
The Likelihood of Mixed Hitting Times∗

Jaap H. Abbring† Tim Salimans‡

November 5, 2011

Abstract

We present a method for efficiently computing the likelihood of a mixed hitting-

time model that specifies durations as the first time a latent Lévy process crosses

a heterogeneous threshold. This likelihood is not generally known in closed form,

but its Laplace transform is. Our approach to its computation relies on numerical

methods for inverting Laplace transforms that exploit special properties of the first

passage times of Lévy processes. We use our method to implement a maximum

likelihood estimator of the mixed hitting-time model in MATLAB. We illustrate the

application of this estimator with an analysis of Kennan’s (1985) strike data.
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1 Introduction

Mixed hitting-time (MHT) models are mixture duration models that specify durations

as the first time a latent stochastic process crosses a heterogeneous threshold. They are

of substantial interest because they can be applied to the analysis of optimal stopping

decisions by heterogeneous agents. In particular, they can be applied to problems that do

not lead to the mixed proportional hazards model, Lancaster’s (1979) and Vaupel et al.’s

(1979) popular extension of the Cox (1972) proportional hazards model. Examples include

models of job durations, marriage durations, and the entry and exit of firms that are driven

by Brownian motions and more general persistent processes. First hitting time duration

models are also increasingly popular in statistics for their structural and descriptive appeal

(Lee and Whitmore, 2006).

This paper considers likelihood-based empirical methods for an MHT model in which

the latent process is a spectrally-negative Lévy process, a continuous-time process with

stationary and independent increments and no positive jumps, and the threshold is pro-

portional in the effects of observed regressors and unobserved heterogeneity. Spectrally-

negative Lévy processes include Brownian motions with linear drifts and Poisson processes

compounded with negative shocks as well-known special cases. Following empirical prac-

tice with mixture duration models such as the mixed proportional hazards model, we focus

on parametric MHT models, and propose using flexible parameterizations that can ap-

proximate arbitrary functional forms by increasing the number of parameters. The main

obstacle in applying standard parametric likelihood methods is that, in general, we have

no explicit expression for the MHT model’s likelihood. However, an explicit expression

for its Laplace transform is generally available. Our approach to likelihood computation

exploits this.

We adapt numerical methods for the inversion of the Laplace transforms of the first

hitting times of Lévy processes to compute the conditional density and survival function

implied by the MHT model. In turn, these are used to construct a likelihood for indepen-
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dently censored duration data. In the special case that the latent process is a Brownian

motion, the likelihood can be explicitly expressed as a mixture of inverse Gaussian den-

sities and survival functions. Therefore, we can use this special case as a benchmark for

evaluating our procedure for computing the likelihood. We show that the numerical inver-

sion that is required in the general case is sufficiently fast and precise to make maximum

likelihood estimation feasible even if no explicit expression of the likelihood is available.

We implement a maximum likelihood estimator that uses this computational strategy

with MATLAB, and illustrate its application with a reconsideration of Kennan’s (1985)

empirical analysis of US contract strike durations. Our strategy for computing the MHT

model’s likelihood can also be used to implement other likelihood-based empirical meth-

ods. For example, it can be combined with data augmentation and Markov chain Monte

Carlo techniques to implement Bayesian estimators of the MHT model.

Abbring (2011) presented the MHT model studied in this paper, analyzed its empirical

content, and highlighted its close relation to optimal stopping problems in economics. The

present paper operationalizes this model by providing and analyzing feasible methods for

computing its likelihood and its maximum likelihood estimator.

In a companion paper (Abbring and Salimans, 2011), we develop an alternative estima-

tor that avoids computing the MHT model’s likelihood altogether by directly matching the

Laplace transform implied by the model to the empirical Laplace transform. To this end,

we construct a generalized method of moments estimator based on the continuum of con-

ditional moment conditions implied by the Laplace transform characterization of the data.

We develop effective procedures for this estimator’s computation, derive the asymptotic

properties of this estimator and evaluate its finite-sample statistical performance against

that of the asymptotically efficient maximum likelihood estimator developed here.

The remainder of this paper is organized as follows. Section 2 reviews the MHT model

and the corresponding characterization of the data presented in Abbring (2011). Section

3 present a method for the computation of this model’s likelihood and its derivatives.
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Section 4 presents flexible model parameterizations and discusses the implementation of

a maximum likelihood estimator. Section 5 applies this estimator to strike data. Section

6 concludes.

2 Mixed Hitting-Time Model

2.1 Specification

We model the distribution of a random duration T conditional on observed covariates X

by specifying T as the first time a real-valued Lévy process {Y } ≡ {Y (t); t ≥ 0} crosses

a threshold that depends on X and some unobservables V .

A Lévy process is the continuous-time equivalent of a random walk: It has stationary

and independent increments. Bertoin (1996) provides a comprehensive analysis of Lévy

processes. Formally, we have

Definition 1. A Lévy process is a stochastic process {Y } such that the increment Y (t+

∆) − Y (t) is independent of {Y (τ); 0 ≤ τ ≤ t} and has the same distribution as Y (∆),

for every t,∆ ≥ 0.

We take {Y } to have right-continuous sample paths with left limits. Note that Definition

1 implies that Y (0) = 0 almost surely.

An important example of a Lévy process is the scalar Brownian motion with drift,

in which case Y (∆) is normally distributed with mean µ∆ and variance σ2∆, for some

scalar parameters µ ∈ R and σ ∈ [0,∞). Brownian motion is the single Lévy process

with continuous sample paths. In general, Lévy processes may have jumps. Examples are

compound Poisson processes, which have independently and identically distributed jumps

at Poisson times. More generally, the jump process {∆Y } of a Lévy process {Y } is a

Poisson point process with characteristic measure Υ such that
∫

min{1, x2}Υ(dx) < ∞,

and any Lévy process {Y } can be written as the sum of a Brownian motion with drift and
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an independent pure-jump process with jumps governed by such a point process (Bertoin,

1996, Chapter I. Theorem 1). The characteristic measure of {Y }’s jump process is called

its Lévy measure and, together with the drift and variance parameters of its Brownian

motion component, fully characterizes {Y }’s distributional properties.

