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1 Introduction

This paper considers the question of estimation and inference about the scalar parameter

θ =

∫ ∞
−∞

min{f(y), g(y)}dy, (1)

where f, g are two densities. This is a number between zero and one with zero corresponding to

the distributions having supports with no intersection and one to the perfect matching of the two

distributions, i.e., f(y) = g(y) almost everywhere. It follows that θ is a measure of the extent

to which the distributions overlap. This quantity was first introduced by Weitzman (1970) in a

comparison of income distributions by race. Note that θ is a unit free measure, invariant to a

common smooth monotonic transformation. This quantity has received a lot of attention in Medical

statistics, Mizuno et. al. (2005), and Ecology, where it is known as the overlap coeffi cient or the

coeffi cient of community, see for example Ricklefs and Lau (1980). In Economics, this measure has

recently been proposed as a measure of the polarization between two well-defined groups, defined

by race, occupation, gender, or location of dwelling, see Anderson (2004) and Anderson, Ge, and

Leo (2010). In our application we will consider this latter usage, and many of our comments will be

addressed to this literature, although our work has something to add to other application areas.

Previous work, Anderson, Ge and Leo (2010), has shown how to estimate θ and conduct inference

about this quantity when f, g are parametric, albeit in the very special setting where effectively there

are a finite number of cells and the frequency of each cell can be estimated at square root of sample

size accuracy. The discretized setting can be expected to lose information in general and raises

the spectre of test inconsistency through an injudicious choice of partitions (see Anderson Ge and

Leo (2010). Also, there is no consensus on appropriate parametric models for income distributions

for example, see Kleiber and Kotz (2003) for a discussion, and the issue of misspecification bias

suggests a nonparametric approach where this can be done effectively. We propose a nonparametric

estimator of θ using kernel density estimates of f, g plugged into the population functional. Although

these estimates and regular functionals of them are well understood, the population parameter θ is

a nonsmooth functional of f, g and so standard methods based on Taylor series expansion cannot

be applied to treat the estimator. Schmid and Schmidt (2006) have recently established strong

consistency of the same estimator in the univariate compactly supported special case but they do

give any distribution theory (they also provide simulation evidence on its performance under various

scenarios). We consider a multivariate setting with unbounded support. We find that the properties

of the estimated θ can be nonstandard depending on the contact set {y : f(y) = g(y) > 0} . This
set can be empty, it can contain a countable number of isolated points, or it can be a union of

intervals. In the first case, the asymptotics are trivial because this implies that one density always

lies strictly below the other, and is not very interesting. The second case yields standard normal

type asymptotics as in between the contact points one density estimate always prevails. The third

case is a sort of ‘boundary value’case. It is of interest because it corresponds to the case where the

1



distributions overlap perfectly over some range. This is an important case because one hypothesis

of interest is that the two distributions are identical (or identical over a range) as one might believe

in some applications. In that case there are binding inequality restrictions, which may be expected

to induce non-normal asymptotics. We show the distribution theory for this latter case using some

Poissonization techniques due to Beirlant and Mason (1995) and Giné, Mason, and Zaitsev (2003).

It turns out that the limiting distribution is normal after a bias correction. In practice, we do not

know which of these three cases arises and so our inference method should be robust to these different

possibilities. In addition, it can be that the two densities while not identical are close to each other

over a range of values, the so-called drifting distribution case, Andrews and Guggenberger (2009),

and this would induce a distortion in the usual asymptotic approximation. We develop an analytical

approach to inference and show that it yields consistent inference whatever the nature of the contact

set. We are also interested in testing various hypotheses about θ such as it is equal to one, which

corresponds to the two densities being equal, or that it is constant over time, and provide the theory

to carry out these tests.

We investigate the finite sample properties of our methods by simulation methods, and show that

the finite sample bias can be large and that our bias correction method improves matters. We also

investigate the choice of smoothing and tuning parameters that our procedures require. We give an

application to the study of polarization within China in recent years, which has been an important

policy issue, using novel household survey data.

Finally, we remark that the theory we develop here can be applied to a range of other estimation

and testing problems and we give a discussion of this below.

2 Estimation

We first discuss some properties of the parameter of interest and the connection with other concepts.

Suppose the population random variables X and Y have joint density h and marginal densities f

and g, respectively. Then

θ = 1− 1

2

∫ ∞
−∞
|f(x)− g(x)| dx = 1− 1

2
TV, (2)

where TV denotes total variation. This shows that 1− θ defines an L1 pseudometric on the space of

densities. Note also that θ is invariant to monotonic transformations of X, Y, that is, if τX = τ(X)

and τY = τ(Y ) for a strictly increasing differentiable transformation τ , and τX and τY have densities

fτ and gτ , then θ =
∫∞
−∞min{fτ (t), gτ (t)}dt by standard application of the law of transformation.

This is a big advantage of this measure compared with L2 or other type metrics, as this is the only

member of the Lp class that possesses this property, Devroye and Györfi (1985). The representation

(2) shows that θ can be used as a measure of the equality of the two densities; a special case of our

results can be used to conduct a test of this hypothesis, which constitutes a two-sample version of

the L1 testing procedure considered in Giné, Mason, and Zaitsev (2003).
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An alternative representation of θ is as an expectation

θ = E [min {1, `g,f (X)}] = E [min {1, `f,g(Y )}] , (3)

where `g,f (x) = g(x)/f(x) is the likelihood ratio, which can be convenient for computing estimators,

see below, and see Schmid and Schmidt (2006) where more discussion of (2) and (3) is given.

We will assume a multivariate setting where X, Y are d-dimensional vectors. In this case we shall

assume that the integral is over all of the variables. It is also possible to consider integrating with

respect to a subset of variables or to consider conditional densities, but we shall leave that for future

work.

We suppose that there is a sample {(X1, Y1), . . . , (Xn, Yn)} of size n on the population. In some
cases one might have different sizes n,m for the two samples; we will comment on this case later (see

Remark 5 to Theorem 1), but for now treat the central theoretical issue by considering the same

sample size. We propose to estimate θ by

θ̂ =

∫
C

min{fn(x), gn(x)}dx =

∫
C

min

{
1,
gn(x)

fn(x)

}
fn(x)dx, (4)

fn(x) =
1

n

n∑
i=1

Kb (x−Xi) ; gn(x) =
1

n

n∑
i=1

Kb (x− Yi) ,

where C ⊆ Rd is the union of the supports or some subset of interest, while K is a multivariate

kernel and Kb(.) = K(./b)/bd and b is a bandwidth sequence. For simplicity we suppose that

the same bandwidth and kernel are used in both estimations and at each point x. When K ≥ 0,

fn(x), gn(x) ≥ 0.When X, Y have unbounded support,
∫
fn(x)dx =

∫
gn(x)dx = 1. There is an issue

about boundary effects in the case where the support is compact and the densities are positive on

the boundary. In that case one might use some boundary correction method, see Chen (1999). In

practice one has to compute a multivariate integral in (4) and a simple approach is to just replace θ̂

by a sample average over a set of grid points on the support. Alternatively, one can take the sample

average over the observations of the empirical version of (3), θ̂E = n−1
∑n

i=1 min{1, gn(Xi)/fn(Xi)} =∫
C

min{1, gn(x)/fn(x)}dFn(x), where Fn is the empirical distribution of Xi. Note that this defines a

different estimator from (4), since the integrating measure in (4) is the smoothed empirical. However,

the differences in terms of the asymptotic properties are of smaller order and can be ignored when

conducting inference. Schmid and Schmidt (2006) consider these and a number of other estimators

and find not much difference between the estimators in simulation experiments.

3 Asymptotic Properties

We next discuss the asymptotic behavior of θ̂ as n → ∞. We treat the case where X, Y have

unbounded support Rd as this is more challenging and perhaps of more interest for applications
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(a common parametric specification here is the log normal distribution, for which the logarithm of

outcome has unbounded support).1 Schmid and Schmidt (2006) have recently established consistency

of θ̂ in the univariate compactly supported special case. We remark that as usual our assumptions

are suffi cient for the result but may not all be necessary.

We use the following notation. Define the contact set and its complements:

Cf,g =
{
x ∈ Rd : f(x) = g(x) > 0

}
, (5)

Cf = {x : f(x) < g(x)} , (6)

Cg = {x : f(x) > g(x)} . (7)

Let λ = (λ1, . . . , λd)
> denote a vector of nonnegative integer constants. For such vector, we define

|λ| =
∑d

i=1 λi and, for any function h(x) : Rd → R, Dλh(x) = ∂|λ|/(∂xλ11 · · · ∂x
λd
d )(h(x)), where

x = (x1, . . . , xd)
> and xλ =

d∏
j=1

x
λj
j . For a Borel measurable set A ⊂ Rd, we define µ(A) to be the

Lebesgue measure of A and

µf (A) =

∫
A

f 1/2(x)dx.

Let

||K||22 =

∫
Rd
K2(u)du and ρ(t) =

∫
Rd
K(u)K(u+ t)du/||K||22.

Assumptions

(A1) K is a s -th order kernel function having support in the closed ball of radius 1/2 centered at

zero, symmetric around zero, integrates to 1, and s -times continuously differentiable on the interior

of its support, where s is an integer that satisfies s > d.

(A2) (i) The densities h, f and g are strictly positive, bounded and absolutely continuous with

respect to Lebesgue measure and s - times continuously differentiable with uniformly bounded deriv-

atives. (ii)
∫
Cf,g

f 1/2(x)dx <∞. (iii) For all λ with 0 ≤ |λ| ≤ s,
∫
|Dλf(x)|dx,

∫
|Dλg(x)|dx <∞.

(A3) The bandwidth satisfies: (i) nb2s → 0, (ii) nb2d →∞ and (iii) nbd/ (log n)→∞.
(A4) {(Xi, Yi) : i ≥ 1} are i.i.d. with support Rd × Rd.
Assumption A1 requires the kernel function to have a compact support. This assumption fa-

cilitates the use of the Poissonization technique in our proofs, see Appendix A.1 for an intuitive

explanation. The requirement in A2(ii) that∫
Cf,g

f 1/2(x)dx = E
[
f(X)−1/21(f(X) = g(X))

]
<∞ rules out the case where both f, g are the same

Cauchy density since
∫
Cf,g

f 1/2(x)dx = ∞ in this case; condition A2(ii) is implied by the condition

that E [||X||1+η1(f(X) = g(X))] <∞ for some η > 0. Pareto-like tails are quite common in applica-

tions, for example income distributions, see Champernowne and Cowell (1998), but a Cauchy density

1This implicitly rules out the case θ = 0. This case corresponds to the supports of X,Y not overlapping. One can

test this hypothesis by different methods.
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would be quite extreme from the point of view of most applications. Assumption A3 is needed for the

asymptotic normality. To fulfil A3 we require that s > d ; in the univariate case, it suffi ces to have

twice differentiable densities and bandwidth in the range n−1/4 to n−1/2, i.e., undersmoothing relative

to what would be the optimal bandwidth for estimation of the densities themselves but not too much

undersmoothing, this is a common requirement in semiparametric problems. In A4 we assume that

the sample is i.i.d. but we allow the random vectors X and Y to be mutually dependent, which may

be important in some applications, see Linton, Maasoumi and Whang (2005).

By the triangle inequality we can bound |θ̂ − θ| by
∫
|fn(x)− f(x)| dx +

∫
|gn(x)− g(x)| dx, so

that under weaker conditions than A3, specifically just b → 0 and nbd → ∞, we have θ̂ − θ =

Op(b
s) + Op(n

−1/2b−d/2), which yields consistency. Our results below establish the further result of

asymptotic normality.

Define:

p0 = Pr(X ∈ Cf,g) = E [1 (f(X) = g(X))] = Pr(Y ∈ Cf,g) = E [1 (f(Y ) = g(Y ))] (8)

pf = Pr(X ∈ Cf ) = E [1 (f(X) < g(X))] , pg = Pr(Y ∈ Cg) = E [1 (f(Y ) > g(Y ))] (9)

pf,g = Pr (X ∈ Cf , Y ∈ Cg) = E1 (f(X) < g(X)) 1 (f(Y ) > g(Y )) (10)

σ2
0 = ||K||22

∫
T0

cov
(

min {Z1, Z2} ,min
{
ρ(t)Z1 +

√
1− ρ(t)2Z3, ρ(t)Z2 +

√
1− ρ(t)2Z4

})
dt

σ2
1 = pf (1− pf ) + pg(1− pg) + 2 (pf,g − pfpg) ,

an = b−d/2||K||2
∫
Cf,g

f 1/2(x)dx · Emin {Z1, Z2} , v = p0σ
2
0 + σ2

1,

where Z1, Z2, Z3, and Z4 are independent standard normal random variables and T0 = {t ∈ Rd :

‖t‖ ≤ 1}.
Theorem 1. Suppose that Assumptions A1-A4 hold. Then, we have:

√
n
(
θ̂ − θ

)
− an =⇒ N(0, v).

Remarks.
1. The bias term an depends on the integral of the square root of either density over the contact

set, and this is non zero whenever this set has some measure. In fact, Emin {Z1, Z2} = −0.56 and

so an ≤ 0, so that the estimator is downward biased. The bias can be arbitrarily large depending on

the magnitude of
∫
Cf,g

f 1/2(x)dx.We show below how to compute a feasible bias corrected estimator

that achieves root-n consistency, but to do that we will require additional conditions.

2. The limiting variance depends on the magnitudes of the sets Cf,g, Cf , and Cg under the relevant

probability measures along with constants that just depend on the kernel chosen. It is not known

what is the optimal kernel here, but we suspect that the uniform kernel is optimal due to its minimum

variance property. We have calculated σ2
0 for various kernels in the univariate case and present the

results below:
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*** Table 1 here ***

In the special case that the contact set is of zero measure, p0 = 0 and an = 0 so that
√
n(θ̂−θ)⇒

N(0, σ2
1). This asymptotic variance is actually the semiparametric effi ciency bound for the case where

the sets Cf and Cg are known, so that θ̂ is fully effi cient in this case.

3. Suppose that the two densities are not identical but close to each other. Specifically, suppose

that for all x, f(x) = g(x) + n−αδ(x), for α ≥ 1/2, where of necessity
∫
δ(x)dx = 0. Then θn =∫

min{f(x), g(x)}dx = 1 + n−α
∫

1(δ(x) < 0)δ(x)dx < 1. In this case, the contact set Cf,g may be

empty. First, consider the case α > 1/2. Under some conditions, we have
√
n(θ̂−θn)−an =⇒ N (0, v) ,

so exactly the same limiting distribution result as in Theorem 1. In this case, note that even though

the contact set may be empty, the same asymptotic bias shows up. The second situation corresponds

to larger deviations α = 1/2. Then
√
n(θ̂ − θn) − an =⇒ N(c0, v), where c0 = −

∫
Rd 1(δ(x) <

0)δ(x)dx > 0. In this case, the limiting distribution is shifted according to the precise form of δ.2

4. The proof of Theorem 1 uses the decomposition of the estimation error into three stochastic

terms plus a remainder term:

√
n(θ̂ − θ) =

√
n

∫
Cf

{fn(x)− Efn(x)}dx+
√
n

∫
Cg

{gn(x)− Egn(x)}dx (11)

+
√
n

∫
Cf,g

min{fn(x)− Efn(x), gn(x)− Egn(x)}dx+Rn,

where Rn = Op(
√
nbs) = op(1). The first two terms are more or less standard in the semiparametric

literature as integrals of semiparametric estimators over some domain. The final term is what causes

the main issue, at least when Cf,g has positive measure. This term is similar in spirit to what

is obtained in other boundary estimation problems, Andrews (1999). For example, consider the

problem of estimating β = min{µX , µY }, where µX = EX and µY = EY. When µX = µY , the usual

estimator β̂ = min{X,Y } satisfies
√
n(β̂− β) = min{

√
n(X −µX),

√
n(Y −µY )} =⇒ min{ZX , ZY },

where [
√
n(X − µX),

√
n(Y − µY )] =⇒ [ZX , ZY ] = Z and Z is bivariate normal with zero mean.

