

2β
(1±

√
1 + 4 β

1−βηi2ci),

ρi = 1−β
β
µi(t)(ciτ i(t) + 1),

where we defined:

µi(t) =

(
1 +

1− β
β

β−t
ηi3
ηi2

)−1

∈
[

1,

(
1− 1− β

β
βR−t

)−1
]
⊂
[

1,

(
1− 1− β

β
β10

)−1
]
,

if we use bounds (20). Note that the argument of the inverse function is decreasing with t

because β−t is increasing and ηi3
ηi2
is negative so that µi(t) is maximum at the end of the panel

t = R− 10. It corresponds to the fact that τ i(t) is decreasing. Let the upper bound be:

µ̄i ≡ µi(R− 10) =

(
1 +

1− β
β

β−(R−10)ηi3
ηi2

)−1

. (21)

Furthermore, as ci > 0 and τ i(t) ≥ 0, then ρi ≥ 1−β
2β

and therefore ηi2 ≥ 0 and the only

solution is the positive root. Thus:{
β

1−βρi = 1
2
(1 +

√
1 + 4 β

1−βηi2ci),
β

1−βρi = µi(t)(ciτ i(t) + 1).
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Parameter ρi is given by the intersection of these two curves in the positive orthant for (ρi, ci).

Let the equilibrium condition for ρi be the zeroes of this function:

φi(ci, τ i(t)) ≡ µi(t)(ciτ i(t) + 1)− 1

2
(1 +

√
1 + 4

β

1− β ηi2ci).

This gives easily the relationship between ci and τ i(t) :

τ i(t) =
1

ci

[
1

2µi(t)
(1 +

√
1 + 4

β

1− β ηi2ci)− 1

]
,

although the inversion of this function (ci as a function of τ i(t)) is less easy to obtain.

To invert this function, note first that limci→0 φi(ci, τ i(t)) = µi − 1 ≥ 0. Furthermore, for

τ i(t) > 0, we have:

lim
ci→∞

φi(ci, τ i(t)) > 0.

Finally, note that

φi(ci, 0) = µi(t)−
1

2
(1 +

√
1 + 4

β

1− β ηi2ci)

is equal to zero if and only if:

ci = cLi (t) ≡ µi(t)(µi(t)− 1)

νi
, νi ≡

β

1− β ηi2.

Since µi(t) ≥ 1, a solution is acceptable if ηi2 > 0.

Given these elements, the condition φi(ci, τ i(t)) = 0 for fixed τ i(t) can either have no solu-

tions, 2 solutions or 1 solution. This result is the simple consequence that φi(ci, τ i(t)) is the

difference between a linear function and a concave function where the intercept with the ci = 0

axis of the former is above the intercept of the latter. Those are described by the following

where τ 0 > 0:

If τ i(t) > τ 0, ∀ci > 0, φi(ci, τ i(t)) > 0 (no solutions)
If τ i(t) ∈ (0, τ 0), ∃!(c1

i , c
2
i ) > 0, φi(c

j
i , τ i(t)) = 0, (2 solutions)

If τ i(t) = τ 0,∃!cUi > 0, φi(c
U
i , τ 0) = 0 (1 solution)

and using the additional case described above when τ i(t) = 0. (Implicitly, we do make explicit

the dependence of τ 0 and c
j
i on t).

Let us compute τ 0 which by definition satisfies two properties translating that both the

function and its derivative are equal to zero at the point of tangency of the linear function and

the concave function:

φi(c
U
i , τ 0) = µi(t)(c

U
i τ 0 + 1)− 1

2
(1 +

√
1 + 4νicUi ) = 0,

∂φi
∂ci

(cUi , τ 0) = µi(t)τ 0 −
νi√

1 + 4νicUi
= 0.

14



Using the second equation yields:

cUi =
1

4νi

[(
νi

µi(t)τ 0

)2

− 1

]
.

Plugging into the first equation yields:

µi(t)(

[(
νi

µi(t)τ 0

)2

− 1

]
τ 0 + 4νi) = 2νi(1 +

νi
µi(t)τ 0

)

and therefore:

µi(t)(

[(
νi
µi(t)

)2

− τ 2
0

]
+ 4νiτ 0) = 2νi(τ 0 +

νi
µi(t)

).

The equation to solve is:

µi(t)τ
2
0 − 2(2µi(t)− 1)νiτ 0 +

ν2
i

µi(t)
= 0.

The (simplified) discriminant function is:

∆′ = ν2
i (2µi(t)− 1)2 − ν2

i = 4ν2
i (µi(t)− 1)µi(t) ≥ 0,

and the solutions are:

τ 0 = νi
2µi(t)− 1± 2

√
(µi(t)− 1)µi(t)

µi
.

There are two solutions although the largest one corresponds to a negative cUi (always because

of the geometry of the problem). We thus have:

τ 0 = νi
2µi(t)− 1− 2

√
(µi(t)− 1)µi(t)

µi
.

Replacing yields:

cUi =
1

4νi

( 1

2µi(t)− 1− 2
√

(µi(t)− 1)µi(t)

)2

− 1

 .
As a summary, we can define a continuous one to one mapping, ci(τ i(t)) between τ i(t) ∈ [0, τ 0]

and ci ∈ [cLi , c
U
i ] so that φi(ci, τ i(t)) = 0. It is simple to prove that:

∂τ 0

∂µi(t)
< 0,

∂cLi
∂µi(t)

> 0,
∂cUi
∂µi(t)

< 0

so that as µi(t) is increasing with t, the smallest interval is obtained when t = R− 10, so that:

ci ∈ [cLi , c
U
i ] =⇒ ρi ∈

[
ρLi , ρ

U
i

]
,
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in which:

ρji =
1− β

2β
(1 +

√
1 + 4νic

j
i ).

This allows to show the converse result.

Let ηi2 > 0 and ηi3
ηi2
∈ [− βR

1−β , 0] so that µi(t) ≥ 1. Then νi > 0 and cLi , c
U
i are positive. There

thus exists a pair (ci, τ i(t)) belonging to a non empty set in the positive orthant. ρi is well

defined as well.

Note: One special condition is when ci = cLi so that τ 0 = 0 exactly at t = R− 10.

2.5 Transitory earnings

In equation (14), transitory earnings δyi (t) are due to individual specific and aggregate shocks,

δi(t) net of human capital depreciations, λi(t). To this we might add measurement errors ζ i(t)

to obtain that random shocks are described by:

δi(t)−
t−1∑
l=s

λi(l) + ζ i(t).

Even if measurement errors are independent over time, the effects of the first two transitory

components may persist across periods and generates autocorrelation in the earnings residuals.

Indeed, the deviation of the rate of return δi(t) from the market rental rate is due to individual

specific factors and the match the individual is with a specific firm and this is likely to persist over

time. Depreciation factors included in
∑t−1

l=0 λi(l) are highly persistent if λi(t) is independent

over time. It indeed generates a random walk if λi(t) is iid over time. Nevertheless it needs

not be so if
∑t−1

l=0 λi(l) is stationary, that is that depreciation shocks are partly compensated

in the future. Layoff shocks that force agents to change sectors might be an example of a long

persistence in these factors. For the sake of generality we will not impose any structure on these

shocks in the econometric model.

Next section describes how we deal empirically with this model of the earnings formation

process.

3 Econometric Modelling of Earning Dynamics

In section 3.1 we review the previous literature on earnings dynamics and the estimation of it,

then in section 3.3 we detail our estimation strategy. We first concentrate on the covariance

structure implied by the reduced form earnings equation (14).
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3.1 Literature on Earning Dynamics

The literature on earnings dynamics studies the covariance structure of earnings residuals. Mod-

eling the increasing variance over the life cycle and fitting the residuals autocorrelation are the

principal goals of this literature. Writing log earnings for individual i at time t Yit as a function

of observed individual characteristics Xit a vector of individual characteristics β and a residual

component uit orthogonal to Xit, we have:

Yit = Xitβ + uit.

Economists have proposed several decompositions of the variances of uit into permanent and

transitory factors. The different empirical specifications differ in their degree of generality and

in their implicit assumptions. The canonical model presented in Lillard and Willis (1978) is

based on the following decomposition of log earnings residuals

uit = ηi + vit, ηi ∼ iid(0, σ2
η),

with ηi an individual effect generating inter-individual differences in earnings levels. It can be

interpreted as initial human capital. Considering vit as iid means that the autocorrelation of an

individual error term over time is only due to the presence of the permanent components, which is

a strong assumption. Therefore, vit capturing transitory differences in earnings residuals whose

effect decreases over time as been modeled by Lillard and Wilis as an AR(1) process. Using

PSID data they assume that the two components are orthogonal. Then, they compute the fitted

probabilities of the model to the transition into and out of poverty in the U.S. This landmark

paper has been the starting point of the literature.

Lillard and Weiss (1979) have extended the model allowing the permanent component to

increase the variance with age. The random growth model introducing individual growth paths

writes

uit = ηi1 + ηi2t+ vit.

In that framework ηi2 is a mean zero random individual effect in experience. A similar approach

has been followed by Hause (1980), Baker (1997), and Cappellari (2004). Importantly, this spe-

cification implies that it is possible to test Mincer’s (1974) theoretical prediction that differences

in earnings should increase at the beginning of the life cycle until high investors in human capital

catch up low investors. Empirically this would translate into a negative covariance cov(ηi1, ηi2)

between the two individual effects and this result has been confirmed by the previous studies.
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Additionally, the transitory part of the model vit has remained a low order moving average or

an AR(1) process.

In an influencial paper MaCurdy (1982) has estimated a different specification allowing for

time varying coeffi cients of the transitory process and heteroskedasticity of the white noise term.

He proposed an ARMA structure without individual fixed effects. Hence, for example

ηit = ηit−1 + εit

vit = ζ it + ψ1ζ it−1 + ψ2ζ it−2

where εit and ζ it are independently and identically distributed. MaCurdy claims that the two

specifications cannot really be distinguished in levels, but the ARMA structure represents a

better fit for earnings in differences. In his application on the PSID data MaCurdy (1982)

concludes to an ARMA(1,2) and cannot reject the hypothesis of a unit root for the permanent

component. Therefore in the literature this model has been called the random walk model of

earnings dynamics. The same specification has been estimated by Abowd and Card (1989),

Moffi t and Gottschalk (1995) and Lillard and Reville (1999) on US data, Dickens (2000) on

U.K. data, Cappellari (2004) on Italian data, and Baker (1997) on Canadian data. Many other

studies use the same framework such as Moffi tt and Gottschalk (2002) and (2008), Kalwji and

Alessie (2007) and Sologon and O’Donoghue (2009) but they favor a shorter dynamics with an

ARMA(1,1) process.

Methodological contributions have generalized the model in another direction. Geweke and

Keane (2000) investigate the normality assumption relative to the white noise in the ARMA

structure. Implementing bayesian inference using the Gibbs sampler, they show that the share

of the variance coming from permanent individual heterogeneity terms is larger than under a

Gaussian model and that in the cross-section covariate effects are reduced. Hirano (2002) uses

a Bayesian framework to propose a semi-parametric estimator for autoregressive panel data

models. In his application, the normality assumption proves to be restrictive. Attention to this

issue should be addressed in our empirical application. In a different framework Bonhomme

and Robin (2009) focus on the same issue and model the change over time in earnings using

copula. It make it possible to represent partially non parametrically the marginal distributions

of earnings and it provides a flexible modelling of the joint distribution between different time

periods. However, as they have only three-years panel data the dynamic is restricted to be short.

Moreover, in this framework it is generally diffi cult to include unobserved heterogeneity except

in the approximation of its distribution by a finite number of point of support.
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Other recent contributions to the literature have relaxed the assumption that innovations

of permanent and transitory processes are iid. These approaches model explicitely a dynamic

form of heteroskedasticity. Hence, Meghir and Pistaferri (2004) postulate an ARCH(1) data

generating process for the permanent and for the transitory shocks. That is

E(ε2it) = κt + γε2it−1 + λi Permanent component

E(ζ2
it) = φt + φζ2

it−1 + ξi Transitory component

with κt and ζt representing year effects capturing the way the variance of transitory and per-

manent shocks vary over time and λi and ξi are individual fixed effects representing occupational

choices for example. Estimating the model by educational group, Meghir and Pistaferri (2004)

conclude that the variance of shocks persists in some education groups and that the ARCH

effects are present in the data. In a similar framework Hospido (2010) models the variance of

earnings but instead of implementing a GMM approach, she uses a likelihood estimator, however

she does not model separately permanent versus transitory factors.

Guvenen (2007) has studied the implications of the form of the income process on consump-

tion inequality. He compares the predictions of the random walk model with those of the random

growth using a model of life cycle consumption on simulated data. Guvenen concludes that a

model with heterogenous earnings growth paths is better able to replicate the observed change

in consumption inequality than a model with a unit root. Therefore, he advocates for using the

former. In Guvenen (2009) the sources of identification between the two income processes is

more deeply investigated. A major difference between the model in which individuals have het-

erogenous earnings profile and the model in which they are subject to persistent shocks is that

with the former, the autocorrelation in the earnings residuals in differences will persist because

of the term ηi2t. While with the latter the autocorrelations will become insignificantly different

from zero after some time (see Meghir and Pistaferri, 2004, p798 for a graphical example.) Em-

pirical evidence in MaCurdy (1982), Abowd and Card (1989), Moffi t and Gottschalk (1995) and

Meghir and Pistaferri (2004) favor the hypothesis that autocovariance decline in absolute value

and is after some time not statistically different from 0 contradicts the random growth model.