Throughout the paper, we will focus on spectrally-negative Lévy processes. These are

Lévy processes of which the characteristic measure Υ has negative support, i.e. Lévy

processes without positive jumps. Let {Y } be such a process. Then, the (proportional)

mixed hitting-time (MHT) model specifies that T is the first time that Y (t) crosses φ(X)V ,

or

T = inf{t ≥ 0 : Y (t) > φ(X)V }, (1)

for some observed covariates X with support X ∈ RK , measurable function φ : X 7→

(0,∞), and nonnegative random variable V , with (X, V ) independent of {Y }. We use

the convention that inf ∅ ≡ ∞; that is, we set T = ∞ if {Y } never crosses φ(X)V . The

assumption that there are no positive jumps greatly facilitates the analysis of hitting

times, because it excludes that the process jumps across the threshold.

The factor V is interpreted as an unobserved individual effect and is assumed to

be distributed independently of X with distribution G on [0,∞]. This explicitly allows

for an unobserved subpopulation {V = ∞} of stayers, on which T = ∞. In addition,

there may be defecting movers: For some specifications of {Y }, T = ∞ with positive

probability on {V < ∞}. The distinction between stayers and defective movers can be

of substantial interest (see Abbring, 2002, for discussion). We exclude the two trivial

cases in which T = ∞ almost surely, the case in which the population consists of only

stayers (Pr(V < ∞) = 0) and the case in which all movers defect ({Y } is nonpositive).

For expositional convenience only, we also assume that Pr(V = 0) = 0. Abbring (2011)

provides further discussion.
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2.2 Characterization

The distribution of T conditional on (X, V ) is fully determined, up to almost-sure equiv-

alence, by its Laplace transform,

LT (s|X, V ) ≡ E [exp (−sT ) I(T <∞)|X, V ] , s ∈ [0,∞),

with I(·) = 1 if · is true, and 0 otherwise. The factor I(T < ∞) makes explicit the

possibility that the distribution of T |X, V is defective. Note that the defect has mass

1− Pr(T <∞|X, V ) = 1− LT (0|X, V ).

Unlike the distribution of T |(X, V ), the Laplace transform LT (·|X, V ) can be explicitly

given for any specification of the latent process {Y }. This first requires a common prob-

abilistic characterization of {Y }, in terms of its characteristic function. Bertoin (1996,

Section VII.1) shows that

E [exp (sY (t))] = exp [ψ(s)t] ,

for all s ∈ C with nonnegative real parts, with the Laplace exponent ψ given by the

Lévy-Khintchine formula,

ψ(s) = µ̃s+
σ2

2
s2 +

∫
(−∞,0)

{esx − 1− sxI(x > −1)}Υ(dx). (2)

Here, µ̃ ∈ R absorbs any linear drift of {Y }, σ ≥ 0 is the dispersion parameter of

its Brownian motion component; and Υ is the Lévy measure of its jump component,

where Υ satisfies
∫

min{1, x2}Υ(dx) < ∞ and has negative support. The Laplace ex-

ponent ψ of {Y } fully characterizes its distributions, through its characteristic function

E [exp (iuY (t))] = exp [ψ(iu)t] for all u ∈ R.

Equation (2) gives the most common parameterization of ψ. It corresponds to the

Lévy-Itô decomposition of {Y } in a Brownian motion with linear drift µ̃t, a compound
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Poisson process with jumps in (−∞,−1], and a pure-jump martingale with jumps in

(−1, 0) (Bertoin, 1996, Section I.1). Alternative parameterizations arise if we decompose

the jumps of {Y } in small and large shocks in other ways. These parameterizations

all have the same dispersion parameter σ and Lévy measure Υ, but have different drift

parameters. For example, in the special case that
∫ 1

0
xΥ(dx) <∞, the compensator term

for the small shocks in (2),

∫
(−∞,0)

sxI(x > −1)Υ(dx) =

∫
(−1,0)

xΥ(dx)s,

is a well-defined linear function of s. Therefore, in this case, we can alternatively param-

eterize ψ as

ψ(s) = µs+
σ2

2
s2 +

∫
(−∞,0)

(esx − 1) Υ(dx), (3)

where µ ≡ µ̃+
∫

(−1,0)
xΥ(dx). This includes the important special case that

∫
(−∞,0)

Υ(dx) <

∞, in which {Y } is the sum of a Brownian motion with drift parameter µ and a com-

pound Poisson process with jumps of all sizes in (−∞, 0). In general, any of the equivalent

parameterizations of ψ can be used in the MHT model’s specification, but some are nu-

merically and statistically more convenient than others; we return to this in Section 4.

With ψ determined, we are ready to analyze the Laplace transform LT (·|X, V ). The

Laplace exponent, as a function on [0,∞), is continuous and convex, and satisfies ψ(0) = 0

and lims→∞ ψ(s) =∞. Therefore, there exists a largest solution Λ(0) ≥ 0 to ψ(Λ(0)) = 0

and an inverse Λ : [0,∞)→ [Λ(0),∞) of the restriction of ψ to [Λ(0),∞). Theorem 1 of

Bertoin (1996, Chapter VII) implies that (see Abbring, 2011)

LT (s|X, V ) = exp [−Λ(s)φ(X)V ] .
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The Laplace transform of the distribution of T |X therefore is

LT (s|X) = L [Λ(s)φ(X)] , (4)

with L again the Laplace transform of the unobservable’s distribution G.

2.3 A Gaussian Example

Suppose that {Y } is a Brownian motion with general drift coefficient µ ∈ R and dispersion

coefficient σ ∈ (0,∞). Then, we have that ψ(s) = µs + σ2s2/2, so that Λ(0) equals

ΛBM(0) ≡ min{0,−2µ/σ2} and Λ(s) equals

ΛBM(s) ≡
√
µ2 + 2σ2s− µ

σ2
. (5)

Because there are no jumps, there is no ambiguity in the treatment of small and large

jumps, and this parameterization of ψ is unique. In particular, the Lévy-Khintchine

representations (2) and (3) of ψ coincide, and µ = µ̃.