In this case, the limiting distribution of β̂ has a negative mean and is non-normal. In the case

of θ̂ there is a negative bias term but after subtracting that off one has asymptotic normality.

The intuitive reason is that our estimator involves averages of approximately independent random

variables. The formal justification though is more complex because the behavior of the stochastic

process νn(x) = [fn(x) − Efn(x), gn(x) − Egn(x)] for x ∈ Cf,g is not standard. If fn(x), gn(x)

were c.d.f.’s we could apply the functional central limit and continuous mapping theorems to obtain

the limiting distribution, but this is not available here even at the slower rate of the pointwise

convergence of νn(x) because of a lack of tightness. If νn(x) and νn(x′) for x 6= x′ were independent

we could instead argue that
∫
Cf,g

min{fn(x)−Efn(x), gn(x)−Egn(x)}dx is like a sum of independent

2One can alternatively represent this limiting result as
√
n(θ̂ − 1)− an =⇒ N(0, v), which shows that centering at

one gives the same asymptotic distribution as in Theorem 1.
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random variables and apply a central limit theorem after recentering. Although νn(x) and νn(x′) are

asymptotically independent for x 6= x′ they are not exactly so and in any case the integral requires

we treat also the case where x − x′ = tb for ||t|| ≤ 1, and for such sequences νn(x) and νn(x′) can

be highly dependent. In Appendix B we provide further discussion of this point. The argument to

exploit asymptotic independence and establish normality is based on the so-called Poissonization,

which was originally used by Kac (1949). The idea behind Poissonization is that the behavior of

a fixed population problem should be close to that of the same problem under a Poisson model

having the fixed population problem size as its mean. The additional randomness introduced by

Poissonization allows for application of techniques that exploit the independence of the increments

and the behavior of moments. The Poissonization technique generally requires weaker assumptions

on the underlying densities and the parameters of estimates than the strong Gaussian approximation,

see Rosenblatt (1975, p.7) and Berlinet (1999, p.91) for more discussions on its advantages. This

technique has also been used in a number of places including combinatorical mathematics and analysis

of algorithms. It can be useful in a number of econometrics contexts, as we discuss further below.

5. In the application we consider below, and in other applications, there are different sample

sizes n and m that apply to the estimation of f and g. The distribution theory for this case is only

a trivial modification of the theory presented above. In particular, suppose that the two samples

are mutually independent and that m/n → τ ∈ (0,∞). Then the asymptotic distribution is as in

Theorem 1 with

an = b−d/2||K||2
∫
Cf,g

f 1/2(x)dx · Emin {Z1, Z2/τ}

σ2
1 = pf (1− pf ) + pg(1− pg)/τ

σ2
0(τ) = ||K||22

∫
T0

cov
(

min {Z1, Z2/τ} ,min
{
ρ(t)Z1 +

√
1− ρ(t)2Z3, ρ(t)Z2/τ +

√
1− ρ(t)2Z4/τ

})
dt,

where Emin {Z1, Z2/τ} =

√
1+1/τ

2
Emin {Z1, Z2} = −

√
1+1/τ

2

√
2
π
and σ2

0(τ) = σ2
0(1)(1 + 1/τ)/2.

6. By the relationship (2), the result of Theorem 1 implies that the estimator T̂ V of the L1 (or

total variation) distance TV =
∫∞
−∞ |f(x)− g(x)| dx between two densities f, g satisfies

√
n
(
T̂ V − TV

)
+ 2an =⇒ N(0, 4v),

where

T̂ V =

∫ ∞
−∞
|fn(x)− gn(x)| dx.

We next discuss how to conduct consistent inference on the parameter θ using the theory presented

in Theorem 1. For inference we must estimate consistently the quantities p0, pf , pf,g and pg, and

estimate
∫
Cf,g

f 1/2(x)dx consistently at a better rate than bd/2.We require some additional conditions:

Assumptions
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(A5) Whenever µ(Cf,g) > 0, the densities f and g satisfy h∗(ε) := µf ({x : 0 < |f(x)− g(x)| ≤
ε}) = O(εγ) as ε→ 0 for some positive constant γ.

(A6) (i) E [‖X‖p 1(f(X) = g(X))] < ∞ for some p > 2 such that n(p−2)/2pbd → ∞. (ii) For all
λ with 0 ≤ |λ| ≤ s,

∫
Cf,g
|Dλf(x)|/f 1/2(x)dx <∞.

(A7) There is a sequence cn → 0 such that nb2dc2
n/ log n→∞ and nbdc2+2γ

n → 0, where γ is the

positive constant in A5 when µ(Cf,g) > 0, and γ =∞ otherwise.

Assumption A5 controls the behavior of the density functions near the boundary of the contact

set Cf,g. It has to do with the sharpness in the decrease of φ = f − g to zero, see Härdle, Park

and Tsybakov (1995), Hall (1982), and Cuevas and Fraiman (1997) for related concepts. It is

like a tail thickness condition except that it only applies in the vicinity of Cf,g. If φ is bounded

away from zero outside of Cf,g, then γ can be set to be ∞. For small values of γ, this imposes
a binding restriction on bandwidth and smoothness rather like dimensionality of the covariates.

Assumption A5 is used to get a consistent estimator of the centering term an in Theorem 2 below.

The condition A6(i) is needed in the case where Cf,g = Rd as it is used to bound the estimation
error of

∫
Cf,g

f 1/2(x)dx = E[f−1/2(X)1 (f(X) = g(X))], which can be badly affected by heavy tails. It

imposes a further restriction on the bandwidth: for small values of p one must take a large bandwidth

to make n(p−2)/2pbd → ∞ but then one needs s to be very large to ensure that nb2s → 0. If X, Y

are Gaussian (p =∞), then only an additional logarithmic constraint is imposed on the bandwidth.
Condition A7 implicitly imposes a stronger restriction on the bandwidth than A3. Generally there

is both an upper and lower bound on the tuning parameter; in the case that γ = ∞ there is only a

lower bound on the tuning parameter, e.g. when d = 1, s = 2, and b ∝ n−1/3, cn should be of larger

order than n−1/6.

Define the bias corrected estimator and asymptotic variance estimator:

θ̂
bc

= θ̂ − ân/n1/2, v̂ = p̂0σ
2
0 + σ̂2

1

ân = −0.56
||K||2
2bd/2

(∫
Ĉf,g

f 1/2
n (x)dx+

∫
Ĉf,g

g1/2
n (x)dx

)
Ĉf =

{
x ∈ Rd : fn(x)− gn(x) < −cn, fn(x) > 0, gn(x) > 0

}
Ĉg =

{
x ∈ Rd : fn(x)− gn(x) > cn, fn(x) > 0, gn(x) > 0

}
Ĉf,g =

{
x ∈ Rd : |fn(x)− gn(x)| ≤ cn, fn(x) > 0, gn(x) > 0

}
p̂0 =

1

2n

n∑
i=1

{1(Xi ∈ Ĉf,g) + 1(Yi ∈ Ĉf,g)}

p̂f =
1

n

n∑
i=1

1(Xi ∈ Ĉf ), p̂g =
1

n

n∑
i=1

1(Yi ∈ Ĉg), p̂f,g =
1

n

n∑
i=1

1(Xi ∈ Ĉf , Yi ∈ Ĉg)

σ̂2
1 = p̂f (1− p̂f ) + p̂g(1− p̂g) + 2 (p̂f,g − p̂f p̂g) .

Then, we have the following result:
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Theorem 2. Suppose that Assumptions A1-A7 hold. Then, we have:

√
n
(
θ̂
bc
− θ
)
⇒ N(0, v) (12)

v̂
p−→ v. (13)

This theorem can be used to construct hypothesis tests about and consistent confidence intervals

for θ. One leading hypothesis of interest here is the test of perfect overlap, i.e., equality of distrib-

utions, which corresponds to H0 : θ = 1 versus HA : θ < 1. Note that under this null hypothesis

σ2
1 = 0 and so the asymptotic variance comes purely from the boundary case. In this case, we reject

whenever θ̂
bc
< 1− zαp̂1/2

0 σ0/
√
n, where zα is the normal critical value of level α.

The approach we have advocated has been to make the inference robust to the possibility that

the densities are equal or close to each other over a range of values. However, in some cases one

may be willing to assert that this is not the case. If one strongly believes that Cf,g is of measure

zero, then one can conduct inference using the uncorrected estimator θ̂ and the variance estimator

ṽ = p̃f (1− p̃f ) + p̃g(1− p̃g) + 2 (p̃f,g − p̃f p̃g) , where

p̃f =
1

n

n∑
i=1

1(Xi ∈ C̃f ) ; g̃f =
1

n

n∑
i=1

1(Yi ∈ C̃g)

p̃f.g =
1

n

n∑
i=1

1(Xi ∈ C̃f , Yi ∈ C̃g)

C̃f = {x : fn(x) < gn(x)} ; C̃g = {x : fn(x) ≥ gn(x)},

which corresponds to the definitions above Theorem 2 setting the tuning parameter cn = 0. In this

case, ṽ
p−→ v = σ2

1.
3 The bootstrap is an alternative method for providing confidence intervals. In

the special case where the contact set has zero measure, standard bootstrap resampling algorithms

can be applied to conduct inference. However, as reported in Clemons and Bradley (2000) the

standard bootstrap confidence intervals start performing badly when θ → 1, i.e., when the contact

set has positive measure. In order to make the bootstrap work in the general case one must make

modifications to the resampling algorithm that involve an additional tuning parameter just as in our

asymptotic approach.

Note that the bandwidth parameter b and the tuning parameter cn are asymptotically negligible,

and only affect higher order properties, which are hard to analyze theoretically. We investigate the

choice of these parameters in the simulation study below.

Our theory is for the estimation of θ from a single sample. In the application below we compute

the overlap measure for two different regions at two different points in time. In some cases one may

3However, if it turned out that Cf,g has positive measure then θ̂ is biased and the standard errors are inconsistent.

Specifically, it can be shown that p̃f
p−→ pf + p0/2 and p̃g

p−→ pg + p0/2 using a similar argument to that used in

Theorem 2.
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have a panel data setting, so that we observe (Xit, Yit), i = 1, . . . , n and t = 1, . . . , T, where (Xit, Yit)

and (Xis, Yis) are not mutually independent. We obtain θ̂t, t = 1, . . . , T from each period. Then

the θ̂t and θ̂s are asymptotically correlated. However, the correlation can easily be accounted for,

especially since it only affects the non-boundary terms.

4 A Simulation Study

Here we look at the small-sample performance of θ̂ and θ̂
bc
. Anderson and Ge (2004) have investigated

the performance of an estimator of θ in the case where there are either one or two crossings.

We consider the more interesting case where the contact set has positive measure. The design is

Xi ∼ U [−0.5, 0.5] , and Yi ∼ U [0, 1] , where {Xi} and {Yi} are independent, so that θ = 0.5 and

Cf,g = [0, 0.5].4 We consider samples sizes n = 100, 200, 400, 800, and 1600 and take a thousand

replications of each experiment. The estimator is computed using the uniform kernel, i.e., K (u) =

1(|u| ≤ 0.5) for which ||K||22 = 1 and ρ(t) = (1+ t)1(−1 ≤ t ≤ 0)+(1− t)1(0 ≤ t ≤ 1), which satisfies

A1 with α = 1 and s = 2. In this case pf = pg = 0 and p0 = 0.5. It follows that an = −0.28b−1/2,

while v = p0σ
2
0 + σ2

1 = 0.3067. The bandwidth takes two values, either the Silverman’s rule of thumb

value, in this case bs = 1.84σ̂n−1/5, where σ̂ is the sample standard deviation, or the smaller value

b
3/2
s . In construction of the bias corrected estimator θ̂ we choose the tuning parameter cn to be either

the bandwidth b, the smaller value b3/2 or the larger value b2/3.

The supports of interest are estimated from the sample, specifically the common support set in this

case is estimated by the interval [max{min1≤i≤nXi,min1≤i≤n Yi},min{max1≤i≤nXi,max1≤i≤n Yi}].
The integrals are computed based on a grid of five hundred equally spaced points in [−0.5, 1].

We report our results in Table 2. We give the bias, the median bias (mbias), the standard

deviation (std), and the interquartile range divided by 1.349 (iqr) for the two estimators for the

various combinations of samples sizes, bandwidths, and tuning parameters. The results can be

summarized as follows:

1. The bias is quite large compared to the standard deviation

2. The performance measures improve with sample size at a rate roughly predicted by the theory

(as can be confirmed by least squares regression of ln(-bias) on a constant and lnn)

3. The bias corrected estimator has a smaller bias and larger standard deviation and a smaller

mean squared error at the best choice of bandwidth and tuning parameters.

4. The best performance for θ̂ is when bandwidth is bs although there is not a lot of difference for

the larger sample sizes
4Note that this doesn’t precisely fit in the framework we have chosen to present our main results since the random

variables have compact support. However, the theory we have presented also applies in the compactly supported case

after a boundary adjustment. By using a uniform kernel on a uniform density the boundary effect is mitigated.
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5. The best performance in terms of standard deviation for θ̂
bc
is when bandwidth is b3/2

s , although

for the smaller samples sizes bias is best at bs. The best value of the tuning parameter for bias

is the larger one b2/3, whereas for variance b3/2 is better.

Finally, we look at the quality of the distributional approximation. In Figure 1 we show the qq

plot for standardized θ̂ in the case n = 800 and bandwidth is bs. The approximation seems quite

good, with most discrepancy in the left tail.

***Figure 1 here***

In Table 3 we report the results of a multivariate simulation with local to unity θ. Specifically,

we took Xk ∼ N(0, 1) and Yk ∼ N(1/
√
n, 1) with X, Y being vectors of dimensions one through five

with independent components. In the univariate case, θn = 2Φ(−1/2
√
n), Reiser and Faraggi (1999).

We implemented as above with the best combinations of bandwidth/tuning parameter uncovered in

Table 2, with the same uniform kernel. We present the results for θ̂ − 1, which should be exactly as

in Theorem 1. The bias correction method seems to produce much better bias with a small cost in

terms of increased variability. Note that the curse of dimensionality makes performance deteriorate

with dimension, so for five dimensions the performance is terrible, but the bias correction does seem

to improve performance substantially according to mean squared error. In the working paper version

of this paper we reported results for the case where Yk ∼ N(0, 1). The difference between these two

cases is not substantial, which shows that the local to unity asymptotics are quite good in this case.