Finally most of these studies have used reduced form models. Very few studies have been

able to present structural models reflecting the dynamics of earnings. Among the first analysis

Farber and Gibbons (1996) consider a model in which firms discover over time the skills of

their employees. They demonstrate that earnings will follow a stochastic process that can be

represented by shocks compatible with a random walk model. More recently, Postel-Vinay and
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Turon (2010) present a job-search model in which earnings determined by mutual consent are

affected by productivity shocks. These shocks lead earnings to the usual earnings dynamics

model. Lastly, two recent contributions model simultaneously the earnings dynamics and the

job mobility decisions of workers. For instance, Altonji, Smith and Vidangos (2009) add to the

linear earnings equation different selection equations to control for selection on the transitions

into and out of the labor market. Hoffman (2010) proposes to the same exercise but using

a dynamic discrete choice model of career progression. These studies underlines the potential

selection effects of not considering the endogenous decision to participate to the labor market.

3.2 Covariance Structures and the Distributions of Individual Effects

The model of earnings that we specify in the subsection below, belong to the literature on

covariance structures in the dynamic panel data literature. The difference between those set-

ups is that in the dynamic panel data literature, papers emphasize the estimation of coeffi cients

of exogenous or predetermined variables which are not present in our case. Nonetheless, the

lessons from this literature are useful to remember here. As soon as GMM estimation was used

to estimate dynamic models, it became clear that the range of moments involved was larger than

the usual GMM case and that as a consequence, first order asymptotics were a poor guide in

empirical research. Furthermore, the issue of weak instruments becomes more important under

strong persistence or near unit root dynamics (Arellano and Bover, 1995) and this suggested to

consider the reinforcement of identification assumptions (Blundell and Bond, 1998). This is why

some researchers propsoed to return to an OLS set up adding a bias correction step (Hahn and

Kuersteiner, 2004) or to maximum or quasi-maximum likelihood estimators (Hsiao, Pesaran and

Tahmiscioglu, 2002, Dhaene and Jochmans, 2009). Another direction was recently proposed

by Han, Philips and Sul (2010) in the case of AR(p) models under mean stationarity whose

properties are robust and simple to derive under both stationary and non stationary cases.

As we stick to a framework in which the initial condition is supposed to have been generated

by another stochastic process and that T is suffi ciently small so that asymptotic stationarity

properties are not satisfied, the GMM framework remains our reference. Alvarez and Arellano

(2003) analyses the asymptotic properties of GMM estimators using double asymptotics in N

and T . Okui (2009) derives the small sample biases not only in the mean but also in the variance

of GMM estimates because of the presence of too many moments even in the case in which T is

small. He suggests some moment selection mechanism in order to limit the importance of these

biases by, to put it briefly, selecting out moments between variables which are too far apart in
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time. Those moments are far more likely to contribute to the bias and not the variance.

We use another route of maximum or quasi-maximum likelihood methods that reduces the

number of moments available for estimation. We use normality assumptions although our estim-

ates remain consistent in a non normal framework under the weak conditions of quasi-maximum

likelihood (Gouriéroux, Monfort and Trognon, 1984). The selection of moments keeps being

the optimal way, basically only under a normality assumption. We use an otherwise very flex-

ible framework in what refers to initial conditions and the assumptions about the evolution

of variances and autocovariances over time. Specifically, we use a random effect estimator as

suggested by Alvarez and Arellano (2004) in a comparison with other fixed T consistent estimat-

ors. Specifically, this estimator seems to dominate in most Monte Carlo exercises the maximum

likelihood estimator using differenced data (Hsiao et al., 2002) and the corrected within group

estimator. Bai (2009) also derives MLE estimates in factor models in which the time factors are

unknown and in the presence of covariates.

Horowitz and Markatou (1996) estimate semi-parametrically the distributions of the white

noises and the individual effects. However, in their approach the dynamic dimension has to

be restricted to be AR(1). Geweke and Keane (1998) and Hirano (2002) have generalized

the model in the same direction by implementing a Bayesian approach to estimate posterior

distributions of the parameters. Bonhomme and Robin (2010) construct an estimator of the

distribution of factors using empirical characteristic functions and apply this estimator to analyze

the distributions of permanent and transitory components of earnings using the PSID. Arellano

and Bonhomme (2010) look in detail to the identification of individual effects when the time

dimension is fixed and show that its variance is identified under restrictions of the dynamics as

we do. They also propose the construction of non parametric estimates for the distribution of the

individual factors. Finally, Cunha, Heckman and Schennach (2010) uses results from Schennach

to show how non parametric estimates of moments of latent variables can be constructed from

various measurements of these variables using empirical characteristic functions and inverse

Fourier transforms.

3.3 Model Specification

Equation (14) can be written with respect to three individual factors ηi = (ηi1, ηi2, ηi3) such that

with a slight abuse of notation

21



yit ≡ log yit = ηi1 + ηi2t+ ηi3
1

βt
+ vit for any t = 1, ., T. (22)

We now specify the stochastic process followed by the shock vit whose variances and autocovari-

ances are partly time heteroskedastic while they have a limited ARMA structure so as to allow

the identification of the distribution of the main variables of interest which are the individual

effects. Similar specifications of the dependence structure are developed in Alvarez and Arellano

(2004), Guvenen (2009) and Arellano and Bonhomme (2010). We define vit as

vit = α1vi(t−1) + ...+ αpvi(t−p) + σtwit,

where wit is MA(q):

wit = ζ it − ψ1ζ it−1 − ...− ψqζ it−q.

Defining the time index accordingly, we shall assume that initial conditions of the process

(yi(1−p), ., yi0) are observed. The dynamic process is thus a function of the random variables

zi = (vi(1−p), ., vi0, ζ i(1−q), ., ζ iT ) which collect initial conditions of the autoregressive process

(vi(1−p), ., vi0), initial conditions of the moving average process (ζ i(1−q), ., ζ i0) and the idiosyn-

cratic shocks affecting random shocks between 1 and T . We write the quasi-likelihood of the

sample using a multivariate normal distribution

zi  N(0,Ωz)

The structure of Ωz structure is detailed in Appendix A although it can be summarized eas-

ily. The correlations between initial conditions and individual effects are not constrained, while

innovations ζ it are supposed orthogonal to any previous terms including initial conditions. How-

ever, the initial conditions (vi(1−p), ., vi0) can be correlated with previous shocks as ζ i0, ., ζ i(1−q).

As for the individual effects (ηi1, ηi2, ηi3) we assume that they are independent of the idio-

syncratic shocks ζ i(1−q), ., ζ iT while they can be correlated with the initial conditions of the

autoregressive process (vi(1−p), ., vi0) in an unrestricted way. From these restrictions it is possible

to build the covariance matrix of the observed variables

V yi = (yi(1−p), ., yi0, yi1, ., yiT ) ≡ Ωy,

where Ωy a function of the parameters of the model that are the autoregressive parameters

{αk}k=1,...,p, the moving average parameters {ψk}k=1,...,q, the covariance matrix of η, Ση, the
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heteroskedastic components {σt}t=1,...,T ) and finally, the covariance of fixed effects and initial

conditions.

A pseudo likelihood interpretation can always be given to this specification. As in Alvarez

and Arellano (2004), the estimates remain consistent under the much weaker assumption that:

E(ζ it | ηi, yt−1
i ) = 0,

although the optimality properties are derived from the normality assumptions.

The pseudo lilkelihood setting is particularly well adapted to the case in which there are

mssing data in the earnings dynamics. Using GMM estimation procedures, we would have to

rewrite each moment condition in which there are missing data by replacing the missing variables

by their expressions as a function of observed variables. This is untractable in such a dataset

in which the number of different missing structures is very large while this is handled with

parsimony in a pseudo likelihood setting. For any missing data configuration, it consists in

deleting the rows and columns of the covariance matrix corresponding to missing data and write

the likelihood function accordingly.

3.4 Constraints and Structural Parameters

It is not possible to impose the constraints on the parameters at the estimation stage in the

random effect model. It is nonetheless possible to use random effect estimators in order to

construct estimates of individual effects after the estimation. In a log likelihood framework,

we obtain estimates as linear combinations of residuals, the linear combinations being given

by the covariance matrix estimated in the random effects model. Appendix B.1 develops the

corresponding analytic computations that lead to define the individual effects estimates as:

η̂i = η̄g3i + B̂u
[1−p,T ]
i .

Replacing u[1−p,T ]
i by its expression as a function of ηi, it is easy to show that these estimates

are measured with errors and we have:

η̂i = ηi + B̂w
[1−p,T ]
i .

in which w[1−p,T ]
i is supposed to be distributed as a multivariate normal distribution with mean

zero and covariance matrix equal to identity.

Therefore, estimates η̂i do not necessarily satisfy the constraints:

ηi2 > 0 and
ηi3
ηi2
∈ [− βR

1− β , 0].
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We let λ = βR

1−β and write these contraints as:

ηi2 > 0, ηi3 < 0 and ηi3 + ληi2 > 0.

As explained in Appendix B.4 we can construct constrained estimates η̂ci by projecting η̂i on the

set of constraints using the distance defined by the (log)-likelihood function criteria. We can

also construct the distribution of this distance in the data:

d(η̂ci , η̂i) = (η̂ci − η̂i)′B̂−1/2(η̂ci − η̂i).

We can also use simulation and construct simulated constrained estimates using the devel-

opments in Appendix B.5. We can then get simulated samples η̂c,si of simulated constrained

estimators of ηi.

3.5 Counterfactuals

We want to analyze the impact of a change in the levels of κi and ρi.

3.5.1 Survival probabilities

As for the first one, we change κi in such a way that κi − 1
1−β is divided by a factor 1 + α. It

corresponds to an increase in the survival probabilities after t = R considering that all other

things remain equal (social security benefits in particular). A simple scheme might justify

this assumption. Suppose that social security contributions are proportional to earnings until

retirement. Then this coeffi cient of proportionality is an increasing function of the survival

probability at the level of the population. It does not affect the variance of log earnings.

As:
ηi3
ηi2

= βR(κi −
1

1− β ),

and as ρi and ci are fixed by assumption so that ηi2 is fixed, the simple experiment corresponds

to the division of ηi3 by a factor 1 + α. Let η
′
i3 = ηi3/(1 + α), η′i2 = ηi2, η

′
i1 = ηi1, we have that:

y′i = M(β)η
′

i + vi.

So that we can compute the counterfactual variance as:

V (y′i) = V (M(β)η
′

i + vi),

and use simple plug in estimators for this variance.
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3.5.2 Human capital technology

The construction of the counterfactual for the human capital technology is more involved. We

are interested in changing parameter ρi into ρ
′
i holding constant parameters κi and ci. Given

that:

ηi2 =
ρi
ci

(
ρi

β

1− β − 1

)
,

ηi3
ηi2

= βR(κi −
1

1− β ),

the counterfactual is constructed using ρ′i = (1 + α)ρi and:

η′i2 =
ρ′i
ci

(
ρ′i

β

1− β − 1

)
,

η′i3
η′i2

= βR(κi −
1

1− β ) =
ηi3
ηi2
.

In the first expression we have to replace:

β

1− βρ
′
i =

β

1− β (1 + α)ρi =
1 + α

2
(1 +

√
1 + 4

β

1− β ηi2ci).

We can derive that:

β

1− β η
′
i2 =

1 + α

2ci

[
α(1 +

√
1 + 4

β

1− β ηi2ci) + 2(1 + α)
β

1− β ηi2ci

]

There are two complications.

First ci is unknown and known by interval only i.e. ci > cLi . Nevertheless, it is easy to show

that β
1−βη

′
i2 is decreasing in ci and reaches the lowest value (1 + α)2 β

1−βηi2 when ci →∞. Thus:

β

1− β η
′
i2 ∈

[
(1 + α)2 β

1− β ηi2,
1 + α

2cLi

(
α(1 +

√
1 + 4

β

1− β ηi2c
L
i ) + 2(1 + α)

β

1− β ηi2c
L
i

)]
,

and a similar expression obtains for η′i3.

Second, even if as before we have

y′i = T (β)η
′

i + vi,

the computation is now highly non linear and the variance of earnings is not directly related to

the estimated quantities at the first stage.
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3.5.3 Estimation

We estimate by simulation imposing the constraints on the ηs. As explained above, we have

that:

η̂i = By = ηi +Bεi

so that:

ηi = η̂i −Bεi.

We need a distribution assumption for εi to impose the constraints. We assume that εi is

normally distributed and we compute the counterfactual using the expressions above. The bias

can be computed as in Arellano and Bonhomme, 2010. We could also estimate by simulated

deconvolution (Mallows, 2007, Arellano and Bonhomme, 2010) or by deconvolution (Schennach,

2004) but we let these extensions for future research.

4 Data

4.1 Sample Selection

The French DADS panel dataset on earnings is an extraction from an administrative source

named Déclarations Annuelles de Données Sociales. DADS data is collected through a mandat-

ory data requirement (by French law) that all firms that have employees must fill in for social

security and tax verification purposes. All employers ought to send to the social security and tax

administrations the list of all persons who have been employed in their establishments during

the year. For each person, are indicated the total wage earnings firms have paid, as well as

the beginning and ending dates and a short description of the job. Each person is identified

by a unique individual social security number which makes possible the follow-up of individuals

through time.