In this special case, for positive φ(X)V , the distribution of T |X, V is inverse Gaussian

(Cox and Miller, 1965, Section 5.4), with Lebesgue density

fBM(t|X, V ) =
φ(X)V

σ
√

2πt3
exp

(
−(φ(X)V − µt)2

2σ2t

)
(6)

and survival function

FBM(t|X, V ) ≡ Pr (T > t|X, V )

= Φ

(
φ(X)V − µt

σ
√
t

)
− exp

(
2µφ(X)V

σ2

)
Φ

(
−φ(X)V + µt

σ
√
t

)
.

(7)

Here, Φ is the cumulative standard normal distribution function. If µ ≥ 0, then ΛBM(0) =

0 and the distribution of T |X, V is nondefective for positive φ(X)V . If µ < 0, how-

ever, ΛBM(0) = −2µ/σ2 > 0 and the distribution of T |X, V has a defect of size 1 −
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exp(2φ(X)V µ/σ2). Note that in this case, σ = 0 is excluded to avoid the trivial outcome

that T =∞ almost surely.

Either way, the MHT model (1) specifies a mixed inverse Gaussian distribution for

T |X in this special case. Mixed inverse Gaussian distributions have been used to model

duration data in the statistical literature. For example, Aalen and Gjessing (2001) propose

such a model with parametric mixing over the Brownian motion’s drift coefficient µ. This

paper extends and adapts this literature with estimators that allow for more general latent

processes and mixing distributions.

3 Likelihood Computation

3.1 Parameterization

Let ψ, φ and L be specified up to a finite vector of unknown parameters α ∈ A. Assume

that this parameterization is one-to-one, so that α is uniquely determined by (ψ, φ,G).

In the case that lnφ(X) = δ +X ′β for some scalar intercept δ and K × 1 vector of slope

parameters β, for example, this requires the “rank condition” that the support X of X

contains a nonempty open set in RK .

With such a parameterization, under mild additional conditions, Abbring’s (2011)

results imply that α is uniquely determined (“identified”) from the distribution of T |X.

In particular, it is sufficient that

(i). the scales of {Y }, φ(X), and V are appropriately normalized;

(ii). φ(X) is nondegenerate; and

(iii). either V has a finite mean or the latent process {Y } is such that 0 < |ψ′(0+)| <∞.

Throughout, we assume that the first two conditions hold, and explicitly note the assump-

tions on L and ψ required to ensure that the third condition holds as well.
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The first condition’s scale normalizations are innocuous, but need to be carefully im-

plemented in any estimation procedure. They are needed because the durations T implied

by the first hitting-time specification (1) are not affected by rescaling both the latent pro-

cess {Y (t)} and the threshold φ(X)V by the same factor, nor by rescaling the threshold

factors φ(X) and V without changing the threshold itself. Specifically, any two specifica-

tions (ψ, φ,L) and (ψ̃, φ̃, L̃); with ψ̃(s) = ψ(cs), φ̃ = (c/d)φ, and L̃(v) = L (dv) for some

c, d > 0; are observationally equivalent. Stated differently, if (ψ, φ,L) corresponds to a

latent process {Y } and threshold φ(X)V ; and (ψ̃, φ̃, L̃) corresponds to a latent process

{cY }, an observed threshold factor cφ(X)/d, and an unobserved threshold factor dV ; then

the corresponding first hitting times are the same:

inf {t ≥ 0 : Y (t) > φ(X)V } = inf {t ≥ 0 : cY (t) > (c/d)φ(X)dV }

Identification therefore requires that the scale of two of {Y }, φ(X) and V are normalized.

The most convenient way of implementing these two normalizations depends on the chosen

parameterization, and will be discussed as we go.

The second condition ensures that the threshold varies with the regressors on their

support. Such variation is key to the separate identification of the latent process and

hetereogeneity. Abbring (2011) provides the following simple example of two MHT models

without covariates (φ(X) ≡ 1) that induce the same distribution of T . Both a model in

which {Y } is a Brownian motion with drift and V is degenerate at a single threshold

value (that is, without heterogeneity) and a model in which {Y } is degenerate linear drift

(σ = Υ = 0) and V has an inverse Gaussian distribution lead to an inverse Gaussian

distribution of T .

The third condition is reminiscent of the conditions for identifiability of the mixed

proportional hazards model. Abbring (2011) provides extensive discussion.

We also require that the parameterization of (ψ, φ,L) is sufficiently smooth to allow

for the application of standard asymptotic theory. The choice of an appropriate parame-
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terization of ψ is particularly important. We further discuss this in the context of specific

parameterizations in Section 4.

3.2 Sampling

We explicitly deal with censoring, which is a common problem in applied duration analysis.

Let {(T ∗1 , X1), . . . , (T ∗N , XN)} be a (complete) random sample from the distribution of

(T,X) induced by the MHT model at the “true” parameter vector α0 ∈ A and some

marginal distribution of X. We do not directly observe this complete sample, but only a

censored version of it: {(T1, D1, X1), . . . , (TN , DN , XN)}. Here, Ti ≡ min{T ∗i , Ci} is the

observed duration and Di ≡ I(T ∗i ≤ Ci) a censoring indicator, for some random censoring

time Ci; i = 1, . . . , N .

For expositional convenience, we focus on a simple type of independent right-censoring

(Andersen et al., 1993). Assume that the complete observations (T ∗i , Ci, Xi) are indepen-

dent across i and that, conditional on Xi, Ci is independent of T ∗i . That is, censoring

times are not informative on the durations of interest. For example, if data are only col-

lected for a deterministic time Ci, then Ci is trivially independent of T ∗i . The independent

censoring assumption ensures that the likelihood of the observed durations Ti conditional

on (Ci, Xi) only depends on the parameters α of the MHT model. We take the marginal

distributions of the (Ci, Xi) to be ancillary, and focus on estimation of α0 by maximizing

this conditional likelihood.

