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Abstract

A sizeable proportion of large, discontinuous, changes in asset prices are found to be asso-

ciated with contemporaneous large, discontinuous, changes in volatility, i.e., co-jumps. When

occurring jointly, the price jumps tend to be negative while the volatility jumps tend to be

positive. Unusually large, negative, price discontinuities are often accompanied by unusually

large, positive, volatility changes, as implied by a strong anti-correlation between the jump

sizes. Further, the distribution of the price co-jump sizes is found to depend on the underlying

volatility level and become more dispersed, as well as more negatively centered, as volatility

increases. Finally, we show that the co-jumps yield an economically-meaningful portion of

leverage, return skewness, and the implied volatility smirk. These effects are uncovered in the

context of a flexible modeling approach (allowing, among other features, for independent as

well as common jumps, volatility-dependent jump arrivals, and time-varying leverage) and a

novel identification strategy relying on infinitesimal cross-moments and high-frequency price

data.
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1 Introduction

Understanding the dynamic properties of stock returns continues to be at the heart of research

in finance. Strong consensus has emerged about the need to allow for discontinuities in asset

prices, ”return jumps”, while incorporating stochastic time-variation in the standard deviation of

the continuous shocks to returns, ”stochastic volatility”. Even though both features generate fat

tails in the return distribution, they do not appear to be sufficient to yield the rapid increases in

volatility which have been historically experienced.

Adding jumps in volatility, however, provides a solution to this issue. As pointed out in Eraker

et al. (2003), jumps in returns and jumps in volatility serve different, but complementary, purposes.

The former generate large, infrequently-observed, sudden movements, such as the October 1987

crash. These movements would require an unreasonably high level of volatility to occur. The

latter lead to fast changes in the level of volatility and, due to volatility persistence, a lasting

effect on the distribution of stock returns. Along with daily moves as large as 22%, during the

1987 crash, among other times of distress, the level of volatility more than doubled before slowly

mean-reverting to lower levels. The inability of continuous-time return models with stochastic

volatility and jumps only in returns to fit return/option data, and the need to incorporate jumps

in volatility, has been recognized as early as in the work of, e.g., Bakshi et al. (1997), Bates

(2000), and Pan (2002). Duffie et al. (2000) and Eraker et al. (2003) provide a thorough analysis

of the effectiveness of discontinuities in returns and volatility by explicitly incorporating both

components in their ”double-jump” specifications.

A related problem has to do with the frequency of the return/volatility jumps and, in par-

ticular, the likelihood of discontinuous movements occurring jointly. Classical implementations

impose either strict independence of the jump arrivals (Eraker et al., 2003) or contemporaneous

arrivals with correlated jump sizes (Duffie et al., 2000, Eraker et al., 2003, and Eraker, 2004).

The fine-grain dynamics of the return and volatility process may, however, be such that some

of the discontinuous components are fully idiosyncratic while some may be common to the re-

turn/volatility processes. Using intra-daily observations on the VIX and the S&P500 index along

with sample statistics developed in Todorov and Tauchen (2010) and Jacod and Todorov (2009).

Todorov and Tauchen (2011), for instance, find evidence of a mixed specification with a high

likelihood of contemporaneous arrivals along with a lower likelihood of disjoint arrivals.

The analysis of a flexible stochastic volatility model with co-jumps, as well as independent

jumps, is the subject of this paper. Volatility is, of course, a latent variable. We identify it

nonparametrically for every hour in our sample using intra-daily price data. We then apply

functional methods to the obtained hourly volatility series, as well as to hourly returns, to identify

daily return/volatility dynamics. In essence, we evaluate the daily evolution of returns and

volatility by making use of the substantial informational content of intra-daily return data and
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volatility series which are pre-filtered on the basis on intra-daily return data. Our interest in

daily dynamics is analogous to that of Duffie et al. (2000) and Eraker et al. (2003), among

others, who study the daily evolution of return and volatility series using parametric methods and

alternative volatility filtering methods. To this extent, the emphasis on daily frequencies makes

our findings comparable to those in the classical stochastic volatility literature. From a technical

standpoint, however, we depart from the existing stochastic volatility literature in continuous

time along two dimensions. First, with the exception of parametric assumptions imposed on the

distribution of the jump sizes for identification, the methodology is nonparametric and, in this

sense, robust to model mispecification. Second, volatility is not filtered from low-frequency return

data, as generally done, but from high-frequency data as in much recent literature in other contexts

(c.f., the discussions in Andersen et al., 2010). From a specification standpoint, we emphasize

the statistical and economic importance of allowing for co-jumps, along with idiosyncratic jump

components in returns and volatility, in the context of a flexible modelling approach for the

evolution of prices and volatilities.

Using S&P 500 futures high-frequency returns from April 21, 1982, to February 5, 2009, we

find strong evidence of return/volatility co-jumps. Many of the large co-jumps are associated with

well-known events like Black Monday (October 19, 1987), the Asian crisis (October 27, 1997), the

Russian crisis (August 31, 1998), and the Lehman-Brothers default (September 29, 2008) during

the recent financial crisis. The number of estimated yearly co-jumps (8/9) is slightly larger than

the number of idiosyncratic discontinuities in the price process (6/7, per annum). The estimated

yearly number of idiosyncratic volatility jumps is about 13.

We find that the size distribution of the price co-jumps depends on the underlying volatility

level. The dispersion and negative mean of this distribution increase with volatility, thereby lead-

ing to more negative and more erratic price co-jumps in times of high volatility. The occurrence

of co-jumps is also generally associated with price/volatility changes (i.e., sizes of the jumps) of

opposite sign. Large, negative shocks to prices occur along with sizeable volatility spikes. We

estimate a functional correlation between the size of the price jumps and the size of the volatility

jumps very close to −1.

This result differs from the parametric findings in Eraker et al. (2003) and Eraker (2004)

who, in the context of a model with contemporaneous arrivals and correlated jump sizes, find a

statistically insignificant correlation between the jump sizes. In contrast, we show that the explicit

separation of the jumps into idiosyncratic and common components, along with an alternative

volatility filtering method, lead to jump sizes that are strongly negatively correlated. This effect is

important. Among other issues, it introduces a second, less conventional, source of leverage in the

model. Not only are the small Brownian shocks affecting prices and volatility negatively correlated

in the model (a traditional leverage effect), we find that the infrequently large discontinuities are

also strongly negatively correlated. This feature implies that there are two channels through which
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negative shocks to prices can increase variance and, therefore, lead to skewness in the conditional

(on volatility) distribution of stock returns. Similarly, there are two channels through which

the price and volatility dynamics will lead to downward-sloping implied volatility curves across

strikes for short and medium maturity options (the ubiquitous ”implied volatility smirk”). The

paper discusses and illustrates both channels. Consistent with this observation, Eraker (2004)

finds a negative correlation between jump sizes only when augmenting return data with option

data. In his framework, the negative correlation between co-jump sizes is identified off of the

implied volatility smirk. Using our proposed modelling and identification approach, as well as

high-frequency return data for the purpose of volatility filtering, we find that the second source

of skewness (i.e., a negatively correlated co-jump size) is, in fact, an important feature of the

dynamic evolution of prices and volatility series. We show that price data alone may uncover this

property with no need for a cross-section of options.

We proceed as follows. Section 2 provides economic evidence of large co-jumps. We show

how the most sizeable jumps in returns in our sample are associated with contemporaneous

jumps in volatility of opposite sign. In section 3 we present a flexible stochastic volatility model

with idiosyncratic and common jumps. We show how the structure of the model we propose

generalizes to a nonparametric framework successful parametric specifications in the literature.

Section 4 presents the notion of infinitesimal cross-moment and discusses its usefulness for co-

jump identification. Section 5 discusses a strategy for (cross-) moment-based identification of the

model. Section 6 provides nonparametric empirical findings about the joint price and volatility

dynamics. Section 7 turns to a parametric evaluation. In Section 8 we present implications

for option pricing. The robustness of the model specification is tested in Section 9. Section 10

concludes. The asymptotic and finite sample properties of the proposed methods are discussed in

two technical Appendices.

2 Large co-jumps: descriptive evidence

We go through our sample to identify unusually large price movements. In order to do so, we

divide daily close-to-close price changes by the corresponding standard deviation over the previous

day.1 Should the changes be induced by continuous Brownian shocks, in light of the approximate

normality of Brownian motion over small time increments, they would be larger than 2 in absolute

value with approximate probability equal to 5%. Unusually large, standardized, price changes

1The econometric analysis of this paper, described in detail in Section 5 and Appendix B, employs hourly (spot)

variance estimates. To obtain the daily estimates used in this section, we scale up the hourly estimates to a daily

value and average them for every 6-hour trading day. We then apply an exponential smoother with a 40-day lag

to reduce measurement error. The results would be qualitatively very similar if the previous days’ variances, which

are displayed in Figure 3, were used without applying the smoother.
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would therefore signal jumps in the price process.2

Column 3 in Table 1 reports the 30 largest standardized (by volatility) daily price changes in

our sample. Some of these are associated with well-known events, like Black Monday (October 19,

1987), the Asian crisis (October 27, 1997), the Russian crisis (August 31, 1998), 9/11 (Septem-

ber 17, 2001)3 and the more recent Lehman-Brothers default (September 29, 2008) during the

2008/2009 financial crisis. Importantly, the vast majority of the largest, abnormal, price changes

are negative (24 out of 30). In other words, when large price discontinuities occur, they tend to

be the result of negative shocks.

Column 4 in Table 1 reports the corresponding variance changes. In agreement with our

subsequent analysis, we report changes in logarithmic variance, rather than in actual variance.

Consistent with the price changes, the variance changes are close-to-close. They are obtained by

virtue of spot (hourly) volatility estimates making use of intra-daily price data in the last hour of

the trading day before being scaled up to a daily value (see Section 5 and Appendix B for details).

As earlier in the case of prices, we divide the changes in logarithmic variance by the corresponding

standard deviation (volatility of log-variance)4 to rule out changes which may be consistent with

smooth Brownian dynamics. Two effects are striking. First, the log-variance changes associated

with the largest standardized price changes have corresponding t-statistics which are, with very

few exceptions, large and very statistically significant. Second, the volatility changes are, in

general, of opposite sign with respect to the price changes. In other words, abnormally large price

changes are associated with abnormally large volatility changes (co-jumps).

Because the sizes of the co-jumps may not have a zero mean, in order to gauge the extent

of the correlation between price and volatility jump sizes, we report a scatter plot of the log-

variance jumps versus the price jumps. Instead of reporting the co-jumps associated with the 30

largest price changes, as implied by Table 1, we now report the co-jumps associated with price

and log-variance t-ratios jointly implying significance at the 0.5% level. The choice of this level is

meant to highlight large price and variance discontinuities while, at the same time, preventing the

insurgence of a sizeable number of false positives, something which is typical of jump tests. This

procedure identifies 70 large daily jumps over 28 years which are plotted in Figure 1. For these

jumps, the mean and standard deviation of the price discontinuities are estimated as being equal

to −2.27% and 4.87%, whereas the estimated values of the mean and standard deviation of the

log-variance jumps are 0.9 and 0.77. Thus, when contemporaneous jumps in price and volatility

occur, the volatility jumps tend to be positive whereas the price jumps tend to be negative. In

2This same logic is formally employed by Lee and Mykland (2008) to test for jumps using intra-daily return

data.
3The actual discontinuity is not on 9/11 since markets were closed for five days after 9/11.
4Computation of the volatility of log-variance requires a full-blown dynamic model for the price dynamics. In

particular, for internal consistency, the model should account for diffusive as well as discontinuous shocks. Here,

we employ the volatility of log-variance identified from our proposed stochastic volatility model in Section 7.
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Day Return (%) t-stat Log-variance change t-stat Description

03-Aug-1984 3.63 4.28 1.26 8.8

18-Dec-1984 3.09 3.72 0.34 2.4

08-Jan-1986 -3.30 -4.56 0.78 5.5

11-Sep-1986 -5.19 -5.77 1.51 10.6

16-Oct-1987 -7.35 -6.66 1.06 7.4

19-Oct-1987 -30.01 -24.26 2.96 20.7 Black Monday

14-Apr-1988 -4.68 -4.27 1.86 13.0 Dollar plunge

17-Mar-1989 -2.75 -4.02 0.98 6.9

13-Oct-1989 -6.85 -10.74 0.67 4.7 Friday 13th

12-Jan-1990 -3.43 -4.37 1.81 12.6

22-Jan-1990 -3.47 -3.95 1.42 10.0

17-Jan-1991 4.43 4.89 0.91 6.3

21-Aug-1991 2.74 3.99 0.03 0.2

15-Nov-1991 -4.08 -6.57 1.30 9.1

16-Feb-1993 -2.52 -4.78 1.38 9.7

04-Feb-1994 -2.33 -5.76 1.62 11.3

08-Mar-1996 -3.94 -4.92 1.39 9.7

05-Jul-1996 -2.36 -3.69 0.56 3.9

27-Oct-1997 -7.80 -7.46 0.64 4.5 Asian Crisis

28-Oct-1997 5.68 5.09 0.75 5.3

09-Jan-1998 -3.88 -4.08 1.02 7.2

04-Aug-1998 -3.60 -3.76 1.21 8.5

31-Aug-1998 -7.30 -5.41 0.47 3.3 Russian crisis

04-Jan-2000 -3.52 -3.99 -0.20 -1.4

14-Apr-2000 -8.11 -4.90 1.11 7.7 Dot.com crash

03-Jan-2001 5.18 3.90 0.50 3.5

17-Sep-2001 -5.02 -4.22 0.58 4.0 9/11

20-Jan-2006 -1.93 -3.64 0.67 4.7

27-Feb-2007 -3.23 -7.07 2.58 18.0 Chinese Correction

29-Sep-2008 -6.93 -4.09 1.76 12.3 Lehman-Brothers default

Table 1: Descriptive evidence on co-jumps. The figures are for daily returns in percentage form.
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Figure 1: Scatter plot of the significant co-jumps in price and volatility.

addition, the scatter plot provides compelling visual evidence about a strongly negative correlation

between co-jump sizes (measured at a significant value of about −0.5). In other words, price jumps

below their (negative) mean generally occur alongside volatility spikes above their (positive) mean,

thereby resulting in co-jumps with strongly negatively-correlated jump sizes.5

By sorting with respect to the large price (and volatility) discontinuities, because we only

detect the most sizeable jumps, this evidence should be viewed as providing a lower bound on the

number of price and volatility co-jumps in our sample. In agreement with this observation, our

point estimates (below) will imply 8/9 daily co-jumps per annum.

