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1. Introduction

In economics, a time homogeneous diffusion process in dimension one is often used

to characterize the behaviour of a given variable Yt, called the state variable (e.g., a

stock price, the interest or the exchange rate). The structural model is written under

the form:

(1.1) dYt = µ(Yt)dt + σ(Yt)dB∗
t

where dB∗
t is the time increment of a standard Brownian motion, that is normally

distributed with zero mean and variance equal to the time increment dt1. The two

functions µ(Yt) and σ(Yt) are called the drift and the diffusion coefficient, respectively.

This paper copes with a more general structural form of the model, where the drift

and the diffusion coefficients can possibly be function of a time dependent variable

Zt. Our data generating process (DGP ) can therefore be written in the following

way:

(1.2) dYt = µ(Yt, Zt)dt + σ(Yt, Zt)dBt

where dBt is the Brownian motion associated to the covariate depending process.

This model can be interpreted as a general location scale model in continuous time.

In particular, in this regression model, the objects of interest are both the location

and the scale function.

This structural model is interesting in different respects. First of all, it generalizes

to continuous Markov processes the economic idea that a given phenomenon may not

be self-explanatory. Other factors may intervene in determining the outcome of the

state today. This may be summarized in the concept of causality, which is central

in econometrics but which has not yet been extended, to the best of our knowledge,

to continous time diffusions. Furthermore, Zt may be thought as a set of parameters

which varies over time. The latent stochastic volatility model in continuous time can

be therefore encompassed in this more general framework (e.g. see Bandi and Reno,

2009). Finally, the model is not reducible to a simplified multivariate diffusion. We

1For a review of the properties of a standard Brownian motion, see Karatzas and Shreve (1991)

and Øksendal (2003)
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are not assuming a covariance structure between two diffusion processes, but that a

given process Zt may directly intervene into the realization of Yt+δ. In that sense, we

also allow for greater flexibility of the covariate process and we discuss a particular

case in which Zt exhibits long memory.

This structural model is not completely new to applied literature. Creedy and

Martin (1994) and Creedy et al. (1996) develop a framework in which the variable Z

represents market fundamentals that influence the behaviour of prices and US/UK

exchange rate respectively2. In a more recent paper, Fernandes (2006) generalizes the

same framework in order to supply a model for forecasting financial crashes. However,

these papers use parametric method (e.g., maximum likelihood) solely to estimate and

analyse the behaviour of the stationary conditional distribution of the state variable.

The novelty of this work is twofold. On the one hand, it extends the model used

in applied literature to encompass exogenous time dependent covariates and provides

clear assumptions on the covariate process Z which enable us to make inference on

the scale and location functions. On the other hand, it focuses on nonparametric

estimation of the structural models while relaxing the assumption of stationarity,

following a recent stream of literature (Bandi and Phillips, 2003; Bandi and Nguyen,

2003, among others)3.

Nonparametric estimation of stochastic diffusion processes hinges on a consider-

ably rich literature. The main objects of interest being the drift and the diffusion

coefficients, it may be difficult to identify them without further assumptions when

the data are discretely sampled, because of the so-called aliasing problem (Phillips,

1973; Hansen and Sargent, 1983). Furthermore, while the drift term is of order dt, the

diffusion term is of order
√
dt, which means that much of the infinitesimal variation in

the process reflects the latter more than the former. This entails the impossibility to

show consistency of the drift estimator as the sample frequency increases, i.e. dt→ 0

(so-called infill asymptotics).

2For a more recent application see also Jäger and Kostina (2005)
3Interested readers are referred to Bandi and Phillips (2010), for a complete review of the existing

econometric literature on Nonparametric Estimation for Nonstationary Processes in Continuous

Time.
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A possible way to correctly identify both the diffusion and the drift coefficient is

to assume that the process is time stationary, so that a time invariant density π(y)
exists. The backward and the forward Kolmogorov equations allow then to specify a

relation between this density, the drift and the diffusion coefficients.

Nevertheless, the assumption of stationarity seems somehow too restrictive and it

does not take into account many interesting phenomena in economics. Relaxing the

assumption of stationarity requires careful handling of kernel estimators, which is not

meaningful any more as an estimator of the invariant density. An interpretation of the

kernel estimator in time series, both in the univariate and multivariate case, may be

given in terms of occupation densities (Geman and Horowitz, 1980). Namely, in the

univariate case, Phillips and Park (1998) show the convergence of the nonparametric

kernel estimator to the chronological local time of the stochastic process (see, e.g.

Revuz and Yor, 1999, Ch. VI, for a review of the properties of local time).

Bandi and Phillips (2003) are then able to overcome the identification issues without

assuming stationarity. Harris recurrence, which is a substantially milder assumption,

is required instead. To ensure consistency of the drift term, they couple infill asymp-

totics with lengthening time span of observations, i.e. T → ∞ (so-called long span

asymptotics).

In related papers, Löcherbach and Loukianova (2008) and Bandi and Moloche

(2008) use the same framework under the assumption of Harris recurrence for the

joint process to prove convergence of such an estimator in the multivariate case.

In this paper, we show that their convergence results can be extended to the non-

parametric estimator of the drift and the diffusion in model (1.2).

However, while we show the properties of our estimation for any dimension d of

the covariate process, we run simulations for the case in which d = 1. As pointed

out by Schienle (2011), Harris recurrence is a property which is rarely satisfied when

the dimension of the process increases. We do not tackle this question here, as it

goes beyond the scope of the present paper. We therefore acknowledge the limited

applicability of this framework that may be a topic for further research.

The paper is structured as follows. Section 2 set up the general framework. Section

3 overviews the theoretical foundations on which this work is based upon. Section
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4 provides the main estimation framework and the asymptotic properties. Section

5 discusses an extension to long memory processes. Finally, section 6 includes a

simulation study which draws the finite sample properties of the estimator.

2. Motivations and theoretical foundations

The possibility to meaningfully define conditional moments for continuous time

processes is a necessary condition to perform statistical inference based on sample

analogues. Diffusion type processes are very useful in this sense, as the definition of

conditional moments is straightforward under the Markov property. Moreover, the

behaviour of a diffusion is fully described by its location and scale parameters, which

are the objects of interest. The goal of this section is therefore to show that, under

suitable assumptions on the conditional and the marginal process, we can make our

data generating process being a diffusion process.