With more general independent right censoring schemes, the resulting estimator re-

mains a valid (but often, partial) likelihood estimator (Andersen et al., 1993). Moreover,

the likelihood, and the corresponding estimator, can easily be adapted to other practically

relevant sampling schemes, such as those involving interval censoring.

In the next section, we first consider the Gaussian special case. This allows us to

discuss some practical details concerning normalizations in a well-understood framework

in which the likelihood can be explicitly given. Section 3.4 then discusses likelihood
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computation in the general case.

3.3 Gaussian Special Case

Suppose that {Y } is a Brownian motion with drift, so that, by the analysis in Section

2.3, T |X has a mixed inverse Gaussian distribution. Because |ψ′(0+)| = |µ| in this case,

identification of α0 can be guaranteed by either assuming that G has finite mean or that

µ 6= 0 (Abbring, 2011).

In this special case, the log likelihood `N(α) of α for (T1, . . . , TN)| {(D1, X1), . . . , (DN , XN)}

can be constructed using the explicit expression for the density and survival functions of

T |X, V in (6) and (7):

`N(α) =
N∑
i=1

ln

∫
θBM(Ti|Xi, v)DiFBM(Ti|Xi, v)dG(v), (8)

with θBM ≡ fBM/FBM the hazard rate corresponding to fBM. Here, the dependence of

θBM and FBM (through µ, σ, and φ) and G on the parameter vector α is kept implicit.

Under standard regularity conditions, the maximizer α̂N of `N(α) is a consistent and

asymptotically normal estimator of α0. The estimator’s asymptotic covariance matrix

can be estimated in the standard way using either the score or Hessian characterization

of the Fisher information matrix. It is asymptotically efficient under the assumption that

the marginal distribution of X and the censoring times carry no information on α0.

A typical parameterization would specify lnφ(X) = δ+X ′β, and a mixing distribution

G that has finite support {v1, . . . , vL}, for some fixed L ∈ N, with parameters

πl ≡ Pr (V = vl) = G(vl)−G(vl−); l = 1, . . . , L. (9)

A finitely discrete specification of G is popular because of its versatility and computational

convenience; it also appears naturally in Heckman and Singer’s (1984) influential work on

semiparametric estimation of the MPH model. With it, the log likelihood in (8) reduces
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to

`N(α) =
N∑
i=1

ln
L∑
l=1

πlθBM(Ti|Xi, vl)
DiFBM(Ti|Xi, vl),

which is easy to compute using (6) and (7). In this parameterization, the two normal-

izations required can be implemented by setting δ = 0, and setting v1 = 1 with π1 > 0.

In the case that µ 6= 0 is assumed, one of these normalizations can be replaced by a

normalization of µ, such as |µ| = 1.

The maximum likelihood estimator for the Gaussian special case of the MHT model

and its asymptotic distribution are as easy to compute as, say, the maximum likelood

estimator of the mixed proportional hazards model. In particular, with a computationally

convenient specification of G like the discrete example above, explicit expressions for the

likelihood and its derivatives are available; and computation can proceed directly by a

search for a likelihood maximizer using standard numerical methods. The Gaussian special

case shares this feature with many of the models studied in the statistics literature (Lee

and Whitmore, 2006). In the general Lévy case or with general heterogeneity distributions,

however, such explicit expressions are not available, and maximum likelihood cannot be

implemented directly. The next section develops methods for computing the maximum

likelihood estimator and its asymptotic distribution in this general case.

3.4 General Case

In general, the density and survival function of T |X are not explicitly known, but can

be computed by numerically inverting their Laplace transforms. We will develop fast

and effective methods for computing the likelihood; its maximizer, the ML estimator;

and its derivatives by adapting existing results for inverting the Laplace transform of the

first hitting time of a Lévy process. We focus on the case with a nontrivial Gaussian

component: σ > 0.
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Our approach is based on the work of Rogers (2000), who applies a variant of Abate

and Whitt’s (1992) inversion method to the problem of calculating the first-passage-time

distribution of a spectrally one-sided Lévy process. This approach builds on the fact that

the Laplace transform LT (·|X) = L [Λ(s)φ(X)] of T |X in (4) represents a one-to-one

transformation of the probability density function f(·|X) of T |X,

L [Λ(s)φ(X)] =

∫ ∞
0

exp(−st)f(t|X)dt. (10)

The probability density function f(·|X) can be obtained by inverting this transformation

using Mellin’s inverse formula (see Davies, 2002),

f(t|X) =
1

2πi
lim
R→∞

∫
γR

exp(st)L [Λ(s)φ(X)] ds. (11)

Here, the integration is along the path γR : u ∈ [−1, 1] 7→ γ + iRu, which traces out a

straight line in C, parallel to the imaginary axis from γ−iR to γ+iR. Its parameter γ ∈ R

should, in general, be chosen such that it is larger than the real part of any singularity in

the Laplace transform LT (·|X). Because LT (·|X) is analytic for any s with nonnegative

real part, we can choose any γ ≥ 0.

The integral in (11) does not generally have an explicit solution, but can be efficiently

approximated using numerical methods. A key complication is that our specification of

LT (·|X) involves the inverse function Λ, which cannot generally be expressed in closed

form. To circumvent this problem, we follow Rogers (2000) and integrate along the trans-

formed path γ̃R = ψ◦ΛBM◦γR instead, which traces out a curve in C from ψ [ΛBM (γ − iR)]

to ψ [ΛBM (γ + iR)] (where ◦ denotes function composition). Here, ψ is again the Laplace

exponent of the latent process {Y } and ΛBM the inverse of the Laplace exponent of its

Brownian motion component, for which (5) gives an explicit expression. Note that ΛBM

necessarily has the same dispersion parameter σ as ψ, but that its drift parameter is not

uniquely pinned down (because the drift parameter of ψ depends on the way we deal with

13



small shocks; see Section 2.2). Fortunately, the exact value of the drift parameter of ΛBM

plays no role in the argument that follows. It can generally be set to the drift parameter

in the specific parameterization of ψ used; for example, µ̃ in (2) or µ in (3). The MAT-

LAB code accompanying this paper applies to specifications of ψ with compound Poisson

jumps and sets the drift parameter of ΛBM equal to µ in (3) (see Section 4).