In Figure 2 we plot the large price discontinuities displayed in Figure 1 with respect to the

volatility level prevailing at the time when the jumps occur. This figure suggests that both the

mean and the standard deviation of the sizes of the price co-jumps vary substantially with the

volatility level. Specifically, we find that larger volatility levels are associated with co-jumps that

are more negative, in expectation, and more variable. This result points to the need for rich,

possibly nonlinear, dynamics for the price co-jump sizes.

Next, we present a model featuring joint and idiosyncratic discontinuities in prices and volatil-

ity. Consistent with the evidence reported here, the model will allow for correlation between the

jump sizes. By permitting the price and volatility jump sizes not to be mean zero, the model

will also allow for a higher likelihood of negative price jumps and a higher likelihood of positive

volatility jumps. Further, we will let the mean and standard deviation of price co-jumps vary with

the volatility level. In the context of a flexible specification for the price and volatility dynamics,

5There is one main exception in our sample. During the aftermath of the 1987 crash, on October 21st 1987, a

percentage change of 16.11 in logarithmic volatility was accompanied by a percentage (positive) change of 15.5 in

log-prices. The corresponding daily volatility was roughly 4.6% daily or 73% on a yearly basis. While we do not

report this glaring outlier in the figure, the corresponding data point is used in all of our estimates.
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Figure 2: Scatter plot of the significant price co-jumps and the volatility level (%, daily) at which

they occur.

we will find estimates of the features of the co-jump sizes, including their correlation, which will be

qualitatively and quantitatively similar to those reported in this preliminary descriptive analysis.

3 A continuous-time stochastic volatility model with return/volatility

co-jumps

We address the literature in continuous time6 by casting the problem in the context of a classical

jump-diffusion specification with stochastic volatility. Differently from the existing literature,

however, with the sole exception of conditions on the probability distribution of the jump sizes,

we do not impose any parametric assumption on the functions driving returns and volatility

dynamics. The return/variance system we consider is

d(log pt) = µ(σt)dt+ σt

{
ρ(σt)dW

1
t +

√
1− ρ2(σt)dW

2
t

}
+ cJr,tdJr + cJJr,t dJr,σ

dξ(σ2
t ) = m(σt)dt+ Λ(σt)dW

1
t + cJσ,tdJσ + cJJσ,tdJr,σ,

(1)

where ξ(·) is an increasingly monotonic function, W =
{
W 1,W 2

}
is a bivariate standard Brow-

nian motion vector, J =
{
Jr, Jσ, Jr,σ2

}
is an independent (of W ) trivariate vector of mutually

independent Poisson processes with intensities λr(σt), λσ(σt), and λr,σ(σt), respectively. The

functions µ(·),m(·),Λ(·), λr(·), λσ(·), λr,σ(·) and ρ(·) satisfy mild smoothness conditions and are

6Alizadeh et al. (2002); Andersen et al. (2002); Bakshi et al. (1997); Bates (2000); Chernov and Ghysels (2000);

Chernov et al. (2003); Duffie et al. (2000); Eraker (2004); Eraker et al. (2003); Heston (1993); Jones (2003); Pan

(2002), among others.
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solely such that a unique, recurrent, strong solution to the system exists. The system has several

features:

1. (Independent jumps and co-jumps) As mentioned, we allow for independent jumps Jr, Jσ

as well as for common jumps Jr,σ.

2. (State-dependent intensities) The intensities of the jumps may be nonlinear functions of

the underlying variance level. We therefore extend models with affine variance-dependent

price jump intensities (Bates, 2000, and Pan, 2002) as well as models with affine variance-

dependent volatility jump intensities (Eraker, 2004).

3. (State-dependent jumps) The moments of the jump sizes are permitted to be functions of

the underlying variance level. Assume ξ(·) = log(·), as in a log-variance model, for instance.

Let the sizes of the idiosyncratic jumps be normally distributed: (cJr,t, c
J
σ,t) ∼ N (µJ ,ΣJ)

with µJ = (µJ,r, µJ,σ)ᵀ and

ΣJ =

(
σ2
J,r �

0 σ2
J,σ

)
. (2)

Similarly, let the sizes of the co-jumps be normally distributed: (cJJr,t , c
JJ
σ,t) ∼ N (µJJ ,ΣJJ)

with µJJ = (µJJ,r, µJJ,σ)ᵀ and

ΣJJ =

(
σ2
JJ,r �

ρJσJJ,rσJJ,σ σ2
JJ,σ

)
. (3)

We can allow all matrices to be a function of σ. This dependence may, for instance, lead

to more (less) erratic discontinuities in times of higher (lower) diffusive variance, an effect

which, as shown, is coherent with the properties of the data.

4. (Time-varying leverage) The correlation between shocks to prices and shocks to variance

(−1 ≤ ρ(·) ≤ 1) is also a flexible function of the underlying spot variance level. In a stochas-

tic volatility model with independent jumps, Bandi and Renò (2011) show that leverage is

a decreasing function of the spot variance level. In other words, leverage becomes more

negative as the variance level increases. Here, we generalize their framework by employing

the same flexible functional form for ρ(·) in the context of a stochastic volatility model

with co-jumps (along with independent jumps). The addition of co-jumps is of course not

immaterial for the purposes of leverage identification. Because ρ(·) is usually identified off

of the covariance between shocks to prices and shocks to variance, the potential presence of

co-jumps, which we accommodate explicitly, would make the estimates of ρ(·) contaminated

by the (conditional) covariance between the discontinuous jump components in prices and in

volatility. It is therefore important to distinguish between the component of the covariance

between price changes and variance changes which is due to the continuous shocks to the
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system (ρ(·)) and the component due to discontinuous shocks, something which is done in

this paper.

5. (Possibly non-affine structures) We do not express the price and volatility drifts, the variance-

of-variance, and the intensities of the jumps as affine (or, more generally, parametric) func-

tion of the underlying state. While the non-affine nature of our problem prevents us from

obtaining closed-form, or near closed-form, derivative prices, here we opt for robustness to

potential model mispecifications. This robustness property is important. For example, there

is evidence that the variance of variance (Λ2(·)) should be a more flexible, possibly CEV,

function of the underlying spot variance (e.g., Jones, 2003). Similarly, it may be important

to allow the variance process to mean-revert at different speeds depending on its level, as

implied by a non-linear mean-reverting variance drift. Eraker (2004), for instance, empha-

sizes that such a specification could lead to the sharp declines in option implied volatilities

following the high levels associated with the 1987 crash.

We now turn to identification of the system by virtue of a moment-based nonparametric

procedure.

4 Infinitesimal cross-moments

Let prices and volatilities evolve dynamically as in Eq. (1). The jump sizes are expressed as in

Eq. (2) and Eq. (3) with µJ , µJJ , ΣJ(·), and ΣJJ(·). Specifically, we work with a logarithmic

variance specification (ξ(σ2
t ) = log(σ2

t )) and Gaussian jumps. The Gaussian jump moments also

depend on the level of volatility. Section 8 provides a specification analysis which supports a

logarithmic transformation for variance.

The key element of the identification method we propose is the generic infinitesimal cross-

moment of order p1, p2 with p1 ≥ p2 ≥ 0, namely

ϑp1,p2(σ) = lim
∆→0

1

∆
E
[
(log pt+∆ − log pt)

p1
(
log(σ2

t+∆)− log(σ2
t )
)p2 |σt = σ

]
. (4)

By varying the orders p1 and p2, the cross-moments have useful interpretations in terms of the

underlying functions of the system. Below, we provide the general expressions and a few illustra-

tive examples. For notational convenience, we drop the dependence on σ and write ϑp1,p2 instead

of ϑp1,p2(σ). All moments and functions, however, should be interpreted as being dependent on

the underlying spot volatility process.

We begin with the volatility moments. Write
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ϑ0,1 = m+ ϑJump0,1 , (5)

ϑ0,2 = Λ2 + ϑJump0,2 , (6)

ϑ0,p2 = ϑJump0,p2
p2 ≥ 3 (7)

with

ϑJump0,p2
= λr,σ

p2∑
j=0

(
p2

j

)
G0,j (σJJ,σ)j (µJJ,σ)p2−j + λσ

p2∑
j=0

(
p2

j

)
G0,j (σJ,σ)j (µJ,σ)p2−j ,

where G0,0 = 1 and, for g, g1, g2 ≥ 1,

G0,2g = (2g − 1)!!,

G0,2g−1 = 0,

Gg1,g2 = (g1 + g2 − 1)ρJGg1−1,g2−1 + (g1 − 1)(g2 − 1)(1− ρ2
J)Gg1−2,g2−2.

The expressions imply that

ϑ0,1 = m+ λr,σµJJ,σ + λσµJ,σ,

ϑ0,2 = Λ2 + λr,σ

(
(µJJ,σ)2 + (σJJ,σ)2

)
+ λσ

(
(µJ,σ)2 + (σJ,σ)2

)
,

ϑ0,3 = λr,σ

(
(µJJ,σ)3 + 2 (µJJ,σ) (σJJ,σ)2

)
+ λσ

(
(µJ,σ)3 + 2 (µJ,σ) (σJ,σ)2

)
,

ϑ0,4 = ...

In other words, all infinitesimal variance moments depend on the corresponding Gaussian mo-

ments of the idiosyncratic and common jumps. The first and the second infinitesimal moments

also depend on the drift m and the variance of variance Λ2, respectively. The price moments ϑp1,0

can be defined similarly. We now turn to the genuine cross-moments:

ϑ1,1 = ρΛσ + ϑJump1,1 (8)

and

ϑ1+p1,1+p2 = ϑJump1+p1,1+p2
p1 > 1 or p2 > 1 (9)

with

11



ϑJumpp1,p2 = λr,σ

p1∑
j1=0

p2∑
j2=0

(
p1

j1

)(
p2

j2

)
Gj1,j2 (σJJ,r)

j1 (σJJ,σ)j2 (µJJ,r)
p1−j1 (µJJ,σ)p2−j2 .

The cross-moment expressions imply, for instance, that

ϑ1,1 = ρΛσ + λr,σ (ρJσJJ,rσJJ,σ + µJJ,rµJJ,σ) ,

and

ϑ2,2 = λr,σ{(µJJ,σ)2 (µJJ,r)
2 + (σJJ,σ)2 (µJJ,r)

2 + (µJJ,σ)2 (σJJ,r)
2

+
(
1 + 2ρ2

J

)
(σJJ,r)

2(σJJ,σ)2 + 4ρJµJJ,rµJJ,σσJJ,rσJJ,σ}.

Thus, the moment of order 1, 1 depends on the covariance between the continuous (Brownian)

shocks to the system as well as on the conditional moment of order 1, 1 of the common jump

sizes. This effect generates an additional source of leverage in the model. The higher (than 1, 1)

cross-moments only depend on the corresponding cross-moments of the common jumps.

The existence of moments lends itself to (a form of) GMM estimation. In particular, given

nonparametric estimates ϑ̂p1,p2 , we may select an appropriate number of moment conditions, by

varying p1 and p2, and identify all functions for every volatility level. This procedure effectively

amounts to nonparametric GMM in that estimation is conducted for any chosen level in volatility

range and results in nonparametric estimates. Similarly, by imposing a parametric structure on

the relevant functions, we may use the estimated moments ϑ̂p1,p2 to identify parameters for the

full system. In what follows, we use both strategies. In particular, we employ the unrestricted

nonparametric functional estimates as useful inferential and descriptive tools to identify a rich

system allowing for idiosyncratic, as well as common, discontinuous dynamics in both prices and

volatility. We then turn to a parametric evaluation of the full system’s dynamics.

5 Cross moment-based identification

The cross-moments are (infinitesimal) conditional expectations. We use sample analogues to

conditional expectations based on classical kernel estimators to identify them. Consider a sample

of T days and N intraday knots within each day. Assume availability of closing logarithmic

prices (log pt,i) and spot volatility estimates (log σ̂2
t,i) over each day t = 1, . . . , T and each knot

i = 1, . . . , N . The generic cross-moment estimator ϑ̂p1,p2 is defined as

ϑ̂p1,p2(σ) =

∑Tdays−1
t=1

∑N
i=1 K

(
σ̂t,i−σ
h

)
(log pt+1,i − log pt,i)

p1
(

log σ̂2
t+1,i − log σ̂2

t,i

)p2
∆
∑Tdays

t=1

∑Nhours
i=1 K

(
σ̂t,i−σ
h

) , (10)
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where K(.) is a kernel function, with properties listed in Appendix A, whose role is to guarantee

proper conditioning at σ for a small bandwidth h.