We suppose here to observe a multivariate continuous time process {Zt ∶ t ≥ 0} of

given dimension d; and a scalar process {Yt ∶ t ≥ 0} which is Markov conditionally on

Zt. We denote by Xt the joint process {Yt, Zt} which takes value in a Polish space

(E,E).
Define (Ωz,Z,Pz) and {Zt}t≥0 the probability space and the natural filtration as-

sociated to the process Zt, respectively.

We further consider a univariate Brownian motion {Bt ∶ t ≥ 0} defined on the

probability space (ΩB,FB,PB) and adapted to a filtration {FBt }t≥0. We assume Bt

to be a Zt−adapted martingale, so that E [dBt∣Zt] = 0.

The joint filtration, generated by the process {Xt ∶ t ≥ 0} is set as follows:

(2.1) Xt ∶= Yt ∨ Zt = σ(y) ∨ Zt ∨ FBt = σ (y,Zs,Bs; 0 ≤ s ≤ t)

We assume all filtrations satisfy the usual conditions (or hypotheses), i.e. they

contain all the sets of zero measure for t = 0 and they are right-continuous.

In our framework, the filtration generated by the process Zt enters the construction

of the filtration under which the process Yt is defined. To ensure exogeneity of the

joint process, we apply the following definition:



NONPARAMETRIC REGRESSIONS IN CONTINUOUS TIME 6

Definition 2.1 (Strong global noncausality, Florens and Fougere, 1996). Xt
does not strongly cause Zt given Zs if:

Zt á Xs∣Zs ∀s, t ∈ [0, T ] ∎

This properties is trivially satisfied if t ≤ s. Nevertheless, if Xt does not strongly

cause Zt, every Zt-adapted martingale is also a {Xt}-martingale (Florens and Fougere,

1996, Theorem 2.2).

The assumption of strong global noncausality is simply stating that, conditionally

on the observation of the process Z at time s, the joint process is not delivering

any additional information about the marginal process Zt, ∀t. However, the most

important implication of this hypothesis is that it immediately entails the preservation

of the martingale property of Bt under the joint filtration.

It is also important to notice that, in this context, the assumption of global non-

causality is equivalent to the assumption of instantaneous noncausality (in a Granger

sense) and to any other noncausality assumption, as Z is also the conditioning filtra-

tion (see, Comte and Renault, 1996; Florens and Fougere, 1996). Therefore, using the

most restrictive assumption of noncausality only serves maintaining the martingale

property.

Remark 1. To clarify the meaning of our assumption, consider a simple linear autore-

gressive model in discrete time.

Yt = αYt−1 + βZt−1 + εt

If X = (Y,Z), strong global noncausality is equivalent to:

E(εt∣Xt−1) = 0 ∀t ≥ 0

i.e. a strict exogeneity assumption on the two regressors. ∎

Under the conditional markovianity of Yt and noncausality, we can give to our

regression model the attribute of a stochastic differential equation (Karatzas and

Shreve, 1991). The conditional diffusion process is thus defined as::

(2.2) dYt = µ(Yt, Zt)dt + σ(Yt, Zt)dBt
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where µ(⋅, ⋅) ∶ R×Rd → R and σ(⋅, ⋅) ∶ R×Rd → R, which are our objects of interest in

what follows. This model can be considered as an extension of the conditional mean

model studied in Park (2008). We extend his model in two respects. First of all, we

allow the volatility term to also depend on Zt. Second, we allow for any (possibly

nonlinear) specification of the drift and the diffusion term4.

For ease of notations, we write our DGP as follows:

(2.3) dYt = µ(Xt)dt + σ(Xt)dBt

where Xt denotes the joint process.

Remark 2. As an example, consider a Ornstein-Uhlembeck process, where the drift

function µ is linear and the diffusion function is a constant:

dYt = (θ1(Zt) − θ2Yt)dt + θ3dBt

where θ2 > 0 (so that the process is mean reverting) and any function θ1 of Zt. ∎

Remark 3 (Stochastic volatility model). We consider the stochastic volatility model

without jumps (Bandi and Reno, 2009):

dYt = µ(σ2
t )dt + σ2

t dB
r
t

df(σ2
t ) =mf(σ2

t )dt +Λf(σ2
t )dBσ

t

where {Br
t ,B

σ
t } are possibly correlated Brownian motions.

The assumption of noncausality in such a model, when {Br
t ,B

σ
t } are independent

Wiener processes, is discussed in Comte and Renault (1996). In this context, the

assumption serves to generate some instantaneous noncausality between the latent

variable σt and the log return Yt.

Nevertheless, when we introduce some dependence between the two Brownian

terms, local instantaneous noncausality disappears. As a consequence, any stronger

assumption of noncausality would fail. However, the mild assumption that

E (dBr
t ∣Yt ∨ σ(σt)) = 0

4Park (2008) considers as an error term in his model any continuous martingale with bounded

variations. However, up to a time change, any continuous martingale can be rewritten as a Dambis-

Dubins-Schwarz Brownian motion.
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would still make the model fit into our more general framework. ∎

We assume the following conditions to hold in studying (2.3).

Assumption 1. The functions µ(⋅) and σ(⋅) satisfy the following assumptions:

(i) They are measurable on the σ-field generated by all the Borel sets on E and

they are at least twice continuously differentiable with respect to both their

arguments;

(ii) They satisfy local Lipschitz and growth conditions in Xt, i.e. for every compact

set B ∈ E , there exists a constant, C, such that, for any realization x1 and x2

in B,

(2.5) ∥µ(x1) − µ(x2)∥ + ∥σ(x1) − σ(x2)∥ ≤ C∥x1 − x2∥

and

(2.6) ∥µ(x1)∥2 + ∥σ(x1)∥2 ≤ C2 (1 + ∥x1∥2)

(iii) Nondegeneracy (ND) - σ2(⋅) > 0 on E
(iv) Local Integrability (LI) with respect to Yt, for any realization of the process

Zt = z:

(2.7) ∀(y1, z) ∈ E,∃δ > 0 such that ∫
y1+δ

y1−δ

∣µ(ζ, z)∣dζ
σ2(ζ, z) < ∞ ∎

Conditions (ii) and (iii) (Karatzas and Shreve, 1991, Theorem 2.2, p. 289) ensure

the existence of a strong solution to equation (2.3). We can therefore write the usual

Itô’s stochastic differential equation, which is the solution of our DGP in the following

form:

(2.8) Yt = y + ∫
t

0
µ(Xs)ds + ∫

t

0
σ(Xs)dBs

where y is an initial condition independent of the Brownian motion Bt and Yt is

adapted to the filtration Yt ∨ Zt.
The drift and the diffusion coefficients can be thus defined as in the standard frame-

work. Take any function f ∈ C2 of Yt, so to preserve the semimartingale properties of

our solution (see Protter, 2003, Theorem 32, p. 174). Using Itô’s lemma and taking
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expectation over any couple of realizations (y, z), the infinitesimal generator L of

equation (1.2) can be defined as:

(2.9) lim
t→0

1

t
Ex [f(Yt) − f(y)] = (Lf)(y)

Taking f(Yt) = Yt, we obtain the drift coefficient as the conditional instantaneous

change in the process:

(2.10) Ex [Yt − y] = tµ(x) + o(t)

while, taking f(Yt) = (Yt − y)2, we obtain the diffusion coefficient as the conditional

instantaneous change in the volatility of the process,

(2.11) Ex [(Yt − y)2] = tσ2(x) + o(t)

We can then proceed as in any standard nonparametric inference problem for con-

ditional moments, using sample analogues to identify conditional expectations over

infinitesimal time distances. In practise, the exogenous case is encompassed in the

existing literature for stochastic processes. In the next sessions, we show that the

asymptotic properties of the drift and the diffusion term are equivalent to those of a

multivariate diffusion when the dimension is equal to d + 1.

3. Additive Functionals and Occupation Density

Before to explicitly derive the nonparametric estimators of the drift and the diffu-

sion coefficient, we need to set up the main definitions and theorems which allow us

to meaningfully define a standard kernel estimator in such a nonstationary context.

We assume the following conditions about the joint process to hold.

Assumption 2. (i) Xt is Harris recurrent;

(ii) Under Xt, Xt is a special semi-martingale and it admits a Doob-Meyer decom-

position of the type:

Xt =Ht +Mt ∀t ∈ (0, T ]

where Ht is a Xt-predictable process and Mt is a Xt-local martingale such that

E(Mt∣Xs) = 0,∀s < t. ∎
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In particular, since every Xt-martingale can be written as a time changed Dambis-

Dubins-Schwarz Brownian motion (Revuz and Yor, 1999, Ch. V, Theorem 1.6), Xt

is a Brownian semimartingale.

Condition (i) is the minimal requirement to perform nonparametric inference on

the joint process. It is possible to show that conditional stationarity of Y given Z

and Harris recurrence of Z are sufficient conditions to obtain Harris recurrence of

the joint process (see the Appendix). However, it is not possible to assume a more

general structure on the conditional process and still to obtain condition (i).

Remark 4. The conditional Ornstein-Uhlembeck process has a stationary distribution

given Z = z. The stationary density of the conditional process is Gaussian with mean

equal to θ1(z)
θ2

and variance
θ2
3

2θ2
. Therefore, for any process Zt which satisfies the

assumption of Harris recurrence, the joint process would fit assumption (2), (i). ∎

Remark 5. It is worth noticing as well that, conditions (i) and (ii) together entail the

markovianity of Xt. These assumptions, coupled with the definition of noncausality

2.1, imply that Zt is a Markov process (Florens et al., 1990). In section 5, we slightly

relax this assumption and propose a solution to extend our main framework to long

memory processes. ∎

For any measurable Borel set B ⊂ E , we choose a measure m. This measure is

invariant if and only if,

(3.1) m(B) = ∫
E
P (X(x)

t ∈ B)m(dx)

where X
(x)
t denotes the realization of the joint process at time t for a given initial

condition x. In particular, Harris recurrence is a sufficient condition for the existence

of an invariant measure, unique up to multiplication by a constant and absolutely

continuous with respect to the Lebesgue measure λ on Rd+1 (i.e. m ≪ λ). The

absolute continuity of m further implies that m admits a density with respect to the

Lebesgue measure, i.e. a random function pt(⋅) such that m(dx) = pt(x)λ(dx).

Definition 3.1 (Höpfner and Löcherbach, 2003). An additive functional of X is a

process A = (At)t≥0, such that:
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(i) A is X−adapted, A0 = 0;

(ii) All paths of A are nondecreasing and right-continuous;

(iii) For all s, t ≥ 0, we have At+s = At+As∗θt, where θt is a family of shift operators

for X. ∎

We focus our attention here to integrable additive functionals. For every Borel set

B, the measure ν defined by the functional A for each t is equal to:

νA(B) = Em (∫
1

0
1B(Xs)dAs) =

1

t
Em (∫

t

0
1B(Xs)dAs)

A functional is termed integrable when:

∥ νA ∥= νA(E) = Em(A1) < ∞

In particular, when the functional At = t, for each Borel set B, we can define:

ηBt = ∫
t

0
1B(Xs)ds , t ≥ 0

which heuristically counts the amount of times for which Xs belong to B, for T →∞.

In this particular case, we obtain that:

Em (∫
1

0
1B(Xs)ds) =m(B)

which defines the occupation measure for the set B (Geman and Horowitz, 1980),

i.e. the time spent by the process in the set B up to time t. Therefore, the measure

defined by the constant functional on each subset of E is equivalent to the invariant

measure of Xt. Since the invariant measure admits a density with respect to the

Lebesgue measure, there exists a random function pt(⋅), such that:

m(B) = ∫
B
pt(x)λ(dx)

We define , following this terminology, pt(⋅) to be the occupation density of X. In

dimension 1, the invariant measure is defined to be the sojourn time of a given process

X (Park, 2005), while the random function pt(x) corresponds to the local time of the

process (Borodin, 1989). This is formally defined as the Radon-Nykodim derivative

of the sojourn time with respect to the Lebesgue measure. Our approach can be thus

considered a generalization of the univariate case.
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Remark 6. For the stationary case we have that:

∫ pt(x)λ(dx) = 1

so that pt(x) = π(x) is the invariant stationary density of Xt. ∎

The following theorem gives the condition for weak convergence of additive func-

tionals of a Harris recurrent process X:

Theorem 3.2 (Höpfner and Löcherbach, 2003). For a given constant α ∈ (0,1] and

a function l(⋅) slowly varying at infinity5, the following are equivalent:

(i) For every nonnegative measurable function g(⋅) with 0 < m(g) < ∞, one has

regular variation at 0 of resolvants6 in X if

(3.2) (R1/tg)(x) = Ex (∫
∞

0
e−

1
t
sg(Xs)ds) ∼ tα

l(t)m(g) , t→∞

(ii) every additive functional A of X with 0 < Em(A1) < ∞, one has:

(3.3)
(At)t≥0

tα/l(t) → Em(A1)Wα as t→∞

under the Skorohod topology, where Wα is the Mittag-Leffler process of index

α7. ∎

Remark 7. Equation 3.2 simply states that we are restricting our attention to null

recurrent diffusions with regular variation of the resolvent at 0. In the more general

case, one should define the kernel estimator for any function vt = Em [∫
t

0 g(Xs)ds]
(Löcherbach and Loukianova, 2008). In our case we take vt = tα/l(t). Moreover,

equation 3.2 is equivalent to the condition given by Bandi and Moloche (2008, The-

orem 2), where CX =m(g) < ∞. ∎

5A function f ∶ [a,∞) → (0,∞), a > 0 is said to be slowly-varying at infinity in the sense of

Karamata if limx→∞ f(λx)/f(x) → 1, for λ > 0.
6For α > 0 and a continuously differentiable function g(⋅), we define the resolvent operator Rα,

by (Rαg)(x) = Ex (∫
∞

0 e−αsg(Xs)ds). Rαg is a bounded continuous function (Øksendal, 2003,

Definition 8.1.2 and Lemma 8.1.3, pg. 135).
7Interested readers are referred to Höpfner and Löcherbach (2003), for general definition and

properties of Mittag-Leffler processes.
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Remark 8. For stationary processes, we simply set α = 1, l(t) = 1 and the Mittag-

Leffler process W 1 = Id (the deterministic process) by definition. Thus, for any

measurable bounded function f(⋅), we obtain convergence by equation 3.3, i.e.:

1

T ∫
T

0
f(Xs)ds

pÐ→ ∫ f(x)π(x)dx = E(f(x))

where π(⋅) is the invariant stationary probability density. ∎

4. Estimation and Asymptotic Properties

For simplicity, we suppose that the process {Xt, t ≥ 0} is sampled at equispaced

times in the interval [0, T ], where T is a strictly positive number. If n is the sample

size in [0, T ], we obtain that the time lag between two observations is equal to ∆n,T =
T
n . The observed sample is therefore denoted as Xi∆n,T

for all i = 1,⋯, n.

Under these hypotheses and following the definitions given in equations (2.10) and

(2.11), we can estimate the drift and the diffusion coefficients as follows:

(4.1) µ̂n,T (x) =
1

∆n,T

1
hd+1
n,T

n

∑
i=1

Khn,T
(Xi∆n,T

− x) (Y(i+1)∆n,T
− Yi∆n,T

)

1
hd+1
n,T

n

∑
i=1

Khn,T
(Xi∆n,T

− x)

(4.2) σ̂2
n,T (x) =

1

∆n,T

1
hd+1
n,T

n

∑
i=1

Khn,T
(Xi∆n,T

− x) (Y(i+1)∆n,T
− Yi∆n,T

)2

1
hd+1
n,T

n

∑
i=1

Khn,T
(Xi∆n,T

− x)

where,

Khn,T
(Xi∆n,T

− x) =K
⎛
⎝
Yi∆n,T

− y
h
(y)
n,T

⎞
⎠

d

∏
j=1

K
⎛
⎝
Zj,i∆n,T

− zj
h
(z)
n,T

⎞
⎠

where h
(y)
n,T and h

(z)
n,T are two bandwidths parameters for the process Yt and Zt respec-

tively. For notational brevity, we also suppose that h
(y)
n,T = h(z)

n,T . For further ease of

notations, we denote x = (y, z).
The kernel functions K(⋅) and K(⋅) satisfy the following conditions.

Assumption 3. - (Pagan and Ullah, 1999; Bandi and Moloche, 2008; Ruppert and

Wand, 1994)
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(i) The function K(⋅) is a non negative, bounded, continuous, and symmetric

function such that:

∫
∞

−∞
K(u)du = 1 ∫

∞

−∞
K2(u)du < ∞ and ∫

∞

−∞
u2K(u)du < ∞

(ii) The function K(⋅) is a compactly supported, bounded kernel, such that ∫ uu′K(u)du =
ρ2(K)I, where ρ2(K) ≠ 0 is a scalar and I is the identity matrix of dimension

d + 1.

(iii) Additionally, there exists a non negative function D(v, ε) such that:

(4.3) ∣K(x) −K(v)∣ ≤D(v, ε)∥x − v∥

∀x, v ∈ Rd+1 so that ∥x − v∥ < ε. Furthermore,

(4.4) lim
ε→0
∫ D(v, ε)dv < ∞

and

(4.5) lim
ε→0
∫ D(v, ε)m(dv) < ∞ ∀ε < ∞ ∎

While many of these assumptions are standard in the nonparametric literature, as-

sumption (iii) deserves some additional discussions. The multivariate kernel function

is often supposed to satisfy a regularity condition, e.g. some Hölder type of conti-

nuity. However, in the nonstationary case, any function which satisfies such a kind

of uniform continuity will explode as T → ∞, when it is integrated with respect to

time. Therefore, we need to bound the kernel function by a function whose integral

is defined when it is integrated with respect to the invariant measure.

Under assumption (3), we can thus define the kernel estimator of the occupation

density of X:

(4.6) L̂X(T,x) = ∆n,T

hd+1
n,T

n

∑
i=1

Khn,T
(Xi∆n,T

− x)

Using theorem 3.2, it is possible to show the weak convergence of this estimator

towards the Radon-Nikodym derivative of m with respect to the Lebesgue measure

on Rd+1.



NONPARAMETRIC REGRESSIONS IN CONTINUOUS TIME 15

Corollary 4.1. Consider the following additive functional of Xs:

Φt = ∫
t

0

1

hd+1
n,T

Khn,T
(Xs − x)ds

which is strictly positive and integrable ∀t ≥ 0. The kernel estimator (4.6) converges

almost surely to Φt for n,T →∞, provided that:

L̂X(T,x)
hd+1
n,T

(∆n,T log(1/∆n,T ))1/2 a.s.ÐÐ→ 0

Moreover, when hn,T → 0, we obtain:

Φt

tα/l(t) → Cp∞(x)Wα as t→∞

by theorem 3.2, where C is a process specific constant.

Proof. See the Appendix. ∎

Remark 9. Under stationarity, (4.6) is a well defined estimator of the stationary

density, as L̂X(T,x)
T

pÐ→ π(x). ∎

Remark 10. The estimator presented here has been firstly proposed by Bandi and

Moloche (2008) and it is a generalization to multivariate processes of the local time

estimator for scalar diffusion process presented in Florens-Zmirou (1993).

4.1. Estimation and asymptotic distribution of the drift coefficient. In this

section we report the convergence properties of the drift estimator.

Theorem 4.2. Almost sure convergence of the drift estimator.