Rogers (2000) shows that the transformed path γ̃R is close enough to γR, so that we

can integrate along γ̃R in (11) instead. This gives an expression for f(·|X) that does not

involve Λ:

f(t|X) =
1

2πi
lim
R→∞

∫
γ̃R

exp(st)L [Λ(s)φ(X)] ds

=
1

2πi
lim
R→∞

∫
γR

exp [ψ {ΛBM(s)} t]L [ΛBM(s)φ(X)] dψ[ΛBM(s)].

(12)

This convenient change of integration path is valid because the differences of the end

points of the curves mapped out by γR and γ̃R converge to zero as R grows large. In

particular, because σ > 0,

∣∣∣∣γR(1)− γ̃R(1)

γR(1)

∣∣∣∣ =

∣∣∣∣γ + iR− ψ [ΛBM (γ + iR)]

γ + iR

∣∣∣∣ =

∣∣∣∣ψBM(zR)− ψ(zR)

ψBM(zR)

∣∣∣∣ ,
with zR ≡ ΛBM (γ + iR), converges to zero as R → ∞. The same result can be obtained

for the other end point γR(−1) if we instead take zR ≡ ΛBM (γ − iR).

Following Abate and Whitt (1995), we can apply the trapezoidal rule, and approximate

the integral on the right hand side of (12) with the sum

SR(t|X) ≡ h

2π

R∑
r=−R

g(t, r|X), where

g(t, r|X) ≡ exp {ψ [ΛBM (γ + irh)]t)}L [ΛBM(γ + irh)φ(X)]
d

ds
ψ [ΛBM(s)]

∣∣∣
γ+irh

.

(13)
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The error introduced by this discretization of the integral is bounded by

h2R

6
sup

r∈(−R,R)

|g′′(t, r|X)|

where g′′(t, r|X) denotes the second derivative of g(t, r|X) with respect to r. This is

a standard result for integration using the trapezoidal rule, and its application to the

current problem is discussed in Abate and Whitt (1995). They argue that the actual

error is likely to be much lower for our application as the integrand g(t, r|X) oscillates

and the approximation errors tend to cancel out. By reducing the step size h we can make

the approximation arbitrarily precise.

Because SR(t|X) is a nearly alternating series in R, the limit limR→∞ SR(t|X) can be

efficiently approximated using Euler summation:

f(t|X) ≈ E(R,M, t|X) ≡
M∑
m=0

2−M
(
M

m

)
SR+m(t|X), (14)

for some M,R ∈ N. Abate and Whitt (1995) find that for most probability densities

the error introduced by approximating the limit R → ∞ by an Euler summation is well

estimated by E(R,M + 1, t|X)− E(R,M, t|X). In our case, this estimated error quickly

tends to zero as M is increased, suggesting the approximation is accurate.

The log likelihood function of a sample of complete durations and covariates from an

MHT model with parameters α can be computed by combining the individual approximate

probabilities from (14) into the sum of their logarithms,

`N(α) =
N∑
i=1

ln f(Ti|Xi) ≈
N∑
i=1

ln(E(R,M, Ti|Xi)) (15)

It is straightforward to extend this approach to independently censored data. The

computation of the log likelihood contribution of a censored observation requires the

computation of the survival function F (·|X) at the censoring time and the corresponding
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covariate value. This survival function can be approximated along the lines above, using

that the Laplace transform of F (·|X) can be explicitly expressed in terms of the known

transform LT (·|X) of f(·|X). In particular, using integration by parts, it is easy to show

that

1− L [Λ(s)φ(X)]

s
=

∫ ∞
0

exp(−st)F (t|X)dt =
1− LT (s|X)

s
.

With (4), this allows us to express a known function of the model’s parameters as the

Laplace transform of the survival function F (·|X), analogously to the expression for the

density in (10). This transformation can be numerically inverted to compute the survival

function, and the likelihood contribution of each censored observation, using the strategy

developed for the density. One minor difference is that the Laplace transform of the

survival function may have a singularity at 0 if the durations do not have a (finite) mean;

then, it is necessary to set γ > 0.

We approximate the score and Hessian of the log likelihood with the analytical first

and second derivatives of the approximate log likelihood function. These exist and are

well behaved because our approximation of the log likelihood function in (15) is smooth

in the parameters.

The implementation of this method for computing the likelihood and its derivatives

requires that we set the parameters that control the approximation in (14): γ, h, R, and

M . Rogers (2000) provides guidance. We find that his suggestions for γ and h, γ = 11/t

and h = 1/t, yield good numerical performance in our case. We will adopt these as our

default settings, together with R = 6 and M = 15, which Rogers claims provide a good

accuracy to speed trade-off. As discussed below, additional accuracy can be obtained

when needed by setting M higher.
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Figure 1: Approximation Error of the Log Likelihood for Various M
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Note: This figure is based on the log likelihood `N (α) of an MHT model with a Brownian motion
latent process and discrete unobserved heterogeneity with three support points for Kennan’s (1985)
complete strike duration data. It plots the average absolute difference between `N (α) and its numerical
approximation over 100 randomly drawn parameter values α, for a range of values of M . The errors are
plotted on a logarithmic scale. The parameters are generated using our method of setting starting values
for maximum likelihood estimation. This method sets the drift and variance parameters equal to their
maximum likelihood estimates for a simple inverse Gaussian model with φ(X)V = 1, which are known
in closed form. Starting values for the support points vl of the heterogeneity distribution are generated
by exponentiating draws from a standard normal distribution. This ensures that the vl vary in level, but
are all approximately of the right scale. All three support points vl receive probability mass 1/3. The
parameter β multiplying the covariates is set to zero. For the current experiment, we found that setting
the parameters to their final maximum likelihood estimates instead produced almost identical results.