The French National Statistical Institute (INSEE) has been authorized since 1976 to draw

a sample from this dataset at a sampling rate of 4%. The sampling device is such that all indi-

viduals who were born in October of even years should be included in this sample. Nevertheless,

there are two main reasons why observations can be missing. First, data were not collected in

three years (1981, 1983 and 1990) for reasons specific to INSEE. Second, this dataset is restric-

ted to individuals employed in the private sector or in publicly-owned companies only. As a

consequence, this analysis is restricted to individuals who have been employed at least one year

between 1976 and 2007 in the private sector or in a publicly-owned company. In fact, we further
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restrict the sample to men entering the labor market in 1977 and working in the private sector

in 1982 and 1984. The definition of entry here is the same as in Le Minez and Roux (2002). We

consider that an individual has entered the labor market as soon as this individual has occupied

the same job for more than 6 months and is still employed the following year, possibly in a

different firm. The date of entry defining the cohort to which the individual belongs, we focus

on the cohort of entrants in 1977. We also consider full time jobs only and censor information

about part-time jobs.

We impose these restrictions in order to concentrate on a relatively homogeneous sample of

workers with a long term attachment to the labor market to which private firms have access.

Admittedly, it does not represent the full working population. Because of the lack of any credible

identification strategy to correct for selection, we shall assume that selection is at random or

can be conditioned on individual-specific effects only. The distribution functions of unobserved

factors or idiosyncratic components that we estimate in the following refer to this subpopulation.

The empirical analysis uses daily earnings. It is defined as full earnings divided by the

number of days worked. In order to weaken the possible impact of measurement error, we coded

as missing the first and last percentiles of each annual earnings distribution. In the empirical

analysis we do not condition on individual observable characteristics as in the traditional Mincer’s

wage equation, since individual characteristics cannot be separated from individual unobserved

heterogeneity terms. Few observable characteristics are available apart from age of entry on the

labor market and a rough measure of education grouping the first job into three categories. As

a measure of skill, we prefer to use a grouping given by the age of entry. The first group includes

individuals entering the labor market when they are less than 20 years old, the second group of

individuals enter between age 20 and 23 and the last group from age 24.

We analyze log earnings centered with respect to the average log earnings of workers within

the same age of entry and education group at each point in time. That is, we compute yit our

daily log earnings as :

yit = log(Eit)− log(Eit)et

with a the age of entry group, t the time period and e the education group.

4.2 Data description

Table 2 reports descriptive statistics of the sample. The sample size is 7446 observations in

1977 and 4670 in 2007. Age of entry groups defined above are of unequal size, the low skill
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group being the largest. Attrition follows a somewhat irregular pattern which is partly due in

the first years to our sampling design since we required that wage earners be present in 1977,

1978, 1982 and 1984. Some years are also completely missing (1981, 1983 and 1990). There are

also more surprising features for instance in 1994 (or 2003 at a lesser degree) a year in which

many observations are missing. This is due to the way INSEE reconstructed the data from the

information in the original files and missing data patterns in 1994 are very similar across age of

entry groups.

To complete this information, Table 3 gives a dynamic view of attrition. This Table reports

the frequencies of reported values by pairs of years. For instance, the column 1977, describes the

global features of attrition. Attrition is quite severe in the first normal (after selection) year, 1985

since 15% of individuals exit between 1984 and 1985. This is true in every adjacent years at the

beginning of the sample period (other columns for instance in cell 1987, 1988) but it is decreasing

over time to reach 7 or 8% at the end of the panel. Year 1994 confirms its exceptional status

since attrition between 1994 and 1995 is very low. More generally though, most individuals

reenter the panel quickly since the attrition at two year intervals is only marginally larger than

the one observed at one year intervals (for instance the two cells in 1977, 1985 and 1986, indicate

attrition of 15% and 16.5%) although this varies somewhat over time. Finally, there is a core of

observations which are almost always reported in the panel. Looking at the row 2007, we can

see that out of the 62.7% of the complete sample of individuals present in this year, it is hard to

have less than 80% of this sample which is not present between 1985 and 2006 at the exception

of 1994 again.

We report in Figure 1, the increase of average earnings over the period for the three groups

defined by age of entry. These are earnings at current prices although the shape of real earnings

is hardly different. Inflation, as measured by consumer prices, leads to a substracting factor for

current earnings over the whole period which is equal to 1.17. This can be roughly subdivided

into two sub-periods between 1977 and 1986 in which this factor is equal to .77 and between 1986

and 2007 during which inflation levelled off and this factor is equal to .40. We do not report

the evolution of average earnings by groups defined by education and age of entry, the only

individual characteristics that are available in the dataset, although these evolutions are parallel

to the ones graphed in Figure 1. Nonetheless, as already said, the variance of log earnings that

we consider from now on are computed by centering log earnings with respect to averages of all

covariates and periods.

The left panel of Figure 2 represents the change in the cross-sectional variance of (log)
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earnings for the full sample, while the right panel represents the variance by groups defined by

age of entry. The first few years witness a strong variability of earnings. From the sixth year,

1982 (respectively the third, 1980), the variance drops for the low skill groups (resp. the others)

whereas it increases gradually over the rest of the sample period till 2007 (except in 1994, and

2003 at a lesser degree, which confirm the outlier status of these years). From the right panel

one can notice that late entrants on the labor market experience a higher variance level and a

larger rate of growth of the variance in their earnings trajectories. The full covariance matrix is

reported in Table 4 to give information about correlations although this is easier to use graphs to

describe the main features of this matrix. Figure 3 displays for the full sample the autocorrelation

with an early year, 1986, and a late year, 2007. This Figure reveals an assymmetric pattern

over time which is quite robust to the choice of these years. The correlation between earnings at

years t−k and posterior t is quickly disappearing between t and t−k in early years of the panel
while it is roughly linear in lags in late years. Figure 4 takes a different view that confirm the

previous diagnostic by plotting the autocorrelations of order 1 and 6. Note that their shape are

very similar and increase uniformly over time although at different levels. The closer we move

to the end of the period, the larger the autocorrelation coeffi cients are.

Finally, Table 5 reports the autocorrelation patterns of the first differences in the earning

residuals. Contrary to what is found in some papers in the literature (for instance, Meghir and

Pistaferri, 2010) we do not find strong evidence that the correlation disappears after taking a

two period difference. Some very long difference autocorrelations seem significant and no regular

pattern seems to emerge.

5 Results

We first present the estimated parameters of the reduced form earnings equation by random

effect ML estimation and we discuss the selection of the ARMA specification. In the next

section 5.2 we detail the procedure we implement to estimate individual factors and simulate

a sample of observations on the structural parameters (rate of return and the terminal value

coeffi cient). Lastly, in 5.3 we assess the impact of changes in the structural parameters on the

variance of earnings by direct estimation or simulation.
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5.1 Random effect estimation and reduced form parameters

Firstly, we estimate simultaneously the covariance matrices of the permanent and transitory

components of the error as well as their correlation with the initial conditions. The former is

composed by three individual unobserved factors (ηi1, ηi2, ηi3), while the latter is represented by

an ARMA process as explained in the previous section. To solve the identification issue that

we face in attributing the magnitudes of variances and covariances of log earnings over time to

the effects of the individual specific factors or to the effects of the idiosyncratic error terms, we

chose to fix the discount factor β to the value 0.95. Arellano and Bonhomme (2010) shows that

along with a finite lag specification assumption about the ARMA process, this assumption is

suffi cient to get identification.

Table 6 provides the values of the Akaike criterion based on the likelihood values for the

different specifications varying the orders of the autoregressive and moving average components

by going from an ARMA(1,1) to an ARMA(3,3). Unsurprisingly, increasing the number of AR

or MA components strongly increases the value of the sample likelihood function. Nonetheless,

increasing the number of AR and MA components beyond 3 faces diffi culties in the implement-

ation since it involves a year, 1981, in which obervation is completely missing. This is why we

did not pursue further the exploration of higher orders for the ARMA processes. According to

the Akaike criterion we would choose the ARMA(3,3) specification, a much more persistent spe-

cification than in most studies in the literature. Nevertheless, the estimates of the ARMA(3,3)

exhibit some estimates which are very imprecise, specifically the ones describing the correlation

between initial conditions and the MA components (Table 7). That is why in the rest of the

analysis we will use as a pivot result the ARMA(3,1) model although the robustness of our

results to this choice should be checked.

Table 7 details the parameters for the different ARMA processes. Each column reports

results for different ARMA(p,q) specifications until p = q = 3. In every model, autoregressive

coeffi cients as well as their sum, which can be interpreted as a long term effect, remain largely

lower than one. The sum of the AR coeffi cients reflects a high persistence of shocks though it

is far enough from one to reject an unit root. A formal statistical test concludes with no doubt

that the process is stationary (see Magnac and Roux, 2009). This result parallels the result of

Alvarez and Arellano (2004) on US and Spanish data or of Guvenen (2009). The AR coeffi cients

are ranging from .2 to .02 in the ARMA(3,1) specification and would describe the persistence of

shocks due to unemployment spells or mobility for instance while the MA coeffi cient is negative
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and might stand for measurement errors.

The estimate of the covariance matrix of the individual factors is quite stable across the

different specifications even if it can be identified only under a specific assumption for the dy-

namics. Their variances are very precisely estimated at around .30 for the fixed level factor,

η1, and the geometric factor, η3, and at around .03 for the linear trend factor, η2. The correla-

tion between the linear trend and geometric factors is very strongly negative and equal to -.95

consistently across the specifications. This is to be expected if the structural constraint derived

above between η2 and η3 (η3 ∈ [−λη2, 0]) is verified. We will analyze this issue more in detail

below. The other correlation coeffi cients are also quite strong being negative and around -0.6

between the geometric and the level factors, η3 and η1 and positive and around .4 between the

level and linear trend factors. The sign of the latter correlation coeffi cient is to be expected if

the level of human capital at the entry date is positively correlated with the returns to human

capital which govern the linear trend factor.

The correlations between initial conditions and these factors are also informative. They

are significant and have an economically significant magnitude of around .2 or .3 in absolute

value. The estimated correlations between the linear trend and geometric factors η2 and η3,

and the initial conditions are similar to the estimated correlations between both of them and

the level factor. They are respectively significantly positive and negative. More surprisingly,

the correlation between η1 and the initial conditions is also negative. That would indicate that

individuals endowed with higher starting human capital stock have more diffi culties to acquire

immediately the level of earnings that correspond to their skill levels.

Finally, the estimated variance of the idiosyncratic terms is reported in Table 8. Note first

that these parameters are identified even in the years 1981, 1983 and 1990 in which there is

no information although estimates are imprecise and have a magnitude that can differ widely

from the others and across ARMA specifications. Regarding the normal years, they start from

a rather high level in the first three years between .20 and .30. They generally decrease over the

sample periods albeit very slowly. Between 1984 and 2000 they are quite precisely estimated at

a level around .18, except the exceptional year 1994 in which we know that the measurement

error is large, and levels off at around .14 after 2000 (except the exceptional year 2003). These

estimates certainly pick up the patterns of autocorrelations increasing over time that we spotted

in the raw data (see Table 4). Part of it is certainly attributable to measurement errors although

another part of it could be attributed to a decreasing impact of shocks along the life cycle.

Goodness of fit is examined in different graphs. In Figure 2,we report how the estimated
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variances as well as the observed variances evolve over time. They fit very nicely in the first

part of the sample (until 1994) but this breaks down after 1994 after which the evolution of

variances is reproduced but at a level which is higher than the observed level. It confirms that

1994 is an abnormal year. More broadly, we interpret this difference by the fact that the variance

parameters σt are fitting both variances and autocorrelations and the latter seem to have more

influence on the estimation. Indeed, the goodness of fit is very good for the autocorrelation

coeffi cients that are reproduced in Figures 3 and 4. One possibility would be to allow for an

additional measurement error term in every period, or in 1994 only, like in Guvenen (2009) in

order to reconcile observed and estimated variances during the second part of the period.

5.2 Fixed effect estimation, structural restrictions and structural
parameters

Using the previous estimates, it is easy to construct fixed effect estimates of the three individual

factors. Appendix B.1 gives the relationship between the estimates and the estimates of the

covariance matrices and log earning residuals as well as the way we impute back the earning

averages to the individual factors. It is worth recalling that these estimates are not consistent if

the number of periods T is fixed (for instance, Arellano and Bonhomme, 2010). Table 9 presents

the estimates of the quantiles of their distributions distinguishing observations according to the

number of periods we observe them (between 4 and 28). It is possible to notice the bias in

1/T since the larger the number of observed periods is, the lower the inter-quartile ratio for all

three factors. Overall the median of the coeffi cient attached to the level factor is of the order of

magnitude of the mean earnings at around 2.5 and the range between the 20 and 80% quantile

is .5 if the number of periods is maximal (T = 28). The median of the coeffi cient of the linear

trend factor which can be interpreted as the return to experience at the initial stage is of the

order of 3 or 4% while its 20-80 quantile range is about 6%. Finally, the median of the coeffi cient

of the geometric factor lies around -.17 and its inter-quantile range is .40. This coeffi cient enters

multiplicatively in the curvature of the earnings profiles over time since the second derivative of

the latter wrt time is this coeffi cient multiplied by (log β)2 = 2.5.10−3. This squares well with

the usual estimates of earnings equations predicting the maximal value of earnings at a time t

close to log(log(β)η2/η3)/ log β which is equal to 31.2 at the median estimates.