Suppose that:

L̂X(T,x)
hd+1
n,T

(∆n,T log(1/∆n,T ))1/2 a.s.ÐÐ→ 0

with L̂X(T,x)hd+1
n,T →∞ with ∆n,T → 0, hn,T → 0 and n,T →∞, then the estimator of

equation (4.1) converges almost surely to the drift coefficient. I.e.:

(4.7) µ̂n,T (x)
a.s.ÐÐ→ µ(x)

Proof. See the Appendix. ∎
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Theorem 4.3. Asymptotic distribution of the drift estimator.

Suppose that:
L̂X(T,x)
hd+1
n,T

(∆n,T log(1/∆n,T ))1/2 a.s.ÐÐ→ 0

L̂X(T,x)hd+1
n,T

a.s.ÐÐ→∞

with hn,T = Oa.s (L̂X(T,x)− 1
d+1), ∆n,T → 0, hn,T → 0 and n,T →∞, then the estimator

described in equation (4.1) converges in distribution to a Gaussian random variable.
√
L̂X(T,x)hd+1

n,T (µ̂n,T (x) − µ(x) − Γµ(x))
dÐ→ σ(x)N (0,(∫ K2(u)du))

(4.8)

where Γµ(x) is a bias term, equal to:

(4.9) Γµ(x) = h2
n,Tρ2(K) (tr {Dµ,p(x)} +

1

2
tr {Hµ(x)})

where,

Hµ(x) = (∂
2µ(x)
∂xj∂xl

)
d+1

j,l=1

Dµ,p(x) = (∂µ(x)
∂xj

∂pt(x)
∂xl

)
d+1

j,l=1

Instead if, everything being equal:

L̂X(T,x)hd+5
n,T

a.s.ÐÐ→ 0

the bias term disappears asymptotically.

Proof. See the Appendix. ∎

Remark 11. The random speed of covergence of the drift estimator depends on the

occupation density of the joint process. This is a natural consequence of considering

the occupation density as the number of visits of the process in a small set which

diverges to infinity as the time span grows. Therefore, the higher the dimension d of

the covariate process, the slower the speed of convergence. Together with the standard

dimensionality problem in nonparametric statistics, Bandi and Moloche (2008) refer

to it as double curse of dimensionality.

Remark 12 (Bandwidth choice). The asymptotic mean squared error (AMSE) is equal

to:

O (h4
n,T ) +O

⎛
⎝

1

hd+1
n,T L̂

X(T,x)
⎞
⎠
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This suggests the bandwidth parameter for the drift term being set proportionally to

L̂X(T,x)− 1
d+5 . As already pointed out in related papers, drift bandwidth selection is

locally adapted in order to account for the number of visits to the point in which the

estimation is performed.

Remark 13 (Stationary case). In the stationary case, we showed that L̂X(T,x) pÐ→
Tπ(x). Therefore, our result can be restated as follows:

√
Thd+1

n,T (µ̂n,T (x) − µ(x) − Γµ(x)) dÐ→ σ(x)N (0,(∫ K2(u)du
π(x) ))

as Thd+1
n,T →∞. The bias term is now equal to:

h2
n,T

π(x)ρ2(K)
⎛
⎝
tr

⎧⎪⎪⎨⎪⎪⎩
(∂µ(x)
∂xj

∂π(x)
∂xl

)
d+1

j,l=1

⎫⎪⎪⎬⎪⎪⎭
+ 1

2
tr

⎧⎪⎪⎨⎪⎪⎩
(∂

2µ(x)
∂xj∂xl

)
d+1

j,l=1

⎫⎪⎪⎬⎪⎪⎭

⎞
⎠

This is a standard results in conditional moments estimation (see, e.g. Pagan and

Ullah, 1999, p. 101).

4.2. Estimation and asymptotic distribution of the diffusion coefficient. In

this section we report the convergence properties of the diffusion estimator.

Theorem 4.4. Almost sure convergence of the diffusion estimator.

Suppose that:

L̂X(T,x)
hd+1
n,T

(∆n,T log(1/∆n,T ))1/2 a.s.ÐÐ→ 0

with ∆n,T → 0, hn,T → 0 and n,T →∞, then the estimator of equation (4.2) converges

almost surely to the diffusion coefficient. I.e.:

(4.10) σ̂2
n,T (x)

a.s.ÐÐ→ σ2(x)

Proof. See the Appendix. ∎

Theorem 4.5. Asymptotic distribution of the diffusion estimator.

Suppose that:

L̂X(T,x)
hd+1
n,T

(∆n,T log(1/∆n,T ))1/2 a.s.ÐÐ→ 0

L̂X(T,x)hd+1
n,T

a.s.ÐÐ→∞
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with ∆n,T → 0, hn,T → 0 and n,T →∞, so that:

¿
ÁÁÀhd+5

n,T L̂
X(T,x)

∆n,T

a.s.ÐÐ→ 0

then the estimator described in equation (4.2) converges in distribution to a Gaussian

random variable.
¿
ÁÁÀ L̂X(T,x)hd+1

n,T

∆n,T

(σ̂2
n,T (x) − σ2(x))

dÐ→ 2σ2(x)N (0,(∫ K2(u)du))
(4.11)

If, instead, ¿
ÁÁÀhd+5

n,T L̂
X(T,x)

∆n,T

= Oa.s.(1)

then, there is an asymptotic bias term Γσ
2(x), equal to:

(4.12) Γσ
2(x) = h2

n,Tρ2(K) (tr {Dσ2,p(x)} +
1

2
tr {Hσ2(x)})

where,

Hσ2(x) = (∂
2σ2(x)
∂xj∂xl

)
d

j,l=1

Dσ2,p(x) = (∂σ
2(x)
∂xj

∂pt(x)
∂xl

)
d

j,l=1

Proof. See the Appendix. ∎

Remark 14. It is also possible to identify the diffusion term for any fixed time horizon

T . This has been already pointed out in Bandi and Moloche (2008) and goes back

to a result first shown in Brugière (1993). The general results can also be applied to

our setting. In the fixed T case, if one is ready to assume that:

hd+1
n,T = Oa.s. (

√
∆n,T log(1/∆n,T ))

it is possible to show the consistency and asymptotic normality of the diffusion esti-

mator. In particular, for ∆n,T , hd+1
n,T → 0 and n→∞, it is possible to show that:

¿
ÁÁÀ hd+1

n,T

∆n,T

(σ̂2
n,T (x) − σ2(x)) ∼MN (0,

4σ4(x)
L̂X(T,x)