5 Application

Much ink has been spilled on how the economic reforms in China benefited cities on the eastern

seaboard relative to those in the interior. Evidence on per capita urban incomes suggests greater

advances for seaboard provinces than for inland provinces. Partly the result of regional comparative

advantage, it also reflected weak government regional equalization policy, imperfect capital markets,

and initial preferential policies on FDI and exports and from the growth of tax revenues as their

development proceeded for the seaboard provinces (Anderson and Ge (2004), Gustafsson, Li, and

Sicular (2007)). Urbanization also took place differentially on the seaboard and inland with cities

growing more rapidly both in size and number in the seaboard provinces than in the interior (An-

derson and Ge (2006, 2008)). The question arises as to whether the consequences of the reforms

have translated into an improvement in the relative wellbeing of individuals in seaboard as compared

to interior provinces. To investigate this, samples of urban households in two Chinese provinces,

Guangdong - an eastern seaboard province and Shaanxi - a province in the interior (see the map of

China below),

***Figure 2 here ***
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taken in 1987 and 2001 are employed.5 We emphasize here that these data are not panel in structure,

so it seems reasonable to suppose that the observations are independent across the time frame, across

the cross section, and across the provinces.

One approach to the relative wellbeing issue is to examine whether or not household wellbeing in

central and seaboard provinces has polarized. Esteban and Ray (1994) and Duclos, Esteban and Ray

(2004) (see also Wang and Tsui (2000)) posited a collection of axioms whose consequences should

be reflected in a Polarization measure. The axioms are founded upon a so-called Identification-

Alienation nexus wherein notions of polarization are fostered jointly by an agent’s sense of increasing

within-group identity and between-group distance or alienation. When one distribution stochastically

dominates the other it can be argued that such measures also reflect a sense of relative ill-being of

the impoverished group and when there is a multiplicity of indicators, measures of "Distributional

overlap" appear to perform quite well Anderson (2008).6

Indicators employed to reflect household wellbeing are total expenditures per household member

(Exp p.c.) and household living area per household member (Area p.c.). Table 4 presents summary

statistics for the samples, some observations are appropriate. Both provinces have advanced in terms

of their consumption expenditures and living space per person so that overall wellbeing may be

considered to have advanced in both provinces. The gap between expenditures, which reflects the

alienation component of polarization and favors Guangdong, widened and the gap between living

space (again favoring Guangdong) remained unchanged so that polarization may well have increased

in terms of the alienation component. Movements in the dispersion of these components have less

clear implications for the identification part of polarization. In Guangdong dispersion of living space

per person diminished whereas in Shaanxi it increased, with respect to dispersion of expenditures

they increased in both provinces but much more so in Shaanxi than in Guangdong to the extent that

Shaanxi overtook Guangdong in its expenditure per person dispersion over the period. This suggests

that little can be said about polarization by piecemeal analysis of its components.

*** Table 4 here ***

We first show the univariate density plots, which were calculated with Gaussian kernel and Silver-

man’s rule of thumb bandwidth. These confirm the general trends identified in the sample statistics

Note that empirically there is only one crossing for the expenditure data but the housing variable

has several crossing points.

*** Figure 3 here ***

5These data were obtained from the National Bureau of Statistics as part of the project on Income Inequality

during China’s Transition organized by Dwayne Benjamin, Loren Brandt, John Giles and Sangui Wang.
6Using a multivariate Kolmogorov-Smirnov criterion the hypothesis that the Guangdong joint distribution first order

stochastically dominates the Shaanxi joint distribution could not be rejected in both years whereas the hypothesis

that Shaanxi dominates Guangdong could (details from the authors on request)
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We next compute the univariate and multivariate polarization measures. Let θ̂e, θ̂h, and θ̂eh denote

respectively the measure computed on the univariate expenditure data series, the univariate housing

series, and the bivariate data. We computed these quantities with a uniform kernel and bandwidth

either equal to the Silverman’s rule of thumb bandwidth bs or b
3/2
s . We also computed the bias

corrected estimators denoted with superscript bc using tuning parameter b2/3.We compute both our

standard errors and the standard errors that assume that the contact set is of zero measure, these are

denoted by sc. The data are from repeated cross-sections so we assume the samples are independent.

In this dataset there are different sample sizes n and m that apply to the estimation of f and g. For

the bivariate product uniform kernel σ2
0(1) = 0.5835.We computed the bias correction and standard

errors using these modifications and computed standard normal test statistics for the polarization

hypothesis (decreased overlap) based upon 1987 and 2001 being independent samples. The results

are shown in Table 5. The results show a substantial reduction in the value of the overlap measure for

the joint distribution and also the univariate measure for expenditure. There is a slight decrease also

in the overlap of the housing variable, but this is not statistical significant. The level of the overlap

is quite high in general and the bias correction increases it quite substantially. The estimators are

relatively insensitive to the choice of bandwidth. The standard errors are quite small and there is not

much difference between the full standard errors and the standard errors that impose zero measure on

the contact set. Evidently there has been a significant polarization (reduction in overlap) between the

provincial joint distributions of consumption expenditures and living space reflecting deterioration

in the wellbeing of households in Shaanxi relative to those in Guangdong.

We perform the formal test of the hypotheses

H0 : θj = 1 vs. HA : θj < 1, j = 1987, 2001

H0 : θ1987 = θ2001 vs. HA : θ1987 6= θ2001.

These hypotheses are rejected at the 1% level except for the housing case (full results are available

from the authors upon request). The second hypothesis is rejected if∣∣∣θ̂bc1987 − θ̂
bc

2001

∣∣∣ ≥ zα/2SE,

where SE = v̂1987/
√
n+ v̂2001/

√
m. This rejection region is valid under the reasonable assumption of

independence across time and household.

Note that an alternative to the overlap measure could be obtained by computing the Duclos

Esteban and Ray (2004) polarization measure, specifically, Pα(f) =
∫ ∫

f(x)1+αf(y)|y − x|dydx,
where α ∈ [0.25, 1], generalized to the multivariate case and based on the pooled distribution. This

is a somewhat more general index of the multiplicity and diversity of modes and requires specifying

a polarization sensitivity parameter α which should lay between 0.25 and 1. We computed this

measure separately for the consumption and housing variables and for the joint distribution for the

two years and record the results for the joint variables below. Note that, unlike the overlap statistic,
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no significant change in the polarization index is detected in any of the cases reflecting the fact that

the index is trying to identify polarization from changes in the mixture distribution. Intuitively this

is because this approach is faced with the task of detecting changes in an unspecified number of

bumps in a surface which is the result of pooling two distributions whereas the overlap is simply

charged with detecting whether or not they are separating.

*** Table 6 here ***

Note the index is sensitive to the choice of their polarization sensitivity parameter α: at low levels

of sensitivity the index actually diminishes over time whereas at high levels it increases.

6 Extensions

We have developed the asymptotic properties of the specific polarization measure; but note that our

techniques are applicable for a more general class of problems. A more general quantity of interest is

δ =

∫
ϕ(f(y), g(y))dy, (14)

where f, g are nonparametric objects like densities or regression functions and ϕ is a known function

that has a kink at one or more points. Some examples include: ϕ(s, t) = min(s, t), ϕ(s, t) = max(s, t),

ϕ(s, t) = |s − t|α, α > 0, and ϕ(s, t) = (α − 1(s − t < 0))(s − t), α ∈ (0, 1). In these examples, the

function is not differentiable at the point s = t. We discuss in detail one example. Kitagawa (2010)

considers a partially identified version of the treatment effects model, Imbens and Rubin (1997).

Specifically, Y is an outcome measure of interest that is not perfectly observable. Of interest is the

density fY |X(y|x), where X are observed covariates, but we only observe (Y ·D,D,X,Z), where D

is an indicator of missingness, and Z is a instrument. One can observe or estimate fY ·D|Z,X(y,D =

1|Z = z,X = x). Under the exclusion assumption that Y is independent of Z given X one can

show that the identified region includes only those densities fY |X that are larger than the envelope

supz fY ·D|Z,X(y,D = 1|Z = z,X = x). In the case where Z is binary, which is quite common in

practice, the identification region is determined by the envelope max{f(y|x), g(y|x)}, where f(y|x) =

fY ·D|Z,X(y,D = 1|Z = 0, X = x) and g(y|x) = fY ·D|Z,X(y,D = 1|Z = 1, X = x)}. If the integrated
density envelope δ(f, g)(x) =

∫
max{f(y|x), g(y|x)}dy is larger than one for any x, the identification

region is empty. Kitagawa (2010) develops a test of the hypothesis that δ = 1 versus the general

alternative. In this case, it can be for some values of x that f(y|x) ' g(y|x) because the instrument

is "weak", i.e., does not have a strong influence on the conditional outcome density. Our theory

readily extends to cover this case.

Our theory extends to the case of k densities f1, . . . , fk in an obvious way. In that case, one

might also be interested in measuring quantities related to a partial overlap. Specifically, suppose

that fi1(x) ≤ . . . ≤ fik(x), then min{f1(x), . . . , fk(x)} = fi1(x) and max{f1(x), . . . , fk(x)} = fik(x).
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Then, fir(x), for 1 < r < k represents a situation where r of the densities overlap.7 In this context the

full overlap measure has been used as an index of inequality between k populations see Yalonetzky

(2009). Kitagawa (2010) considered in general the case with k densities corresponding to k different

values of the discrete instrument.

Finally, there are some applications where the data come from a time series and one would

like to allow for dependence in the observations. For example, we might like to compare two or

more forecast densities. In this case the theory becomes more complicated and it is not clear that

the Poissonization method can be applied. However, in the special case that the contact set has

zero measure, one can derive the limiting distribution for θ̂ based on the asymptotic representation
√
n(θ̂ − θ) = n−1/2

∑n
i=1 1(Xi ∈ Cf ) + n−1/2

∑n
i=1 1(Yi ∈ Cg) + op(1), assuming some restriction on

the strength of the dependence.

7 Conclusion

We have shown how to conduct robust inference for a polarization measure based upon the overlap of

two potentially multivariate distributions. The theory accommodates the possibility that the contact

set between two distributions is non empty and deals with estimation biases in the general case. An

analytic approach to inference demonstrates that it is consistent whatever the nature of the contact

set and most importantly when the distributions are very close. We have also provided for the case

where two overlap estimates being compared are based upon non-independent samples (for example

in the context of a panel data set). A simulation study examines the case where the contact set is

non- empty and considers the uncorrected and bias corrected estimates of the overlap measure. It

highlights the fact that the biases are quite large and that the bias correction comes at a cost of

increased variability of the estimator. The asymptotic behaviour is much as the theory predicts and

some evidence as to advisable tuning parameter choice is also presented.

The application, a multidimensional examination of urban household wellbeing in an internal

(Shaanxi) and a coastal (Guangdong) province in China over the period of the economic reforms,

demonstrates that the two groups of agents have bi-polarized significantly. Application of a multidi-

mensional version of the most popular polarization index to the pooled sample of households did not

yield the same result in that no significant polarization was detected. This is not surprising since the

latter is a very general index which seeks changes in an unspecified number of points of modality and

will have less power than the overlap statistic which provides a very specific test of bipolarization.

Finally (using the results herein presented) the overlap measure has already been used to examine

symmetry properties of a function f(x) centered on 0 so that f(x) = f(−x) under the null (see

Samawi et. al. (2010)). The theory we have developed is useful in a number of other theoretical and

7This is of interest in a number of biomedical applications. See for example

http://collateral.knowitall.com/collateral/95391-OverlapDensityHeatMap.pdf

15



applied problems. The overlap measure can be employed to compare the coincidence or otherwise

of f(x) and g(x) where these are more general non-parametric objects and the comparison function

exhibits some sort of kink. Hence tests of separability of the f function and statistical independence

of the elements of x are also facilitated. The extension to many functions fi(x), i = 1, . . . , k, is also

straightforward (in this context the overlap measure has been used as an index of inequality between

k populations see Yalonetzky (2009)).

A Appendix

A.1 Informal Discussion of the Proof Technique

Although the estimators and confidence intervals are easy to use in practice, the asymptotic theory

to prove Theorem 1 involves several lengthy steps. Since establishing these steps require techniques

that are not commonly used in econometrics, we now give a brief informal description of our proof

techniques. Specifically, our proof of Theorem 1 consists of the following three steps:

1. The asymptotic approximation of
√
n(θ̂ − θ) by An, given by the non-negligible terms in

(11), which decomposes the estimation error into three different terms, defined over the disjoint

sets Cf , Cg and Cf,g, respectively.

2. Get the asymptotic distribution of APn (B), a Poissonized version An, where the sample size n

is replaced by a Poisson random variable N with mean n that is independent of the sequence

{(Xi, Yi) : i ≥ 1} and the integral is taken over a subset B of the union of the supports of X

and Y.

3. De-Poissonize APn (B) to derive the asymptotic distribution of An and hence
√
n(θ̂ − θ).

In step 1, we make the bias of kernel densities asymptotically negligible by using the smoothness

assumptions on true densities and properties of kernel functions, which allows us to write An as a

functional of the centered statistics fn(x)−Efn(x) and gn(x)−Egn(x). Also, the decomposition into

three terms is related to the recent result in the moment inequality literature that, under inequality

restrictions, the asymptotic behavior of statistics of interest often depend only on binding restrictions,

see, e.g. Chernozhukov, Hong, and Tamer (2007), Andrews and Guggenberger (2009) and Linton,

Maasoumi and Whang (2005).

In step 2, Poissonization of the statistic An gives a lot of convenience in our asymptotic analysis.

In particular, it is well known that if N is a Poisson random variable independent of the i.i.d sequence

{Xi : i ≥ 1} and {Ak : k ≥ 1} are disjoint measurable sets, then the processes
∑N

i=0 1(Xi ∈ Ak)δXi ,
k = 1, 2, ..., are independent, where δ denotes the Dirac delta. This implies, for example, that, since

the kernel function K is assumed to have a compact support, the Poissonized kernel densities fN(x)
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and fN(y) are independent if the distance between x and y is greater than a certain threshold. This

facilitates computation of asymptotic variance of APn (B). Also, since a Poisson process is infinitely

divisible, we can write
∑N

i=0 Xi
d
=
∑n

i=0 Zi, where {Zi : i ≥ 1} are i.i.d with Z d
=
∑η1

i=0Xi and η1 is a

Poisson random variable with mean 1 and independent of {Xi : i ≥ 1}. The fact is used repeatedly
in our proofs to derive the asymptotic distribution of APn (B), using standard machineries including

the CLT and Berry Esseen theorem for i.i.d. random variables.