3.5 Numerical Experiments

We have investigated the accuracy of the proposed likelihood approximation by conducting

a range of numerical experiments. We discuss the results of two of these experiments

here. Both experiments use the default settings for the parameters that control the

approximation, unless explicitly stated otherwise.

The first experiment compares direct computations of the log likelihood function of

the mixed inverse Gaussian model using the explicit expression for the density in (6) to

its numerical approximations as we vary M . The log likelihood is calculated on the data

set that we use in Section 5. This ensures that this experiment provides both a real life
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test case and a check on the results we present in that section. The data contain 566

complete strike durations. Because the approximation errors are close to unbiased, the

error in the log likelihood scales with the root of the sample size.

Figure 1 plots the average of the absolute approximation error of the log likelihood,

for different values of M , over a large set of model parameters randomly generated at

the scale of their maximum likelihood estimates. We find that this average absolute

error decreases exponentially with M ; this result is robust across the various parameter

values over which the plotted results are averaged. Consistently with Rogers (2000), we

see that M = 15 already provides a decent approximation for most practical purposes.

However, because the time required for the calculations grows only linearly in M , an

extra thousandfold increase in precision can be obtained at a very low computational

cost by setting M = 20 instead. Once M > 20, other factors, such as rounding errors,

become important, and the approximation error levels off. We also find that, with M =

20, increasing R or decreasing the step size h adds very little to the precision of the

inversion. The numerical approximation of the log likelihood takes about 15–20 times as

long to calculate as the analytical expression. However, in absolute terms this is still very

manageable: A maximization of the log likelihood function can be performed in under a

minute on a regular computer for most model specifications.

The second experiment takes a closer look at the numerical approximation of the

density fBM of a basic inverse Gaussian model with parameters such that µ = σ2 =

φ(X)V = 1. We only present results for M = 25, but found very similar results for any

M ≥ 15. For the purpose of maximum likelihood estimation, we care most about the

errors in the approximation of the log density, ln fBM. Figure 2 plots the absolute error of

this approximation against the log density itself, on a logarithmic scale. The (log-)linear

relation displayed by the graph implies that the absolute error in the approximation

of ln fBM(t|X) roughly equals 10−11/fBM(t|X). Consequently, the approximation error is

generally small, but the approximation breaks down when the density gets very small (say,
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Figure 2: Approximation Error of the Log Inverse Gaussian Density Function
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Note: This figure plots the absolute difference between the log inverse Gaussian density ln fBM(t|X)
with parameters µ = σ2 = φ(X)V = 1 and its numerical approximation, on a logarithmic scale, against
ln fBM(t|X), for a range of times t.

fBM(t|X) < 10−10, or ln fBM(t|X) < −23). When estimating the model with maximum

likelihood, we can easily avoid this by setting reasonable starting values for the parameters.

This ensures that the approximation is sufficiently precise for numerically robust maximum

likelihood estimation.

4 Maximum Likelihood Estimation

This paper is accompanied with MATLAB code that implements a maximum likelihood

estimator based on the previous section’s approximate likelihood. We maximize this

likelihood by means of a quasi-Newton algorithm with BFGS updates for the Hessian

(see Nocedal and Wright, 2006). We use the analytical derivatives of the approximate

likelihood to ensure quick and stable maximization, and to construct asymptotic standard

errors.

We have implemented a range of computationally feasible, flexible parameterizations

of the model. This section’s remainder discusses these parameterizations.
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4.1 Latent Process

We consider two parameterizations of the latent process {Y }. Both include a Brownian

motion component with σ > 0.

The main specification specifies that {Y } is a convolution of a nondegenerate Brow-

nian motion with drift and a compound Poisson process with a finitely discrete shock

distribution. Because
∫

(−1,0)
xΥ(dx) < ∞ in this case, the Lévy-Khintchine formula (3)

now offers the simplest way to parameterize ψ:

ψ(s) = µs+
σ2

2
s2 +

Q∑
q=1

λq (esνq − 1) ,

where µ and σ2 ≥ 0 are the Brownian drift and variance per time unit, and λq is the

Poisson rate at which shocks of size νq < 0 arrive; q = 1, . . . , Q. Equivalently, in this

specification, shocks arrive at a rate λ ≡
∑Q

q=1 λq and are drawn independently from a

distribution with Q points of support (ν1, . . . , νQ) with probabilities (λ1/λ, . . . , λQ/λ).

An alternative is to specify {Y } as a convolution of a nondegenerate Brownian mo-

tion with drift and a compound Poisson process with a gamma shock distribution. In

this specification, shocks arrive at a Poisson rate λ, with their absolute sizes distributed

according to a two-parameter gamma distribution Γν,ρ, with corresponding density

νρ

Γ(ρ)
xρ−1 exp(−νx); ν, ρ > 0;

and Laplace transform

LΓν,ρ(s) =
1

(s/ν + 1)ρ
. (16)

We can again use (3), which now gives

ψ(s) = µs+
σ2

2
s2 + λ

{
1

(s/ν + 1)ρ
− 1

}
.
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4.2 Effect of the Observed Covariates

The threshold is naturally specified to be loglinear in the covariates:

φ(X) = exp(δ +Xβ).

We assume that the N × (K + 1) matrix with sampled observations of (1 X ′) in each row

has full column rank.

4.3 Unobserved Heterogeneity

Finally, our procedure for computing the likelihood only depends on the unobserved het-

erogeneity distribution G through its Laplace transform L. Therefore, any distribution

with nonnegative support that admits an explicit expression for its Laplace transform is

a convenient candidate for G. We consider two such specifications.

The main specification is Section 3’s finitely discrete distribution. The corresponding

Laplace transform is

L(s) =
L∑
l=1

πl exp(−svl).