With these estimates in hand, we can directly evaluate the relevance of economic restrictions;

We have three restrictions, the coeffi cient of the linear trend should be positive (η2 > 0), the

coeffi cient of the geometric factor should be negative (η3 < 0) and these two coeffi cients should
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be related by η3 + λη2 > 0. Parameter λ > 0 is fixed in the population and a function of β.

There is some leeway in the choice of parameter λ depending on what is expected to be the

proper horizon of investment. We chose parameter λ in the following as being the value that

accomodates the better the economic restrictions while keeping in line with the conditions under

which we estimated the model i.e. investments remain positive until the end of the panel.

Table 10 reports the frequencies of restriction violations using the previous estimates and the

same presentation regarding the number of observed periods since estimating bias is proportional

to their inverse. First, the frequency of rejections decreases with the number of sample periods.

This is specifically the case when looking at the restriction that the coeffi cient of the linear trend

factor should be positive and whose violation frequency drops down to 10% when the number

of sample periods is maximal (from more than 50% when the observed periods are few). This is

also true for the second restriction which is acceptable in 80% of the case (when T = 28). This

is less true for the last restriction which is the most problematic. More than 50% at least of the

observations do not comply with the restriction that the linear combination, λη2 +η3, is positive.

Nonetheless, it is also true that this linear combination is not very precisely estimated. Table 11

reports the same exercise as before by replacing the point estimates of the factors by the 95%

confidence intervals of these estimates as their variances can be estimated. If some points in

these intervals satisfy the restrictions, we say that there is no violation of the restrictions which

is informative although arguably a rather biased view towards accepting restrictions. In this

Table, violations of restrictions become very infrequent and specifically the third one.

Another way of representing those restrictions is brought about by Figure 5. The clouds of

points for η2 and η3 is scattered around a downward sloping line and this represents the strong

negative correlations between the two factors that was found in the covariance matrix estimated

by random ML. This is no doubt attributable to the very different asymptotic behaviour of the

three factors, one being a linear trend and the other being geometric. Second, points in orange

(or light) refer to observations for which the sample periods are few (less than 20) and they are

more scattered than the blue or dark points which refer to more continuously observed agents.

Finally, the constraints are represented by the triangle in red or dark. This Figure makes clear

that the satisfaction of the constraints are very sensitive to two key elements. The position of

the origin point (0,0) whose estimation depends on the model we have for average earnings that

is described in Appendix B.1 and that leads to the imputation of averages for ηs. Second, the

λ parameter which determines the slope of the bottom line of the triangle. As already said, we

chose λ in a way that it is maximal under the structural constraints that we have to satisfy.
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It is also possible to compute the constrained estimates of the individual factors by projecting

the unconstrained factors on the set of constraints using the quadratic metric given by the

covariance matrix of the ηs estimated in the first-step random effect estimation. This procedure

is explained in Appendix B.4. The quantiles of their distribution function appear in Table 12.

They obviously satisfy the restrictions η2 > 0 and η3 < 0, the third restriction being more

diffi cult to see although it is easy to check in a diagram which is not reported here. The

constrained estimates of the median of the coeffi cient of the level factor which is not involved in

any restriction, do not change significantly, in spite of being affected by the projection on the

contraint set since the level factor is correlated with the other factors. This is also true for the

median of the linear trend factor whereas its 20-80 % quantile range decreases to 4% from 6%.

The coeffi cient of the third factor is more affected since its median decreases by 30% and the

20-80% quantile range decreases by almost 50%.

So as to evaluate the strength of the restrictions, we computed the distance between the

unconstrained and the constrained estimates and compare this distance to the distance between

the same constrained estimates and simulated unconstrained estimates using normal random

draws for the simulations. In all these experiments, we use the covariance matrix of the ηs as

a weighting matrix to compute the distance and as the basis for simulating the normal errors.

Table 13 reports the quantiles of the distributions of the actual and simulated distances. The

two distributions coincide rather well for all quantiles until 60% but the divergence becomes

severe afterwards and specifically at the upper end. This can be either due to the rejection of

the constraints or to the non normality of the factors which is a standard finding in studies that

assess the normality of individual effects in earning functions (Hirano, 2002 for instance).

An interesting question arises as to whether these simulated constrained estimates are able

to reproduce the pattern of variances over time. Arellano and Bonhomme (2010) quantifies the

difference between random effect estimates and those who would be obtained by this simulation

exercise (although with the additional twist of imposing constraints in our case). Figure 6

reports the curves associated to different number of observed periods. First, observations with

more than 22 observed periods only were used since the estimates for the others are widely out

of line with the random effect estimates. From this Figure, the larger the number of sample

periods, the closer is the estimated variance to the random effect estimates.

Finally, these constrained reduced form estimates can be used to construct the structural

parameters, at least the ones that are point identified or the estimated intervals for those which

are interval identified. Parameter κi that governs the magnitude of post-retirement returns in
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human capital can be easily estimated using the distribution of η3 and its distribution is bounded

between 0 and 1/(1−β) = 20. Figure 7 presents a kernel estimate of its distribution. Parameter

ρi is only partially identified. The lower bound lies between .05 and .07 while the upper bound

range is between .05 and .10. Figure B.6 reports the width of the estimated intervals as a function

of the lower bound.

5.3 Counterfactual exercises

In this section, we report results related to the counterfactual exercises we proposed in Section

3.5.

We start by evaluating the counterfactuals using the random effect estimates that were

derived in the first step. Figures 8 and 9 report the results of increases and decreases by 1 or

5% the variance of the structural parameters. For the point identified parameter κ, we proceed

by changing κ into
1

1− β + (κ− 1

1− β )/(1 + α),

i.e. making κ closer to the same capitalized discount factor before retirement, 1/(1−β). It thus

stands for instance for an increase in the probability of survival if pension rights are related to

earnings and human capital stocks. For the interval estimate for ρ, we only report the lower

bound of the impact since the upper bound is widely above the lower bound. In this experiment,

it is safer to recognize than the upper bound is too large to be useful. In other words, we estimate

the counterfactual impact as an interval which is unbounded from above.

In Figure 8, the left (resp. right) panel reports decreases (resp. increases) the variance of κi.

Nonetheless, it increases (resp. decreases) the variance of earnings at the end of the sampled

period. This seems to be due to the fact that other heterogeneity factors like heterogeneous

returns can play more role in human capital investments. Increasing survival rates or making

pensions closer to working life earnings tend to increase inequality beforehand through their

effects on human capital investments. The impact of increasing the variance of returns to

human capital investments is more standard. Figure 9 shows unambiguously that it increases

the variance of earnings.

We can also use the simulated structural estimates as derived in the previous section to

formulate other estimates for those experiments. Figures 10 and 11 report the impact of changes

in κ and ρ on the averages of earnings over time. Both experiments increase earnings. Figures

12 and 13 report the impact of changes in κ and ρ on the variances of earnings over time
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as in the previous counterfactual experiment. Those confirm what was found in the previous

counterfactual exercises.

6 Extensions

We now develop an extended model where investment costs depend on human capital levels. We

present a version of the model in which human capital depreciates at a common and exogenous

rate α ∈ (0; 1) in the human capital accumulation equation

Hi(t+ 1) = Hi(t)
α exp[ρiτ i(t)− λi(t)].

This is equivalent to make human capital investments more and more costly when human capital

levels increase.

Individuals maximize the present discounted value of their earnings streams, and their ob-

jective function is given by

Vt(Hi(t), τ i(t)) = δ(t) + logHi(t)− γi
(
τ i(t) + ci

τ i(t)
2

2

)
+ βEt [Wt+1(Hi(t+ 1))]

The first order condition of the maximization problem for t < T is

−γi [1 + cτ i(t)] + βρiHi(t+ 1)Et

[
∂Wt+1

∂Hi(t+ 1)

]
= 0. (23)

The marginal value of human capital is the derivative of the Bellman equation so that by

the envelope theorem:

∂Wt

∂Hi(t)
=

1

Hi(t)
+ αβEt

[
∂Wt+1

∂Hi(t+ 1)

]
Hi(t+ 1)

Hi(t)
(24)

Introducing condition (23) into condition (24) we obtain

∂Wt

∂Hi(t)
=

1

Hi(t)
+
αγi
ρi

[1 + ciτ i(t)]

Hi(t)
.

Inserting this condition at lead t+ 1 in condition (23), we obtain the Euler equation for τ i(·)

γi (1 + ciτ i(t)) = β [ρi + αEtγi (1 + cτ i(t+ 1))] ,

which can written, denoting mi(t) = γi (1 + ciτ i(t)) , as:

mi(t) = β [ρi + αEtmi(t+ 1)] . (25)
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For t = T, condition (24) writes more simply as:

∂WT

∂Hi(T )
=

κ

Hi(T )
,

so that condition (25) at time T − 1 becomes:

mi(T − 1) = βρiκ.

We can solve forward equation (25):

mi(t) = βρi

T−t−1∑
j=1

(αβ)j +
(αβ)T−t

α
ρiκ

so that:

γi(1 + ciτ i(t)) = ρiat (26)

with

at =
(αβ)T−t

α
κ+ β

1− (αβ)T−t−1

1− αβ
and therefore:

τ i(t) =
1

ci
{ρi
γ
at − 1} ∀t < T (27)

Moreover, the stock of human capital in period t depends on previous investment choices.

Using lower case letter to denote log variables (ie: hi(t) = logHi(t)):

hi(t+ 1) = αt−shi(s) + ρi

t∑
l=s

αt−lτ i(l)−
t∑
l=s

αt−lλi(l) for t > s.

= αt−shi(s) + ρi

t∑
l=s

αt−l
[

1

ci

(
ρi
γi
{(αβ)T−l

α
κ+ β

1− (αβ)T−l−1

1− αβ } − 1

)
λi(l)

]

= αt−shi(s)−
t∑
l=s

αt−lλi(l) +
ρ2
i

ci

t∑
l=s

αt−l
[

(αβ)T−l

α
κ+ β

1− (αβ)T−l−1

1− αβ )

]
− ρi
ci

(
αs−t−1 − 1

α− 1

)
αt+1−s

Since log yi(t) = δ(t) + hi(t) we have

log yi(t) = δt −
t∑
l=s

αt−lλi(l) + αt−shi(s) +
ρi
ci

(
αs−t−1 − 1

α− 1

)
αt+1−s

+
ρ2
i

ci

t∑
l=s

αt−l
[

(αβ)T−l

α
κ+ β

1− (αβ)T−l−1

1− αβ )

]
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7 Conclusion

In this paper, we proposed a structural model of human capital investments that leads to a three

factor model describing unobserved heterogeneity components of an earning equation. Using a

long panel on a single cohort of wage earners in France from 1977 to 2007, we estimated the

reduced form parameters by random effect maximum likelihood methods that deliver the cov-

ariance matrix of the random effects. Some direct counterfactual experiments can be evaluated

using these estimations. Moreover, we also constructed estimates of the factors which are biased

by an order of 1/T and assess their degree of accuracy. This is what allows us to evaluate the

relevance of structural restrictions and construct constrained estimators. We can then derive

the estimates of the structural components in the original model in terms of returns and post-

retirement returns to investments. This allows us to compute richer counterfactuals than the

ones that are directly available through variances.
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APPENDICES

A Model Specification and Likelihood function

The main difference with standard specifications lies in the introduction of three individual

heterogeneity factors that interact in a specific way with time variation. Equation (22) writes

y
[1,T ]
i = M (β)[1,T ] ηi + v

[1,T ]
i

where y[1,T ]
i = (yi1, ..., yiT )′, v[1,T ]

i = (vi1, ..., viT )′ , ηi = (ηi1, ηi2, ηi3) and:

M (β)[1,T ] =

 1 1 1/β
...
...

...
1 T 1/βT

 ,
is a [T, 3] matrix. The system is further completed by some initial conditions, the number of

which depends on the order of the autoregressive process. Denote p this order and write the

initial conditions as:

y
[1−p,0]
i = v

[1−p,0]
i

since unrestricted dependence between v[1,T ]
i , ηi and those initial conditions will be allowed for.

We can rewrite the whole system as:

y
[1−p,T ]
i = M (β)[1−p,T ] ηi + v

[1−p,T ]
i

in which the matrix M (β)[1−p,T ] is completed by p rows equal to zero, M (β)[1−p,0] = 0.

We now go further and specify the correlation structure. A comment is in order. Usually,

the autoregressive structure is directly put on earnings yit and in the absence of covariates, this

is equivalent to specifying it in the residual part vit because there is a single individual effect.

This equivalence still holds when another heterogeneity factor interacted with a linear ttrend

is present. Nevertheless, our specification includes a third factor interatced with a geometric

term and this breaks the equivalence. To circumvent this problem, we posit that vit is a (time

heteroskedastic) ARMA process whose innovations are independent of the individual heterogen-

eity terms, ηi. As a consequence, our variable of interest, yit, is the sum of two processes, the

first one being related to fixed individual heterogeneity and the second one to the pure dynamic

process. These processes are supposed to be independent between them although they are both

correlated with the initial conditions, y[1−p,0]
i .