In step 3, we need to de-Poissonize the result because the asymptotic behavior of the Poissonized

variable APn (B) is generally different from An. For this purpose, we use the de-Poissonization lemma

of Beirlant and Mason (1995, Theorem 2.1, see also Lemma A.2 below). To illustrate the Lemma

in a simple context, consider a statistic Λn = n−1/2
∑n

i=1 [1(Xi ∈ B)− Pr(X ∈ B)], where B ⊂ R
is a Borel set. By a CLT, we know that Λn ⇒ N(0, pB(1 − pB)), where pB = Pr(X ∈ B). Now,

consider a Poissonized statistic Sn = n−1/2
∑N

i=1 1(Xi ∈ B) − n1/2 Pr(X ∈ B). The asymptotic

distribution of Sn is given by N(0, pB), which is different from that of Λn. However, letting Un =

n−1/2
∑N

i=1 1(Xi ∈ C) − n1/2 Pr(X ∈ C) and Vn = n−1/2
∑N

i=1 1(Xi ∈ R\C) − n1/2 Pr(X ∈ R\C),

where B ⊂ C ⊂ R is a Borel set, and applying the Poissonization lemma, we see that the conditional
distribution of Sn given N = n coincides with the distribution of Λn asymptotically.

Although the above steps closely follow those of Giné et. al. (2003), we need to extend their

results to the general multi-dimensional variates d ≥ 1, multiple kernel densities, and norms different

from the L1- norm. Such extensions, to our best knowledge, are not available in the literature and

are not trivial.

A.2 Proof of the Main Theorems

Under our conditions, we have

sup
x∈Rd
|fn(x)− f(x)| = O(bs) +O

(√
log n

nbd

)
a.s., (15)

by Giné and Guillou (2002, Theorem 1) and standard treatment of the bias term, and likewise for

gn(x)− g(x). We use this result below.

Let

An =
√
n

∫
Cf,g

min {fn(x)− Efn(x), gn(x)− Egn(x)} dx

+
√
n

∫
Cf

[fn(x)− Efn(x)] dx+
√
n

∫
Cg

[gn(x)− Egn(x)] dx

= : A1n + A2n + A3n (16)

We will show that the asymptotic distribution of An is normal when suitably standardized.

Theorem A1. Under Assumptions (A1)-(A4), we have
An − an√
p0σ2

0 + σ2
1

⇒ N(0, 1).
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The proof of Theorem A1 will be given later. Given Theorem A1, we can establish Theorem 1.

Proof of Theorem 1. We will show below that
√
n
(
θ̂ − θ

)
= An + op(1). (17)

Then, this result and Theorem A1 yield the desired result of Theorem 1. To show (17), write

√
n
(
θ̂ − θ

)
=

∫
Rd

√
n [min{fn(x), gn(x)} −min{f(x), g(x)}] dx

=

∫
Cf,g

√
nmin{fn(x)− f(x), gn(x)− g(x)}dx

+

∫
Cf

√
nmin{fn(x)− f(x), gn(x)− f(x)}dx

+

∫
Cg

√
nmin{fn(x)− g(x), gn(x)− g(x)}dx

= : Λ1n + Λ2n + Λ3n. (18)

Consider Λ1n first. Write

Λ1n =
√
n

∫
Cf,g

min {fn(x)− Efn(x), gn(x)− Egn(x)} dx

+

∫
Cf,g

√
n [min{fn(x)− f(x), gn(x)− g(x)} −min {fn(x)− Efn(x), gn(x)− Egn(x)}] dx

= : A1n + Λ12n. (19)

We have

|Λ12n| ≤ 2
√
n

(∫
Cf,g

{|Efn(x)− f(x)| dx+ |Egn(x)− g(x)|} dx
)

≤ 2
√
nbs

∫
Cf,g

∫
Rd

∑
|λ|=s

1

s!

∣∣∣Dλf(x− b̃u)
∣∣∣ ∣∣uλK(u)

∣∣ dudx


+2
√
nbs

∫
Cf,g

∫
Rd

∑
|λ|=s

1

s!

∣∣∣Dλg(x− b̃u)
∣∣∣ ∣∣uλK(u)

∣∣ dudx


= O(n1/2bs)→ 0, (20)

where the first inequality uses the elementary result |min{a+ c, b+ d} −min{a, b}| ≤ 2 (|c|+ |d|) ,
the second inequality holds by a two term Taylor expansion with 0 < b̃ < b and Assumption A1, the

last equality holds by Assumptions A1 and A2, and the convergence to zero follows from Assumption

A3.

We next consider Λ2n. By (15), we have: given η > 0, there exists δ > 0 such that

Pr

((
nbd

log n

)1/2

sup
x∈Rd
|fn(x)− Efn(x)| > δ/2

)
< η. (21)
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Also, for each x ∈ Cf , there exists n0 such that for n ≥ n0,
(
nbd/ log n

)1/2
[g(x)− f(x)] > δ. Let

ε > 0 be a constant. Then, for n ≥ n0,

Pr

(∫
Cf

√
nmax{[fn(x)− Efn(x)]− [gn(x)− Egn(x)]− [g(x)− f(x)] , 0}dx > ε

)
(22)

≤ Pr

((
nbd

log n

)1/2{
sup
x∈Rd
|fn(x)− Efn(x)|+ sup

x∈Rd
|gn(x)− Egn(x)|

}
> δ

)
< η.

Therefore,

|Λ2n − A2n| ≤
∫
Cf

√
nmax{[fn(x)− Efn(x)]− [gn(x)− Egn(x)]− [g(x)− f(x)] , 0}dx+O(n1/2bs)

= op(1) +O(n1/2bs) = op(1),

where the first inequality follows from an argument similar to the one to establish (20) and triangle

inequality and the first equality holds by (22) since η is arbitrary. Likewise,

Λ3n = A3n + op(1).

Now, this establishes (17), as desired. �

We prove Theorem A1 using the Poissonization argument of Giné et. al. (2003). To do this,

we need to extend some of the results of Giné et. al. (2003) to the general multi-dimensional

case d ≥ 1 with multiple kernel densities. Also, we need to consider a functional ϕ0 : (f, g) 7−→∫
min{f(x), g(x)}dx, which is different from the L1- functional ϕ1 : f 7−→

∫
|f(x)| dx. We first

introduce some concepts used throughout the proofs. Let N be a Poisson random variable with

mean n, defined on the same probability space as the sequence {(Xi, Yi) : i ≥ 1}, and independent
of this sequence. Define

fN(x) =
1

n

N∑
i=1

Kb (x−Xi) , gN(x) =
1

n

N∑
i=1

Kb (x− Yi)

where b = b(n) and where the empty sum is defined to be zero. Notice that

EfN(x) = Efn(x) = EKb (x−X) (23)

kf,n(x) = nvar (fN(x)) = EK2
b (x−X) (24)

nvar (fn(x)) = EK2
b (x−X)− {EKb (x−X)}2 . (25)

Similar results hold for gN(x) and gn(x).

Let Cf,g, Cf and Cg denote the sets defined in (5)-(7) with the corresponding measures p0, pf

and pg defined in (8)-(10). For a constant M > 0, let B(M) ⊂ Rd denote a Borel set with nonempty
interior with Lebesgue measure µ(B(M)) = Md. For v > 0, define B(M, v) to be the v-contraction
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of B(M), i.e., B(M, v) = {x ∈ B(M) : ρ(x,Rd\B(M)) ≥ v}, where ρ(x,B) = inf{‖x− y‖ : y ∈ B}.
Let φ denote f or g. Take ε ∈ (0, p0) and εφ ∈ (0, pφ) to be arbitrary constants. (If any of p0,

pf and pg is zero, then the corresponding sets defined subsequently have to be empty.) Choose

M,Mφ, v, vφ > 0 and Borel sets B0, Bφ such that

B(M) ⊂ Cf,g, B(Mφ) ⊂ Cφ, (26)

B0 ⊂ B(M, v), Bφ ⊂ B(Mφ, vφ) (27)∫ ∫
R2d\T (M)

f(x)g(y)dxdy = : α > 0 (28)∫
B0

f(x)dx =

∫
B0

g(x)dx > p0 − ε,
∫
Bφ

φ(x)dx > pφ − εφ, (29)

and f and φ are bounded away from 0 on B0 and Bφ, respectively, where

T (M) =
(
B(Mf )× Rd

)
∪ (B(M)× B(M)) ∪

(
Rd × B(Mg)

)
⊂ R2d. (30)

Such M,Mφ, v, vφ, Bφ, and B0 exist by continuity of f and g.

Let B = B0 ∪Bf ∪Bg. In B, the sets are separated with no common boundary and the suitable

measures of the corresponding sets are strictly positive. The construction of B is necessary to apply

the de-Poissonization argument (Lemma A2). Define a Poissonization version APn (B) of An based on

the expression (16):

APn (B) = AP1n(B0) + AP2n(Bf ) + AP3n(Bg), (31)

where

AP1n(B0) =
√
n

∫
B0

min {fN(x)− Efn(x), gN(x)− Egn(x)} dx (32)

−
√
n

∫
B0

Emin {fN(x)− Efn(x), gN(x)− Egn(x)} dx

AP2n(Bf ) =
√
n

∫
Bf

[fN(x)− Efn(x)] dx (33)

AP3n(Bg) =
√
n

∫
Bg

[gN(x)− Egn(x)] dx. (34)

Also, define the variance of the Poissonization version APn (B) to be

σ2
n(B) = var

(
APn (B)

)
. (35)

To investigate the asymptotic distribution of APn (B), we will need the following lemma, which is

related to the classical Berry-Esseen theorem.

Lemma A1. (a) Let {Wi = (W1i, . . . ,W4i)
> : i ≥ 1} be a sequence of i.i.d. random vectors in

R4 such that each component has mean 0, variance 1, finite absolute moments of third order, and

EWW> = Σ =

(
Σ11 Σ12

Σ12 Σ22

)
.
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Let Z = (Z1, . . . , Z4)> be multivariate normal with mean vector 0 and positive definite variance-

covariance matrix EZZ> = Σ. Then, there exist universal positive constants A1 and A2 such that∣∣∣∣∣Emin

{
1√
n

n∑
i=1

W1i,
1√
n

n∑
i=1

W2i

}
− Emin {Z1, Z2}

∣∣∣∣∣ ≤ A1

|det(Σ11)|−3/2

1√
n

(
E |W1|3 + E |W2|3

)
and ∣∣∣∣∣E

[
1

n
min

{
n∑
i=1

W1i,

n∑
i=1

W2i

}
min

{
n∑
i=1

W3i,

n∑
i=1

W4i

}]
− E [min {Z1, Z2}min {Z3, Z4}]

∣∣∣∣∣
≤ A2

|det(Σ)|−3/2

1√
n

(
E |W1|3 + E |W2|3 + E |W3|3 + E |W4|3

)
.

(b) Let {Wi = (W1i, . . . ,W3i)
> : i ≥ 1} be a sequence of i.i.d. random vectors in R3 such that

each component has mean 0, variance 1, finite absolute moments of third order, and EWW> = Σ.

Let Z = (Z1, Z2, Z3)> be multivariate normal with mean vector 0 and positive definite variance-

covariance matrix EZZ> = Σ. Then,∣∣∣∣∣E
[

min

{
1√
n

n∑
i=1

W1i,
1√
n

n∑
i=1

W2i

}
1√
n

n∑
i=1

W3i

]
− E [min {Z1, Z2}Z3]

∣∣∣∣∣
≤ A3

|det(Σ)|−3/2

1√
n

(
E |W1|3 + E |W2|3 + E |W3|3

)
.

Proof of Lemma A1. The results of Lemma A1 follow directly from Sweeting (1980, Theorem1).�
We also need the following basic result of Beirlant and Mason (1995, Theorem 2.1), which is

needed to "de-Poissonize" our asymptotic results on the Poissonized random variables.

Lemma A2. Let N1,n and N2,n be independent Poisson random variables with N1,n being Pois-

son(n(1− α)) and N2,n being Poisson(nα) , where α ∈ (0, 1/2). Denote Nn = N1,n +N2,n and set

Un =
N1,n − n(1− α)√

n
and Vn =

N2n − nα√
n

.

Let {SNn : n ≥ 1} be a sequence of random variables such that (i) for each n ≥ 1, the random vector

(SNn , Un) is independent of Vn, (ii) for some σ2 > 0 and ξ such that (1− α)σ2 − ξ2 > 0,

(SNn , Un)> ⇒ N (0,Σ) ,

where

Σ =

(
σ2 ξ

ξ 1− α

)
.

Then, for all x, we have

Pr (SNn ≤ x | Nn = n)→ Pr

(√
σ2 − ξ2Z1 ≤ x

)
,
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where Z1 denotes the standard normal random variable.

The proofs of Lemmas A3-A8 are in Appendix A.3. The following lemma derives the asymptotic

variance of APn (B).

Lemma A3. Whenever Assumptions (A1)-(A4) hold and B0, Bf , and Bg satisfy (26)-(29), we

have

lim
n→∞

σ2
n(B) = p0,Bσ

2
0 + σ̄2

1,B, (36)

where p0,B = Pr(X ∈ B0) = Pr(Y ∈ B0), σ̄2
1,B = pf,B + pg,B + 2pf,g,B, pf,B = Pr(X ∈ Bf ), pg,B =

Pr(Y ∈ Bg), pf,g,B = Pr(X ∈ Bf , Y ∈ Bg) and σ2
0 is defined above Theorem 1.

Define

Un =
1√
n

{
N∑
j=1

1 ((Xj, Yj) ∈ T (M))− nPr ((X, Y ) ∈ T (M))

}

Vn =
1√
n

{
N∑
j=1

1
(
(Xj, Yj) ∈

(
R2d\T (M)

))
− nPr

(
(X, Y ) ∈

(
R2d\T (M)

))}
,

where T (M) is defined in (30). We next establish the following convergence in distribution result.

Lemma A4. Under Assumptions (A1)-(A4), we have

(APn (B), Un)> ⇒ N (0,Σ) ,

where

Σ =

(
p0,Bσ

2
0 + σ̄2

1,B pf,B + pg,B

pf,B + pg,B 1− α

)
and α is defined in (28).

The following theorem gives the asymptotic bias formula.

Lemma A5. Under Assumptions (A1)-(A4), we have

(a) lim
n→∞

∫
B0

[√
nEmin {fN(x)− Efn(x), gN(x)− Egn(x)} dx− Emin {Z1, Z2} k1/2

f,n (x)
]
dx = 0

(b) lim
n→∞

∫
B0

[√
nEmin {fn(x)− Efn(x), gn(x)− Egn(x)} dx− Emin {Z1, Z2} k1/2

f,n (x)
]
dx = 0,

for kf,n defined in (24), where Z1 and Z2 are standard normal random variables.

Define

An(B) =
√
n

∫
B0

[min {fn(x)− Efn(x), gn(x)− Egn(x)} (37)

−Emin {fn(x)− Efn(x), gn(x)− Egn(x)}] dx

+
√
n

∫
Bf

[fn(x)− Efn(x)] dx+
√
n

∫
Bg

[gn(x)− Egn(x)] dx.
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Using the de-Poissonization lemma (Lemma A2), we can show that the asymptotic distribution of

An(B) is normal.

Lemma A6. Under Assumptions (A1)-(A4), we have

An(B)⇒
√
p0,Bσ2

0 + σ2
1,BZ1,

where σ2
1,B = pf,B(1 − pf,B) + pg,B(1 − pg,B) + 2 (pf,g,B − pf,Bpg,B) and Z1 stands for the standard

normal random variable.