A simple and low-dimensional alternative is to specify a gamma distribution Γω,τ for

G. Analogously to (16), this gives

L(s) =
1

(s/ω + 1)τ
.

4.4 Scale Normalizations

Recall from Section 3.1 that we need to normalize the scales of two out of ψ, φ, and L. The

MATLAB code currently normalizes the covariate effects φ(X) by setting δ = 0, and ψ by

setting µ = 1. Note that this implicitly assumes that µ > 0. It would be straightforward
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to adapt the code to allow more generally for |µ| = 1.

One of these normalizations can be replaced by a normalization on L. A discrete

unobserved heterogeneity distribution can, for example, be normalized by requiring v1 = 1

and π1 > 0. A gamma distribution can be normalized by setting its scale parameter ω = 1.

5 Strike Durations

The mere existence of nontrivial delays in labor agreements has puzzled economists; du-

ration patterns in their resolution have been studied to learn more about underlying

bargaining games and information structures.

Lancaster (1972) analyzes strike durations using a Gaussian MHT model with regres-

sors, but without unobserved heterogeneity. He interprets the gap between the Brownian

motion and the threshold as the level of disagreement, and concludes that this model fits

his data for the United Kingdom well. Others have used proportional hazards models to

study strike durations. Kennan (1985), in particular, shows that the US strike duration

hazard is U -shaped and takes this as evidence against Lancaster’s (homogeneous) MHT

model. He notes that this aspect of the data can be interpreted in terms of heterogene-

ity in the conflicts underlying the strikes, but does not subsequently pursue this in his

empirical analysis.

Here, we will investigate whether Kennan’s strike data can be matched well by a

more general MHT model that explicitly takes into account unobserved heterogeneity in

strikes. Such a model comes with Lancaster’s attractive interpretation in terms of a level

of disagreement that may both vary over time and may initially be heterogeneous between

strikes. We will explicitly discuss our estimation results in terms of this interpretation,

with an implicit understanding that it is our modest objective to illustrate our methods

and the descriptive and potential structural appeal of the MHT model, without providing

a fully structural analysis of strike durations.

Kennan’s data cover all contract strikes in US manufacturing in the period 1968–
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1976 that involved at least a thousand workers, and that were classified to be primarily

about “general wage changes”. They include the durations in days of 566 strikes and,

for each strike, a measure of the state of the business cycle in the month it started: The

residuals of a regression of log industrial production in US manufacturing on linear and

quadratic trend terms and seasonal dummies. We obtained the data in a fixed format

text file strkdur.asc from Cameron and Trivedi’s (2005) web page. We divided all strike

durations by seven, so that they are measured in weeks.

Table 1 reports maximum likelihood estimates for a range of Section 4’s flexible param-

eterizations. All reported estimates are computed using Section 3.4’s numerical methods,

with M = 25. To further check these methods and their MATLAB implementation, we

have also computed the same estimates for lower values of M ≥ 15 (not reported), and

estimates for the first five specifications using the explicit expressions for the log likelihood

that are available in these cases (not reported). These results are virtually identical to

those reported in Table 1.

In all cases, we specify φ(X) = exp(Xβ), with X the scalar business cycle indicator.

Columns I–V presents estimates of models with Brownian motion latent processes and

discrete unobserved heterogeneity. Throughout, the drift is normalized to 1 per week (µ =

1), so that E [T |X, V ] = −L′T (0+ |X, V ) = exp(Xβ)V . By its construction as a regression

residual, X varies around zero and is close to zero on average in the sample. Consequently,

V can be interpreted as the unobserved initial level of disagreement, measured as the mean

number of strike weeks it commands.

The log likelihood substantially improves when adding a second, third and fourth

support point to the distribution of V , between Columns I and IV, but a fifth support

point (Column V) hardly changes the fit and the other parameters’ estimates. The es-

timates indicate that there is both substantial heterogeneity in the strikes’ initial levels

of disagreement and uncertainty in their evolution over time. The numbers in Column

IV imply that there are four unobserved types of labor conflict, on average commanding
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Table 1: Maximum Likelihood Estimates for Kennan’s (1985) Strike Duration Data

I II III IV V VI VII

µ 1 1 1 1 1 1 1
(0) (0) (0) (0) (0) (0) (0)

σ2 19.6592 6.2185 2.0675 1.2272 1.1966 0.5423 5.1469
(3.1752) (0.8702) (0.4433) (0.2423) (0.2224) (0.2808) (0.9768)

λ 0.0186
(0.0183)

ν −5.1321
(2.3211)

β −0.9306 −1.7722 −1.0846 −0.8669 −0.8623 −0.5788 −2.1198
(0.6010) (0.6855) (0.6572) (0.6514) (0.6338) (0.6148) (0.7881)

ω 0.4446
(0.0730)

τ 2.7911
(0.4373)

v1 6.2603 2.5431 1.5369 1.1045 1.0312 0.7546
(0.4688) (0.1993) (0.1508) (0.1213) (0.1644) (0.1602)

v2 8.7509 5.8883 3.2094 1.7564 2.0832
(0.5194) (0.3999) (0.4531) (1.0282) (0.5127)

v3 18.1612 7.1654 3.5180 4.1380
(1.0108) (0.5598) (0.7618) (0.8364)

v4 18.5572 7.3032 7.4121
(0.7028) (0.6467) (0.5533)

v5 18.5749 17.0035
(0.6945) (1.1016)

π1 1 0.3991 0.3534 0.2519 0.1986 0.1978
(0) (0.0439) (0.0335) (0.0380) (0.1160) (0.0398)

π2 0.6009 0.4923 0.2826 0.0981 0.2009
(0.0439) (0.0347) (0.0507) (0.1300) (0.0688)

π3 0.1543 0.3146 0.2561 0.2230
(0.0231) (0.0541) (0.0825) (0.0617)

π4 0.1508 0.2969 0.2379
(0.0191) (0.0646) (0.0609)

π5 0.1503 0.1403
(0.0190) (0.0200)

`N −1658.9 −1588.7 −1583.0 −1576.3 −1576.1 −1575.4 −1594.2
Note: The drift is normalized to 1 per week. All specifications include a single covariate, Kennan’s (1985)
deseasonalized and detrended log industrial production. Asymptotic standard errors are in parentheses.
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respectively 1.10, 3.21, 7.17, and 18.56 strike weeks. Each type’s level of disagreement

evolves with a standard deviation per week just above the unit drift towards agreement.