As emphasized, we use intra-daily observations for spot volatility estimation and, subsequently,

for subsampling on the infinitesimal moments in Eq. (10). The use of intra-daily data, along

with our identification procedure, separates us methodologically from the bulk of the stochastic

volatility literature. However, importantly, since ∆ is equal to 1 day, the resulting estimates are

daily. This is done to make our empirical results comparable to those in the existing stochastic

volatility literature.

In our implementation of the estimator in Eq. (10), we employ N = 6 knots in the interval

10.45am−3.45pm, each separated by one hour. Define one-minute logarithmic returns rt,i,k =

log pt,i,k − log pt,i,k−1, for k = 1, . . . , 60, over each hour before a generic knot i (we start using

price observations at 9.45am).7 The spot variance estimates, for each day t and each knot i, are

obtained by applying the jump-robust threshold bipower variation estimator

σ̂2
t,i =

60

59− nj
ς−2
1

60∑
k=2

|rt,i,k||rt,i,k−1|I{|rt,i,k|≤θt,i,k}I{|rt,i,k−1|≤θt,i,k−1}, (11)

where ς1 ' 0.7979, θt,i,k is a suitable threshold, and nj is the number of returns whose absolute

value is greater than the threshold θt,i,k (Corsi et al., 2010). Alternative spot volatility estimators

may be used. However, any estimator used should identify spot (diffusive) variance and, hence,

be robust to jumps in the price process. The estimator we employ eliminates jumps in two ways.

Similarly to the classical bipower variation of Barndorff-Nielsen and Shephard (2004), discontinu-

ities are annihilated asymptotically by the adjacent diffusive component. In addition, the jumps

are discarded in finite samples, and asymptotically, when above a (vanishing, asymptotically)

threshold θt,i,k (as in the threshold realized variance of Mancini, 2009).

The use of spot volatility estimates, as in Eq. (11), paired with the functional moment esti-

mates, in Eq. (10), will be used for pointwise identification of all of the system’s functions. Our

approach relates to two existing approaches in the literature. Bandi and Renò (2009) first intro-

duce nonparametric identification of discontinuous stochastic volatility models under the assump-

tion of independent jumps. Bandi and Renò (2011) focus explicitly on nonparametric leverage

estimation and, in agreement with Bandi and Renò (2009), only allow for independent jumps.

Differently from our previous work on the subject, this paper allows for co-jumps and focuses on

an empirical treatment which highlights the statistical and economic relevance of discontinuous

joint changes in prices and volatility. In particular, the addition of co-jumps with non-zero jump

sizes, which represents the substantive core of our treatment, leads to two substantial innovations

for the purpose of identification. First, we recognize the crucial role played by the infinitesimal

7The one minute returns are constructed after pre-averaging all observed transaction prices within each minute.

The pre-averaging is designed to reduce the impact of market microstructure noise (Jacod et al., 2009).
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cross-moments for co-jump identification. With the exception of the cross-moment of order 1, 1,

which is also affected by diffusive leverage, the cross-moments are zero when the discontinuities

are idiosyncratic, as in our previous work, and, therefore, play no role in their identification. Sec-

ond, when allowing for the more complex jump dynamics in this paper, closed-form estimation

of the system’s functions in terms of the estimated moments, as conducted in Bandi and Renò

(2009, 2011) is, in general, not feasible. Importantly, however, the infinitesimal cross-moments

introduced here lend themselves to an estimation method akin to pointwise GMM (Hansen, 1982),

something which we discuss below.

Denote by g1(σ), . . . , gK(σ) the K functions driving the dynamics of the system. These are

the estimation target. Consider a set of N cross-moments ϑ̂p1,p2(σ) with N ≥ K for identification.

The theoretical cross-moments ϑp1,p2(σ) = fp1,p2(g1(σ), . . . , gK(σ)) are a mapping fp1,p2 from the

functions g1(σ), . . . , gK(σ) to R. For every value σ in the spot volatility range, the K vector of

estimates (ĝ1(σ), . . . , ĝK(σ)) is defined as:

(ĝ1(σ), . . . , ĝK(σ)) = arg min
(g1(σ),...,gK(σ))

(ϑ̂p1,p2(σ)− ϑp1,p2(σ))>W (σ)(ϑ̂p1,p2(σ)− ϑp1,p2(σ)),

where W (σ) is an N×N symmetrical and positive definite weighting matrix. We implement a two-

stage procedure to optimize the choice of W (σ). In the first stage, W (σ) is the identity matrix.

The first-stage estimates are used to compute V , the variance-covariance matrix of the cross-

moments, i.e., the matrix with generic element V(p1,p2),(p3,p4) =
fp1+p3,p2+p4 (ĝ1(σ),...,ĝK(σ))

h(σ)L̂T (σ)
, where

h(σ) is a volatility-specific bandwidth and L̂T (σ) is an estimate of the volatility’s occupation

density. The estimation is then repeated with Ŵ (σ) = V −1. The same procedure is implemented

for different values of σ leading to the nonparametric estimates presented in the next section.

The functional estimates have the potential to provide important guidance about parametric

specification. Importantly, given a parametrization of the system’s functions, the procedure we

propose can be adapted to also yield parametric estimates. Denote by η a vector of M parameters.

Select a number G of knots σ1, . . . , σG, so that N × G ≥ M for identification. Denote by ϑ̂p1,p2

the N ×G-vector of available estimated moments computed at the knots σi with i = 1, ..., G and

by ϑp1,p2(η) the corresponding N × G-vector of theoretical moments. The parametric estimates

are now given by:

η̂ = arg min
η

(ϑ̂p1,p2 − ϑp1,p2(η))>W (σ)(ϑ̂p1,p2 − ϑp1,p2(η))

where W (σ) is an (N × G) × (N × G) symmetrical and positive definite weighting matrix. To

optimize the choice of W (σ) and underweight relatively noisier moments, we evaluate the variance-

covariance matrix between the N moments at the G knots (V ) via simulation. We then employ

W = V −1.

Appendix A derives the consistency and asymptotic normality properties of ϑ̂p1,p2 , for a known

σ, under a suitable asymptotic sampling scheme. Appendix A also provides conditions on θt,i,k,
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Figure 3: Top: Daily returns (%). Bottom: Filtered daily volatilities (in log scale) obtained by

averaging hourly spot volatilities within each day (%).

among other choice variables, so that these properties are not affected by the estimation error

necessarily introduced by the spot variance estimates obtained in Eq. (11) above. Appendix B

discusses finite sample issues and issues of implementation.

6 Price and variance dynamics: functional estimates

As mentioned, we employ all transactions on S&P 500 futures from from April 21, 1982, to

February 5, 2009, for a total of 6, 748 trading days. The daily return data and daily filtered (by

virtue of high-frequency price data) logarithmic volatility series are reported in Figure 3. Figure

4 provides the estimated moments of order p1, p2 above the diagonal of a matrix obtained by

varying p1 and p2 between 0 and 4. In addition, the figure reports the moments of order 2, 3

and 3, 2. The upper diagonal moments and the moments of order 2, 3 and 3, 2 are those used for

estimation. The functions driving the price and volatility dynamics in Eq. (1) are reported in

Figure 5. All functions are plotted with respect to daily volatility expressed as a percentage. In

terms of interpretation, a value of 1 on the horizontal axis corresponds to a yearly volatility of

about
√

252% = 15.87%.

We begin by commenting on the price process. The price drift µ is insignificantly different

from zero across volatility states. The inability to detect risk-return trade-offs using daily return

data is a notorious phenomenon which we confirm here.8 The intensity of the idiosyncratic jumps

in prices λr is fairly stable, across volatility levels, and implies between roughly 5 and 15 jumps

per year in terms of point estimates. As expected in this type of problems, the level of statistical

8Andersen et al. (2002), Pan (2002) and Eraker et al. (2004) also find a statistically insignificant dependence of

the price drift on spot variance.
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Figure 4: Estimated infinitesimal cross-moments (solid circled lines) with 95% confidence bands

(dashed lines). The solid lines are implied fitted moments using functions, displayed in Figure 5,

obtained via pointwise GMM.

uncertainty is substantial, particularly for relatively larger, seldom visited, volatility levels. The

parametric estimates will refine this analysis. The mean of the idiosyncratic price jumps µJ,r is

indistinguishable from zero. The corresponding standard deviation σJ,r has a very slight tendency

to increase with the volatility level, thereby suggesting the possibility of increasing jump sizes in

times of higher uncertainty. This finding will be more evident in the case of the price co-jumps.

We now turn to stochastic variance. As expected, the variance drift m implies mean-reversion

in log variance. The variance of variance Λ is relatively flat across volatility states. For instance,

it does not display the CEV shape that has been emphasized as being important in some existing

work (see, e.g., Chacko and Viceira, 2003, and Jones, 2003). This is, however, an unsurpris-

ing outcome of the logarithmic transformation of variance which we adopt in the present paper

and justify in the subsequent specification analysis. The nonparametric inference presented here
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Figure 5: Estimated functions (solid lines) with 95% confidence bands (dashed lines).

yields point estimates for the intensity of the variance jumps λσ which vary considerably across

volatility states while also carrying a substantial degree of statistical uncertainty. The functional

λσ estimates suggest a larger number of independent volatility jumps than independent price

jumps, something which our parametric estimates in the next section will confirm. The mean of

the idiosyncratic variance jumps is close to zero. The size of the independent variance jumps is

relatively stable across volatility levels.

We now focus on the joint dynamics. The number of co-jumps implied by λr,σ is larger than

zero and fairly stable across volatility levels, mainly around the bulk of the data (σ = 0.8%).

When jumping jointly with prices, volatility has a higher probability to increase than to decrease

as indicated by a mean of the corresponding jump size distribution µJJ,σ which is significant

and positive. In contrast, the mean of the common jumps in prices µJJ,r is negative. Also,

more negative price co-jumps are associated with higher volatility levels. As in the idiosyncratic

jump case, the standard deviation of the sizes of the common volatility jumps is relatively stable
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across volatility levels. The standard deviation of the sizes of the common price jumps σJJ,r

is instead strongly increasing with the volatility level. In sum, the estimated volatility co-jump

size distribution is fairly invariant to the underlying volatility level. In contrast, the mean and

the variance of the size distribution of the price co-jumps become more negative and increase,

respectively, as volatility increases. Importantly, the correlation between discontinuous price

changes and discontinuous volatility changes ρJ is negative and very close to −1.

Our evidence about the strong negative correlation between price and volatility jumps is

consistent with that in Todorov and Tauchen (2011). Using high-frequency data on the VIX and

the S&P 500, they find a high likelihood of contemporaneous jump arrivals, opposite signs for the

jumps sizes, and numerous jumps in volatility (attributed, in their framework, to the pure jump

nature of the volatility process). Their results hinge on suitable descriptive statistics for high-

frequency data, and corresponding tests, developed in Todorov and Tauchen (2010) and Jacod

and Todorov (2009). In contrast, our evidence derives from the identification of the price and

variance dynamics in the context of a specification allowing for a rich array of discontinuities. As

said, we focus on daily series and use high-frequency price observations only for the purpose of

filtering the daily volatility estimates used to estimate the model. Differently from Todorov and

Tauchen (2011), our analysis is conducted using price data only, rather than data on options and

the underlying.

Papers which estimate the price and volatility dynamics in the context of a ”doubly” jump-

diffusion model and filter volatility using only price data are, in a sense, methodologically more

comparable to our approach (Duffie et al., 2000, Eraker et al., 2003, and Eraker, 2004). Unless

option data are employed (Eraker, 2004), these papers do not find a negative correlation between

co-jumps. In contrast, we emphasize the importance of this additional source of return skewness

in a model which, differently from existing applied work, explicitly separates the jump components

into idiosyncratic and common factors.9

We now turn to the most traditional source of skewness, Brownian leverage. As for other

quantities, Figure 5 provides estimates of leverage as a function of spot volatility. This dependence

has been emphasized as being important in a specification with independent jumps (Bandi and

Renò, 2011). In agreement with Bandi and Renò (2011), but in the context of a more flexible

model specification allowing for co-jumps, we find a decrease in the leverage estimates, i.e., values

which are more negative associated with higher volatility levels, particularly around the center of

the observed volatility range. Thus, the time-varying (with volatility) structure of ρ emphasized

by Bandi and Renò (2011) appears to be robust to the presence of an additional source of skewness

9This separation is deemed important by Duffie et al. (2000) and defines their more general stochastic volatility

model. The more general model is however not estimated. Eraker et al. (2003) and Eraker (2004) estimate models

in which the jumps are either independent or they are perfectly dependent in terms of arrival times. In other words,

no allowance is made for independent jumps and common jumps, as in our case.
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(further discussed below) induced by the joint occurrence of price and volatility jumps.

To summarize, the descriptive, nonparametric, analysis presented here suggests that logarith-

mic prices and logarithmic variances are likely to feature both independent and common jumps.

The independent jumps are roughly mean zero. The common jumps have positive means, if in

volatility, and negative means, if in prices. In the joint case, the price size distribution expands

and re-centers around more negative values as volatility increases. The size distribution of the

volatility co-jumps is, instead, fairly stable. The sizes of the price and volatility co-jumps are

strongly anti-correlated.