The following two lemmas are useful to investigate the behavior of the difference between the

statistics An(B) and An.

Lemma A7. Let {Xi = (X>1i, X
>
2i)
> ∈ Rd × Rd : i = 1, . . . , n} be i.i.d random vectors with

E ‖X‖ < ∞. Let hj : Rd × Rd → R be a real function such that Ehj(Xj, x) = 0 for all x ∈ Rd for
j = 1, 2. Let

Tn =

∫
B

min

{
n∑
k=1

h1(X1k, x),

n∑
k=1

h2(X2k, x)

}
dx,

where B ⊂ Rd is a Borel set. Then, for any convex function g : R→ R, we have

Eg(Tn − ETn) ≤ Eg

(
4

2∑
j=1

n∑
k=1

εk

∫
B
|hj(Xjk, x)| dx

)
,

where {εi : i = 1, . . . , n} are i.i.d random variables with Pr(ε = 1) = Pr(ε = −1) = 1/2, independent

of {Xi : i = 1, . . . , n}.
Lemma A8. Suppose that Assumptions (A1)-(A4) hold. Then, for any Borel subset B of Rd,

we have

lim
n→∞

E

√n∫
B

{hn(x)− Ehn(x)} dx

2

≤ D

(
sup
u
|K(u)|

)2 ∫
B

[f(x) + g(x)] dx,

for some generic constant D > 0, where

hn(x) = min{fn(x)− Efn(x), gn(x)− Egn(x)}.

Now, we are now ready to prove Theorem A1.

Proof of Theorem A1. By Lemma 6.1 of Giné et. al.(2003), there exists increasing sequences
of Borel sets {B0k ⊂ Cf,g : k ≥ 1}, {Bfk ⊂ Cf : k ≥ 1}, and {Bgk ⊂ Cg : k ≥ 1}, each with finite
Lebesgue measure, such that

lim
k→∞

∫
Cf,g\B0k

f(x)dx = lim
k→∞

∫
Cf,g\B0k

g(x)dx = 0 (38)

lim
k→∞

∫
Cf\Bfk

f(x)dx = 0; lim
k→∞

∫
Cg\Bgk

g(x)dx = 0. (39)

23



Let Bk = B0k ∪Bfk ∪Bgk for k ≥ 1. Notice that for each k ≥ 1, by Lemma A6, we have

An(Bk)⇒
√
p0,Bkσ

2
0 + σ2

1,Bk
Z1 as n→∞. (40)

By (38) and (39), √
p0,Bkσ

2
0 + σ2

1,Bk
Z1 ⇒

√
p0σ2

0 + σ2
1Z1 as k →∞. (41)

Also, by Lemma A8, we have

lim
n→∞

E

(
√
n

∫
Cf,g\B0k

{hn(x)− Ehn(x)} dx
)2

≤ D

(
sup
u
|K(u)|

)2 ∫
Cf,g\B0k

[f(x) + g(x)] dx, (42)

where

hn(x) = min{fn(x)− Efn(x), gn(x)− Egn(x)}.

Similarly, we have

lim
n→∞

E

(
√
n
∫

Cf\Bfk
{fn(x)− Efn(x)} dx

)2

≤ D

(
sup
u
|K(u)|

)2 ∫
Cf\Bfk

f(x)dx (43)

lim
n→∞

E

(
√
n
∫

Cg\Bgk
{gn(x)− Egn(x)} dx

)2

≤ D

(
sup
u
|K(u)|

)2 ∫
Cg\Bgk

g(x)dx. (44)

The right hand sides of (42), (43), and (44) converge to zero as k →∞ by (38), (39). Therefore, we

have

lim
k→∞

lim
n→∞

Pr
(∣∣An(Bk)− (An − EAn)

∣∣ > ε
)

= 0 ∀ε > 0. (45)

Now, by (40), (41) and (45) and Theorem 4.2 of Billingsley (1968), we have, as n→∞,

An − EAn
=
√
n

∫
Cf,g

[min {fn(x)− Efn(x), gn(x)− Egn(x)}

−Emin {fn(x)− Efn(x), gn(x)− Egn(x)}] dx

+
√
n

∫
Cf

[fn(x)− Efn(x)] dx+
√
n

∫
Cg

[gn(x)− Egn(x)] dx

⇒
√
p0σ2

0 + σ2
1Z1. (46)

Now, the proof of Theorem A is complete since, similarly to Lemma A5, we have

lim
n→∞

|EAn − an| = 0.

�
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Proof of Theorem 2. To establish (12) we must show consistency of the bias correction. By
the triangle inequality, we have∣∣∣∣∣

∫
Ĉf,g

f 1/2
n (x)dx−

∫
Cf,g

f 1/2(x)dx

∣∣∣∣∣ ≤
∫
Ĉf,g∆Cf,g

f 1/2(x)dx+

∫
Ĉf,g

∣∣f 1/2
n (x)− f 1/2(x)

∣∣ dx
= : D1n +D2n ,

where ∆ denotes the symmetric difference. For notational simplicity, let

hn(x) = fn(x)− gn(x) and h(x) = f(x)− g(x).

Define

C̃f,g = {x : |h(x)| ≤ 2cn}
En = {x : |hn(x)− h(x)| ≥ cn} .

We first establish D1n = op(b
d/2) using an argument similar to Cuevas and Fraiman (1997, The-

orem 1). Using Cf,g ⊂ C̃f,g, µf (Ĉf,g ∩ C̃c
f,g ∩ Ec

n) = 0 and µf (Ĉ
c
f,g ∩ Cf,g ∩ Ec

n) = 0, we have

D1n = µf (Ĉf,g∆Cf,g) = µf (Ĉf,g ∩ Cc
f,g) + µf (Ĉ

c
f,g ∩ Cf,g)

≤ µf (Ĉf,g ∩ C̃c
f,g) + µf (C̃f,g ∩ Cc

f,g) + µf (Ĉ
c
f,g ∩ Cf,g)

= µf (Ĉf,g ∩ C̃c
f,g ∩ En) + µf (C̃f,g ∩ Cc

f,g) + µf (Ĉ
c
f,g ∩ Cf,g ∩ En)

≤ 2µf (En) + ςn, (47)

where superscript c stands for compliment and ςn = 2h∗(2cn) by Assumption A5. Also, by the rates

of convergence result of the L1-errors of kernel densities (see, e.g., Holmström and Klemelä (1992)),

we have that ∫
|hn(x)− h(x)| f 1/2(x)dx ≤ Op

(
bs + (nbd)−1/2

)
. (48)

Let ρn = min{b−s, (nbd)1/2}. Then, for any ε > 0,

Pr
(
b−d/2D1n > ε

)
≤ Pr

(
2µf (En) + ςn > εbd/2

)
≤ Pr

(
1

cn

∫
|hn(x)− h(x)| f 1/2(x)dx >

εbd/2 − ςn
2

)
≤ Pr

(
ρn

∫
|hn(x)− h(x)| f 1/2(x)dx >

ερncnb
d/2

2

)
+ o(1)

→ 0, (49)

where the first inequality holds by (47), the second inequality holds by the inequality 1(En) ≤
|hn(x)− h(x)| /cn, the third inequality follows from Assumptions A5 and A7 which implies ρncnςn →
0, and the last convergence to zero holds by (48) and ρncnb

d/2/(log n)1/2 →∞ using Assumption A7.

This now establishes that D1n = op(b
d/2).
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We next consider D2n. First note that with probability one

θ̂ =

∫
min{fn(x), gn(x)}dx =

∫
Cn

min{fn(x), gn(x)}dx,

where Cn = [l1n, u1n]× · · · × [ldn, udn] with

ljn = max{ min
1≤i≤n

Xji, min
1≤i≤n

Yji} − b/2

ujn = min{max
1≤i≤n

Xji, max
1≤i≤n

Yji}] + b/2.

This holds since the kernel has compact support with radius 1/2. It follows that we can restrict any

integration to sets intersected with Cn.

Using the identity x− y = (x1/2 − y1/2)(y1/2 + x1/2), we have∫
Ĉf,g∩Cn

∣∣f 1/2
n (x)− f 1/2(x)

∣∣ dx =

∫
Ĉf,g∩Cn

|fn(x)− f(x)|
f 1/2(x) + f

1/2
n (x)

dx ≤
∫
Ĉf,g∩Cn

|fn(x)− f(x)|
f 1/2(x)

dx

because f 1/2
n (x) ≥ 0 for x ∈ Ĉf,g∩Cn. Then note that by the Cauchy-Schwarz and triangle inequalities(

nbd

||K||22

)1/2

E

[
|fn(x)− f(x)|

f 1/2(x)

]
≤

(
nbd

||K||22

)1/2

E1/2
[
|fn(x)− f(x)|2

] 1

f 1/2(x)

≤
[(

nbd

||K||22

)
|Efn(x)− f(x)|2

f(x)
+

(
nbd

||K||22

)
var(fn(x))

f(x)

]1/2

.

Then, we use the inequality (a+ b)1/2 ≤ 1 + a1/2 + b1/2 for all positive a, b, to obtain that(
nbd

||K||22

)1/2

E

[
|fn(x)− f(x)|

f 1/2(x)

]
≤ 1 +

[(
nbd

||K||22

)1/2 |Efn(x)− f(x)|
f 1/2(x)

]
+

[(
nbd

||K||22

)
var(fn(x))

f(x)

]1/2

≤ 2 +

( nbd

||K||22

)1/2

bs
∑
|λ|=s

1

s!

∣∣Dλf(x)
∣∣

f 1/2(x)

∫
uλK(u)du

+ o(1),

where the second inequality follows by standard kernel arguments and is uniform in x ∈ Rd. The
bias term is of smaller order under our conditions given the absolute integrability of Dλf(x)/f 1/2(x).

Therefore, ∫
Ĉf,g∩Cn

∣∣f 1/2
n (x)− f 1/2(x)

∣∣ dx ≤ 2µ(Cn)

(
||K||22
nbd

)1/2

(1 + o(1)),

b−d/2D2n = Op(n
−1/2b−drn),

where rn =

d∏
j=1

(ujn − ljn). For Gaussian X, Y, rn = Op((log n)d/2) so that this term is small under

our conditions. More generally we can bound rn under our moment condition. Specifically, by the

Bonferroni and Markov inequalities

Pr

[
max
1≤i≤n

|Xji| > δn

]
≤

n∑
i=1

Pr [|Xji| > δn] ≤ n
E|Xji|p
δpn

,
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provided E|Xji|p < ∞. Therefore, we take δn = n1/pL(n), where L(n) → ∞ is a slowly varying

function. We then show that we can condition on the event that {rn ≤ n1/pL(n)}, which has
probability tending to one.

This completes the proof of (12). The consistency of the standard error follows by similar

arguments. �

A.3 Proofs of Lemmas

Proof of Lemma A3. To establish (36), we first notice that, for ‖x− y‖ > b, the random

variables (fN(x)− Efn(x), gN(x)− Egn(x)) and (fN(y)− Efn(y), gN(y)− Egn(y)) are independent

because they are functions of independent increments of Poisson processes and the kernel K vanishes

outside of the closed ball of radius 1/2. This implies that

cov
(
AP1n(B0), AP2n(Bf )

)
= cov

(
AP1n(B0), AP3n(Bg)

)
= 0. (50)

On the other hand, by standard arguments for kernel densities, we have as n→∞

var
(
AP2n(Bf )

)
= E

(∫
Bf

Kb (x−X) dx

)2

→ pf,B

var
(
AP3n(Bg)

)
= E

(∫
Bg

Kb (x− Y ) dx

)2

→ pg,B (51)

cov
(
AP2n(Bf ), A

P
3n(Bg)

)
= E

(∫
Bf

Kb (x−X) dx

)(∫
Bg

Kb (x− Y ) dx

)
→ pf,g,B.

Therefore, by (50) and (51), the proof of Lemma A3 is complete if we show

lim
n→∞

var
(
AP1n(B0)

)
= p0,Bσ

2
0. (52)

To show (52), note that

var
(
AP1n(B0)

)
= n

∫
B0

∫
B0

cov (min {fN(x)− Efn(x), gN(x)− Egn(x)} ,min {fN(y)− Efn(y), gN(y)− Egn(y)}) dxdy

= n

∫
B0

∫
B0

1 (‖x− y‖ ≤ b)

×cov (min {fN(x)− Efn(x), gN(x)− Egn(x)} ,min {fN(y)− Efn(y), gN(y)− Egn(y)}) dxdy.

Let

Tf,N(x) =

√
n {fN(x)− Efn(x)}√

kf,n(x)
, (53)

Tg,N(x) =

√
n {gN(x)− Egn(x)}√

kg,n(x)
, (54)
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where kf,n(x) = nvar (fN(x)) and kg,n(x) = nvar (gN(x)) . By standard arguments, we have that,

with µ(B0) <∞,

sup
x∈B0

∣∣∣∣√kf,n(x)− b−d/2||K||2
√
f(x)

∣∣∣∣ = O(bd/2) (55)

sup
x∈B0

∣∣∣∣√kg,n(x)− b−d/2||K||2
√
g(x)

∣∣∣∣ = O(bd/2) (56)∫
B0

∫
B0

1 (‖x− y‖ ≤ b) dxdy = O(bd) (57)

sup
x,y∈Rd

|cov (min{Tf,N(x), Tg,N(x)},min {Tf,N(y), Tg,N(y)})| = O(1), (58)

where (55) and (56) holds by two term Taylor expansions and (58) follows from Cauchy-Schwarz

inequality and the elementary result |min{a, b}| ≤ |a|+ |b| . Therefore, from (55) - (58), we have that

var
(
AP1n(B0)

)
= σ2

n,0 + o(1),

where

σ2
n,0 =

∫
B0

∫
B0

1 (‖x− y‖ ≤ b) cov (min{Tf,N(x), Tg,N(x)},min {Tf,N(y), Tg,N(y)})

×b−d||K||22
√
f(x)f(y)dxdy. (59)

Now, let Zn(x, y) = (Z1n(x), Z2n(x), Z3n(y), Z4n(y))> for x, y ∈ Rd, be a mean zero multivariate
Gaussian process such that for each x, y ∈ Rd, Zn(x, y) and Tn(x, y) = (Tf,N(x), Tg,N(x), Tf,N(y), Tg,N(y))>

have the same covariance structure. That is,

Zn(x, y)
d
= Σ−1/2

n (x, y)Z

where Z = (Z1, Z2, Z3, Z4)> is the standard normal (N(0, I4)) random vector and

Σn(x, y) = ETn(x, y)Tn(x, y)>. (60)

Let

τ 2
n,0 =

∫
B0

∫
B0

1 (‖x− y‖ ≤ b) cov (min{Z1n(x), Z2n(x)},min {Z3n(y), Z4n(y)})

×b−d||K||22
√
f(x)f(y)dxdy. (61)

By a change of variables y = x+ tb, we can write

τ 2
n,0 =

∫
B0

∫
T0

1(x ∈ B0)1 (x+ tb ∈ B0) cov (min{Z1n(x), Z2n(x)},min {Z3n(x+ tb), Z4n(x+ tb)})

×||K||22
√
f(x)f(x+ tb)dxdt, (62)
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where T0 = {t ∈ Rd : ‖t‖ ≤ 1}. Let

ρ∗f,n(x, y) = E [Tf,N(x)Tf,N(y)]

ρ∗g,n(x, y) = E [Tg,N(x)Tg,N(y)]

ρ∗f,g,n(x, y) = E [Tf,N(x)Tg,N(y)] .