We are now going to derive the covariance matrix of y[1−p,T ]
i as a function of the parameters of

these processes in two steps . We first study the ARMA process and then include the individual

heterogeneity factors.
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A.1 Time heteroskedastic ARMA specification

Following Alvarez and Arellano (2004) or Guvenen (2009), we specify

vit = α1vi(t−1) + ...+ αpvi(t−p) + σtwit

where wit is MA(q):

wit = ζ it − ψ1ζ it−1 − ...− ψqζ it−q.

Let α = (α1, ., αp) and MT (α) a matrix of size [T, T + p] where p = dim(α):

MT (α) =


−αp ... −α1 1 0 ... 0

0 −αp ... −α1 1
. . .

...
...

. . . . . .
...

. . . . . . 0
0 ... 0 −αp ... −α1 1

 .

As v[1−p,T ]
i =

(
vi(1−p), ..., viT

)
, we have:( (

Ip 0
)

MT (α)

)
v

[1−p,T ]
i =

(
v

[1−p,0]
i

σtw
[1,T ]
i

)

Since wit is MA (q), we have

w
[1,T ]
i = MT (ψ).ζ

[1−q,T ]
i

where ζ [1−q,T ]
i = (ζ i1−q, ..., ζ iT ).

Denote Λ a diagonal matrix whose diagonal is (σ1, ., σT ) to get the following description of

the stochastic process as a function of initial conditions and idiosyncratic errors:(
Ip 0
MT (α)

)
.v

[1−p,T ]
i =

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)(
v

[1−p,0]
i

ζ
[1−q,T ]
i

)
. (A.1)

To compute the covariance of v[1−p,T ]
i , we derive the covariance matrix of

(
v

[1−p,0]
i ζ

[1−q,T ]
i

)
.

Since ζ [1−q,T ]
i are i.i.d and are of variance 1, the South-East corner of the matrix is the identity

matrix of size (1 + q + T ). The North East corner is assumed to be an unrestricted covariance

matrix V y[1−p,0]
i = Γ00. Assuming as usual that E(yiτζ it) = 0 for any τ < t, we have that

E(v
[1−p,0]
i .(ζ

[1,T ]
i )′) = 0. Only E(y

[1−p,0]
i .(ζ

[1−q,0]
i )′) remains to be defined:

E(v
[1−p,0]
i .(ζ

[1−q,0]
i )′) = Ω = [ωrs]

where r ∈ [1− p, 0] and s ∈ [1− q, 0] and where:

r < s : ωrs = 0
r ≥ s : ωrs is not constrained

because the innovation ζsi is drawn after r and is supposed to be not correlated with y
r
i .
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Hence the covariance matrix of zi =

(
v

[1−p,0]
i

ζ
[1−q,T ]
i

)
writes :

Ωz = V

(
v

[1−p,0]
i

ζ
[1−q,T ]
i

)
= V

 v
[1−p,0]
i

ζ
[1−q,0]
i

ζ
[1,T ]
i

 =

 Γ00 Ω 0
Ω′ Iq 0
0 0 IT

 .

A.2 Individual heterogeneity

The covariance matrix of the individual heterogeneity factors is denoted Ση. as said above, we

assume that the fixed heterogeneity terms are independent from the whole innovation process

ζ
[1−q,T ]
i . As for the covariance structure between initial conditions and those factors, we assume

that:

E
(
v

[1−p,0]
i η′i

)
= Γ0η

Consider the covariance matrix of initrial conditions Σ :

Σ = V

 v
[1−p,0]
i

ηi
ζ

[1−q,0]
i

 =

 Γ00 Γ0η Ω
Γ′0η Ση 0
Ω 0 Iq

 .

and define,

RT (α) =

( (
Ip 0

)
MT (α)

)−1

ST,p(ψ,Λ) =

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)
Write the covariance matrix of vector y[1−p,T ]

i :

Ωy = V
(
y

[1−p,T ]
i

)
= V

(
v

[1−p,T ]
i +M (β)[1−p,T ] ηi

)
= V

[M (β)[1−p,T ] , RT (α).ST,p(ψ,Λ)
] ηi

v
[1−p,0]
i

ζ
[1−q,T ]
i



Since v[1−p,T ]
i = RT (α).ST,p(ψ,Λ)

(
v

[1−p,0]
i

ζ
[1−q,T ]
i

)
, the matrix

V
(
v

[1−p,T ]
i

)
= RT (α).ST,p(ψ,Λ).Ωz.ST,p(ψ,Λ)′RT (α)′
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and

E
(
v

[1−p,T ]
i η′i

)
M (β)[1−p,T ]′ = RT (α).ST,p(ψ,Λ)E

(
v

[1−p,0]
i η′i
ζ

[1−q,T ]
i η′i

)
M (β)[1−p,T ]′

= RT (α).ST,p(ψ,Λ)

(
Γ0η

0T+q,3

)
M (β)[1−p,T ]′

= RT (α).

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)(
Γ0η

0T+q,3

)(
03,p,M (β)[1,T ]′

)
= RT (α).

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)(
0p,p Γ0ηM (β)[1,T ]′

0T+q,p 0T+q,T

)
= RT (α).

(
0p,p Γ0ηM (β)[1,T ]′

0T,p 0T,T

)
Hence,

Ωy = RT (α).ST,p(ψ,Λ).Ωz.ST,p(ψ,Λ)′RT (α)′ + T (β)[1−p,T ] ΣηM (β)[1−p,T ]′

+RT (α).

(
0p,p Γ0ηM (β)[1,T ]′

0T,p 0T,T

)
+

(
0p,p 0p,T

M (β)[1,T ] Γ′0η 0T,T

)
RT (α)′

The two first terms correspond to variances of the dynamic process and the individual heterogen-

eity factors, the other terms correspond to the correlation between the two processes induced by

initial conditions. Note that the parameters of the MA process does not appear in the correla-

tion between the two processes since innovations are supposed to be independent with individual

heterogeneity factors. Initial conditions are given by ζ [1−q,0]
i , η and v[1−p,0]

i .

The Choleski decomposition of matrix Σ can be parametrized expressing the following matrix

into a polar coordinate basis.

1 0 ... ... 0

0
. . .

. . .
. . .

.

.

.

.

.

. 0 1 0
. . .

... 0 1 0 0
. . .

ω12η 1 0

0 ω13η ω23η 1 0

.

.

. θ
(1)
1−q,1−p θη1,1−p θη2,1−p θη3,1−p 1

0

.

.

.
.
.
.

.

.

. θ2−p,2−p
. . . 1

θ
(1)
0,0 θη1,0 θη21,0 θη3,0 ...

. . . θ0,0 1



where θ(1)
1−q,1−p = 0 if p > q and, more generally, θ(1)

l,m = 0 if l > m.

B Construction of Counterfactuals

B.1 Estimates of individual factors given observed wages

The main equation is:

u
[1−p,T ]
i = M(β)[1−p,T ]ηi + v

[1−p,T ]
i ,
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where ηi and v
[1−p,T ]
i are supposed to be centered by construction and where a row of M(β) is

defined as M(β)[t] = (1, t, 1/βt). Later on, we shall reintroduce the averages of the individual

effects that we estimate by OLS using the sub-groups defined by age of entry and skill level (21

groups). Define the average in each group as ȳ[1−p,T ]
g and define:

η̄g = (M(β)[1−p,T ]′M(β)[1−p,T ])−1M(β)[1−p,T ]′ȳ[1−p,T ]
g .

We continue by looking at the decomposition of the residuals only:

u
[1−p,T ]
i = y

[1−p,T ]
i − ȳ[1−p,T ]

g3i = M(β)[0,T+p]ηi + v
[1−p,T ]
i

We consider first the case with no missing values and extend it to the case with missing values.

We finally analyze how to deal in the simulations with constraints on ηi.

B.2 No missing values

To deal with the correlation between ηi and vi, we can always write:

v
[1−p,T ]
i = Cηi + w

[1−p,T ]
i ,

where E(η′iw
[1−p,T ]
i ) = 0. We strengthen the restriction into:

w
[1−p,T ]
i | ηi

d 
n→∞

N(0,Ωw),

which is independent of ηi. Given the absence of correlation between ηi and w
[1−p,T ]
i we get:

C = E(v
[1−p,T ]
i η′i)(E(ηiη

′
i))
−1,

and:

Ωw = E(v
[1−p,T ]
i v

[1−p,T ]′
i )− E(v

[1−p,T ]
i η′i)(E(ηiη

′
i))
−1E(ηiv

[1−p,T ]′
i ).

Writing:

u
[1−p,T ]
i = Dηi + w

[1−p,T ]
i where D = T (β)[1−p,T ] + C,

define the conditional likelihood function as:

L(u
[1−p,T ]
i | ηi) =

1

(2π)T/2 det Ω
1/2
v

exp

(
−1

2
(u

[1−p,T ]
i −Dηi)′Ω−1

w (u
[1−p,T ]
i −Dηi)

)
.

We are seeking the conditional distribution of ηi conditional on the observed u
[1−p,T ]
i which can

be expressed by Bayes law, using a prior for ηi, L0(ηi) as:

L(ηi | u
[1−p,T ]
i ) =

L(u
[1−p,T ]
i | ηi)L0(ηi)∫

L(u
[1−p,T ]
i | ηi)L0(ηi)dηi

.
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Consequently, the distribution function L(ηi | u
[1−p,T ]
i ) is equal to:

H(u
[1−p,T ]
i ). exp

(
−1

2
(ηi −Bu

[1−p,T ]
i )′Ω−1

η (ηi −Bu
[1−p,T ]
i )

)
L0(ηi)

where the constant of integration is derived by setting to one the integral over ηi. In the case of

a diffuse prior i.e. L0(ηi) = 1, the constant of integration is no longer dependent on u[1−p,T ]
i and

is equal to the usual reciprocal of (2π)3/2 det Ω
1/2
η .

As all terms in ηi and u
[1−p,T ]
i are quadratic, we can derive the unknown matrices B and Ωη

by solving:

(u
[1−p,T ]
i −Dηi)′Ω−1

w (u
[1−p,T ]
i −Dηi) = (ηi −Bu

[1−p,T ]
i )′Ω−1

η (ηi −Bu
[1−p,T ]
i ) + u

[1−p,T ]′
i Au

[1−p,T ]
i .

By identifying quadratic terms in (ηi, ηi), (u
[1−p,T ]
i , ηi) and (u

[1−p,T ]
i , u

[1−p,T ]
i ), we obtain three

equations: 
D′Ω−1

w D = Ω−1
η ,

−D′Ω−1
w = −Ω−1

η B,
Ω−1
w = B′Ω−1

η B + A,

so that, as D′Ω−1
w D is invertible:

Ωη = (D′Ω−1
w D)−1,

B = (D′Ω−1
w D)−1D′Ω−1

w ,
A = Ω−1

w − Ω−1
w D(D′Ω−1

w D)−1D′Ω−1
w .

The unconstrained estimator for the individual fixed effects, by reinclusion of the estimated

averages, are:

η̂i = η̄g +Bu
[1−p,T ]
i = η̄g +B(Dηi + w

[1−p,T ]
i ) = η̄g3i + ηi +Bw

[1−p,T ]
i .

They are such that:

V (η̂i − η̄g3i) = EV (η̂i − η̄g3i | ηi) + V E(η̂i − η̄g3i | ηi)
=⇒ V (η̂i − η̄g3i) = BΩwB

T + V ηi = Ωη + V ηi.

The term Ωη goes to zero at least at the rate 1/T since matrix D is determined by different

factors. Some are going to zero faster than T but they are dominated by the simple factors.

We now analyse the case with missing values.

B.3 Missing values

Suppose that u[1−p,T ]
i is not observable, only Miu

[1−p,T ]
i is where Mi is the matrix of dimension

(Ti, T + p + 1) selecting non missing values and where Ti is the number of such non missing

values. Consequently, the distribution function L(ηi |Miu
[1−p,T ]
i ) becomes:

Hi(Miu
[1−p,T ]
i ). exp

(
−1

2
(ηi −BiMiu

[1−p,T ]
i )′Ω−1

ηi (ηi −BiMiu
[1−p,T ]
i )

)
L0(ηi),
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where by simple analogy to the results of the previous section:{
Ωηi = (D′M ′

i(MiΩwM
′
i)
−1MiD)−1,

Bi = (D′M ′
i(MiΩwM

′
i)
−1MiD)−1D′M ′

i(MiΩwM
′
i)
−1.

In all cases, denote C the Choleski decomposition of the permutation of matrix Ωη (or Ωηi

in the case of missing values) such that:

CC ′ = Ωη

so that we can write, assuming that the expectation of each ηij is αj.:
η2 = c11ξ1,
η3 = c21ξ1 + c22ξ2,
η1 = c31ξ1 + c32ξ2 + c33ξ3.

B.4 Constrained estimator

Using that the likelihood function L(ηi | u
[1−p,T ]
i ) is proportional to:

exp

(
−1

2
(ηi − η̂i)′Ω−1

η (ηi − η̂i)
)
L0(ηi)

where η̂i is the unconstrained estimator, we solve the following program to compute the con-
strained estimator of η

min
ηi

(ηi − η̂i)′Ω−1
η (ηi − η̂i)

under the constraints:
ηi2 > 0, ηi3 < 0, ηi3 > −ληi2.