7 Price and variance dynamics: parametric estimates

We now turn to a parametric assessment. The parametric model is motivated by the evidence in

Section 2 and the previous nonparametric analysis. Its specification is:

d log pt = µrdt+ σt

{
ρtdW

1
t +

√
1− ρ2

tdW
2
t

}
+ cJr,tdJr + cJJr,t dJr,σ

d log(σ2
t ) =

(
m0 +m1 log(σ2

t )
)
dt+ ΛdW 1

t + cJσ,tdJσ + cJJσ,tdJr,σ,

ρt = max(min(ρ0 + ρ1σt, 1),−1),

{Jr, Jσ, Jr,σ} ∼ Poisson(λr, λσ, λr,σ)

cJr,t ∼ N
(
µJ,r, σ

2
J,r

)
cJσ,t ∼ N

(
µJ,σ, σ

2
J,σ

)
(
cJJr,t

cJJσ,t

)
∼ N

((
µJJ,r,0 + µJJ,r,0σt

µJJ,σ

)
,( (

σJJ,r,0 + σJJ,r,1σ
σJJ,r,2
t

)2
ρJ
(
σJJ,r,0 + σJJ,r,1σ

σJJ,r,2
t

)
σJJ,σ

� σ2
JJ,σ

))
.

(12)

The system, which is readily viewed as a special case of the model in Eq. (1), has 21 parameters

whose estimates are reported in Column 4 of Table 2.10 We estimate two relevant restricted

models as well. The first model sets Jr,σ = 0 and has 12 parameters whose estimated values are

10The confidence bands are obtained by simulation. The estimated parametric model in Table 2, Column 4 is

used to generate simulated samples as large as the original sample. The procedure is then applied to every simulated

sample.
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Figure 6: The distributions of the price and volatility co-jumps implied by the parametric esti-

mates in Table 2, Column 4.

reported under the title “no co-jumps” in Column 2 of Table 2. The second model sets Jr = Jσ = 0

and has 15 parameters whose estimates are reported under the title “no independent jumps” in

Column 3 of Table 2.

We begin the discussion, again, with the price equation. Consistent with the functional ev-

idence reported earlier, preliminary estimation of a linear function for the price drift µ, namely

µr,0 +µr,1σ, resulted in an estimated slope coefficient µr,1 very close to 0, numerically and statisti-

cally. Hence, we only report estimates for a constant drift. The extremely weak compensation for

variance risk, when evaluated at the daily level, has been confirmed by several empirical studies,

including Eraker et al. (2003). Idiosyncratic jumps in prices do not play a relevant role. Even

though, when inferred from an estimated constant value for λr, the number of idiosyncratic price

jumps is found to be around 6/7 per year (0.0252× 252), these jumps are fairly small. The mean

of the idiosyncratic price jumps is positive (1.39%, in terms of point estimate) but insignificantly

different from zero. Their standard deviation is only 0.68%.

Before discussing co-jumps, we turn to the volatility equation. We fit a linear drift, namely,

m = m0 + m1 log(σ2), and find very accurately estimated linear mean-reversion in logarith-

mic volatility. In particular, the parameter m1 is equal to −0.0597 with a 95% band equal to

[−0.0736,−0.0355]. The volatility of volatility Λ is precisely estimated at a constant value equal

to about 0.56. The corresponding 95% confidence interval is [0.40, 0.58]. The number of indepen-

dent jumps in volatility is estimated at an annual value of about 13 (0.0528× 252). The mean of

the independent variance jumps is, again, statistically zero (point estimate equal to −0.45 with a

95% confidence band equal to [−1.06, 0.18]). The corresponding standard deviation is about 0.7.

The estimated number of co-jumps per year is 8.54 (0.0339 × 252) with a 95% confidence
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parameter no cojumps no independent jumps with cojumps

µr 0.0423 0.0631 0.0306 (0.0000, 0.1112 )

ρ0 −0.2280 −0.0977 −0.0988 (−0.2046, 0.0267 )

ρ1 −0.0874 −0.1225 −0.1617 (−0.2839,−0.0850 )

m0 −0.0232 −0.0397 −0.0380 (−0.0827, 0.1798 )

m1 −0.0704 −0.0576 −0.0597 (−0.0736,−0.0355 )

Λ 0.6048 0.5950 0.5583 (0.3999, 0.5836 )

µJ,r −0.1137 − 1.3948 (−0.7035, 2.9739 )

µJJ,r,0 − 0.5210 −0.0544 (−1.0728, 1.0830 )

µJJ,r,1 − −1.8976 −1.0072 (−4.0391, 0.0274 )

σJ,r 1.2715 − 0.6818 (0.0000, 2.0108 )

σJJ,r,0 − 1.7428 0.6246 (0.0000, 1.9913 )

σJJ,r,1 − 0.1718 2.2469 (0.7727, 5.0776 )

σJJ,r,2 − 1.8828 1.0863 (0.5601, 2.1114 )

µJ,σ 0.3498 − −0.4497 (−1.0624, 0.1792 )

µJJ,σ − 0.7816 1.4428 (0.9435, 1.5448 )

σJ,σ 1.2575 − 0.7002 (0.0002, 1.1645 )

σJJ,σ − 0.4901 0.1084 (0.0074, 0.5011 )

ρJ − −0.6416 −1.0000 (−1.0000,−0.1483 )

λr 0.1033 − 0.0252 (0.0045, 0.4548 )

λσ 0.0279 − 0.0528 (0.0103, 0.8920 )

λr,σ − 0.0489 0.0339 (0.0211, 0.0934 )

Table 2: In Column 4 we display parametric estimates of the model in Eq. (12) with the cor-

responding confidence intervals. Estimates of the same model with the restriction Jr,σ = 0 (no

co-jumps) and Jr = Jσ = 0 (no independent jumps) are in Column 2 and 3, respectively. The

parameters are relative to daily data, and imply returns expressed in percentage form.
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interval of [5.31, 23.53] per annum. This number is consistent with the empirical evidence provided

in Section 2. Further statistical evidence on the presence of significant co-jumps in the data is

provided in Section 9. When jumping jointly with volatility, the price process displays a tendency

to jump downwards. This tendency increases with the volatility level as implied by the point

estimates of µJJ,r,0 (−0.05%) and µJJ,r,1 (−1.01). Guided by the nonparametric evidence in

the previous section and the preliminary analysis in Section 2, we fit a nonlinear structure to

the standard deviation of the common price jumps, namely σJ,r,0 + σJ,r,1σ
σJ,r,2 . All parameters

are positive and, with the exception of the constant term σJ,r,0, statistically significant, thereby

suggesting an increase in the size of the common price jumps along with increases in volatility.

Variance has a tendency to jump upward. The mean of the common jumps in variance is estimated

at a value equal to 1.44. The 95% confidence band for this parameter is [0.94, 1.54]. The volatility

of the common jumps in variance is estimated at a value of 0.1084 with a 95% confidence interval

of [0.007, 0.50]. To visualize the impact of these numbers, the size distributions of the price and

volatility co-jumps are plotted in Figure 6. The distribution of the size of the price co-jumps

is plotted as a function of three representative volatility levels (namely, 0.5%, 1%, and 2%). As

volatility increases, this distribution expands and re-centers around more negative values. Finally,

importantly, the correlation between the common price jumps and the common volatility jumps

is estimated at a value which is very clearly negative. The point estimate is at the lower boundary

(−1) and the upper limit of the 95% confidence interval is −0.1483.11

In sum, the estimates suggest that the price process is more likely than not to jump jointly

with the volatility process (the number of price co-jumps is larger than the number of independent

price jumps). When moving jointly in a discontinuous fashion, volatility tends to shift upward,

whereas prices have a tendency to move downward. This said, the model estimates imply a

substantial likelihood of positive price co-jumps, both at high and at low volatility levels (see

Figure 6). This is, again, consistent with the preliminary evidence in Section 2, Figure 2. Large

positive price co-jumps are less frequent than negative price co-jumps, but they are in the data.

Their mean and variability also increase with the underlying volatility level, something which

the parametric model readily delivers. Finally, when the volatility jumps are above their positive

mean, the price jumps tend to be below their negative mean, as implied by a strongly negative

correlation between the common jump sizes.

11This negative correlation is larger, in absolute value, than that reported in the descriptive analysis in Section 2.

This is due to the fact the preliminary descriptive evidence in Section 2 is based on variance measures which are, by

definition, estimates of the true variances and, therefore, affected by some measurement error. This measurement

error will induce attenuation effects when evaluating the correlation between price and volatility jump sizes. Thus,

on the one hand, we should view the reported correlation in Section 2 as being conservative and, likely, too small

in absolute value. On the other hand, the finite sample adjustments leading to the estimates in this section are

designed to lead to accurate identification. Appendix B provides details on these adjustments and confirms their

effectiveness by simulation.
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Guided, again, by the nonparametric estimates, we fit a linear function to leverage, namely

ρ0 + ρ1σ. We find that leverage decreases with the volatility level (ρ̂0 = −0.10 and ρ̂1 = −0.16).

For volatilities between 0.5% and 2%, estimated leverage varies between −0.18 and −0.42. These

values are lower, in absolute value, than those reported in the literature. Eraker et al. (2003), for

instance, find a leverage value equal to −0.4838 for their specification with contemporaneously-

arriving, but empirically uncorrelated in their framework, jumps. Similarly, in a model with the

same logarithmic specification used here, but with no jumps in variance (neither idiosyncratic nor

contemporaneous), Andersen et al. (2002) estimate a leverage parameter equal to −0.61. This

outcome is, however, unsurprising. The presence of anti-correlated common jumps is expected to

reduce the size of classical leverage. Leverage is generally identified off of the covariance between

price changes and volatility changes. In the model we study, this covariance is not just driven by

Brownian correlation but also by the correlation between discontinuous shocks to the system. In

fact,

ρtotal =
ϑ1,1

σΛ
= ρ+

λr,σ (ρJσJJ,rσJJ,σ + µJJ,rµJJ,σ)

σΛ
= ρ+ ρco−jumps. (13)

Even though the number of yearly co-jumps λr,σ may not be extremely high, the correlation

between the jump sizes is negative and large in absolute value. The means of the price/variance

jump sizes are also large and of opposite sign. For a volatility level of σ = 1%, for instance, we

have ρ = −0.26, ρco−jumps = −0.11 and ρtotal = −0.37. Thus, the contribution of the jumps is

found to be substantial. The parametric estimates also indicate (see Figure 7) that ρ is decreasing

with the volatility level while ρco−jumps is nearly constant. Figure 7 also plots the percentage of

the correlation ρtotal attributable to the Brownian part computed using the parametric estimates

in Table 2. The figure shows that this percentage is roughly 60/70% around the center of the

volatility range (0.8%). The value varies somewhat with the volatility level, becoming increasingly

important as spot volatility increases.

The size of Brownian leverage, and its implications for the skewness of stock returns, has drawn

attention in the recent literature (see, e.g., Aı̈t-Sahalia et al., 2011, and Bandi and Renò, 2011).

Specifically, referring back to Eq. (13), compelling statistical arguments have been made about

the need to account for noise in the estimation of the variance of variance Λ as well as downward

biases in the estimation of the price and variance covariance ϑ1,1. Both effects have been shown

to lead to attenuation effects in the estimation of leverage and, consequently, the belief that

Brownian leverage may, in fact, be larger - i.e., more negative - than previously recognized. This

paper addresses these important statistical concerns explicitly by relying on spot (hourly) volatility

measures as well as by reducing the residual measurement error in the spot variance measures

explicitly (see Section 12.4. in Appendix B). Monte Carlo simulations from the parametric model

in Table 2 (Figure 11, Appendix B) show that our small sample adjustments are reliable in
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Figure 7: The leverage effect, as a function of volatility, decomposed into its Brownian part and

the part due to co-jumps, as implied by the parametric estimates in Table 2, Column 4. In the

inset we plot the percentage of covariance explained by Brownian correlation.

providing unbiased estimate of the infinitesimal cross-moments, including the moment ϑ1,1, which

is crucial for the identification of leverage effects. Monte Carlo analysis on the estimated leverage

parameters, and all other parameters of the systems, provides further, more direct, evidence.

Following our small sample adjustments, this analysis provides evidence of minimal distortions in

estimating both ρ0 and ρ1 (Figure 12, Appendix B, for a visual representation).

In sum, this paper emphasizes an economic argument which may run counter to the idea that

true Brownian leverage may be more negative than previously believed. Because a portion of

the covariance between price and volatility changes is due to common jumps, the presence of

anti-correlated co-jumps will, as was shown by virtue of the decomposition illustrated in Figure

7, lead to smaller Brownian correlations.

Having made these points, it is now worth asking what would happen to the model estimates

should one impose the restrictions that (1) the intensity of the common jumps is equal to zero

and (2) the intensity of the independent jumps is equal to zero (Table 2, Column 2 and Col-

umn 3, respectively). Both specifications, implying presence of independent or common jumps

only, represent important models in the literature (see, e.g., Eraker et al., 2003), the mixed case

discussed in this paper combining aspects of the two. In the first case, i.e., independent jumps

only, all functions and parameters are qualitatively and quantitatively similar to the unrestricted

model with two interesting exceptions. First, the correlation between Brownian shocks has now
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a more familiar magnitude. For volatilities between 0.5% and 2%, the estimated leverage values

vary between −0.27 and −0.40. The absence of co-jumps justifies an increased Brownian leverage.

Second, some discontinuous changes in prices and volatility are, in terms of their number, now

attributed by the model to the independent jumps. In terms of point estimates, we find roughly

26 yearly price jumps (with small sizes) and 7 yearly volatility jumps. In the second case, i.e.,

perfectly correlated jump arrivals or co-jumps only, we expect not accounting for independent

jumps to possibly attenuate the negative correlation between the common jump sizes. This would

happen if some of the independent jumps were attributed to common discontinuous variation.