)

where, MN denotes a mixed normal distribution, with mixing factor L̂X(T,x). ∎
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Remark 15. The asymptotic mean squared error (AMSE) is equal to:

O (h4
n,T ) +O

⎛
⎝

∆n,T

hd+1
n,T L̂

X(T,x)
⎞
⎠

This suggests to use again an adaptive scheme to set the bandwidth for the diffusion

term. In particular, we oversmooth in areas that are less visited by the process and

undersmooth in areas that are often visited. The diffusion bandwidth is therefore

set proportionally to ( L̂
X(T,x)
∆n,T

)
− 1

d+5
. However, as long as the diffusion term can be

identified for fixed T , we can also choose a constant bandwidth which is going to be

proportional to n−1/(d+5). ∎

5. An extension to long memory processes

The results presented so far are obtained under the assumption that the joint

process Xt is a Markov process. However, it is possible to extend this model to allow

for the marginal process Zt to be a long memory process (e.g. fractional Brownian

motion, fBM, or stochastic differential equations driven by a fBM), at least when Zt

is defined on the real line.

The problem which arises in this case is that processes driven by fBM are not semi-

martingales and are not Markov8. Therefore our assumption 2 would completely

fail.

Let {BH
t , t ≥ 0} to be a fBM, with Hurst parameter equal to H ∈ (0,1) and suppose

that Zt follows a stochastic differential equation driven by a BH
t ,

Zt = ∫
t

0
ψ(s)ds + ∫

t

0
ξ(s)dBH

t

where {ψ(t), t ≥ 0} is a Zt-adapted process and ξ(t) is a non-vanishing deterministic

function. Although Zt is not a semimartingale in this case, one can associate to

it a semi-martingale {Jt, t ≥ 0}, called the fundamental semi-martingale such that

the natural filtration Jt of the process J coincides with Zt (Kleptsyna et al., 2000).

Therefore, one can perform inference on Yt in model 2.3 using Jt instead of Zt without

losing any information.

8For an extensive review of the properties of fBM and stochastic diffusions driven by fBM (see,

e.g. Biagini et al., 2008; Rao, 2010)
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Define, for 0 < s < t:

kH (t, s) = κ−1
H s

1
2
−H(t − s) 1

2
−H , κH = 2HΓ(3

2
−H)Γ(H + 1

2
)

wHt = λ−1
H t

2−2H , λH =
2HΓ (3 − 2H)Γ (H + 1

2
)

Γ (3
2 −H)

MH
t = ∫

t

0
kH (t, s)dBH

t

where MH
t is referred to as the fundamental martingale associated to the fBM BH

t ,

whose quadratic variation is nothing but the function wHt (Norros et al., 1999).

Finally suppose that the sample paths of the function ξ−1(t)ψ(t) are smooth enough

and define:

QH
t = d

dwHt
∫

t

0
kH (t, s) ξ−1(s)ψ(s)ds, t ∈ [0, T ]

We can therefore define the process Jt as:

Jt = ∫
t

0
kH (t, s) ξ−1(s)dZs

such that (see Kleptsyna et al., 2000):

(i) Jt is a semi-martingale which admits the following decomposition:

Jt = ∫
t

0
QH
t (s)dwHs +MH

t

(ii) Zt admits a representation as a stochastic integral with respect to Jt.

(iii) the natural filtrations Zt and Jt coincide.

We can therefore define the joint process X∗
t = (Yt, Jt) defined on the natural

filtration X ∗
t . Under the fundamental semi-martingale result and definition 2.1 of

noncausality, the filtrations Xt and X ∗
t coincide.

This equivalence between the two filtrations allows us to perform inference on Yt

by means of the process X∗
t , as long as the information carried by Zt and Jt is the

same. We can therefore restate assumption 2 as follows:

Assumption 2a. (i) X∗
t ∈R2 is Harris recurrent.

(ii) Under X ∗
t , X∗

t is a special semi-martingale and it admits a Doob-Meyer de-

composition of the type:

X∗
t =H∗

t +M∗
t ∀t ∈ (0, T ]
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where H∗
t is a X ∗

t -predictable process and M∗
t is a X ∗

t -local martingale such

that E(M∗
t ∣X ∗

s ) = 0,∀s < t. ∎

Under this assumption, our inference results can be used to deal with the case of

Zt being a long memory process in R.

The two following equations would be used to theoretically identify the drift and

the diffusion coefficient:

Ex∗ [Yt − y] = tµ(x) + o(t)(5.1)

Ex∗ [(Yt − y)2] = tσ2(x) + o(t)(5.2)

where x∗ = (y, j). Under assumption 2a, we can apply the same estimation tech-

nique and asymptotic theory presented in previous sections.

6. Simulations

Notwithstanding the curse of dimensionality problem which is common to non-

parametric inference and which can be even more severe in the case of nonstationary

diffusion processes, because of the random divergence of the occupation density, we

provide here a simulation study in which the diffusion process is a function of a scalar

covariate Z. This is the minimal framework that can be use to prove the reliability

of our estimation procedure in finite samples. Programming has been conducted in

Matlab and codes are available upon request.

We consider the following true data generating processes:

dY
(1)
t = (θ1(Zt) − θ2Y

(1)
t )dt + dB(1)

t(6.1a)

dY
(2)
t = (θ1(Zt) − θ2Y

(2)
t )dt + ζ (Y (2)

t +Zt)dB(2)
t(6.1b)

where θ2 = 2 and ζ = 0.4. The former process is a generalization of a Ornstein-

Uhlenbeck process, where the drift only is function of Z and the diffusion is a constant

(taken equal to one for simplicity); while the latter is a CKLS model (Chan et al.,

1992), generalized to encompass the dependence on the covariate. The process Z has
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been taken as follows:

Z
(1)
t = Et(6.2a)

Z
(2)
t = BH=0.2

t(6.2b)

Z
(3)
t = BH=0.7

t(6.2c)

where {Et}t≥0 is a standard Wiener process and {BH
t }t≥0 is a fractional Brownian

motion, with Hurst index equal to 0.2 and 0.7, respectively. Namely, the latter

numerical schemes have been chosen to assess the performance of our estimate where

Z is a long memory process. For the sake of simplicity, we consider θ1(Zt) = Z2
t in

all replications. We draw 250 paths of the processes in (6.1a) and (6.1b), using a

Milstein scheme which reaches an order of approximation equal to one (Iacus, 2008).