Denote µ1, µ2 and µ3 the Lagrange multipliers associated to each constraint and write the Lag-
rangian as:

L(ηi) = (ηi − η̂i)′Ω−1
η (ηi − η̂i)− µ1ηi2 + µ2ηi3 − µ3(ηi3 + ληi2).

Taking derivatives yields:

2Ω−1
η (η̃i − η̂i)−

 0
µ1 + λµ3

µ3 − µ2

 = 0.

We immediately have that:

1. If µ2 > 0, µ1 = 0 then η̃i3 = 0 and η̃i2 > 0, and this implies that λη̃i2+ η̃i3 > 0 so that
µ3 = 0. Therefore: η̃i1 − η̂i1

η̃i2 − η̂i2
−η̂i3

+
Ωη

2

 0
0
µ2

 = 0 =⇒ µ2e
T
3

Ωη

2
e3 = η̂i3,
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where e3 = (0, 0, 1)T . This is compatible if µ2 = η̂i3

eT
Ωη
2
e
> 0 and therefore if η̂i3 > 0 since

Ωη is definite positive. Denoting e2 = (0, 1, 0)T , we also have:

η̃i2 − η̂i2 = −µ2.e
T
2

Ωη

2
e3.

This satisfies the condition µ1 = 0 iff η̃i2 > 0.

2. If µ3 > 0, µ1 = 0 then η̃i3 = −λη̃i2 and η̃i2 > 0, and this implies that η̃i3 < 0 so that
µ2 = 0. We have:

2Ω−1
η (η̃i − η̂i)−

 0
λ
1

µ3 = 0 =⇒ (η̃i − η̂i) = µ3

Ωη

2
vλ

denoting vλ = (0, λ, 1)T . Given that vTλ η̃i = η̃i3 + λη̃i2 = 0, this implies that :

µ3 = − vTλ η̂i

vTλ
Ωη
2
vλ

> 0,

if vTλ η̂i = η̂i3 + λη̂i2 < 0. This yields the constrained estimators, η̃i2 and η̃i3:

(η̃i − η̂i) = µ3

Ωη

2
vTλ

which satisfy the constraint µ1 = 0 iff η̃i2 > 0.

3. If µ1 > 0 then η̃i2 = 0 and thus the constraints λη̃i2+ η̃i3 ≥ 0 and η̃i3 ≤ 0 imply that
η̃i3 = 0, that µ2µ3 = 0 and that one of them is positive.

Summarizing:

• If η̂i3 > 0, η̂i3 + λη̂i2 > 0 case 1 applies if η̃i2 > 0.

• If η̂i3 + λη̂i2 < 0, η̂i3 < 0 case 2 applies if η̃i2 > 0.

• In all other cases, η̃i2 = η̃i3 = 0. In this case:

η̃i − η̂i =

 η̃i1 − η̂i1
−η̂i2
−η̂i3

 =
Ωη

2

(
e2 e3

)( v1

v2

)
where vj are unknown. They are obtain using:(

eT2
eT3

)
(η̃i − η̂i) =

(
eT2
eT3

) 0
−η̂i2
−η̂i3

 =

(
eT2
eT3

)
Ωη

2

(
e2 e3

)( v1

v2

)

Denoting ITc =

(
eT2
eT3

)
so that:

(
v1

v2

)
=

[
ITc

Ωη

2
Ic

]−1

ITc

 0
−η̂i2
−η̂i3


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so that we get the vector:

η̃i − η̂i = ΩηIc
[
ITc ΩηIc

]−1
ITc

 0
−η̂i2
−η̂i3

 .

B.5 Imposing constraints on simulations

When the prior distribution is complicated, some algorithms like the Metropolis-Hastings al-
gorithm do not require knowledge of the constant of integration (Gouriéroux and Monfort, 1996,
Simulation Based Econometric Methods, Oxford, page 58). If the prior distribution is simple
i.e. for instance, it imposes inequality constraints on ηi only, we can use Gibbs sampling as
explained below.

Known means Assume that we want to impose the constraints that ηui2 > 0 and that ηui3 < 0

and ηui3 > −ληi2 where the exponent u stands for uncentered. We assume that αj is the
unconditional expectation of ηuij. Drawing in a multivariate normal distribution with multiple
constraints is not as easy as with a single constraint. We use effi cient Gibbs sampling as proposed
by Rodriguez-Yam, Davis and Scharf (2004).
It starts from the remark that it is easy to draw in univariate truncated normal distributions

conditional to the other variates. For instance, f(ηu1 | ηu2 , ηu3 , ηu2 ≤ 0, ηu3 ∈ [−ληu2 , 0]). Second,
drawing repetitively in the conditional distributions to construct a Markov chain yields draw-
ings that are distributed according to the joint distribution we are looking for. Furthermore,
Rodriguez-Yam, Davis and Scharf (2004) recommends drawing the independent errors ξ1, ξ2 and
ξ3 instead of the original variables. For this, we have to rewrite the constraints as (using c11, c22

and c33 are positive):
ξ1 > − α2

c11
,

ξ2 + c21

c22
ξ1 < − α3

c22
,

ξ2 + c21+λc11

c22
ξ1 > −α3+λα2

c22
.

(B.2)

The algorithm proceeds by considering initial values (η0
2, η

0
3) whose construction we detail below.

Then from (ηk2, η
k
3), we construct (ηk+1

2 , ηk+1
3 ) using:

1. Draw ξk+1
2 in a truncated normal variable, truncated by the bounds [−α3+λα2

c22
− c21+λc11

c22
ξk1,− α3

c22
−

c21

c22
ξk1] (a non empty interval because of the constraint ξ1 > − α2

c11
).

2. Draw ξk+1
1 in a truncated normal variable, truncated by the bounds [L1, L2]. There are five

cases:

• If c21 > 0: L1 = max(− α2

c11
,− c22

c21+λc11
(α3+λα2

c22
+ ξk+1

2 ));U1 = − c22

c21
( α3

c22
+ ξk+1

2 )

• If c21 = 0 : L1 = max(− α2

c11
,− c22

c21+λc11
(α3+λα2

c22
+ ξk+1

2 )), U1 = +∞

• If c21 ∈ (−λc11, 0) : L1 = max(− α2

c11
,− c22

c21
( α3

c22
+ ξk+1

2 ),− c22

c21+λc11
(α3+λα2

c22
+ ξk+1

2 )), U1 =

+∞
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• If c21 = −λc11 : L1 = max(− α2

c11
,− c22

c21
( α3

c22
+ ξk+1

2 )), U1 = +∞

• If c21 < −λc11 : L1 = max(− α2

c11
,− c22

c21
( α3

c22
+ ξk+1

2 )), U1 = − c22

c21+λc11
(α3+λα2

c22
+ ξk+1

2 )).

Then construct .

When the algorithm is said to have converged to (ξ∞1 , ξ
∞
2 ) then finish by drawing ξ3 in a N(0,1)

variate since no constraints are binding on η1. Construct the final values η
k+1
2 = α2 + c11ξ

∞
1 ,

ηk+1
3 = α3 + c21ξ

∞
1 + c22ξ

∞
2 , η

k+1
1 = α1 + c31ξ

∞
1 + c32ξ

∞
2 + c33ξ3.

Initial conditions The initial conditions are constructed by neglecting the multivariate as-
pects of constraints:

• Draw ξ0
1 in a truncated normal distribution, truncated by the bound ξ

0
1 > − α2

c11
. Construct

η0
2 = α2 + c11ξ

0
1.

• Draw ξ0
2 in a truncated normal distribution, truncated by the bound [−α3+λα2

c22
− c21+λc11

c22
ξ0

1,− α3

c22
−

c21

c22
ξ0

1]. Construct η0
3 = α3 + c21ξ

0
1 + c22ξ

0
2.

• Draw ξ0
3 in a normal distribution and construct η

0
1 = α1 + c31ξ

0
1 + c32ξ

0
2 + c33ξ

0
3.

These draws satisfy the constraints but they are NOT truncated normally distributed.

Unknown means We now assume that (α1, α2, α3) are unknown. Denote the constraint ηui2 >
0, ηui3 < 0, ηui3 > −ληui2 as ηi ∈ Dα.
Notice that the averages in each group, η̄gj for j = 1, ., 3 estimate the following quantities,

different from the previous α1, α2 and α3:

E(α1 + ηi1 | ηi ∈ Dα), E(α2 + ηi2 | ηi ∈ Dα) and E(α3 + ηi3 | ηi ∈ Dα).

As the distributions of η are unknown we cannot directly compute these quantities.
Nevertheless, we can use the following device:

E(ηi | ηi ∈ Dα) = E(E(ηi | u
[1−p,T ]
i , ηi ∈ Dα)) = E(E(Bu

[1−p,T ]
i + C̃ξi | ξi ∈ Dξα) = 0

where ξi the Choleski factors of ηi and Dξα are defined above and where C̃ is obtained by
permuting C. We can adapt this case to missing values by replacing u[1−p,T ]

i by Mu
[1−p,T ]
i .

We can thus solve the sytem of equations:

αg + E(Bu
[1−p,T ]
i ) + C̃E(ξi | ξi ∈ Dξαg) = ηg

in which E(Bu
[1−p,T ]
i ) is equal to zero by construction. We estimate α̂g using:

α̂g +
1

ng

∑
i∈g

C̃E(ξi | ξi ∈ D
ξ
α̂g

) = η̄g
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The initial conditions for αs are computed as before by neglecting the multiple constraints
on the parameters. Using density and cumulative distribuiton functions for the normal N(0, 1),

we compute:

E(ξ1 | ξ1 > −
α2

c11

) =
φ( α2

c11
)

Φ( α2

c11
)
,

and we compute the mean over simulations of ξ0
1 of:

E(ξ2 | ξ2 ∈ [−α3 + λα2

c22

− c21 + λc11

c22

ξ0
1,−

α3

c22

− c21

c22

ξ0
1]) =

φ( α3

c22
+ c21

c22
ξ0

1)− φ(α3+λα2

c22
+ c21+λc11

c22
ξ0

1)

Φ(α3+λα2

c22
+ c21+λc11

c22
ξ0

1)− Φ( α3

c22
+ c21

c22
ξ0

1)
.

B.6 Mallows estimates

Suppose that we know estimates α̂g of the unconditional distribution of ηui s as developed above
so that we can write:

η̄g + η̂i = α̂g + ηi + B̂w
[1−p,T ]
i

Multiply by B̂−1/2 and define ξi and ζ i as:

ξi = B̂−1/2ηi, ξ̂i = B̂−1/2(η̄g + η̂i − α̂g),

so that:
ξ̂i = ξi + wi

where wi is distributed as N(0, I). We write the constraints on ξi as they were written in the
system of equations B.2 above.
We then proceed by decomposing Mallows estimation in three steps:

• We draw a normal variate wi1 in a N(0, 1) and look for rearrangements of ξ̂i1 so that
ξ̂i1 − wi1 is approximately orthogonal to wi1.

• We draw a normal variate wi2 in a N(0, 1) and look for rearrangements of ξ̂i2 so that
ξ̂i2 − wi2 > 0 and is approximately orthogonal to wi2.

• We draw a normal variate wi3 in a N(0, 1) and look for rearrangements of ξ̂i3 so that
ξ̂i3−wi3 < 0, λ(ξ̂i2−wi2) + ξ̂i3−wi3 > 0 and ξ̂i3−wi3 is approximately orthogonal to wi3.
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Table 1: Previous literature: Some empirical specifications

Permanent Component Transitory Component Time / Cohort Effect Note: change in components
Lillard Willis (1978) Indiv. Effect AR(1) N Permanent compo: 73.1% total variance
Lillard Weiss (1979) RG AR(1) N Heterogeneity in slope and level
Hause (1980) RG AR(1) N No decomposition is presented
Macurdy (1982) RG RW ARMA(1,2) N Random Walk component not rejected
Abowd and Card (1989) RW MA(2) diff. Time effect Compatible with unit root in level
Lollivier Payen (1990) RG+quadratic AR(1) N Permanent Component: 80%
Moffit Gottschalk (1995) RW et RG ARMA(1,1) N/A 50% increase in permanent comp.
Baker (1997) RW et RG ARMA(1,2) N Favors random growth
Moffit Gottschalk (1998) RW ARMA(1,1) Time effect 50% increase in permanent comp.
Lillard Reville (1999) RG+quadaratic ARMA(1,2) N Favors random growth
Dickens (2000) RW ARMA(1,2) Time effect 50% increase in permanent comp.
Haider (2001) RG ARMA(1,1) Time effect 50% increase in permanent comp.
Moffit Gottschalk (2002) RW ARMA(1,1) Time effect Increase in the permanent in 70

′
s

Baker Solon (2003) RW RG AR(1) Time effect Increase in permanent and transitory comp.
Cappellari (2004) RG AR(1) Time +cohort effect Increase in permanent comp.
Ramos (2003) RW et RG ARMA(1,1) Time effect Increase in transitory comp.
Meghir Pistaferri (2004) ARCH ARCH Time effect Reject presence of unit root
Kawji Alessie (2007) RW ARMA(1,1) Time+cohort effect Increase in transitory comp.
Moffit Gottschalk (2008) RW ARMA(1,1) Time effect Increase in transitory comp. in 80