Consistent with this observation, we find attenuation in the jump size correlation (−.64). This

attenuation is, however, not accompanied by drastic changes in Brownian leverage since it is

compensated by an increase in the likelihood of co-jumping.

8 Implications for option pricing

Stochastic volatility determines excess (as compared to the Gaussian case) kurtosis in the con-

ditional (on volatility) distribution of returns. The excess kurtosis gives rise to symmetrically

higher implied volatilities for strikes away from the current prices, i.e., for levels of moneyness

away from the at-the-money level (volatility smiles). Similarly, the negative correlation between

continuous (Brownian) shocks to returns and shocks to volatility leads to skewness in the condi-

tional distribution of stocks returns and implied volatility surfaces that are convex and downward

sloping (volatility smirks). Both effects are stronger for short and medium maturity options than

for long maturity options for which conditional returns are closer to normal (see, e.g., Das and

Sundaram, 1999, for a lucid discussion).

The presence of co-jumps, and the negative correlation between the co-jump sizes, yields

an additional source of skewness in the conditional distribution of stock returns. As said, in

a model with co-jumps, the standardized conditional covariance between shocks to prices and

shocks to variance depends on the correlation between continuous shocks ρ and the standardized

conditional covariance between discontinuous shocks
λr,σ(ρJσJJ,rσJJ,σ+µJJ,rµJJ,σ)

σΛ . If both quantities

are negative, there are two sources of skewness in the model. Because ρ and ρJ are, as documented,

negative, and of meaningful magnitude in absolute value, the model we propose features this

double effect.

To appreciate the relative influence of ρJ , Figure 8 provides a representation of the impact

of the co-jump correlation on the implied volatility smirk. We consider 4 maturities: 5 , 15, 30,

and 120 days. The price process is simulated using the model estimated in Section 7 with no

independent jumps. The parameters are those in Table 2, Column 3. The only exceptions are ρJ

(set to either 0 or −1) and a drift properly-adjusted for the presence of co-jumps so as to ensure

a risk-neutral drift equal to r = 3% (i.e., µ = r− λr,σµJJ,r). We report implied volatility surfaces
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Figure 8: Implied volatility smirks with and without co-jumps.

as a function of moneyness. The surfaces correspond to the case with co-jumps and a correlation

between jump sizes equal to −1, the case with co-jumps and a correlation between jump sizes

equal to 0, and the case without co-jumps. When considering the case without co-jumps, we

introduce independent jumps with the same intensity and size distribution as for the co-jump

(only) case. This is to make the obtained volatility surfaces comparable in level.

For all maturities, given our parameters, introduction of (uncorrelated) co-jumps as well as

increases in the correlation of the common jump sizes (from 0 to −1) lead to a rotation of the

implied volatility smirk. This effect results in higher prices and higher implied volatilities, than

in the case of uncorrelated common jump sizes, for in-the-money calls. Conversely, it results in

lower implied volatilities for out-of-the-money calls. In essence, then, the presence of co-jumps,

especially with a strong (negative) correlation between the common jump sizes, has the potential

to add a considerable degree of flexibility to the pricing of options.
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It is useful to emphasize that this outcome is not obtained, in our framework, by implying

the degree of correlation between the common jumps on the basis of option data. In a calibration

study designed to match the model’s implied prices and the actual observed prices, Duffie et

al. (2000) find a superior fit of the implied volatility smirk when calibrating a more negative

correlation between jump sizes. They conclude that, based on their option data, the price and

volatility jump sizes should be ”nearly perfectly anti-correlated”. Similarly, Eraker (2004) finds

a statistically significant correlation between the jump sizes only when employing option data in

addition to return data. In this sense our evidence may be viewed as complementing the existing

option-based evidence. In a model that allows for independent and joint discontinuities, we show

that anti-correlated amplitudes of the jumps are a fundamental property of prices and volatilities.

The use of flexible identification methods, and a volatility filter relying on high-frequency data,

are sufficient to reveal this property with no need for option prices.

9 Specification analysis

Much emphasis has been placed on affine structures and their usefulness in deriving near closed-

form prices for a wide array of securities (see, e.g., Piazzesi, 2010, for a review). More generally,

emphasis has been placed on parametric specifications in the presence of models with latent

variables, such a stochastic volatility. In these models, the estimation of the parameters and the

filtering of the latent states are a joint problem, one that has been successfully undertaken in

several recent papers (see, for a recent discussion, Andersen and Benzoni, 2011). By its very

nature, however, this joint problem is bound to link the filtering of volatility to the identification

of the system’s parametric structure.

We dispense with this link and identify daily volatility, before inference on the dynamics begins,

by virtue of intra-daily price data. In this sense, our filtered volatility series is especially useful

to select a function ξ(.) and, hence, a variance transformation, which conforms with the assumed

jump-diffusion structure and can therefore be modelled as a jump-diffusion process. Write

εt,t+∆ =
fλ(σ2

t+∆)− fλ(σ2
t )−mλ(σt)∆

Λλ(σt)
√

∆
,

where fλ(·) is a Box-Cox transformation, namely fλ(·) = ·λ−1
λ for λ 6= 0 and fλ(·) = log(·) for

λ = 0. The functions mλ(σt) and Λλ(σt) are the volatility drift and the volatility of volatility

function associated with the same transformation.

Consider a specification without jumps. Because the system’s shocks are assumed to be Brow-

nian shocks, the (standardized) residuals εt,t+∆ should be locally Gaussian. The most suitable

choice of λ is, therefore, the choice which guarantees Gaussianity of the residuals. In a model with

symmetric Poisson jumps, the residual should still have zero skewness and only inflated kurtosis.
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Figure 9: Specification test.

The excess kurtosis should be an increasing function of the number of jumps and the standard

deviation of the jump size. To this extent, Figure 9 reports the skeweness and kurtosis of the

volatility residuals for different values of the parameter λ. A value of λ equal to 0 yields zero

skewness and, consistent with a model with some discontinuities, mildly inflated kurtosis. This

value coincides with the logarithmic transformation which we adopt in this paper.12 The second

panel in Figure 3 shows the filtered logarithmic variances. It is visually clear that the daily log-

arithmic variances conform rather well with a model in which the Brownian shocks occur along

with discontinuous shocks. In addition, the Brownian shocks appear to have a rather constant

variance Λ2(·) in our sample. Similarly, the volatility jumps seem to have a rather small standard

deviation σ2
J,σ. Both observations are consistent with the nonparametric and parametric analysis

in Sections 5 and 6.

We now turn to specification testing on the functional estimates. In particular, we focus on co-

jumps. The use of moment conditions for estimation nicely lends itself to tests of over-identifying

restrictions. We begin with a visual assessment. We employ infinitesimal cross-moments which

were not used for estimation, i.e., the moments below the diagonal in a matrix p1, p2 ∈ (0, 4)

with the exception of moment 3, 2 and moment 2, 3. We then compare the estimated parametric

12Papers on stochastic volatility estimation in discrete time which employ a logarithmic transformation are Chib

et al. (2002); Harvey and Shephard (1996); Jacquier et al. (1994, 2004), and Yu (2005, 2010) among others.
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Figure 10: Overidentifying restrictions.

forms implied by the model to the estimated empirical moments. We find that the model-implied

estimates are close to the ”free” estimates, thereby providing visual evidence of satisfactory model

specification.

We now turn to a more formal analysis. The (nonparametric and parametric) estimation of

the model in Section 6 and 7 provides, as a straightforward by-product, a series of tests for the

presence of co-jumps in our sample (the alternative hypothesis H1 : λr,σ > 0 being tested against

the null of absence of co-jumps H0 : λr,σ = 0). We begin with H0 :< ϑp1,p2 >= 0 (p1 ≥ 1 and

p2 ≥ 1 with (p1, p2) 6= (1, 1)), where < ϑp1,p2 > denotes the estimated moment of order (p1, p2)

averaged over the estimated volatility density, tested against H1 :< ϑp1,p2 >6= 0. When p1 and p2

are both ≥ 1, and at least one of them is strictly larger than 1, theory dictates that these higher-

order cross-moments should all be directly proportional to λr,σ. Specifically, < ϑp1,p2 >= 0 if

λr,σ = 0. Conversely, a zero moment (< ϑp1,p2 >= 0) implies λr,σ = 0, if ρJ 6= 0, since σJJ,r > 0

and σJJ,σ > 0. Somewhat more explicitly, we also employ a GMM-type J−test directly on the

restriction λr,σ = 0. The distribution, and resulting size, of all the proposed tests under the null

is evaluated using simulations from the parametric model in Table 2 after setting λr,σ = 0. Table

3 provides the test values along with their simulated p-values. All tests yield a clear rejection of

the null of absence of co-jumps at the 1% level.

One final observation is in order. While the use of infinitesimal cross-moments for co-jump
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test value p-value

J-test 239.4 0.20%

< ϑ2,2 > 0.2862 0.10%

< ϑ1,2 > -0.0681 0.00%

< ϑ2,1 > 0.2669 0.00%

< ϑ1,3 > -0.1091 0.00%

< ϑ3,1 > -0.9861 0.20%

< ϑ2,3 > 0.4846 0.10%

< ϑ3,2 > -2.3185 0.10%

< ϑ3,3 > -6.2580 0.10%

Table 3: Tests for the presence of co-jumps and corresponding p-values.

identification is justified asymptotically in Appendix A, statistical uncertainty in the functional

estimates, in the parametric estimates, and in the above tests is evaluated throughout this work

by simulating the model using the estimated parameter values in Table 2 before running the

described procedures for every simulated data set. In this sense, our inference is finite sam-

ple in nature, conservative, and unaffected by the overrated precision which would characterize

asymptotic inference.

10 Final remarks

Market participants, as well as more casual observers, would believe that negative market shocks

are associated with sudden, positive, changes in the level of volatility. This belief, confirmed by

several recent financial crisis including the rather wild market gyrations of August 2011, originates

from the frequent observation of the parallel, but opposite in sign, behavior of major stock indices

and volatility indices, like the VIX. Negative price changes often occur along with positive spikes

in the VIX. Just to mention a couple of recent events, between August 5th 2011 (a Friday) and

August 8th 2011 (a Monday) the VIX rose from 32 to 48. The associated, negative, S&P 500

change on Monday, August 8th, was about 6%. Similarly, on August 17th the VIX rose from

31 to 42. The corresponding market price change was about −4.5%. Because it is an important

barometer of market sentiment, the VIX is a complicated object capturing market fear, through

risk-premia, as well as changes in fundamental values.

30



Interestingly, attempts to relate volatility measures unaffected by risk premia to sudden price

changes have been largely unsuccessful. This outcome may be the result of pricing models which do

not explicitly allow for independent price and volatility jumps along with co-jumps and, therefore,

excessively constrain the jump dynamics. It may also be the result of volatility filtering methods

relying on low-frequency return data, as well as on the parametric structure of the model, which

may not be capable of yielding enough resolution, in terms of final estimates, so as to thoroughly

identify rare events, like volatility jumps and co-jumps.

Combining jump-robust, high-frequency, spot variance estimates with a novel identification

procedure based on infinitesimal cross-moments, we provide empirical evidence about the likeli-

hood of price and volatility jumps occurring jointly. When co-jumping, price and volatility move

in opposite directions, negative and positive respectively, and are strongly negatively correlated.

We emphasize that this result does not hinge on sudden changes in risk premia associated with

market downturns (as possibly yielded by the VIX) or implied volatility smirks (as given by cross-

sectional option prices). Said differently, the effect is solely revealed by the dynamic properties of

stock prices, once a sufficiently rich specification is adopted, without the need for the, arguably

economically confounding, information contained in traded or synthetic derivatives.
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11 Appendix A: Asymptotic properties

Consider a bivariate jump-diffusion process with compound Poisson jumps expressed as follows:

dXt = µX(Yt)dt+ σX(Yt)
{
ρ(Yt)dW

1
t +

√
1− ρ2(Yt)dW

2
t

}
+ cXdJ

X
t + dXdJt,

dYt = µY (Yt)dt+ σY (Yt)dW
1
t + cY dJ

Y
t + dY dJt,

(14)

where dWX = ρ(Yt)dW
1
t +

√
1− ρ2(Yt)dW

2
t , dW

Y = dW 1 are correlated diffusion processes with cor-

relation coefficient ρ(Yt) and dJX , dJY , and dJ are independent (of the Brownian motions W 1 and W 2,

as well as each other) Poisson processes with intensities λX(Yt), λY (Yt),and λXY (Yt), respectively. The

functions are such that a strong solution to the system exists. The system does not have to be stationary.

It is sufficient for the state variable {Yt, t ≥ 0} to be Harris recurrent, something which we assume.

We observe the skeleton
{
X∆n,T

, Y∆n,T

}
,
{
X2∆n,T

, Y2∆n,T

}
, ...,

{
Xn∆n,T

, Yn∆n,T

}
, i.e., n equally-spaced

observations sampled at intervals ∆n,T = T/n. The asymptotic design is such that n → ∞, T → ∞, and

∆n,T → 0. We estimate

ϑp1,p2
(y) = lim

ε→0

E[(Xt+ε −Xt)
p1 (Yt+ε − Yt)p2 |Yt = y]

ε
, (15)

by using classical Nadaraya-Watson kernel estimates, namely

ϑ̂p1,p2
(y) =

n−1∑
i=1

K
(
YiT/n−y
hn,T

) (
X(i+1)T/n −XiT/n

)p1
(
Y(i+1)T/n − YiT/n

)p2

∆n,T

n∑
i=1

K
(
YiT/n−y
hn,T

) . (16)

Define L̂n,T (y) =
∆n,T

hn,T

n∑
i=1

K
(
YiT/n−y
hn,T

)
=

∆n,T

hn,T

n∑
i=1

Ki,n,T (y), the empirical occupation density of the Y

process.