Observe that, for almost every x ∈ B0, we have

ρ∗f,n(x, x+ tb) =
b−dE [K ((x−X)/b)K ((x−X)/b+ t)]√
b−2dEK2 ((x−X)/b)EK2 ((x−X)/b+ t)

→
∫
Rd K(u)K(u+ t)du

||K||22
= ρ(t). (63)

Similarly, we have ρ∗g,n(x, x + tb) → ρ(t) as n → ∞ for almost all x ∈ B0. (In fact, under our

assumptions, the convergence (63) holds uniformly over (x, t) ∈ B0× T0.) Similarly, for almost every

x, y ∈ B0, we have

ρ∗f,g,n(x, y) =
b−dE [K ((x−X)/b)K ((y − Y )/b)]√
b−2dEK2 ((x−X)/b)EK2 ((y − Y )/b)

= O(bd)→ 0. (64)

Therefore, by (63), (64) and the bounded convergence theorem, we have

lim
n→∞

τ 2
n,0 = p0,Bσ

2
0.

Now, the desired result (36) holds if we establish

τ 2
n,0 − σ2

n,0 → 0. (65)

Set

Gn(x, t) = ||K||221(x ∈ B0)1 (x+ tb ∈ B0)
√
f(x)f(x+ tb).

Notice that ∫
B0

∫
T0

Gn(x, t)dxdt ≤ ||K||22µ(T0 ×B0) sup
x∈B0
|f(x)| =: β <∞. (66)

Let εn ∈ (0, b] be a sequence such that εn/b→ 0. Letting T0,n = {t ∈ Rd : εn/b ≤ ‖t‖ ≤ 1}, define

σ2
n,0(εn) =

∫
B0

∫
T0,n

1(x ∈ B0)1 (x+ tb ∈ B0) cov (min{Tf,N(x), Tg,N(x)},min {Tf,N(x+ tb), Tg,N(x+ tb)})

×||K||22
√
f(x)f(x+ tb)dxdt,

τ 2
n,0(εn) =

∫
B0

∫
T0,n

1(x ∈ B0)1 (x+ tb ∈ B0) cov (min{Z1n(x), Z2n(x)},min {Z3n(x+ tb), Z4n(x+ tb)})

×||K||22
√
f(x)f(x+ tb)dxdt.
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To show (65), we first establish

τ 2
n,0(εn)− σ2

n,0(εn)→ 0. (67)

We have

τ 2
n,0(εn)− σ2

n,0(εn) =

∣∣∣∣∣
∫
B0

∫
T0,n

[cov (min{Z1n(x), Z2n(x)},min {Z3n(x+ tb), Z4n(x+ tb)})

−cov (min{Tf,N(x), Tg,N(x)},min {Tf,N(x+ tb), Tg,N(x+ tb)})]Gn(x, t)dxdt|

≤
∫
B0

∫
T0,n

|Emin{Z1n(x), Z2n(x)}Emin {Z3n(x+ tb), Z4n(x+ tb)}

−Emin{Tf,N(x), Tg,N(x)}Emin {Tf,N(x+ tb), Tg,N(x+ tb)}|Gn(x, t)dxdt

+

∫
B0

∫
T0,n

|Emin{Z1n(x), Z2n(x)}min {Z3n(x+ tb), Z4n(x+ tb)}

−Emin{Tf,N(x), Tg,N(x)}min {Tf,N(x+ tb), Tg,N(x+ tb)}|Gn(x, t)dxdt

= : ∆1n + ∆2n. (68)

First, consider ∆1n. Let η1 denote a Poisson random variable with mean 1 that are independent of

{(Xi, Yi) : i ≥ 1} and set

Qf,n(x) =

∑
j≤η1

K

(
x−Xj

b

)
− EK

(
x−X
b

) /√EK2

(
x−X
b

)
(69)

Qg,n(x) =

∑
j≤η1

K

(
x− Yj
b

)
− EK

(
x− Y
b

) /√EK2

(
x− Y
b

)
. (70)

Notice that, with f(x) = g(x) ≥ δ > 0 for all x ∈ B0, we have

sup
x∈B0

E |Qφ,n(x)|3 = O(b−d/2) for φ = f and g. (71)

Let Q(1)
φ,n(x), . . . , Q

(n)
φ,n(x) be i.i.d Qφ,n(x) for φ = f and g. Clearly, we have

Tf,N(x) =

√
n {fN(x)− Efn(x)}√
b−2dEK2 ((x−X)/b)

d
=

∑n
i=1Q

(i)
f,n(x)

√
n

(72)

Tg,N(x) =

√
n {gN(x)− Egn(x)}√
b−2dEK2 ((x− Y )/b)

d
=

∑n
i=1Q

(i)
g,n(x)√
n

. (73)

Therefore, by Lemma A1(a), (71), (72), and (73), we have

sup
x∈B0
|Emin{Tf,N(x), Tg,N(x)} − Emin {Z1n(x), Z2n(x)}| ≤ O

(
1√
nbd

)
. (74)

The results (74) and (66) imply that ∆1n = o(1). We next consider ∆2n. Under Assumption A1, we

can expand ρ(t) in a Taylor series to get

ρ(t) = 1− C ‖t‖α + o(‖t‖α) as ‖t‖ → 0 (75)
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for some constants C ≥ 0 and 0 < α ≤ 2, see Liero (1982, p.178). Therefore, we have

∆2n ≤ sup
(x,t)∈B0×T0,n

|Emin{Z1n(x), Z2n(x)}min {Z3n(x+ tb), Z4n(x+ tb)}

−Emin{Tf,N(x), Tg,N(x)}min {Tf,N(x+ tb), Tg,N(x+ tb)}| · β

≤ O

((εn
b

)−3α
)
·O
(

1√
nbd

)
, (76)

where the first inequality uses (66) and the second inequality holds by Lemma A1(a), (71), (75), and

the fact that limn→∞ ρ
∗
f,n(x, x+tb) = limn→∞ ρ

∗
g,n(x, x+tb) = ρ(t) a.s. uniformly over (x, t) ∈ B0×T0.

Since εn is arbitrary, we can choose εn = b (log n)−1/(6α). This choice of εn makes the right hand side

of (76) o(1), using Assumption A3. Therefore, we have ∆2n = o(1), and hence (67).

On the other hand, using (58) and argument similar to (74), we have∣∣[σ2
n,0 − τ 2

n,0

]
−
[
σ2
n,0(εn)− τ 2

n,0(εn)
]∣∣

≤ O

(
1√
nbd

)
+O

((εn
b

)d)
= o(1).

This and (67) establish (65), and hence (52), as desired. �

Proof of Lemma A4. Let

∆n(x) =
√
n [min {fN(x)− Efn(x), gN(x)− Egn(x)}
−nEmin {fN(x)− Efn(x), gN(x)− Egn(x)}] ,

∆f,n(x) =
√
n {fN(x)− Efn(x)} , ∆g,n(x) =

√
n {gN(x)− Egn(x)}

We first construct partitions of B(M), B(Mf ) and B(Mg). Consider the regular grid

Gi = (xi1 , xi1+1]× · · · × (xid , xid+1],

where i = (i1, . . . , id), i1, . . . , id ∈ Z and xi = ib for i ∈ Z. Define

R0,i = Gi ∩ B(M), Rf,i = Gi ∩ B(Mf ), Rg,i = Gi ∩ B(Mg),

In = {i : R0,i ∪Rf,i ∪Rg,i 6= ∅}.

Then, we see that {R0,i : i ∈ In ⊂ Zd}, {Rf,i : i ∈ In ⊂ Zd} and {Rg,i : i ∈ In ⊂ Zd} are partitions
of B(M), B(Mf ) and B(Mg), respectively, with

µ(R0,i) ≤ d0b
d, µ(Rf,i) ≤ d1b

d, µ(Rg,i) ≤ d2b
d (77)

mn = : µ(In) ≤ d3b
−d

31



for some positive constants d0, .., d3, see, e.g., Mason and Polonik (2009) for a similar construction

of partitions in a different context. Set

αi,n =

∫
R0,i

1(x ∈ B0)∆n(x)dx+

∫
Rf,i

1(x ∈ Bf )∆f,n(x)dx

∫
Rg,i

1(x ∈ Bg)∆g,n(x)dx,

ui,n =
1√
n

N∑
j=1

[1 {(Xj ∈ Rf,i) ∪ (Xj ∈ R0,i, Yj ∈ R0,i) ∪ (Yj ∈ Rg,i)}

−nPr {(X ∈ Rf,i) ∪ (X ∈ R0,i, Y ∈ R0,i) ∪ (Y ∈ Rg,i)}] .

Then, we have

APn (B) =
∑
i∈In

αi,n and Un =
∑
i∈In

ui,n.

Notice that

var(APn (B)) = σ2
n(B) and var(Un) = 1− α.

For arbitrary λ1 and λ2 ∈ R, let
yi,n = λ1αi,n + λ2ui,n.

Notice that {yi,n : i ∈ In} is an array of mean zero one-dependent random fields. Below we will

establish that

var

(∑
i∈In

yi,n

)
= var(λ1A

P
n (B) + λ2Un) (78)

→ λ2
1

(
p0,Bσ

2
0 + σ̄2

1,B

)
+ λ2

2(1− α) + 2λ1λ2 (pf,B + pg,B) ,

and ∑
i∈In

E |yi,n|r = o(1) for some 2 < r < 3. (79)

Then, the result of Lemma A4 follows from the CLT of Shergin (1990) and Cramér-Wold device.

We first establish (78). By Lemma A3, (78) holds if we have

cov
(
APn (B), Un

)
→ pf,B + pg,B. (80)

Recall that

APn (B) = AP1n(B0) + AP2n(Bf ) + AP3n(Bg).

Therefore, (80) holds if we have

cov
(
AP2n(Bf ), Un

)
→ pf,B, cov

(
AP3n(Bg), Un

)
→ pg,B, (81)

cov
(
AP1n(B0), Un

)
= cov

(√
n

∫
B0

min {fN(x)− Efn(x), gN(x)− Egn(x)} dx, Un
)

(82)

= O

(
1√
nb2d

)
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(81) holds by a standard argument. We show below (82). For any x ∈ B0, for Tf,N , Tg,N defined in

(72), (73), we have(
Tf,N(x), Tg,N(x),

Un√
Pr ((X, Y ) ∈ T (M))

)
d
=

1√
n

n∑
i=1

(
Q

(i)
f,n(x), Q(i)

g,n(x), U (i)
)
, (83)

where
(
Q

(i)
f,n(x), Q

(i)
g,n(x), U (i)

)
for i = 1, . . . , n are i.i.d (Qf,n(x), Qg,n(x), U), with (Qf,n(x), Qg,n(x))

defined as in (69) and (70) and

U =

∑
j≤η1

1 ((Xj, Yj) ∈ T (M))− Pr ((X, Y ) ∈ T (M))

 /√Pr ((X, Y ) ∈ T (M)).

Notice that, for φ = f and g, we have

sup
x∈B0
|cov (Qφ,n(x), U)| = O(bd/2), (84)

which in turn is less than or equal to ε for all suffi ciently large n and any 0 < ε < 1/2. This result

and Lemma A1(b) imply that

sup
x∈B0

∣∣cov
(√

nmin {fN(x)− Efn(x), gN(x)− Egn(x)} , Un
)∣∣ ≤ O

(
1√
nb2d

)
,

which, when combined with µ(B0) <∞, yields (82) and hence (78), as desired.
We next establish (79). Notice that, with 2 < r < 3, using Liapunov inequality and cr-inequality,

we have

(E |αi,n|r)3/r

≤ 9

(∫
R0,i

∫
R0,i

∫
R0,i

1B0(x)1B0(y)1B0(z)E |∆n(x)∆n(y)∆n(z)| dxdydz (85)

+

∫
Rf,i

∫
Rf,i

∫
Rf,i

1Bf (x)1Bf (y)1Bf (z)E |∆f,n(x)∆f,n(y)∆f,n(z)| dxdydz

+

∫
Rg,i

∫
Rg,i

∫
Rg,i

1Bg(x)1Bg(y)1Bg(z)E |∆g,n(x)∆g,n(y)∆g,n(z)| dxdydz
)
,

where 1B(x) = 1(x ∈ B). Also, by cr-inequality again and the elementary result |min{X, Y }| ≤
|X|+ |Y | , we have: for some constant D > 0,

E |∆n(x)|3 ≤ Dn3/2
{
E |fN(x)− Efn(x)|3 + E |gN(x)− Egn(x)|3

}
. (86)

By the Rosenthal’s inequality (see, e.g., Lemma 2.3 of Giné et al. (2003)), we have:

sup
x∈B0

n3/2E |fN(x)− Efn(x)|3 ≤ O

(
1

b3d/2
+

1

n1/2b2d

)
. (87)
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A similar result holds for gN . Now, Assumption A3, (85), (86), (87), the elementary result E|XY Z| ≤
E (|X|+ |Y |+ |Z|)3 and the fact that µ(R0,i) ≤ d1b

d imply that the first term on the right hand

side of (85) is bounded by a O(brd/2) term uniformly in i ∈ In. Similar results hold for the other
terms on the right hand side of (85). Therefore, we have

E |αi,n|r ≤ O(brd/2) uniformly in i ∈ In. (88)

This implies that ∑
i∈In

E |αi,n|r ≤ O(mnb
rd/2) = O(b(r−2)/d) = o(1). (89)

On the other hand, set

pi,n = Pr {(X ∈ Rf,i) ∪ (X ∈ R0,i, Y ∈ R0,i) ∪ (Y ∈ Rg,i)} .

Then, by the Rosenthal’s inequality, there exists a constant D1 > 0 such that∑
i∈In

E |ui,n|r ≤ D1n
−r/2

∑
i∈In

(
(npi,n)r/2 + npi,n

)
(90)

≤ D1 max
i∈In

(
(pi,n)(r−2)/2 + n−1/2

)
→ 0.

Therefore, combining (89) and (90), we have (79). This completes the proof of Lemma A4. �
Proof of Lemma A5. Consider part (a) first. Let Tf,N(x) and Tg,N(x) be defined as in (53)

and (54), respectively. We have∣∣∣∣∫
B0

[√
nEmin {fN(x)− Efn(x), gN(x)− Egn(x)} dx− Emin {Z1, Z2} k1/2

f,n (x)
]
dx

∣∣∣∣
≤ sup

x∈B0
|Emin{Tf,N(x), Tg,N(x)} − Emin {Z1, Z2}| · sup

x∈B0
k

1/2
f,n (x) · µ(B0)

= O
(
n−1/2b−d/2

)
O(b−d/2) = O(n−1/2b−d) = o(1),

by Lemma A1(a), (55), Assumption A3, and the fact µ(B0) <∞. Similarly, we have∣∣∣∣∫
B0

[√
nEmin {fn(x)− Efn(x), gn(x)− Egn(x)} dx− Emin {Z1, Z2}

√
nvar (fn(x))

]
dx

∣∣∣∣ = O(n−1/2b−d).