′
s

Sologon (2009) RG ARMA(1,1) Time+cohort effect Decrease in transitory comp. in many countries
RG stands for random growth model: yit = ηi1 + ηi2t+ vit RW stands for randow walk model yit = ηit + vit with ηit = ηit−1 + εit. N/A: not available.
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Table 2: Sample size

Age of Entry
Below 20 20 - 23 Above 23 All

1977 4460 2112 874 7446
1978 4460 2112 874 7446
1979 3855 1923 787 6565
1980 3748 1930 785 6463
1982 4460 2112 874 7446
1984 4460 2112 874 7446
1985 3792 1808 724 6324
1986 3683 1800 726 6209
1987 3569 1741 678 5988
1988 3402 1654 637 5693
1989 3486 1657 644 5787
1991 3319 1598 613 5530
1992 3299 1581 603 5483
1993 3330 1620 627 5577
1994 2508 1316 503 4327
1995 3256 1566 578 5400
1996 3236 1557 579 5372
1997 3202 1529 556 5287
1998 3208 1521 543 5272
1999 3218 1503 547 5268
2000 3180 1506 536 5222
2001 3117 1480 517 5114
2002 3018 1463 511 4992
2003 2800 1323 467 4590
2004 2844 1387 463 4694
2005 2851 1399 467 4717
2006 2896 1382 442 4720
2007 2864 1377 429 4670
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Table 3: Missing Values
1977 1979 1980 1985 1986 1987 1988 1989 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

1977 1
1978 1
1979 .882 .882
1980 .868 .786 .868
1982 1 .882 .868
1984 1 .882 .868
1985 .849 .751 .743 .849
1986 .834 .739 .731 .75 .834
1987 .804 .714 .704 .718 .737 .804
1988 .765 .675 .668 .694 .690 .691 .765
1989 .777 .689 .677 .701 .694 .691 .689 .777
1991 .743 .658 .65 .67 .663 .655 .649 .678 .743
1992 .736 .653 .647 .663 .655 .649 .642 .662 .679 .736
1993 .749 .665 .653 .657 .666 .654 .631 .652 .659 .673 .749
1994 .581 .515 .506 .508 .518 .511 .492 .506 .513 .517 .544 .581
1995 .725 .643 .634 .636 .644 .632 .609 .628 .63 .635 .661 .535 .725
1996 .721 .641 .631 .631 .638 .627 .603 .622 .622 .627 .652 .521 .671 .721
1997 .71 .629 .621 .622 .63 .619 .596 .613 .612 .618 .642 .511 .649 .661 .71
1998 .708 .628 .619 .618 .625 .615 .591 .61 .609 .614 .636 .506 .642 .649 .667 .708
1999 .708 .628 .617 .617 .623 .614 .59 .61 .605 .609 .63 .502 .635 .639 .652 .665 .708
2000 .701 .622 .611 .612 .62 .61 .583 .6 .595 .601 .623 .497 .625 .629 .637 .649 .662 .701
2001 .687 .61 .598 .599 .605 .595 .573 .589 .584 .587 .605 .479 .608 .612 .62 .629 .639 .65 .687
2002 .67 .595 .586 .588 .591 .581 .559 .575 .568 .573 .592 .471 .59 .594 .597 .606 .613 .617 .621 .67
2003 .616 .547 .539 .544 .542 .532 .516 .533 .526 .53 .539 .425 .538 .541 .546 .553 .561 .564 .563 .577 .616
2004 .63 .559 .551 .552 .556 .545 .523 .541 .534 .539 .555 .441 .555 .557 .559 .567 .573 .574 .574 .584 .565 .63
2005 .634 .560 .552 .554 .558 .548 .526 .544 .536 .541 .558 .446 .557 .558 .559 .566 .570 .574 .571 .574 .543 .574 .634
2006 .634 .561 .553 .556 .557 .549 .525 .544 .535 .541 .556 .444 .553 .556 .557 .563 .568 .570 .567 .574 .538 .566 .586 .634
2007 .627 .557 .547 .55 .552 .542 .521 .538 .531 .535 .548 .436 .547 .549 .551 .556 .560 .562 .557 .561 .525 .552 .570 .591
Notes: Frequencies of observations present in the sample relative to the full sample



Table 4: Autocorrelation matrix of earnings residuals
1978 1979 1980 1982 1984 1985 1986 1987 1988 1989 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

1977 .438
1978 .280 .424
1979 .241 .367 .563
1980 .211 .343 .478 .539
1982 .223 .326 .439 .499 .733
1984 .221 .306 .401 .411 .665 .814
1985 .216 .301 .368 .430 .643 .785 .807
1986 .161 .266 .386 .441 .634 .767 .772 .853
1987 .156 .260 .401 .459 .634 .756 .744 .809 .871
1988 .134 .254 .368 .421 .617 .733 .730 .776 .830 .874
1989 .135 .239 .321 .383 .557 .682 .681 .726 .790 .824 .857
1991 .145 .221 .334 .370 .577 .685 .679 .721 .765 .798 .821 .887
1992 .134 .193 .306 .333 .515 .619 .619 .667 .724 .738 .762 .831 .854
1993 .111 .179 .274 .314 .482 .607 .606 .644 .695 .709 .723 .810 .803 .823
1994 .102 .183 .280 .330 .480 .590 .580 .632 .696 .711 .735 .809 .815 .810 .792
1995 .109 .197 .289 .319 .491 .589 .582 .624 .686 .711 .746 .802 .815 .804 .795 .836
1996 .128 .192 .305 .315 .497 .623 .623 .653 .720 .741 .764 .826 .839 .827 .816 .854 .878
1997 .129 .198 .308 .336 .507 .625 .614 .656 .716 .737 .761 .828 .842 .833 .816 .862 .883 .932
1998 .108 .194 .294 .316 .496 .618 .610 .651 .707 .735 .756 .819 .835 .813 .797 .838 .859 .904 .939
1999 .117 .160 .294 .291 .478 .600 .594 .638 .689 .714 .730 .791 .815 .799 .784 .812 .837 .881 .908 .904
2000 .124 .179 .293 .310 .501 .619 .613 .635 .696 .715 .741 .808 .822 .802 .795 .820 .830 .885 .919 .913 .908
2001 .122 .180 .294 .296 .463 .588 .591 .616 .656 .685 .707 .776 .787 .767 .751 .779 .798 .855 .884 .880 .874 .912
2002 .122 .179 .257 .261 .415 .543 .558 .568 .577 .605 .622 .695 .720 .694 .697 .716 .720 .785 .810 .811 .811 .844 .875
2003 .128 .168 .291 .299 .469 .589 .585 .616 .669 .697 .715 .780 .794 .770 .763 .787 .799 .858 .887 .883 .877 .916 .914 .862
2004 .108 .170 .289 .296 .462 .593 .584 .610 .666 .691 .707 .773 .784 .763 .757 .781 .792 .849 .876 .877 .873 .905 .903 .854 .950
2005 .103 .155 .291 .287 .470 .595 .587 .619 .671 .698 .709 .776 .794 .771 .770 .790 .800 .853 .878 .878 .875 .903 .901 .857 .942 .957
2006 .106 .157 .286 .279 .449 .572 .558 .591 .638 .670 .677 .738 .754 .745 .732 .757 .770 .819 .840 .845 .841 .872 .874 .828 .909 .931 .952



Table 5: Autocorrelation matrix of earnings residuals in differences
1978 1979 1980 1985 1986 1987 1988 1989 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

1979 -.400
1980 -.009 -.277
1985 -.018 -.016 -.084
1986 .003 -.031 .090 -.434
1987 .043 .093 -.013 -.058 -.345
1988 .004 .035 .011 -.055 -.046 -.299
1989 .041 -.036 -.008 .028 -.054 -.020 -.323
1992 -.053 .060 -.055 -.014 -.006 -.074 -.003 -.039
1993 -.021 .015 -.019 .007 .013 .048 -.072 .000 -.351
1994 .018 -.013 .024 .000 -.021 -.013 .003 -.037 -.108 -.385
1995 .021 -.001 .017 -.027 .029 .038 .001 .032 .043 -.070 -.519
1996 .012 -.013 -.034 .008 -.020 .000 .036 .046 .029 -.021 .026 -.440
1997 -.052 .032 -.047 .026 -.046 .006 -.022 -.058 -.007 -.005 -.004 -.019 -.520
1998 .010 -.010 .052 -.047 .049 -.040 .004 .000 .009 .015 -.031 .036 -.015 -.391
1999 .056 -.017 -.017 .013 .006 -.013 .040 -.004 .014 -.067 .004 -.020 .003 -.010 -.244
2000 -.087 .085 -.059 .008 .016 -.014 -.006 -.023 .041 .023 .005 -.042 .022 -.003 -.047 -.420
2001 .024 -.051 .051 .009 -.082 .044 -.028 .052 -.046 -.018 .032 -.009 -.062 .051 .044 -.013 -.539
2002 .008 .001 -.037 .027 .010 -.090 .046 -.025 -.019 -.002 -.043 .013 .031 .024 -.028 .005 -.010 -.298
2003 .005 -.050 .001 .041 -.040 -.108 .001 -.015 .061 -.028 .062 -.025 -.049 .052 -.006 .025 .027 -.010 -.247
2004 -.036 .068 .008 -.061 .057 .144 -.005 .004 -.047 .013 -.031 .012 .025 -.043 .005 -.024 -.025 .014 -.157 -.705
2005 .073 -.011 .001 -.021 -.017 .026 -.011 -.010 -.019 .020 .005 .004 -.001 -.009 -.013 .056 .014 -.043 .002 .012 -.227
2006 -.031 .063 -.042 .009 .035 -.025 .021 -.031 .055 -.014 .034 -.023 -.002 -.031 -.013 -.015 .013 -.028 -.002 .039 -.069 -.375
2007 -.002 -.022 -.010 -.042 -.003 -.026 .026 -.036 -.016 .079 -.070 .022 .015 -.015 -.035 .035 -.015 .020 .030 -.028 -.006 .053 -.254



Table 6: AIC criterion

ARMA(p,q) q=1 q=2 q=3
p=1 -344885 -344899 -344906

(43) (45) (47)

p=2 -345301 -345447 -345733
(47) (50) (53)

p=3 -345839 -346133 -346293
(51) (54) (58)

AIC criterion computed as -2log(L)+2K, with L the like-
lihood and K the number of parameters. Number of pa-
rameters in brackets.
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Table 7: Estimated parameters

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3
α1 .702 .729 .711 .263 .186 .220 .200 .203 .194

( .005) ( .006) ( .007) ( .011) ( .011) ( .011) (.012) ( .011) ( .011)
α2 .145 .324 .143 .191 .143 .161

( .004) ( .008) ( .009) ( .005) ( .009) (.009)
α3 .022 .087 .187

( .003) ( .004) ( .008)
ψ1 .369 .391 .373 - .091 - .172 - .135 - .164 - .166 - .189

( .005) ( .005) ( .007) ( .011) ( .011) ( .012) (.012) ( .011) ( .011)
ψ2 .020 .017 .170 - .028 - .046 - .046

( .003) ( .003) ( .006) ( .008) ( .008) (.008)
ψ3 - .012 - .080 .114

( .004) ( .004) ( .007)
ση1 .302 .302 .301 .310 .306 .304 .306 .300 .298

( .001) ( .003) ( .003) ( .003) ( .003) ( .003) (.003) ( .003) ( .004)
ση2 .038 .039 .039 .038 .039 .036 .038 .037 .037

( .005) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
ση3 .255 .259 .256 .263 .260 .248 .258 .247 .242

( .005) ( .006) ( .006) ( .004) ( .005) ( .005) (.005) ( .006) ( .007)
ρη1,η2 .473 .413 .454 .571 .486 .610 .505 .485 .365

( .016) ( .021) .021 ( .013) ( .017) ( .013) ( .017) ( .020) ( .030)
ρη1,η3 - .604 - .548 - .586 - .694 - .618 - .729 - .636 - .620 - .509

( .003) ( .020) .019 ( .011) ( .015) ( .012) ( .016) ( .019) ( .029)
ρη2,η3 - .946 - .948 - .947 - .945 - .946 - .941 - .946 - .943 - .944

( .023) ( .003) .003 ( .002) ( .002) ( .003) ( .002) ( .003) ( .004)
σy0 .491 .506 .496 .448 .479 .429 .442 .455 .494

( .000) ( .007) ( .007) ( .004) ( .005) ( .004) (.004) ( .005) ( .008)
σy−1

.381 .424 .359 .387 .386 .428
( .004) ( .005) ( .004) ( .004) ( .005) (.008)

σy−2
.264 .270 .299

( .004) ( .006) ( .008)
cov(η1, y0) - .227 - .257 - .237 - .156 - .214 - .149 -.186 - .201 - .282

( .019) ( .017) .017 ( .015) ( .016) ( .016) ( .016) ( .017) ( .019)
cov(η1, y−1) - .127 - .183 - .113 - .153 - .168 - .253

( .016) ( .017) ( .017) ( .017) ( .018) (.020)
cov(η1, y−2) - .169 - .185 - .267

( .018) ( .019) ( .022)
cov(η2, y0) .358 .402 .374 .232 .335 .155 .219 .253 .361

( .022) ( .020) .021 ( .017) ( .019) ( .021) ( .020) ( .022) ( .026)
cov(η2, y−1) .218 .331 .119 .242 .235 .352