The following proofs provide details which are specific to inference for infinitesimal cross-moments.

For more details on the general method of proof in this type of models, we refer the interested reader

to the treatment in Bandi and Renò (2009). The notation in this Appendix is purposely for a general

system of observable processes {(Xt, Yt) , t ≥ 0}. The next subsection specializes the analysis to the case

(Xt, Yt) = (log pt, σ̂
2
t ) while providing limiting conditions for a vanishing measurement error in the variance

estimates σ̂2
t .

Assumption. The function K(x) is a nonnegative, bounded, continuous, and symmetric kernel defined

on a compact set S satisfying
∫

S
K(s)ds = 1, K2 =

∫
S

K2(s)ds < ∞, and K1 =
∫

S
s2K(s)ds < ∞. The

kernel’s first and second derivative are absolutely integrable.

Theorem 1. (Consistency.) If n, T → ∞ and ∆n,T = T/n → 0 so that hn,T L̂n,T (y)
a.s.→ ∞ and

∆n,T

h2
n,T
→ 0, then

ϑ̂p1,0(y)
p→


µX(y) + λX(y)E[cX ] + λXY (y)E[dX ] p1 = 1

σ2
X(y) + λX(y)E[c2X ] + λXY (y)E[d2

X ] p1 = 2

λX(y)E[cp1

X ] + λXY (y)E[dp1

X ] p1 ≥ 3

,

ϑ̂1,1(y)
p→ ρ(y)σX(y)σY (y) + λXY (y)E[dXdY ],

and, without loss of generality, for p1 ≥ p2 ≥ 1 (with p1 > p2 if p2 = 1),
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ϑ̂p1,p2(y)
p→ λXY (y)E[dp1

X d
p2

Y ].

Theorem 2. (Weak convergence.) Let n, T → ∞ and ∆n,T = T/n → 0 so that hn,T L̂n,T (y)
a.s.→ ∞

and
∆n,T

√
L̂n,T (y)

h
3/2
n,T

a.s.→ 0. If

h5
n,T L̂n,T (y) = Oa.s.(1),

then √
hn,T L̂n,T (y)

{
ϑ̂p1,p2

(y)− ϑp1,p2
(y)− Γϑp1,p2

(y)
}
⇒ N(0,K2ϑ2p1,2p2

(y)),

with

Γϑp1,p2
= h2

n,TK1

(
∂ϑp1,p2 (y)

∂y

∂s(y)
∂y

s(y)
+

1

2

∂2ϑp1,p2 (y)

∂2y

)
,

where s(dx) = s(x)dx is the invariant measure of the Y process.

Lemma A.1. Given a Borel measurable function g(y) : R → R, write

χn1,n2
(y) =

∑n−1
i=1 Ki,n,T (y)

∫ (i+1)T/n

iT/n

(
Xs− −XiT/n

)n1
(
Ys− − YiT/n

)n2
g(Ys)ds

∆n,T

∑n
i=1 Ki,n,T (y)

with n1 = 0, 1, . . . and n2 = 0, 1, . . .. Assume n, T →∞ with ∆n,T → 0. If
∆n,T

h2
n,T
→ 0, then

χ0,0(y)
p→ g(y),

and, if n1 6= 0 or n2 6= 0,

χn1,n2
(y)

p→ 0.

Proof of Lemma A.1. Using the ratio-limit theorem(Revuz and Yor, 1994) as in Bandi and Renò (2009),

and handling discretization the way they do, we have

χ0,0(y) =

∫ T
0

Ks(y)g(Ys)ds∫ T
0

Ks(y)ds
+Op

(
∆n,T

h2
n,T

)
∫ T
0

Ks(y)ds∫ T
0

Ks(y)ds
+Op

(
∆n,T

h2
n,T

) p→ g(y),

if
∆n,T

h2
n,T
→ 0. And, immediately,

χn1,n2
(y) = Op

(
∆

1/2
n,T

)n1+n2

χ0,0(y)
p→ 0.

Lemma A.2. Given two Borel measurable functions g1(y) : R → R and g2(y, z) : R2 → R, write

Ψn1,n2
(y) =

∑n−1
i=1 Ki,n,T (y)

∫ (i+1)T/n

iT/n

(
Xs− −XiT/n

)n1
(
Ys− − YiT/n

)n2
g1(Ys)dWs

∆n,T

∑n
i=1 Ki,n,T (y)

,
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and

Ξn1,n2
(y) =

∑n−1
i=1 Ki,n,T (y)

∫ (i+1)T/n

iT/n

(
Xs− −XiT/n

)n1
(
Ys− − YiT/n

)n2
∫
Z
g2(Ys, z)ν̄(ds, dz)

∆n,T

∑n
i=1 Ki,n,T (y)

,

with n1 = 0, 1, . . . and n2 = 0, 1, . . .. Assume n, T →∞ with ∆n,T → 0. If
∆n,T

h2
n,T
→ 0 and hn,T L̂n,T (y)

a.s.→
∞, then

Ψn1,n2
(y)

p→ 0,

and

Ξn1,n2(y)
p→ 0.

Proof of Lemma A.2. Both Ψ0,0(y) and Ξ0,0(y) are appropriately re-scaled (by L̂n,T (y)) sums of

martingale difference sequences. Following Bandi and Renò (2009), if
∆n,T

h2
n,T
→ 0 and hn,T L̂n,T (y)

a.s.→ ∞,

Ψ0,0(y)
p→ 0,

Ξ0,0(y)
p→ 0.

Thus, immediately,

Ψn1,n2
(y) = Op

(
∆

1/2
n,T

)n1+n2

Ψ0,0(y)
p→ 0,

and

Ξn1,n2(y) = Op

(
∆

1/2
n,T

)n1+n2

Ξ0,0(y)
p→ 0.

Lemma A.3. Consider Ψn1,n2 and Ξn1,n2 as defined in Lemma A.2. Let n, T → ∞ so that ∆n,T =

T/n→ 0. If hn,T L̂n,T (y)
a.s.→ ∞ and

∆n,T

h2
n,T
→ 0, we have√

hn,T L̂n,T (y)Ψ0,0 ⇒ N
(
0,K2g

2
1(y)

)
.

For n1 ≥ 0, if hn,T L̂n,T (y)
a.s.→ ∞ and

∆n,T

h2
n,T
→ 0,√

hn,T L̂n,T (y)

∆n,T
Ψn1,0 ⇒ N

(
0,

1

2
K2g

2
1(y)ϑ2n1,0(y)

)
.

For n1 ≥ n2 ≥ 1, if hn,T L̂n,T (y)
a.s.→ ∞ and

∆n,T

h2
n,T
→ 0,√

hn,T L̂n,T (y)

∆n,T
Ψn1,n2

⇒ N

(
0,

1

2
K2g

2
1(y)ϑ2n1,2n2

(y)

)
.

Similar expressions apply to Ξn1,n2
with E[g2

2(y, z)] replacing g2
1(y).

Proof of Lemma A.3. Without loss of generality, write n1 ≥ n2 ≥ 1 and consider Ξn1,n2 . Write

Ξnumn1,n2
(y) : =

1√
hn,T∆n,T

n−1∑
i=1

Ki,n,T (y)

∫ (i+1)T/n

iT/n

(
Xs− −XiT/n

)n1
(
Ys− − YiT/n

)n2

∫
Z

g2(Ys)ν̄(ds, dz)

: =
1√

∆n,T

n−1∑
i=1

ui.
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We immediately have 1√
∆n,T

∑n−1
i=1 E[ui|=iT/n] = 0. Using arguments in Bandi and Renò (2009), we obtain

1

∆n,T

n−1∑
i=1

E[u2
i |=iT/n] =

1

2

∫ T

0

K2
s(y)E[g2

2 ]λXY (Ys)E[d2n1

X d2n2

Y ]ds+
∆n,T

h2
n,T

Op

(
1

hn,T

∫ T

0

K

(
Ys − x
hn,T

)
ds

)
= U2

n,T ,

and
1

∆n,T

n−1∑
i=1

E
[
u2
i1(|ui| > ε)|=iT/n

] p→ 0.

Theorem VIII. 3.33 in Jacod and Shiryaev (2003) allows us to conclude that, uniformly in T and hn,T in

H(ε) =

{
∆

1/2
n,T

ε < hn,T < ε

}
for a small ε > 0, Ξnumn1,n2

(y) ⇒
∆n,T→0

WU2 . Hence,

√
hn,T L̂n,T (y)

∆n,T
Ξn1,n2(y) =

Ξnumn1,n2
(y)√

∆n,T

hn,T

∑n
i=1 Ki,n,T (y)

⇒W U2
n,T∫T

0 Ks(y)ds

,

if
∆n,T

h2
n,T
→ 0. The ratio-limit theorem now yields

U2
n,T∫ T

0
Ks(y)ds

p→
T→∞,hn,T→0,∆n,T→0

1

2
K2E[g2

2(y)]λX,Y (y)E[d2n1

X d2n2

Y ].

Theorem 4.1 in van Zanten (2000) implies the desired result. The case n2 = 0 can be treated in a similar

way. Next, consider Ψn1,n2 and write,

Ψnum
n1,n2

(y) =
1√

hn,T∆n,T

n−1∑
i=1

Ki,n,T (y)

∫ (i+1)T/n

iT/n

(
Xs− −XiT/n

)n1
(
Ys− − YiT/n

)n2
g1(Ys)dWs.

Compute now its quadratic variation, i.e.,

[Ψnum
n1,n2

(y)] =
1

hn,T∆n,T

n−1∑
i=1

(Ki,n,T (y))
2
∫ (i+1)T/n

iT/n

(
Xs− −XiT/n

)2n1
(
Ys− − YiT/n

)2n2
g2

1(Ys)ds.
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Using Ito’s lemma, we obtain(
Xs− −XiT/n

)2n1
(
Ys− − YiT/n

)2n2

=

∫ s

iT/n

2n1

(
Xu− −XiT/n

)2n1−1 (
Yu− − YiT/n

)2n2
µX,sdu

+

∫ s

iT/n

2n2

(
Xu− −XiT/n

)2n1
(
Yu− − YiT/n

)2n2−1
µY,sdu

+

∫ s

iT/n

2n1

(
Xu− −XiT/n

)2n1−1 (
Yu− − YiT/n

)2n2
σX,sdW

X
u

+

∫ s

iT/n

2n2

(
Xu− −XiT/n

)2n1
(
Yu− − YiT/n

)2n2−1
σY,sdW

Y
u

+

∫ s

iT/n

1

2
2n1(2n1 − 1)

(
Xu− −XiT/n

)2n1−2 (
Yu− − YiT/n

)2n2
σ2
X,sdu

+

∫ s

iT/n

1

2
2n2(2n2 − 1)

(
Xu− −XiT/n

)2n1
(
Yu− − YiT/n

)2n2−2
σ2
Y,sdu

+

∫ s

iT/n

2n12n2

(
Xu− −XiT/n

)2n1−1 (
Yu− − YiT/n

)2n2−1
ρsσX,sσY,sdu

+
∑

∆Xu 6=0 or ∆Yu 6=0

[
(Xu− + ∆Xu −XiT/n)2n1(Yu− + ∆Yu − YiT/n)2n2

−
(
Xu− −XiT/n

)2n1
(
Yu− − YiT/n

)2n2
]
. (17)

If n1 ≥ n2 ≥ 1, the higher-order term above is given by
∑

(∆Xu)2n1(∆Yu)2n2 . Thus,

[Ψnum
n1,n2

(y)]
a.s.→ 1

2

1

hn,T

∫ T

0

K2
s(y)g2

1(Ys)λXY (Ys)E
(
d2n1

X (z)d2n2

Y (z)
)

ds

Reasoning in the same way as for Ξn1,n2
, we have√

hn,T L̂n,T (y)

∆n,T
Ψn1,n2

⇒ N

(
0,

1

2
K2g

2
1(y)ϑ2n1,2n2

)
,

if hn,T L̂n,T (y)
a.s.→ ∞ and

∆n,T

h2
n,T
→ 0. Clearly, for n1 ≥ 0,√
hn,T L̂n,T (y)

∆n,T
Ψn1,0 ⇒ N

(
0,

1

2
K2g

2
1(y)ϑ2n1,0

)
,

if hn,T L̂n,T (y)
a.s.→ ∞ and

∆n,T

h2
n,T
→ 0.

Proof of Theorem 1. Consider the p2 = 0, p1 ≥ 3 case. Ito’s Lemma gives

(X(i+1)T/n −XiT/n)p1 = p1

∫ (i+1)T/n

iT/n

(
Xs− −XiT/n

)p1−1
µX,sds

+p1

∫ (i+1)T/n

iT/n

(
Xs− −XiT/n

)p1−1
σX,sdW

X
s

+
1

2
p1(p1 − 1)

∫ (i+1)T/n

iT/n

(
Xs− −XiT/n

)p1−2
σ2
X,sds

+
∑

∆Xs 6=0

[(
Xs− + ∆Xs −XiT/n

)p1 −
(
Xs− −XiT/n

)p1
]
. (18)
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Now, write ∑
∆Xs 6=0

[(
Xs− + ∆Xs −XiT/n

)p1 −
(
Xs− −XiT/n

)p1
]

=

p1−1∑
k=0

(
p1

k

)∫ (i+1)T/n

iT/n

∫
Z

(
Xs− −XiT/n

)k (
cp1−k
X (z)νX(ds, dz) + dp1−k

X (z)νXY (ds, dz)
)
.