It is instructive to note that the variance of the latent process drops substantially,

from close to 20 to just over 1, when more heterogeneity is added between Columns I and

IV. Clearly, Column I’s specification falsely attributes heterogeneity in the strikes’ initial

levels of disagreement to uncertainty in their evolution over time.

The estimates of the coefficient β reflect the effect of the business cycle on strike

durations. In line with Kennan’s (1985) results, strikes that begin in months with low

production last longer. In the MHT model, this is captured by a countercyclical threshold:

In times with low production, in expectation, conflicts command more strike days. One

interpretation is that strike days are less costly in times with low production. The precision

of the estimates of β is low. This is consistent with Kennan’s results. He obtains more

precise results with a binary cyclical indicator constructed from the indicator used here.

For simplicity, we do not follow this lead here.

Column VI reports an estimate of a specification that includes discrete shocks of size

ν at Poisson times. The estimates point to an infrequent shock that sets back just over

five weeks of drift towards agreement. The shock only somewhat improves the likelihood;

a specification without shock, such as those in Columns IV and V, seems to be sufficient.

A very similar result is found with a gamma shock at a Poisson time (not reported).

With this specification, virtually the same estimate of the arrival rate of the shocks is

obtained. Moreover, the estimated gamma shock distribution is close to degenerate at

Column VI’s estimate of the shock size (ν). Specifically, the estimates of the shape (ρ)

and scale (ν) parameters of the gamma distribution are both very large, and their ratio

equals Column VI’s estimated shock size. As expected, the same log likelihood is found.

Finally, Column VII reports estimates of a specification with gamma heterogeneity.

This specification is clearly inferior to that with any amount of discrete heterogeneity.

Figure 3 plots the aggregate hazard implied by the MHT model’s estimates in Column
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Figure 3: Aggregate Strike End Hazard Rates
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Note: This graph plots the empirical strike end hazard rate (Data), computed with Epanechnikov kernel
smoothing from Kennan’s (1985) data, and the corresponding hazards implied by estimated MHT and
MPH models. For the MHT model, the ML estimates in Table 1 for a specification with a latent Brownian
motion and a discrete unobserved heterogeneity distribution with four support points are used. For the
MPH model, we use ML estimates of a model with the same discrete heterogeneity distribution and a
Weibull baseline. Estimated hazard rates of the unconditional distribution of T are plotted, based on the
estimated distributions of T |X implied by the models and the empirical distribution of the covariate X.

IV of Table 1. It also plots the hazard implied by estimates a MPH hazard model with a

Weibull baseline and a discrete heterogeneity distribution with four support points. Note

that this MPH specification has exactly the same number of parameters as Column IV’s

MHT specification.1 In both cases, we computed the distribution of T |X implied by these

estimates, integrated over the empirical distribution of X, and computed and plotted the

hazard rate of the resulting distribution. Figure 3 also plots the empirical hazard rate,

computed by kernel smoothing the raw data.

The MHT model fits the empirical hazard well. The MPH model’s fit seems to be

slightly worse. This is confirmed by the MPH model’s log likelihood, which, at −1583.4,

is more than seven points lower. Because the Weibull baseline is monotonic, the Weibull

MPH model can only fit the nonmonotonic strike hazard by compensating an increasing

baseline hazard with negative duration dependence due to unobserved heterogeneity. Of

1However, estimates of two of the support points of the heterogeneity distribution converged to the
same value.
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course, usually MPH models with richer specifications of the baseline hazard are estimated

and a sufficiently rich specification can fit the empirical hazard arbitrarily well.

6 Conclusion

The results in this paper enable applied researchers to analyze duration data with mixed

hitting-time (MHT) models using standard likelihood-based estimation and inference

methods. The MATLAB code for maximum likelihood estimation that accompanies this

paper can directly be applied to either complete or independently right-censored duration

data, and is easy to adapt to more general censoring schemes. Alternatively, the proce-

dures for likelihood computation provided with this code can be used to implement other

likelihood-based methods. For example, they can be combined with data augmentation

and Markov chain Monte Carlo methods to implement a Bayesian estimator that can

flexibly deal with unobserved heterogeneity.

Two types of empirical application of the MHT framework can be distinguished. First,

it can be used as a descriptive framework, much like Cox’s (1972) proportional hazards

model and Lancaster’s (1979) mixed proportional hazards model. Section 5’s analysis of

Kennan’s (1985) strike data shows that estimates of the MHT model have descriptive

appeal, with natural interpretations that nicely complement those that could be obtained

from a proportional hazards analysis. Indeed, in statistics, there is increasing interest

in the descriptive analysis of duration data with first hitting time models (Aalen and

Gjessing, 2001; Lee and Whitmore, 2006; Singpurwalla, 1995; Yashin and Manton, 1997).

Second, it can be applied to the structural empirical analysis of heterogeneous agents’

optimal stopping decisions. Abbring (2011) presents a range of examples, based on the

type of optimal stopping models that are reviewed and analyzed in Boyarchenko and

Levendorskĭı (2007); Dixit and Pindyck (1994); Kyprianou (2006); Stokey (2009). These

include McDonald and Siegel’s (1986) model for the optimal timing of an irreversible in-

vestment; a model of unemployment durations based on Dixit’s (1989) model of entry
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and exit, complemented with heterogeneity in transition costs; and a model of job separa-

tions with heterogeneous search. The identification results in Abbring (2010, 2011) show

that data on durations and covariates are informative on the economic primitives of such

models. The methods developed in this paper can be applied to measure those primitives.
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