Therefore, part (b) also holds since, using (24) and (25),

sup
x∈B0

∣∣∣k1/2
f,n (x)−

√
nvar (fn(x))

∣∣∣ = O(bd/2) = o(1).

�
Proof of Lemma A6. Consider APn (B) defined in (31). Conditional on N = n, we have

An(B)
d
=
√
n

∫
B0

[min {fn(x)− Efn(x), gn(x)− Egn(x)} (91)

−Emin {fN(x)− Efn(x), gN(x)− Egn(x)}] dx

+
√
n

∫
Bf

[fn(x)− Efn(x)] dx+
√
n

∫
Bg

[gn(x)− Egn(x)] dx

= : ACn (B).
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By Lemmas A2 and A4, we have

ACn (B) ⇒
[
p0,Bσ

2
0 + σ̄2

1,B − (pf,B + pg,B)2]1/2 Z1

=
√
p0,Bσ2

0 + σ2
1,BZ1.

Now, the result of Lemma A6 holds since, as n→∞

ACn (B)− An(B)

=

∫
B0

[√
nEmin {fN(x)− Efn(x), gN(x)− Egn(x)}

−
√
nEmin {fn(x)− Efn(x), gn(x)− Egn(x)}

]
dx→ 0.

�
Proof of Lemma A7. We can establish Lemma A7 by modifying the majorization inequality

results of Pinelis (1994). Let (X∗1 , . . . , X
∗
n) be an independent copy of (X1, . . . , Xn). For i = 1, . . . , n,

let Ei and E∗i denote the conditional expectations given (X1, . . . , Xi) and (X1, . . . , Xi−1, X
∗
i ). Let

ξi = EiTn − Ei−1Tn, (92)

ηi = Ei (Tn − Tn,−i) , (93)

where

Tn,−i =

∫
B

min

{
n∑
k 6=i

h1(X1k, x),
n∑
k 6=i

h2(X2k, x)

}
dx.

Then, we have

Tn − ETn = ξ1 + · · · ξn, (94)

ξi = ηi − Ei−1ηi, (95)

|ηi| ≤ 2
2∑
j=1

∫
B
|hj(Xji, x)| dx, (96)

where (94) follows from (92), (95) holds by independence ofXi ’s, and (96) follows from the elementary

inequality |min{a+ b, c+ d} −min{a, c}| ≤ 2 (|b|+ |d|) . Let

η∗i = E∗i
(
T ∗n,i − Tn,−i

)
,

where

T ∗n,i =

∫
B

min

{
n∑
k 6=i

h1(X1k, x) + h1(X∗1i, x),

n∑
k 6=i

h2(X2k, x) + h2(X∗2i, x)

}
dx.

Notice that the random variables ηi and η
∗
i are conditionally independent given (X1, . . . , Xi−1), and

the conditional distributions of ηi and η
∗
i given (X1, . . . , Xi−1) are equivalent. Therefore, for any
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convex function q : R→ R, we have

Ei−1q(ξi) = Ei−1q(ηi − Ei−1ηi)

≤ Ei−1q(ηi − Ei−1ηi − η∗i − Ei−1η
∗
i )

≤ 1

2
Ei−1 [q(2ηi) + q(−2η∗i )]

≤ 1

2
Ei−1

[
q

(
4

2∑
j=1

∫
B
|hj(Xji, x)| dx

)
+ q

(
−4

2∑
j=1

∫
B
|hj(Xji, x)| dx

)]

= Eq

(
4εi

2∑
j=1

∫
B
|hj(Xji, x)| dx

)
,

where the first inequality follows from Berger (1991, Lemma 2.2), the second inequality holds by the

convexity of q and the last inequality follows from the convexity of q and (96). Now, the result of

Lemma A7 holds by (94) and Lemma 2.6 of Berger (1991). �

Proof of Lemma A8. Let R(x, r) =
d∏
i=1

[xi− r, xi + r] denote a closed rectangle in Rd.We have

E

√n ∫
B

{hn(x)− Ehn(x)} dx

2

≤ D

E
 1

bd

∫
B

∣∣∣∣K (x−Xb
)∣∣∣∣ dx

2

+ E

 1

bd

∫
B

∣∣∣∣K (x− Yb
)∣∣∣∣ dx

2
≤ D

(
sup
u
|K(u)|

)2 ∫
B

[f(x) + g(x)] dx

+D

(
sup
u
|K(u)|

)2
∞∫

−∞

∣∣b−d Pr (X ∈ R(x, b/2))− f(x)
∣∣ dx+

∞∫
−∞

∣∣b−d Pr (Y ∈ R(x, b/2))− g(x)
∣∣ dx

= D

(
sup
u
|K(u)|

)2 ∫
B

[f(x) + g(x)] dx+ o(1)

as n → ∞, where the first inequality follows from Lemma A7. This results completes the proof of

Lemma A8. �
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B Tables and Figures

Kernel K(u) σ2
0 ||K||22

Uniform 1 [|u| ≤ 0.5] 0.6135 1.000

Triangular (2 + 4u)1 [−0.5 ≤ u ≤ 0] + (2− 4u)1 [0 < u ≤ 0.5] 0.6248 1.3334

Normal φ(u)
1−2Φ(−0.5)

1 [|u| ≤ 0.5] 0.6167 1.0014

Epanechnikov 6
(

1
4
− u2

)
1 [|u| ≤ 0.5] 0.6175 1.1999

Biweight 30
(

1
4
− u2

)2
1 [|u| ≤ 0.5] 0.6169 1.4275

Table 1. Constants for selected kernels
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θ̂ θ̂
bc

n b c bias mbias std iqr bias mbias std iqr

100 bs b -0.09244 -0.09037 0.03757 0.03793 -0.06353 -0.06129 0.04442 0.06358

b3/2 -0.09244 -0.09037 0.03757 0.03793 -0.07839 -0.07568 0.04138 0.04959

b2/3 -0.09244 -0.09037 0.03757 0.03793 -0.04953 -0.04739 0.04462 0.07284

b3/2
s b -0.10204 -0.10212 0.03922 0.03938 -0.08702 -0.08765 0.04263 0.05168

b3/2 -0.10204 -0.10212 0.03922 0.03938 -0.09724 -0.09751 0.04032 0.04345

b2/3 -0.10204 -0.10212 0.03922 0.03938 -0.07043 -0.07082 0.04569 0.06578

200 bs b -0.07618 -0.07574 0.02686 0.02591 -0.05260 -0.05216 0.03146 0.04526

b3/2 -0.07618 -0.07574 0.02686 0.02591 -0.06518 -0.06495 0.02959 0.03516

b2/3 -0.07618 -0.07574 0.02686 0.02591 -0.04116 -0.04005 0.03090 0.05381

b3/2
s b -0.08067 -0.08110 0.02711 0.02669 -0.06856 -0.06882 0.02930 0.03651

b3/2 -0.08067 -0.08110 0.02711 0.02669 -0.07722 -0.07766 0.02773 0.02935

b2/3 -0.08067 -0.08110 0.02711 0.02669 -0.05325 -0.05279 0.03149 0.04830

400 bs b -0.06512 -0.06472 0.01951 0.01935 -0.04582 -0.04496 0.02278 0.03510

b3/2 -0.06512 -0.06472 0.01951 0.01935 -0.05649 -0.05643 0.02149 0.02639

b2/3 -0.06512 -0.06472 0.01951 0.01935 -0.03701 -0.03605 0.02176 0.04148

b3/2
s b -0.06614 -0.06508 0.02010 0.02144 -0.05632 -0.05548 0.02168 0.02926

b3/2 -0.06614 -0.06508 0.02010 0.02144 -0.06362 -0.06305 0.02051 0.02337

b2/3 -0.06614 -0.06508 0.02010 0.02144 -0.04267 -0.04219 0.02337 0.04041

800 bs b -0.05417 -0.05449 0.01383 0.01395 -0.03821 -0.03821 0.01585 0.02683

b3/2 -0.05417 -0.05449 0.01383 0.01395 -0.04730 -0.04724 0.01517 0.01954

b2/3 -0.05417 -0.05449 0.01383 0.01395 -0.03194 -0.03194 0.01486 0.03097

b3/2
s b -0.05260 -0.05247 0.01407 0.01393 -0.04474 -0.04480 0.01515 0.01999

b3/2 -0.05260 -0.05247 0.01407 0.01393 -0.05078 -0.05055 0.01429 0.01522

b2/3 -0.05260 -0.05247 0.01407 0.01393 -0.03275 -0.03249 0.01648 0.02940

1600 bs b -0.04594 -0.04558 0.01022 0.01032 -0.03266 -0.03188 0.01165 0.02083

b3/2 -0.04594 -0.04558 0.01022 0.01032 -0.04031 -0.03951 0.01134 0.01485

b2/3 -0.04594 -0.04558 0.01022 0.01032 -0.02871 -0.02837 0.01069 0.02338

b3/2
s b -0.04272 -0.04246 0.01050 0.01040 -0.03639 -0.03627 0.01129 0.01540

b3/2 -0.04272 -0.04246 0.01050 0.01040 -0.04137 -0.04108 0.01067 0.01147

b2/3 -0.04272 -0.04246 0.01050 0.01040 -0.02577 -0.02590 0.01233 0.02362

Table 2. Univariate Monte Carlo Simulations
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θ̂ θ̂
bc

d n bias mbias std iqr bias mbias std iqr

100 -0.18971 -0.18749 0.03707 0.03745 -0.00541 -0.00414 0.03810 0.03917

200 -0.14374 -0.14205 0.02518 0.02542 -0.00097 0.00055 0.02564 0.02528

1 400 -0.11026 -0.10883 0.01826 0.01857 -0.00046 0.00109 0.01847 0.01874

800 -0.08466 -0.08429 0.01252 0.01213 -0.00062 -0.00018 0.01258 0.01212

1600 -0.06422 -0.06349 0.00862 0.00845 0.00002 0.00078 0.00865 0.00859

100 -0.48512 -0.48419 0.03945 0.03999 -0.09285 -0.09210 0.04499 0.04654

200 -0.40276 -0.40251 0.02857 0.02972 -0.06028 -0.06027 0.03164 0.03131

2 400 -0.33145 -0.33172 0.01888 0.01882 -0.03869 -0.03921 0.02060 0.02051

800 -0.27078 -0.27047 0.01227 0.01131 -0.02506 -0.02517 0.01311 0.01205

1600 -0.21984 -0.21987 0.00825 0.00852 -0.01598 -0.01609 0.00871 0.00908

100 -0.80363 -0.80339 0.03575 0.03821 -0.28710 -0.28707 0.03837 0.04088

200 -0.73850 -0.73884 0.02658 0.02625 -0.24065 -0.24136 0.02902 0.02811

3 400 -0.66891 -0.66990 0.02078 0.02116 -0.19509 -0.19645 0.02327 0.02298

800 -0.59617 -0.59578 0.01455 0.01495 -0.15201 -0.15169 0.01636 0.01656

1600 -0.52514 -0.52502 0.00998 0.01011 -0.11562 -0.11563 0.01129 0.01104

100 -0.95036 -0.95056 0.02062 0.01914 -0.39984 -0.40115 0.02155 0.02176

200 -0.92756 -0.92822 0.01754 0.01771 -0.38106 -0.38184 0.01840 0.01907

4 400 -0.90124 -0.90164 0.01434 0.01381 -0.36023 -0.36021 0.01497 0.01533

800 -0.86748 -0.86784 0.01174 0.01174 -0.33398 -0.33440 0.01261 0.01236

1600 -0.82785 -0.82800 0.00876 0.00918 -0.30430 -0.30464 0.00959 0.00963

100 -0.98838 -0.99000 0.01052 0.01432 -0.43053 -0.43184 0.01090 0.01239

200 -0.98403 -0.98500 0.00860 0.00741 -0.42692 -0.42744 0.00899 0.00863

5 400 -0.97722 -0.97750 0.00711 0.00741 -0.42119 -0.42162 0.00737 0.00775

800 -0.96915 -0.96916 0.00593 0.00608 -0.41462 -0.41469 0.00606 0.00602

1600 -0.95855 -0.95866 0.00475 0.00463 -0.40594 -0.40602 0.00498 0.00504

Table 3. Multivariate Monte Carlo Simulations
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Mean Std Deviation Median Maximum Minimum

Guangdong Ln(Exp p.c.) 8.0137 0.6277 8.0338 10.7260 6.2687

(n=600) Ln(Area p.c.) 2.6685 0.4726 2.6968 4.7361 1.0986

2001 Family size 3.3233 0.7723 3.0000 7.0000 1.0000

Expend p.c. 11431 7866.2 9638.5 105886 2329.0

Sq Meters p.c. 52.5800 29.7991 48.000 342.00 9.0000

Shaanxi Ln(Exp p.c.) 7.2324 0.6728 7.2092 9.7712 5.5977

(n=500) Ln(Area p.c.) 2.5336 0.4902 2.5328 4.1997 1.3863

2001 Family size 3.1020 0.7725 3.0000 6.0000 1.0000

Expend p.c. 4918.4 3407.9 3942.0 30806.0 1094.0

Sq Meters p.c. 42.0840 21.0892 38.000 200.00 12.000

Guangdong Ln(Exp p.c.) 5.8395 0.6147 5.8452 8.7497 4.1015

(n=595) Ln(Area p.c.) 2.1868 0.5702 2.2246 4.1352 0.4055

1987 Family size 3.8958 1.0836 4.0000 8.0000 2.0000

Expend p.c. 1447.1 898.79 1243.7 12617.0 411.60

Sq Meters p.c. 38.8588 21.6403 36.000 156.00 6.0000

Shaanxi Ln(Exp p.c.) 5.4156 0.5866 5.3898 7.3705 3.5231

(n=546) Ln(Area p.c.) 2.0575 0.4346 2.0369 3.8067 0.4055

1987 Family size 3.7216 1.0507 4.0000 8.0000 2.0000

Expend p.c. 883.15 434.22 779.16 4524.3 241.00

Sq Meters p.c. 30.4469 13.0470 28.000 100.00 6.0000
Table 4. Sample Statistics
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θ̂e sesce θ̂
bc

e see θ̂h sesch θ̂
bc

h seh θ̂eh sesceh θ̂
bc

eh seeh

1987 bs 0.70201 0.02803 0.77217 0.03282 0.78201 0.02948 0.85663 0.03282 0.63403 0.02782 0.79142 0.03214

2001 bs 0.52999 0.02694 0.59666 0.03366 0.76591 0.02833 0.83333 0.03323 0.50644 0.02665 0.65010 0.03289

1987 b3/2
s 0.69455 0.02861 0.77096 0.03432 0.77748 0.02947 0.84607 0.03456 0.59050 0.02771 0.81563 0.03279

2001 b3/2
s 0.52244 0.02752 0.58314 0.03487 0.82130 0.02709 0.90226 0.03518 0.47045 0.02571 0.65866 0.03434

Table 5. Parameter estimates along with standard errors
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α = 0.25 α = 0.5 α = 0.75 α = 1.0

1987 0.27170 0.348900 0.459800 0.625500

se 0.03935 0.10460 0.26326 0.54095

2001 0.24020 0.331100 0.469700 0.680100

se 0.03168 0.085039 0.228473 0.50276
Table 6. Duclos, Esteban and Ray polarization measure from pooled sample
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Figure 1. qq-plot of θ̂ versus normal distribution.
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Figure 1:

6



Figure 3. The kernel density estimates of expenditure and housing for the two provinces and the two years.
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C Further Material

C.1 Some Intuition

We give below an alternative estimator/intuition about our estimator. Suppose that the common

support is [0, 1] and let x1 = b/2, x2 = 3b/2, . . . , xT = 1 − b/2, where T = 1/b, and suppose the

kernel is supported on [−0.5, 0.5]. Then let

θ̂ =
1

T

T∑
t=1

min{f̂(xt), ĝ(xt)}.