Compensating the random jump measures and denoting by ν̄X and ν̄XY the corresponding compen-

sated random jump measures, we write ν̄X(ds, dy) = νX(ds, dy) − λX,sE[cp1−k
X ]ds and ν̄XY (ds, dy) =

νXY (ds, dy)− λXY,sE[dp1−k
X ]ds. Thus,

ϑ̂p1,0(y) =

n−1∑
i=1

p1Ki,n,T (y)
∫ (i+1)T/n

iT/n

(
Xs− −XiT/n

)p1−1
µX,sds

∆n,T

n∑
i=1

Ki,n,T (y)

+

n−1∑
i=1

p1Ki,n,T (y)
∫ (i+1)T/n

iT/n

(
Xs− −XiT/n

)p1−1
σX,sdW

X
s

∆n,T

n∑
i=1

Ki,n,T (y)

+

n−1∑
i=1

1
2p1(p1 − 1)Ki,n,T (y)

∫ (i+1)T/n

iT/n

(
Xs− −XiT/n

)p1−2
σ2
X,sds

∆n,T

n∑
i=1

Ki,n,T (y)

+

n−1∑
i=1

Ki,n,T (y)
∑p1−1
k=0

(
p1

k

)∫ (i+1)T/n

iT/n

(
Xs− −XiT/n

)k ∫
Y

(
cp1−k
X (y)ν̄X(ds, dy) + dp1−k

X (y)ν̄XY (ds, dy)
)

∆n,T

n∑
i=1

Ki,n,T (y)

+

n−1∑
i=1

Ki,n,T (y)
∑p1−1
k=0

(
p1

k

)∫ (i+1)T/n

iT/n

(
Xs− −XiT/n

)k (
λX,sE[cp1−k

X ] + λXY,sE[dp1−k
X ]

)
ds

∆n,T

n∑
i=1

Ki,n,T (y)

= R1 + R2 + R3 + R4 + A5.

The terms R1 through R4 converge to zero in probability given Lemma A.1. and Lemma A.2. Now write

A5 as follows

A5 =

n−1∑
i=1

∫ (i+1)T/n

iT/n
Ki,n,T (y) (λX,sE[cp1

X ] + λXY,sE[dp1

X ]) ds

∆n,T

n∑
i=1

Ki,n,T (y)

+

n−1∑
i=1

Ki,n,T (y)
∑p1−1
k=1

(
p1

k

)∫ (i+1)T/n

iT/n

(
Xs− −XiT/n

)k (
λX,sE[cp1−k

X ] + λXY,sE[dp1−k
X ]

)
ds

∆n,T

n∑
i=1

Ki,n,T (y)

= A1
5 + A2

5.
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Lemma A.1. gives

A1
5
p→ λX(y)E[cp1

X ] + λXY (y)E[dp1

X ],

A2
5
p→ 0,

which proves the stated result. Given Eq. (18) the cases p1 = 1 and p1 = 2 are obvious. Consider the case

p2 > p1 ≥ 1, without loss of generality. Using Ito’s lemma as in Eq. (17) and rewriting the last term as∑
∆Xs 6=0 or ∆Ys 6=0

[
(Xs− + ∆Xs −XiT/n)p1(Ys− + ∆Ys − YiT/n)p2 −

(
Xs− −XiT/n

)p1
(
Ys− − YiT/n

)p2
]

=
∑

∆Xs 6=0 or ∆Ys 6=0

(
p1−1∑
k=0

(
p1

k

)(
Xs− −XiT/n

)k
(∆Xs)

p1−k

)(
p2−1∑
k=0

(
p2

k

)(
Ys− − YiT/n

)k
(∆Ys)

p2−k

)
−

∑
∆Xs 6=0 or ∆Ys 6=0

(
Xs− −XiT/n

)p1
(
Ys− − YiT/n

)p2

=
∑

∆Xs∆Ys 6=0

(∆Xs)
p1(∆Ys)

p2 +
∑

∆Xs 6=0 or ∆Ys 6=0

((
Xs− −XiT/n

)
f1,i +

(
Ys− − YiT/n

)
f2,i

)
=

∫ (i+1)T/n

iT/n

∫
Y

dp1

X (z)dp2

Y (z)νXY (dz,ds) +

∫ (i+1)T/n

iT/n

(
Xs− −XiT/n

)
f1,s +

(
Ys− − YiT/n

)
f2,sds

for suitable f1,s, f2,s functions. Now, write

ϑ̂p1,p2(y) =

n−1∑
i=1

Ki,n,T (y)
∫ (i+1)T/n

iT/n

∫
Y
dp1
X (y)dp2

Y (y)νXY (dy,ds)

∆n,T

n∑
i=1

Ki,n,T (y)

+

n−1∑
i=1

Ki,n,T (y)
∫ (i+1)T/n

iT/n
p1
(
Xs− −XiT/n

)p1−1 (
Ys− − YiT/n

)p2 µX,sds

∆n,T

n∑
i=1

Ki,n,T (y)

+

n−1∑
i=1

Ki,n,T (y)
∫ (i+1)T/n

iT/n
p2
(
Xs− −XiT/n

)p1
(
Ys− − YiT/n

)p2−1
µY,sds

∆n,T

n∑
i=1

Ki,n,T (y)

+

n−1∑
i=1

Ki,n,T (y)
∫ (i+1)T/n

iT/n
p1
(
Xs− −XiT/n

)p1−1 (
Ys− − YiT/n

)p2 σX,sdW
X
s

∆n,T

n∑
i=1

Ki,n,T (y)

+

n−1∑
i=1

Ki,n,T (y)
∫ (i+1)T/n

iT/n
p2
(
Xs− −XiT/n

)p1
(
Ys− − YiT/n

)p2−1
σY,sdW

Y
s

∆n,T

n−1∑
i=1

Ki,n,T (y)

+

n−1∑
i=1

Ki,n,T (y)
∫ (i+1)T/n

iT/n
1
2
p1(p1 − 1)

(
Xs− −XiT/n

)p1−2 (
Ys− − YiT/n

)p2 σ2
X,sds

∆n,T

n∑
i=1

Ki,n,T (y)
(19)
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+

n−1∑
i=1

Ki,n,T (y)
∫ (i+1)T/n

iT/n
1
2
p2(p2 − 1)

(
Xs− −XiT/n

)p1
(
Ys− − YiT/n

)p2−2
σ2
Y,sds

∆n,T

n∑
i=1

Ki,n,T (y)

+

n−1∑
i=1

Ki,n,T (y)
∫ (i+1)T/n

iT/n
p1p2

(
Xs− −XiT/n

)p1−1 (
Ys− − YiT/n

)p2−1
ρsσX,sσY,sds

∆n,T

n∑
i=1

Ki,n,T (y)

+

n−1∑
i=1

Ki,n,T (y)
∫ (i+1)T/n

iT/n
(
(
Xs− −XiT/n

)
f1,i +

(
Ys− − YiT/n

)
f2,i)ds

∆n,T

n∑
i=1

Ki,n,T (y)

=

n−1∑
i=1

Ki,n,T (y)
∫ (i+1)T/n

iT/n

∫
Y
dp1
X (y)dp2

Y (z)νXY (dz, ds)

∆n,T

n∑
i=1

Ki,n,T (y)

+R1 + R2 + R3 + R4 + R5 + R6 + R7 + R8. (20)

Finally, we compensate the random measure νXY and use Lemmas A.1. and A.2. to obtain

R1,R2,R3,R4,R5,R6,R7,R8
p→ 0,

and
n−1∑
i=1

Ki,n,T (y)
∫ (i+1)T/n

iT/n

∫
Y
dp1

X (z)dp2

Y (z)νXY (dz,ds)

∆n,T

n∑
i=1

Ki,n,T (y)

p→ λXY (y)E[dp1

X d
p2

Y ].

Given Eq. (19), the case p2 = p1 = 1 is obvious since

R7
p→ ρ(y)σX(y)σY (y).

Proof of Theorem 2. Consider the case p1 > p1 ≥ 1. Use Ito’s lemma as in Eq. (17) and re-write the

jump term as∑
∆Xs 6=0 or ∆Ys 6=0

[
(Xs− + ∆Xs −XiT/n)p1(Ys− + ∆Ys − YiT/n)p2 −

(
Xs− −XiT/n

)p1
(
Ys− − YiT/n

)p2
]

=

∫ (i+1)T/n

iT/n

∫
Z

dp1

X,s(z)d
p2

Y,s(z)νXY (ds, dz) +

∫ (i+1)T/n

iT/n

f3,ids,

for a suitable f3,i = op

(∫ (i+1)T/n

iT/n

∫
Z
dp1

X,s(z)d
p2

Y,s(z)νXY (ds, dz)
)

. Then, as in the consistency proof, after

compensating the random measure νXY , write

ϑ̂p1,p2
(y)−

n−1∑
i=1

Ki,n,T (y)
∫ (i+1)T/n

iT/n

∫
Z

E(dp1

X (z)dp2

Y (z))λXY,sdsdz

∆n,T

n∑
i=1

Ki,n,T (y)︸ ︷︷ ︸
B

: = A + R1 + R2 + R3 + R4 + R5 + R6 + R7 + R′8, (21)
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where

A =

n−1∑
i=1

Ki,n,T (y)
∫ (i+1)T/n

iT/n

∫
Z
dp1

X,s(z)d
p2

Y,s(z)ν̄XY (ds, dz)

∆n,T

n∑
i=1

Ki,n,T (y)
,

and

R′8 =

n−1∑
i=1

Ki,n,T (y)
∫ (i+1)T/n

iT/n
f3,i(s)ds

∆n,T

n∑
i=1

Ki,n,T (y)
.

Now, using Lemma A.3., we have that√
hn,T L̂n,T (y)A⇒ N

(
0,K2λXY (y)E[d2p1

X d2p2

Y ]
)
.

Naturally, A is the dominating term in the sum. Finally, note that the right-hand side of Eq. (21) can be

expressed as

ϑ̂p1,p2
(y)− ϑp1,p2

(y)−


n−1∑
i=1

Ki,n,T (y)
∫ (i+1)T/n

iT/n
ϑp1,p2

(Ys)ds

∆n,T

n∑
i=1

Ki,n,T (y)
− ϑp1,p2

(y)


︸ ︷︷ ︸

B′

,

with

B′ = h2
n,T

(∫
S

s2K(s)ds

)(
∂ϑp1,p2

(y)

∂xi

∂s(y)
∂xi

s(y)
+

1

2

∂2ϑp1,p2
(y)

∂y

)
+Op

(
∆n,T

h2
n,T

)
.

This completes the proof.

11.1 Replacing spot variance with its estimated value

Rewrite the estimator in Eq. (11) as σ̂2
t,i =

TBPVt,i
φ with

TBPVt,i = ς−2
1

k∑
j=2

|rt,i,j ||rt,i,j−1|I{|rt,i,j |≤θt,i,j}I{|rt,i,k−1|≤θt,i,j−1}.

In our case φ is equal to 1 hour and k = 60 minutes. We show that, under assumptions, the spot variance

estimator is consistent for spot variance and the resulting measurement error can be made asymptotically

negligible.

Theorem 3. We let φ→ 0 with k →∞. Assume θt,i = ξt,iΘ(φk ), where Θ(φk ) is a real function satisfying

Θ
(
φ
k

)
→

φ→0, k→∞
0 and 1

Θ(φk )

(
φ
k log

(
φ
k

))
→

φ→0, k→∞
0 and ξt,i is an a.s. bounded process with a strictly

positive lower bound. Write Ψn,k,φ =
√

log(n)
k +

√
φ. Consider ϑ̂p1,p2

(.) with (p1, p2) = (1, 0) or (0, 1). If

Ψn,k,φ

∆n,T
→ 0,

the consistency result in Theorem 1 holds when replacing σ2
iT/n with σ̂2

iT/n. For any other combination of

(p1, p2), if
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Ψn,k,φ

∆
1/2
n,Thn,T

→ 0,

the consistency result in Theorem 1 holds when replacing σ2
iT/n with σ̂2

iT/n. Assume (p1, p2) = (1, 0) or

(0, 1), if √
hn,T L̂n,T (σ2)

Ψn,k,φ

∆n,T
→ 0,

where L̂n,T (σ2) is the estimated occupation density of spot variance process, the weak convergence results

in Theorem 2 holds when replacing σ2
iT/n with σ̂2

iT/n. For any other combination of (p1, p2), if√
hn,T L̂n,T (σ2)

Ψn,k,φ

∆
1/2
n,Thn,T

→ 0,

the weak convergence results in Theorem 2 holds when replacing σ2
iT/n with σ̂2

iT/n.