( .019) ( .021) ( .024) ( .022) ( .025) (.029)
cov(η2, y−2) .239 .253 .351

( .024) ( .027) ( .032)
cov(η3, y0) - .290 - .333 - .305 - .179 - .270 - .107 - .163 - .195 - .291

( .018) ( .023) .023 ( .020) ( .022) ( .023) ( .023) ( .024) ( .029)
cov(η3, y−1) - .169 - .272 - .077 - .190 - .181 - .287

( .021) ( .023) ( .025) ( .023) ( .027) (.032)
cov(η3, y−2) - .181 - .194 - .282

( .026) ( .029) ( .035)
cov(y0, ζ0) .809 .036 - .024 - .823 .826 - .931 .841 - .795 .812

( .023) (8.525) 26.529 ( .269) ( .059) ( .207) (.061) ( .416) ( .096)
cov(y0, ζ−1) .779 - .012 .408 - .352 - .208 .361

( .438) 1.245 ( .102) (17.542) (152.666) (31.114)
cov(y−1, ζ−1) .798 .722 - .066 .830 .234

(.813) ( .062) ( .148) (41.955) (17.858)
cov(y0, ζ−2) - .805 - .719

(3.931) (76.705)
cov(y−1, ζ−2) - .382 - .202

(11.249) (44.061)
cov(y−2, ζ−2) .752

( .094)
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Table 8: Yearly standard deviation of earnings

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3
1978 .311 .312 .312

( .001) ( .002) ( .002)
1979 .254 .257 .255 .222 .232 .219

( .001) ( .001) ( .001) ( .001) ( .001) ( .001)
1980 .223 .223 .223 .222 .227 .221 .224 .224 .230

( .005) ( .001) ( .001) ( .001) ( .001) ( .001) (.002) ( .002) ( .002)
1981 .264 .260 .263 .000 .103 .002 .004 .006 .001

( .005) ( .005) ( .005) ( .096) ( .040) ( .066) (.082) ( .076) ( .060)
1982 .152 .150 .150 .194 .193 .197 .193 .195 .198

( .005) ( .005) ( .005) ( .002) ( .002) ( .002) (.002) ( .002) ( .002)
1983 .244 .243 .247 .040 .175 .096 .023 .039 .193

( .004) ( .005) ( .005) ( .063) ( .017) ( .037) (.048) ( .049) ( .021)
1984 .154 .149 .149 .189 .184 .187 .188 .188 .182

( .001) ( .004) ( .004) ( .002) ( .001) ( .002) (.001) ( .001) ( .002)
1985 .182 .182 .182 .181 .183 .183 .181 .183 .183

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1986 .187 .187 .187 .189 .189 .190 .190 .190 .192

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1987 .181 .182 .181 .176 .176 .177 .176 .177 .177

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1988 .180 .180 .181 .181 .181 .181 .181 .182 .183

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1989 .171 .172 .172 .168 .170 .169 .169 .170 .171

( .008) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1990 .012 .021 .005 .358 .303 .375 .349 .395 .363

( .002) ( .007) ( .008) ( .012) ( .008) ( .015) (.012) ( .016) ( .013)
1991 .182 .184 .180 .153 .167 .156 .161 .157 .163

( .001) ( .002) ( .002) ( .002) ( .001) ( .002) (.001) ( .002) ( .001)
1992 .162 .162 .162 .159 .155 .159 .157 .160 .161

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1993 .207 .207 .207 .209 .209 .209 .210 .209 .211

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1994 .237 .236 .237 .250 .250 .251 .252 .253 .254

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1995 .193 .195 .194 .177 .179 .177 .177 .178 .180

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1996 .177 .177 .177 .176 .178 .177 .177 .177 .178

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1997 .167 .167 .167 .162 .162 .162 .162 .162 .164

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1998 .137 .138 .138 .134 .137 .135 .135 .136 .138

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1999 .152 .152 .152 .155 .157 .157 .156 .157 .158

( .001) ( .001) ( .001) ( .000) ( .000) ( .000) (.000) ( .000) ( .001)
2000 .159 .159 .159 .159 .159 .159 .159 .159 .160

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2001 .158 .158 .158 .159 .159 .160 .159 .160 .161

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2002 .153 .153 .153 .146 .146 .146 .146 .147 .149

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2003 .168 .167 .168 .178 .178 .179 .179 .180 .181

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2004 .147 .148 .148 .133 .133 .134 .133 .134 .135

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2005 .128 .128 .128 .130 .132 .130 .131 .131 .133

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2006 .123 .124 .123 .124 .124 .124 .125 .125 .127

( .001) ( .001) ( .001) ( .000) ( .000) ( .000) (.000) ( .000) ( .000)
2007 .117 .117 .117 .115 .116 .116 .115 .117 .118

( .003) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)



Quantiles −→
Nb of Periods

↓
ηs
↓

0.05 0.2 0.35 0.5 0.65 0.8 0.95

4,η1 2.5 2.86 2.98 2.98 3.00 3.03 3.08
4,η2 (1e-10) (1e-10) (0.00619) (0.0155) (0.0193) (0.0519) (0.142)
4,η3 [-0.0618] [-0.0502] [-0.0278] [-1.5e-10] [-1.5e-10] [-1.2e-10] [-3e-11]

8 -4.99 -0.994 0.469 2 3.09 5.69 9.78
(-0.594) (-0.261) (-0.122) (-0.00392) (0.118) (0.297) (0.689)
[-7.91] [-3.48] [-0.912] [0.345] [2.07] [3.81] [7.94]

12 -1.20 1.05 1.72 2.40 2.85 3.5 5.33
(-0.377) (-0.153) (-0.068) (0.00608) (0.078) (0.165) (0.368)
[-3.86] [-1.66] [-0.443] [0.028] [0.85] [1.68] [4.64]

16 1.20 1.97 2.26 2.46 2.85 3.06 4.00
(-0.161) (-0.0557) (0.00112) (0.0328) (0.075) (0.115) (0.25)
[-2.29] [-0.881] [-0.473] [-0.160] [0.143] [0.589] [1.63]

20 1.73 2.12 2.32 2.52 2.69 2.99 4.03
(-0.104) (-0.0222) (0.0134) (0.0361) (0.0602) (0.105) (0.223)

[-1.6] [-0.644] [-0.339] [-0.175] [0.051] [0.334] [0.989]
24 2.01 2.27 2.37 2.51 2.67 2.88 3.59

(-0.0522) (-0.00851) (0.0175) (0.0376) (0.0604) (0.0876) (0.169)
[-1.08] [-0.493] [-0.282] [-0.149] [-0.0204] [0.142] [0.58]

28 2.19 2.37 2.48 2.58 2.69 2.86 3.27
(-0.0140) (0.0163) (0.0301) (0.0429) (0.057) (0.0757) (0.117)

[-0.65] [-0.375] [-0.263] [-0.171] [-0.0894] [0.00895] [0.215]

Note: No brackets: η1, brackets: η2, square brackets: η3.

Table 9: Quantiles of the distribution of individual effects: unconstrained estimates
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Number of observed periods η2 < 0 η3 > 0 η3 + λη2 < 0

4 0.6 0.6 0.8
5 0.452 0.595 0.786
6 0.493 0.5 0.824
7 0.471 0.507 0.814
8 0.51 0.551 0.925
9 0.447 0.474 0.855
10 0.478 0.511 0.945
11 0.413 0.446 0.918
12 0.462 0.517 0.86
13 0.351 0.358 0.9
14 0.425 0.473 0.892
15 0.354 0.435 0.826
16 0.337 0.417 0.859
17 0.428 0.482 0.825
18 0.337 0.421 0.8
19 0.388 0.461 0.825
20 0.279 0.369 0.742
21 0.280 0.339 0.732
22 0.183 0.309 0.694
23 0.207 0.323 0.685
24 0.227 0.316 0.662
25 0.182 0.325 0.617
26 0.149 0.246 0.642
27 0.135 0.246 0.589
28 0.100 0.211 0.554

Table 10: Frequencies of violations of restrictions: Unconstrained estimates
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Number of observed periods η2 < 0 η3 > 0 η3 + λη2 < 0

4 0 0 0
5 0 0 0
6 0.0211 0.0141 0.0211
7 0.0143 0.0214 0.0214
8 0.0612 0.0612 0.0068
9 0.0526 0.0658 0.0132
10 0.0824 0.088 0.0165
11 0.0326 0.0380 0.0109
12 0.091 0.105 0.007
13 0.0132 0.0199 0.00662
14 0.0359 0.0359 0.00599
15 0.0559 0.0745 0.00621
16 0.0491 0.0552 0
17 0.0361 0.0663 0
18 0.0316 0.0526 0
19 0.0583 0.0922 0
20 0.0343 0.0472 0
21 0.0354 0.0433 0
22 0.00917 0.0183 0
23 0.0225 0.0275 0
24 0.0173 0.0247 0
25 0.0147 0.022 0
26 0.0123 0.0185 0
27 0.00380 0.0114 0
28 0.00186 0.00372 0

Note: A violation occurs if the interval estimate (95%) does not
intersect with the restriction.

Table 11: Frequencies of violations of restrictions: (Favorable) bounds of the unconstrained
confidence interval estimates
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Quantiles −→
Nb of Periods

↓
ηs
↓

0.05 0.2 0.35 0.5 0.65 0.8 0.95

4,η1 0.363 1.64 2.07 2.07 2.15 2.26 2.41
4,η2 (0) (0) (0) (0) (0.116) (0.264) (0.479)
4,η3 [-0.948] [-0.857] [-0.496] [0] [0] [0] [0]

8 1.34 2.01 2.20 2.35 2.51 2.69 3.1
(0) (0) (0.00803) (0.0328) (0.0503) (0.101) (0.202)

[-0.629] [-0.191] [0] [0] [0] [0] [0]
12 1.64 2.05 2.22 2.37 2.48 2.62 3.04

(0) (0) (0.0138) (0.0253) (0.041) (0.0663) (0.098)
[-0.39] [-0.135] [-0.00481] [0] [0] [0] [0]

16 1.91 2.21 2.32 2.41 2.57 2.74 3.14
(0) (0.00797) (0.0169) (0.0263) (0.0372) (0.0548) (0.0899)

[-0.357] [-0.195] [-0.0976] [0] [0] [0] [0]
20 1.95 2.22 2.34 2.47 2.58 2.77 3.2

(0) (0.00867) (0.0195) (0.0295) (0.04) (0.052) (0.084)
[-0.348] [-0.209] [-0.128] [-0.0300] [0] [0] [0]

24 2.1 2.27 2.37 2.48 2.6 2.83 3.37
(0) (0.0119) (0.0204) (0.0303) (0.0402) (0.0535) (0.0829)

[-0.343] [-0.214] [-0.150] [-0.0746] [-0.0013] [0] [0]
28 2.2 2.36 2.47 2.56 2.66 2.82 3.17

(0.00746) (0.0199) (0.0275) (0.0358) (0.0454) (0.0583) (0.084)
[-0.349] [-0.235] [-0.172] [-0.126] [-0.066] [0] [0]

Note: No brackets: η1, brackets: η2, square brackets: η3.

Table 12: Quantiles of the distribution of individual effects: constrained estimates
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Quantiles Observed distance Simulated distance
0.175 0 0
0.225 0.0021 0.00180
0.275 0.0141 0.0132
0.325 0.0370 0.0391
0.375 0.0763 0.0761
0.425 0.126 0.125
0.475 0.194 0.194
0.525 0.276 0.282
0.575 0.401 0.395
0.625 0.568 0.531
0.675 0.763 0.714
0.725 1.04 0.945
0.775 1.48 1.21
0.825 2.14 1.57
0.875 3.17 2.10
0.925 5.32 2.93
0.975 12.7 4.74

Notes: Distances use as a metric the inverse covariance matrix
of ηs. Simulations are performed by adding to the constrained
estimates a normal noise and by reprojecting on the constrained
set.

Table 13: Distances between unconstrained and constrained estimates for observations and sim-
ulations
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Figure 1: Mean log earnings by age at entry: 1977-2007
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(A) full sample (B) by age group

Figure 2: Cross-sectional variance of earnings: 1977-2007
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Figure 3: Autocorrelations with 1986 and 2007
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Figure 4: Autocorrelations of order 1 and of order 6
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Figure 5: Scatter plot of η2 and η3 and the constraint area
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Figure 6: Estimated and simulated variances according to the number of periods of non missing
data
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Figure 7: Density function of κ
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Figure 8: The width of the partially identified set as a function of ρ
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Figure 9: Counterfactual variance of log earnings: The value of η3 is divided or multiplied by
1.01 or 1.05.

Figure 10: Counterfactual variance of log earnings: The value of η2 is divided or multiplied by
1.01 or 1.05.
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Figure 11: Counterfactual average log earnings (Note: the value of η3 is divided by 1.05)
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Figure 12: Counterfactual variance of log earnings
Note: The value of η3 is divided by 1.05 and only observations with more than 20 periods of observations are
used.
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Figure 13: Counterfactual average log earnings: Estimated lower and upper bounds (Note: The
value of η2 is multiplied by 1.05)
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Figure 14: Counterfactual variance of log earnings: Estimated lower bound (Note: The value of
η2 is multiplied by 1.05 and observations with more than 20 observed periods are used)
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