Note that although f̂(xt) and f̂(xs) are not strictly independent for s 6= t, they are approximately

so. Specifically, cov(f̂(xt), f̂(xs)) = O(n−2), since

E
[
f̂(xt)f̂(xs)

]
=

1

n2

n∑
i=1

E
[
Kb

(
xt −Xi

)
Kb (xs −Xi)

]
+
n(n− 1)

n2
E
[
Kb

(
xt −X

)]
E [Kb (xs −X)]

=

(
1− 1

n2

)
E
[
f̂(xt)

]
E
[
f̂(xs)

]
.

We shall suppose for heuristic reasons thatmin{f̂(xt), ĝ(xt)} is strictly independent ofmin{f̂(xs), ĝ(xs)},
although technically we should still apply the Poissonization technique used in this paper to pro-

ceed. Suppose we can dispose of the smoothing bias terms as before and suppose for simplicity that

Cf,g = [0, 1], then

√
n(θ̂ − θ) =

√
n

1

T

T∑
t=1

min{f̂(xt)− Ef̂(xt), ĝ(xt)− Eĝ(xt)}+ op(1)

=

T∑
t=1

ξnt + op(1),

where ξnt = T−1n1/2 min{f̂(xt)−Ef̂(xt), ĝ(xt)−Eĝ(xt)}.We can apply a triangular array CLT here
after subtracting off the mean of ξnt, but to make things simple let us make the further step of the

normal approximation. Then

√
n(θ̂ − θ) =

1√
nb

√
n

1

T

T∑
t=1

min{f(xt)1/2||K||2Zft, g(xt)1/2||K||2Zgt}+ op(1),

= ||K||2
√
b

1/b∑
t=1

f(xt)1/2 min{Zft, Zgt}+ op(1),
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where Zft, Zgt are standard normal random variables mutually independent when X, Y are but oth-

erwise correlated. We then have the following result

√
n(θ̂ − θ)− ||K||2b−1/2

∫
f(x)1/2dxEmin{Zft, Zgt}

= ||K||2
√
b

1/b∑
t=1

f(xt)1/2 [min{Zft, Zgt} − Emin{Zft, Zgt}] + op(1),

which is asymptotically normal with mean zero and variance

||K||22
∫
f(x)dxvar [min{Zft, Zgt}] .

This should be compared with our σ2
0. One can show that E [min{Z1, Z2}2] = 1, so that

var [min{Zft, Zgt}] = 1− 0.562 = 0.6874,

which is bigger than σ2
0 = 0.61 for the uniform kernel. This says that our more complicated estimator

that averages also over non-independent points delivers about 10% improvement in variance in this

case. Note that the bias is the same for both estimators.

You can apply the same type of method in other semiparametric problems and our sense is

that the optimal kernel is the uniform if you only take account of the first order effect on variance.

Example is suppose

Y = µ+ εi,

then the sample mean is BLUE. We can compute the kernel estimator against some covariates X

and average, thus

θ̂ =
1

T

T∑
t=1

m̂(xt),

where m̂(xt) is a kernel estimator. Then when εi is independent of Xi and Xi is uniform on [0, 1], the

asymptotic variance of θ̂ is σ2||K||22/n, which is minimized by taking K to be uniform on [−0.5, 0.5].

In general the asymptotic variance of this method is worse than averaging over the sample points

(which is equivalent to the sample mean when K is uniform), but always asymptotic variance is

minimized by taking uniform kernel. In our case, even averaging over the sample points gives this

nasty looking asymptotic variance but it still makes sense that the variance minimizing kernel is the

uniform.

Finally, we compare the asymptotics of the nonparametric estimator with those of a natural

parametric alternative. The parametric problem generally has different asymptotics. In particular,

suppose that f, g are parametrically specified so that fφ, φ ∈ Φ, and gλ, λ ∈ Λ. Let φ̂ and λ̂ denote

root-n consistent estimators of φ and λ, such that [
√
n(φ̂ − φ),

√
n(λ̂ − λ)]> =⇒ U ∼ N(0,Ω), and

let θ̂ =
∫
C

min{fφ̂(x), gλ̂(x)}dx. Then we have
√
n(θ̂ − θ) = −1

2

∫
C

∣∣∣( ·sφ(x)fφ(x),− ·sλ(x)gλ(x))U
∣∣∣ dx+ op(1),
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where
·
sφ(x) = ∂ log fφ(x)/∂φ and

·
sλ(x) = ∂ log gλ(x)/∂λ are the score functions. When the contact

set has positive measure, the asymptotic distribution is non-normal with a negative mean.

C.2 Computation of kernel constants

This note is regarding computation of σ2
0 in cases where sample sizes are not equal. We have to

calculate

R(ρ) = cov
(

min {Z1, Z2} ,min
{
ρZ1 +

√
1− ρ2Z3, ρZ2 +

√
1− ρ2Z4

})
for given ρ, where Zi ∼ N(0, vi) with v1 = v3 = 1 and v2 = v4 = ω.

We have

2 min {Z1, Z2} = U − |V |
2 min

{
ρZ1 +

√
1− ρ(t)2Z3, ρZ2 +

√
1− ρ2Z4

}
= W − |Y |

where

U = Z1 + Z2

V = Z1 − Z2

W = ρZ1 +
√

1− ρ2Z3 + ρZ2 +
√

1− ρ2Z4

Y = ρZ1 +
√

1− ρ2Z3 − ρZ2 −
√

1− ρ2Z4,

and 
U

V

W

Y

 =
√

1 + ω


U ′

V ′

W ′

Y ′




U ′

V ′

W ′

Y ′

 ∼ N

0,


1 0 ρ 0

0 1 0 ρ

ρ 0 1 0

0 ρ 0 1


 .

Therefore,

Emin {Z1, Z2} = −1

2
E|V | = −

√
1 + ω

2
E|V ′| = −

√
1 + ω

2

√
2

π
= −

√
1 + ω

2π
.
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We have

R(ρ) =
1

4
cov (U − |V |,W − |Y |)

=
1 + ω

4
cov (U ′ − |V ′|,W ′ − |Y ′|)

=
1 + ω

4
cov (U ′,W ′)− 1 + ω

4
cov (|V ′|,W ′)− 1 + ω

4
cov (U ′, |Y ′|) +

1 + ω

4
cov (|V ′|, |Y ′|)

=
1 + ω

4
[ρ+ cov (|V ′|, |Y ′|)] ,

because for zero mean normals cov (|V ′|,W ′) = cov (U ′, |Y ′|) = 0. Write |V ′| = V ′1(V ′ > 0) −
V ′1(V ′ ≤ 0) and |Y ′| = Y ′1(Y ′ > 0)− Y ′1(Y ′ ≤ 0), so that

cov (|V ′|, |Y ′|) = E[|V ′||Y ′|]− E[|V ′|]E[|Y ′|]
= E [V ′Y ′1(V ′ > 0)1(Y ′ > 0)] + E [V ′Y ′1(V ′ ≤ 0)1(Y ′ ≤ 0)]

−E [V ′Y ′1(V ′ > 0)1(Y ′ ≤ 0)]− E [V ′Y ′1(V ′ ≤ 0)1(Y ′ > 0)]− 2

π

= 2E [V ′Y ′1(V ′ > 0)1(Y ′ > 0)]− 2E [V ′Y ′1(V ′ ≤ 0)1(Y ′ > 0)]− 2

π

by symmetry. From Rosenbaum (1961, JRSS B) we have

E [V ′Y ′1(V ′ > 0)1(Y ′ > 0)] = F (ρ)ρ+
1√
2π

√
1− ρ2

2π

E [V ′Y ′1(V ′ ≤ 0)1(Y ′ > 0)] = E [V ′Y ′1(V ′ > −∞)1(Y ′ > 0)]− E [V ′Y ′1(V ′ > 0)1(Y ′ > 0)]

=
1

2
ρ− F (ρ)ρ− 1√

2π

√
1− ρ2

2π

= ρ

(
1

2
− F (ρ)

)
− 1√

2π

√
1− ρ2

2π
,

where F (ρ) = Pr [V ′ > 0, Y ′ > 0] . Therefore,

cov (|V ′|, |Y ′|) = 2ρ

(
2F (ρ)− 1

2

)
+

4√
2π

√
1− ρ2

2π
− 2

π
.

In the special case that ρ = 1 we have F (ρ) = 1/2 so that

cov (|V ′|, |Y ′|) = E(|V ′|2)− 2

π
= 1− 2

π
.

In the special case that ρ = 0,

cov (|V ′|, |Y ′|) =
4√
2π

√
1

2π
− 2

π
= 0

as expected.
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In conclusion,

R(ρ) =
1 + ω

4
[ρ+ cov (|V ′|, |Y ′|)]

=
1 + ω

4

[
4ρF (ρ) +

4√
2π

√
1− ρ2

2π
− 2

π

]

= (1 + ω)

[
ρF (ρ) +

√
1− ρ2 − 1

2π

]
.

The main thing is that this shows that

R(ρ;ω) =
1 + ω

2
R(ρ; 1)

so that we can calculate this quantity once and for all and apply it in situations where sample sizes

m and n are different.

C.3 Drifting DGP

Suppose that the two densities are not identical but close to each other. Specifically, suppose that

f(x) = g(x) +
δ(x)√
n
,

Then

θn = 1 +
1√
n

∫
δf (x)dx,

where δf (x) = 1(x ∈ Cf )δ(x) and δg(x) = 1(x ∈ Cg)δ(x). We have

√
n
(
θ̂ − θn

)
=

∫ √
n [min{fn(x), gn(x)} −min{f(x), g(x)}] dx

=

∫
Cf,g

√
nmin{fn(x)− f(x), gn(x)− g(x)}dx

+

∫
Cf

√
nmin{fn(x)− f(x), gn(x)− g(x)− δ(x)√

n
}dx

+

∫
Cg

√
nmin{fn(x)− f(x) +

δ(x)√
n
, gn(x)− g(x)}dx

=

∫
min

{√
n [fn(x)− f(x)] + δg(x),

√
n [gn(x)− g(x)]− δf (x)

}
dx.

Using an argument similar to the proof of Theorem 1 to deal with the bias of kernel estimators, we

have

√
n
(
θ̂ − θ

)
=

∫
min

{√
n [fn(x)− Efn(x)] + δg(x),

√
n [gn(x)− Egn(x)]− δf (x)

}
dx+ o(1)

= : An + o(1), say.
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Define a Poissonized version of An (minus its expectation restricted to a Borel set B ⊂ Rd) to be

APn (B) =

∫
B

min
{√

n [fN(x)− Efn(x)] + δg(x),
√
n [gN(x)− Egn(x)]− δf (x)

}
dx

−
∫
B

Emin
{√

n [fN(x)− Efn(x)] + δg(x),
√
n [gN(x)− Egn(x)]− δf (x)

}
dx.

Let

Tf,N(x) =

√
n {fN(x)− Efn(x)}√

kf,n(x)
,

Tg,N(x) =

√
n {gN(x)− Egn(x)}√

kg,n(x)
.

Note that

sup
x∈B

∣∣∣∣√kf,n(x)− b−d/2||K||2
√
f(x)

∣∣∣∣ = O(bd/2) (97)

sup
x∈B

∣∣∣∣√kg,n(x)− b−d/2||K||2
√
g(x)

∣∣∣∣ = O(bd/2), (98)

so that

sup
x∈B

∣∣∣∣√kf,n(x)−
√
kg,n(x)

∣∣∣∣
= sup

x∈B

∣∣∣√f(x)−
√
g(x)

∣∣∣+O(bd/2)

= O(n−1/2) +O(bd/2) = o(1). (99)

Therefore, the bias term is given by∫
B

Emin

{
Tf,N(x)

√
kf,n(x) + δg(x), Tg,N(x)

√
kg,n(x)− δf (x)

}
dx

=

∫
B

Emin

{
Tf,N(x) +

δg(x)√
kf,n(x)

, Tg,N(x)− δf (x)√
kf,n(x)

}√
kf,n(x)dx+ o(1)

=

∫
B

Emin

{
Z1 +

δg(x)√
kf,n(x)

, Z2 −
δf (x)√
kf,n(x)

}√
kf,n(x)dx+ o(1)

=

∫
B

Emin

{
Z1 +

δg(x) + δf (x)√
kf,n(x)

, Z2

}√
kf,n(x)dx−

∫
B

δf (x)dx+ o(1), (100)

where the first equality holds by (99), the second equality holds by Lemma A1 and the last equality

holds by rearranging terms. For each constant λ→ 0, some calculations yield

Emin {Z1 + λ, Z2}

= λ

{
1− Φ

(
λ√
2

)}
− Eφ (Z − λ)− Eφ (Z + λ)

= Emin {Z1, Z2}+
λ

2
+O(λ2).
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Therefore, using (97) and (98), we have: uniformly over x ∈ B,

Emin

{
Z1 +

δg(x) + δf (x)√
kf,n(x)

, Z2

}√
kf,n(x)

= Emin {Z1, Z2}
√
kf,n(x) +

δg(x) + δf (x)

2
+O(bd/2).

Therefore, the bias term on the right hand side of (100) is given by

b−d/2||K||2
∫
B

f 1/2(x)dx · Emin {Z1, Z2}+
1

2

∫
B

[δg(x) + δf (x)] dx−
∫
B

δf (x)dx+ o(1)

= an(B) +
1

2

∫
B

[δg(x)− δf (x)] dx+ o(1).

By letting B increase to Rd, we have

an(B) +
1

2

∫
B

[δg(x)− δf (x)] dx→ an +
1

2

∫
Rd

[δg(x)− δf (x)] dx.

On the other hand, using an argument similar to the proof of Lemma A3, we can show that

lim
n→∞

var
(
APn (B)

)
= p0,Bσ

2
0 + σ̄2

1,B

as before, which in turn converges to v as B increases to Rd. Therefore, combining the above results,
we have

√
n
(
θ̂ − θ

)
− an = [An − EAn] + [EAn − an] + o(1)

=⇒ N

(
1

2

∫
Rd

[δg(x)− δf (x)] dx, v

)
,

so that there is a location shift in the distribution. This implies that

√
n
(
θ̂ − 1

)
− an

=
√
n
(
θ̂ − θ

)
− an +

∫
δf (x)dx

=⇒ N (0, v) .
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