Proof of Theorem 3. In what follows, X = log(p) and Y = σ̂2. The transformation log(σ̂2) can be

treated similarly. Given the results in Bandi and Renò (2009, 2011), we only have to consider the case in

which p1 ≥ 1 and p2 ≥ 1, with at least one being strictly larger than 1. Write

ϑ̂p1,p2(x) −

n−1∑
i=1

Ki

(
log(p(i+1)T/n) − log(piT/n)

)p1
(
σ2
(i+1)T/n − σ2

iT/n

)p2

∆n,T

n∑
i=1

Ki

=

n−1∑
i=1

K̂i

(
log(p(i+1)T/n) − log(piT/n)

)p1 (σ̂2
(i+1)T/n − σ̂2

iT/n)p2

∆n,T

n∑
i=1

K̂i

−

n−1∑
i=1

Ki

(
log(p(i+1)T/n) − log(piT/n)

)p1 (σ̂2
(i+1)T/n − σ̂2

iT/n)p2

∆n,T

n∑
i=1

K̂i

+

n−1∑
i=1

Ki

(
log(p(i+1)T/n) − log(piT/n)

)p1 (σ̂2
(i+1)T/n − σ̂2

iT/n)p2

∆n,T

n∑
i=1

K̂i

−

n−1∑
i=1

Ki

(
log(p(i+1)T/n) − log(piT/n)

)p1 (σ2
(i+1)T/n − σ2

iT/n)p2

∆n,T

n∑
i=1

K̂i

+

n−1∑
i=1

Ki

(
log(p(i+1)T/n) − log(piT/n)

)p1 (σ2
(i+1)T/n − σ2

iT/n)p2

∆n,T

n∑
i=1

K̂i

−

n−1∑
i=1

Ki

(
log(p(i+1)T/n) − log(piT/n)

)p1 (σ2
(i+1)T/n − σ2

iT/n)p2

∆n,T

n∑
i=1

Ki

= (a) + (b) + (c).

In the presence of jumps, we have(
log(p(i+1)T/n)− log(piT/n)

)p1
= Op(∆

1/2
n,T ),

and

(σ2
(i+1)T/n − σ

2
iT/n)p2 = Op(∆

1/2
n,T ).

In the presence of co-jumps, a simple application of Ito’s lemma yields(
log(p(i+1)T/n)− log(piT/n)

)p1
(σ2

(i+1)T/n − σ
2
iT/n)p2 = Op(∆

1/2
n,T ).

Also write Mn,k,T = max1≤i≤n

∣∣∣σ̂2
iT/n − σ

2
iT/n

∣∣∣ = Op(Ψn,k,φ) as shown in Bandi and Renò (2009, 2011).

Thus

(a) =

n−1∑
i=1

(
K̂i −Ki

) (
log(p(i+1)T/n)− log(piT/n)

)p1
(σ̂2

(i+1)T/n − σ
2
(i+1)T/n + σ2

(i+1)T/n − σ
2
iT/n + σ2

iT/n − σ̂
2
iT/n)p2

∆n,T

n∑
i=1

K̂i

.
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Now, for suitable constants ci,j,k,(
log(p(i+1)T/n)− log(piT/n)

)p1
(σ̂2

(i+1)T/n − σ
2
(i+1)T/n + σ2

(i+1)T/n − σ
2
iT/n + σ2

iT/n − σ̂
2
iT/n)p2

=
∑

i+j+k=p2

ci,j,k
(
log(p(i+1)T/n)− log(piT/n)

)p1
(
σ2
iT/n − σ

2
iT/n

)k (
σ̂2

(i+1)T/n − σ
2
(i+1)T/n

)i (
σ̂2
iT/n − σ

2
iT/n

)j
= Op(∆

1/2
n,T ).

Thus, using the mean-value theorem,

(a) = Op(∆
1/2
n,T )

max
1≤i≤n

∣∣∣∣ σ̂2
i∆n,T

−σ2
i∆n,T

hn,T

∣∣∣∣ n−1∑
i=1

∣∣∣∣K′(σ2
iT/n+Op(Mn,k,T )−x

hn,T

)∣∣∣∣
∆n,T

n∑
i=1

K̂i

= Op

(
Mn,k,T∆

1/2
n,T

∆n,Thn,T

) 1
hn,T

∫ T
0

∣∣∣∣K′(σ2
s−x
hn,T

)∣∣∣∣ds
1

hn,T

∫ T
0

K

(
σ2
s−x
hn,T

)
ds

+Op

(
∆n,T

h2
n,T

)
1 +Op

(
∆n,T

h2
n,T

)
+Op(g(n, T, k, φ))

= Op

(
Mn,k,T

∆
1/2
n,Thn,T

)

if
∆n,T

h2
n,T
→ 0 and g(n, T, k, φ)→ 0. We now turn to (b).

(b) =

n−1∑
i=1

Ki

(
log(p(i+1)T/n)− log(piT/n)

)p1
[
(σ̂2

(i+1)T/n − σ̂
2
iT/n)p2 − (σ2

(i+1)T/n − σ
2
iT/n)p2

]
∆n,T

n∑
i=1

K̂i

.

We can prove that ξi :=
(
log(p(i+1)T/n)− log(piT/n)

)p1
[
(σ̂2

(i+1)T/n − σ̂
2
iT/n)p2 − (σ2

(i+1)T/n − σ
2
iT/n)p2

]
is

Op(Mn,k,T∆
1/2
n,T ). This is straightforward if p2 = 1. If p2 > 1, using ap − bp = (a− b)

∑p
k=1 a

p−kbk−1, we

have

(σ̂2
(i+1)T/n − σ̂

2
iT/n)p2 − (σ2

(i+1)T/n − σ
2
iT/n)p2

= (σ̂2
(i+1)T/n − σ̂

2
iT/n − σ

2
(i+1)T/n + σ2

iT/n)
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(σ̂2
(i+1)T/n − σ̂

2
iT/n)p2−k(σ2

(i+1)T/n − σ
2
iT/n)k−1.

We can now decompose ξi into its terms, the first corresponding to k = 1:(
log(p(i+1)T/n)− log(piT/n)

)p1
(σ̂2

(i+1)T/n − σ̂
2
iT/n − σ

2
(i+1)T/n + σ2
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2
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(
log(p(i+1)T/n)− log(piT/n)

)p1
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2
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2
iT/n + σ2

iT/n + σ2
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2
iT/n)p2−1

= op(Mn,k,T∆
1/2
n,T ).

For the terms with 2 ≤ k ≤ p2 − 1, we may write:

(σ̂2
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2
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2
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(i+1)T/n − σ̂

2
iT/n)p2−k

(
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2
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2
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= op(Mn,k,T∆
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The term k = p2 is the dominating one since(
log(p(i+1)T/n)− log(piT/n)

)p1
(σ2

(i+1)T/n−σ
2
iT/n)p2−1(σ̂2

(i+1)T/n−σ̂
2
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2
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n,T ).

Thus,
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Ki
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n∑
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K̂i

= Op

(
Mn,k,T

∆
1/2
n,T

)
,

if
∆n,T

h2
n,T
→ 0 and g(n, T, k, φ)→ 0. Finally,

(c) =

n−1∑
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Ki

(
log(p(i+1)T/n)− log(piT/n)

)p1
(σ2
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2
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Ki
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= Op

(
Mn,k,T
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,

if
∆n,T

h2
n,T
→ 0 and g(n, T, k, φ) → 0. Now, notice that (c) is of higher order than (b) since

Mn,k,T

hn,T
=

Mn,k,T

∆
1/2
n,T

∆
1/2
n,T

hn,T
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Mn,k,T

∆
1/2
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o(1). Thus

(a) + (b) + (c) = Op

(
Mn,k,T

∆
1/2
n,Thn,T

)
,

which completes the proof.
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12 Appendix B: Finite Sample Issues

12.1 Measuring spot volatility with microstructure noise and jumps

The spot variance measures are obtained as follows. Each day, we split the day into 6 consecutive hours,

starting at 9.45am. Denote by σ2
t,i the spot variance estimator corresponding to day t, hour i, i = 1, . . . , 6.

To estimate σ2
t,i, we first compute logarithmic prices log pt,i,k every minute, with k = 0, . . . , 60, by av-

eraging all observed transaction prices inside each minute. This pre-averaging should make the impact

of microstructure noise negligible (Jacod et al., 2009). Next, we compute one-minute logarithmic returns

rt,i,k = log pt,i,k − log pt,i,k−1 for k = 1, . . . , 60. The spot variance estimates are obtained by applying

the jump-robust threshold bipower variation estimator in Eq. (11). These estimates are then scaled with

a constant scale factor so as to guarantee that the average of the hourly spot variance estimates equals

the threshold bipower variation estimated on daily close-to-close returns. Only variance estimates with a

sufficiently high number of transactions inside an hour are retained. The exact filter is: the number of

transactions in an hour should be no less than one third of the average number of transactions in the last

month. We also eliminate spot variance estimates lower than 0.01. In our sample, this simple filter retains

98.88% of the estimated volatilities. Finally, we also record the last price log pt,i in each hour.

12.2 Infinitesimal cross-moment estimation with measured volatilities

To estimate the moments, we first compute an exponential moving average of estimated volatilities ˜̂σ2

t,i

with 20 lags. These smoother volatilities are only used inside the kernels. The exact moment expressions

are:

˜̂
ϑp1,p2(σ) =

T−1∑
t=1

Nhours∑
i=1

K

(˜̂σt,i − σ

h

)
(log pt+1,i − log pt,i)

p1
(
log σ̂2

t+1,i − log σ̂2
t,i

)p2

∆

T∑
t=1

Nhours∑
i=1

K

(˜̂σt,i − σ

h

) , p2 = 0, 1

˜̂
ϑp1,2(σ) =

T−1∑
t=1

Nhours∑
i=1

K

(˜̂σt,i − σ

h

)
(log pt+1,i − log pt,i)

p1

[(
log σ̂2

t+1,i − log σ̂2
t,i

)2 − 2c
]

∆

T∑
t=1

Nhours∑
i=1

K

(˜̂σt,i − σ

h

) ,

˜̂
ϑp1,3(σ) =

T−1∑
t=1

Nhours∑
i=1

K

(˜̂σt,i − σ

h

)
(log pt+1,i − log pt,i)

p1

[(
log σ̂2

t+1,i − log σ̂2
t,i

)3 − 6c
(
log σ̂2

t+1,i − log σ̂2
t,i

)]
∆

T∑
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Nhours∑
i=1

K

(˜̂σt,i − σ

h

) ,

˜̂
ϑp1,4(σ) =

T−1∑
t=1

Nhours∑
i=1

K

(˜̂σt,i − σ

h

)
(log pt+1,i − log pt,i)

p1

[(
log σ̂2

t+1,i − log σ̂2
t,i
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(
log σ̂2

t+1,i − log σ̂2
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)2 − 12c2
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∆

T∑
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K

(˜̂σt,i − σ

h

) ,

with Nhours = 6 and c = 2.61/59 in our case. The finite-sample adjustments for p2 = 2, 3, 4 are designed

to correct for measurement error in the spot variance estimates. The adjustments are computed using the

44



asymptotic results which hold for our assumed spot variance estimates, namely

σ̂2
t,i = σ2

t,i + εt,i,

where εt,i is normally distributed with mean zero and variance cσ4
t,i (Bandi and Renò, 2009, and Corsi et

al., 2010). To account for the log-transformation, the delta method has been employed. This is accurate

since, in our sample,
√
c� 1.

12.3 Infinitesimal cross-moment estimation for a fixed ∆

The infinitesimal nature of the moments is so that finite sample contaminations may remain in the estimates

if ∆ is not small enough. To this extent, we implement exact first-order corrections (in ∆) for the estimates.

These corrections are immaterial asymptotically and useful in finite samples. The recursive formula to

compute them is:

˜̂
ϑ

∆

p1,p2
=
˜̂
ϑp1,p2

− ∆

2

p1∑
j1=0

p2∑
j2=0

(
p1

j1

)(
p2

j2

) ˜̂
ϑj1,j2

˜̂
ϑp1−j1,p2−j2

with
̂̂
ϑ0,0 = 0.

12.4 Simulations

The reliability of the estimated infinitesimal cross-moments, and their finite-sample adjustments, are eval-

uated by simulation. We first simulate the bivariate system in Eq. (12), described in Section 7, with the

parameters in Column 4, Table 2. We use a first-order Euler scheme. Initially, σ2
t does not contain any

estimation error. The estimation error is added using the (asymptotic) formula σ̂2
t = σ2

t +
√

2.61/59σ2
t εt,

where εt is a standard normal draw and
√

2.61/59σ2
t is the (asymptotic) standard deviation of threshold

bipower variation estimator computed with 60 one-minute returns. With the resulting time series, we

estimate the infinitesimal cross-moments using the small-sample corrections described above. The choice

of the conditioning points, kernel function, and bandwidth(s) are the same as those used to compute the

moments for parametric and nonparametric estimation in the main text. Specifically, we use a Gaussian

kernel, the set

σ2 = {0.1311, 0.2227, 0.3041, 0.3913, 0.4922, 0.6169, 0.7829, 1.0328, 1.5018, 3.0984}

for the conditioning points (these are the midpoints of bins which contain the same number of estimated

volatilities), and the bandwidth vector (corresponding to each conditioning point)

h = {0.4165, 0.1811, 0.1374, 0.1173, 0.1126, 0.1131, 0.1239, 0.1496, 0.2134, 0.4397}.

Consistent with the asymptotics, h smoothes more in regions with sparse observations near the boundaries

of the range of the estimated volatility series. We implement 1, 500 simulations. Figure 11 presents the

generated moments, together with the estimated median and 95% confidence bands on the replications.

The figure shows that our small-sample procedures are able to deliver accurate estimates of the infinitesimal

cross-moments. Figure 12 displays the estimated parameters on simulations of the parametric model in

Section 7 with the parameters in Table 2, Column 4. Estimation of the parameters via GMM is satisfactory

and not affected by meaningful biases.
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Figure 11: Simulation results for the estimated moments. Dotted lines with circles: median

estimates. Dashed lines: 95% confidence bands. Solid lines: generated moments.

Figure 12: Simulation results for the parametric model. Vertical bars: Generated parameters.

Solid lines: Histograms of the estimated parameters on simulations.
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