Remark 16. Following Phillips (1973), because of the aliasing problem in the estima-

tion of stochastic diffusions, when data are discretely sampled, it is not possible to

identify a nonlinear drift without imposing any structural restrictions on the model.

In our simulating equations, structural restrictions are coming both from the additive

form of the drift and from the dependence on Z. ∎

The goal of this exercise is to recover an estimate of the functional form of θ1(⋅).
If we hope to correctly identify both the drift and the diffusion term, we have to

construct a finite sample in which dt is sufficiently small and T is sufficiently large.

We therefore set ∆n,T = 1/52 and n = 4800. In practical application, this would imply

weekly observations over roughly 100 years time span. However, the scope of this

exercise is to check that our estimators have desirable properties. Research on the

applicability of this method is in progress.

To the best of our knowledge, there is not a general theory for choosing a band-

width parameter to estimate the occupation density of multidimensional nonstation-

ary processes in continuous time. Moreover, the bandwidth parameter depends on

the recurrence properties of the underlying stochastic process which are difficult to

assess. Following Schienle (2011), we set the bandwidth according to an adaptive

scheme. For each evaluation point, we count the number of neighbours in a small

interval around that point. That is, for a fixed interval Ij around the point xj:
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(6.3) hn,T (xj) = (
n

∑
i=0

1(Xi∆n,T
∈ Ij))

− 1
q+4

where q is the dimension of the joint process (Yt, Zt). The estimators for the drift

and the diffusion coefficient have been computed using (2.10) and (2.11), respectively.

In order to recover the functional form of θ1(⋅), a semiparametric method has been

applied. In particular, we first project the estimated drift on Yt and Zt using a simple

linear regression model. We obtain a first estimate of θ2, say θ̂
(1)
2 . We then use this

estimate to compute:

θ̂
(1)
1 (z) =

n−1

∑
i=1

Kh (Zi∆n,T
− z) (µ̂(Zi∆n,T

, Yi∆n,T
) − θ̂(1)2 Yi∆n,T

)
n

∑
i=1

Kh (Zi∆n,T
− z)

We then plug the nonparametric estimate into the first step regression in order to get

a new value of θ2, say θ̂
(2)
2 , and we iterate until convergence.

The drift bandwidth parameter has been set according to the theoretical propor-

tionality rule i.e.:

hdrn,T = L̂X(T,x)− 1
d+5

Remark 17. Bandi and Moloche (2008) suggest applying a correction factor in order

to undersmooth and center at zero the asymptotic distribution. However, we do not

find this correction factor having any impact in our simulation study. ∎

The diffusion bandwidth has instead been taken constant and proportional to the

sample size. That is:

hdfn,T = n− 1
d+5

We report separately the results for the estimation of the drift, for models 6.1a and

6.1b. We also draw simulated confidence bands over the interval 2.5% − 97.5%.

As it can be seen from figures 1 and 2, the drift estimation is rather satisfactory,

despite a poorer behaviour at the boundaries.
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Figure 1. Estimation of θ1(⋅) when Zt is drawn from 6.2a, with 100

simulated paths.
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(a) Model 6.1a
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Figure 2. Estimation of θ1(⋅) when Zt is drawn from 6.2b, with 100

simulated paths.
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7. Conclusions

This paper delivers a new structural model, where the causal relation between an

endogenous variable and a set of covariates is brought to continuous time diffusions.

Our main asymptotic results refine the current literature on the topic. We also show

that it is possible to extend this framework in the case when Zt is a long memory

process of dimension 1. This may have potential applications in finance, especially for
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stochastic volatility model but it can also be a new explorative tool for macroeconomic

variables, such as the interest and the exchange rates.

Current research is focusing on relaxing the assumption of joint Harris recurrence,

by imposing an additivity property on the drift and the diffusion coefficients. In

the same way, we are trying to extend nonparametric inference in models where the

assumption of strict exogeneity of Z may be dropped (Florens and Simon, 2010).

Another interesting line of research that has been set in a paper by Phillips and

Tyurin (1999) would be to explore the properties of nonparametric estimators of

the local time of fractional Brownian motion. This is an open question both in

economics and statistical mathematics which can have huge impacts on the theory

presented in the current paper and, more generally, to explore nonparametric inference

in stochastic systems fully driven by fBM.
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8. Appendix

8.1. General Definitions, Corollaries and Theorems.

Definition 8.1 (Harris Recurrence Azéma et al., 1969). A strongly Markov

process X taking values in a Polish space (E,E) is Harris recurrent, if there exists

some σ−finite measure m on (E,E), such that:

m(A) > 0⇒ ∀x ∈ E ∶ Px (∫
∞

0
1A(Xs)ds = ∞) = 1

This process is also called m − irreducible. ∎

Definition 8.2 (Höpfner and Löcherbach, 2003). A Harris recurrent process X, tak-

ing values in a Polish space (E,E), with invariant measure m is called positive recur-

rent (or ergodic) if m(E) < ∞, null recurrent if m(E) = ∞. ∎

Theorem 8.3 (Ratio Limit Theorem Azéma et al., 1969). If a process X is

Harris recurrent with invariant measure m and A and B are two integrable additive

functionals and if ∥ νB ∥> 0, then:

(i) limt→∞
Ex(At)
Ex(Bt) =

∥νA∥
∥νB∥ m − a.s.,

(ii) limt→∞
At

Bt
= ∥νA∥

∥νB∥ Px − a.s., ∀x.

∎

Definition 8.4 (Modulus of Continuity of Multivariate Brownian Semi-

martingales). Suppose X is a special multivariate Brownian semimartingale, and

denote:

κn,T = sup
∣t−s∣<∆n,T ,[0≤s<t≤T ]

∣Xt −Xs∣

to be its modulus of continuity. We can then write (McKean, 1969):

P
⎡⎢⎢⎢⎢⎣
lim sup

∆n,T→0

κn,T√
∆n,T (1/∆n,T )

= max
t≤T

√
2γ(Xt)

⎤⎥⎥⎥⎥⎦
= 1

where γ(Xt) is the biggest eigenvalue of the covariance matrix of the process X. ∎
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8.2. Proof of Lemma (4.1). We want to prove that:

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T
(Xi∆n,T

− x) a.s.ÐÐ→ 1

hd+1
n,T
∫

T

0
Khn,T

(Xs − x)ds

We start by writing:

∣∆n,T

hd+1
n,T

n

∑
i=1

Khn,T
(Xi∆n,T

− x) − 1

hd+1
n,T
∫

T

0
Khn,T

(Xs − x)ds∣

≤ ∣ 1

hd+1
n,T

n−1

∑
i=0
∫

(i+1)∆n,T

i∆n,T

[Khn,T
(Xi∆n,T

− x) −Khn,T
(Xs − x)]ds

− ∆n,T

hd+1
n,T

Khn,T
(X0∆n,T

− x) + ∆n,T

hd+1
n,T

Khn,T
(Xn∆n,T

− x)∣

≤ 1

hd+1
n,T

∣
n−1

∑
i=0
∫

(i+1)∆n,T

i∆n,T

[Khn,T
(Xi∆n,T

− x) −Khn,T
(Xs − x)]ds∣ +O (∆n,T

hd+1
n,T

)

≤ 1

hd+1
n,T

n−1

∑
i=0
∫

(i+1)∆n,T

i∆n,T

D (Xs − x
hd+1
n,T

,
κn,T
hd+1
n,T

) ∣
Xi∆n,T

−Xs

hd+1
n,T

∣ds

≤κn,T
hd+1
n,T
∫

T

0

1

hd+1
n,T

D (Xs − x
hd+1
n,T

,
κn,T
hd+1
n,T

)ds

by the triangle inequality and assumption (3). Finally using the Ratio Limit theorem,

we have that:

∫
T

0

1

hd+1
n,T

D (Xs − x
hd+1
n,T

,
κn,T
hd+1
n,T

)ds = Oa.s. (
1

hd+1
n,T
∫

T

0
Khn,T

(Xs − x)ds)

By theorem (3.2), we now have that, for n,T →∞:

1
hd+1
n,T
∫
T

0 Khn,T
(Xs − x)ds

tα/l(t) → Em ( 1

hd+1
n,T
∫

T

0
Khn,T

(Xs − x)ds)Wα

Therefore, to prove our final result, we only need to prove that:

(8.1) Em ( 1

hd+1
n,T
∫

T

0
Khn,T

(Xs − x)ds) = Cpt(x)

By the strong version of the Ratio Limit Theorem, for any couple of integrable func-

tions f(⋅) and g(⋅), we have that:

Em(f)
Em(g) = m(f)

m(g)
which implies:

Em(f) = Cm(f) where C = m(g)
Em(g)
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We can then write:

Em ( 1

hd+1
n,T
∫

T

0
Khn,T

(Xs − x)ds) = C ∫
E

1

hd+1
n,T

Khn,T
(Xs − x)m(dXs)

=∫
E

1

hd+1
n,T

Khn,T
(Xs − x)p∞(Xs)λ(dXs) = ∫

E

1

hd+1
n,T

K(u)p∞(uhn,T + x)λ(hn,Tdu)

=∫
E
K(u)p∞(uhn,T + x)λ(du)

where we use the continuity of m wrt λ and the properties of the Lebesgue measure

(Billingsley, 1979, Theorem 12.2, p.172). Finally, as hd+1
n,T → 0:

∫
E
K(u)pt(uhd+1

n,T + x)λ(du) → p∞(x)∫
E
K(u)λ(du) = p∞(x)

By the relation between Riemann and Lebesgue integration and assumption (3). This

concludes the proof.

8.3. Proof of Theorem (4.2). We want to prove that:

µ̂n,T (x)
a.s.ÐÐ→ µ(x)

We start by writing the drift estimator of equation (4.1) as follows:

µ̂n,T (x)

= 1

∆n,T

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T
(Xi∆n,T

− x)∫
(i+1)∆n,T

i∆n,T

µ(Xs)ds

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T
(Xi∆n,T

− x)

(8.2)

(8.3) + 1

∆n,T

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T
(Xi∆n,T

− x)∫
(i+1)∆n,T

i∆n,T

σ(Xs)dBs

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T
(Xi∆n,T

− x)

We start with the numerator of equation (8.2). We want to prove that:

1

hd+1
n,T

n−1

∑
i=1

Khn,T
(Xi∆n,T

− x)∫
(i+1)∆n,T

i∆n,T

µ(Xs)ds

a.s.ÐÐ→ 1

hd+1
n,T
∫

T

0
Khn,T

(Xs − x)µ(Xs)ds
(8.4)
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We start by writing:

∣∆n,T

hd+1
n,T

n

∑
i=1

Khn,T
(Xi∆n,T

− x)∫
(i+1)∆n,T

i∆n,T

µ(Xs)ds −
1

hd+1
n,T
∫

T

0
Khn,T

(Xs − x)µ(Xs)ds∣

≤ ∣ 1

hd+1
n,T

n−1

∑
i=0
∫

(i+1)∆n,T

i∆n,T

[Khn,T
(Xi∆n,T

− x) −Khn,T
(Xs − x)]µ(Xs)ds

− ∆n,T

hd+1
n,T

Kh (X0∆n,T
− x)µ(X0∆n,T

) + ∆n,T

hd+1
n,T

Kh (Xn∆n,T
− x)µ(Xn∆n,T

)∣

≤ ∣ 1

hd+1
n,T

n−1

∑
i=0
∫

(i+1)∆n,T

i∆n,T

[Khn,T
(Xi∆n,T

− x) −Khn,T
(Xs − x)]µ(Xs)ds∣

+ ∣∆n,T

hd+1
n,T

Kh (X0∆n,T
− x)µ(X0∆n,T

)∣ + ∣∆n,T

hd+1
n,T

Kh (Xn∆n,T
− x)µ(Xn∆n,T

)∣

≤κn,T
hd+1
n,T

∣ 1

hd+1
n,T
∫

T

0
D (Xs − x

hd+1
n,T

,
κn,T
hd+1
n,T

)µ(Xs)ds∣ +Oa.s. (
∆n,T

hd+1
n,T

)

by the triangle inequality and assumption (3). Finally using the Ratio Limit theorem,

we have that:

1

hd+1
n,T
∫

T

0
D (Xs − x

hd+1
n,T

,
κn,T
hd+1
n,T

)µ(Xs)ds = Oa.s. (
1

hd+1
n,T
∫

T

0
Khn,T

(Xs − x)ds)

which ensures that the statement in equation (8.4) to be true. We are now left with

the following expression:

1
hd+1
n,T
∫
T

0 Khn,T
(Xs − x)µ(Xs)ds +Oa.s. (

(∆n,T log(1/∆n,T ))1/2
L̂X(T,x)

hd+1
n,T

)

1
hd+1
n,T
∫
T

0 Khn,T
(Xs − x)ds +Oa.s. (

(∆n,T log(1/∆n,T ))1/2
L̂X(T,x)

hd+1
n,T

)

We have now to prove that this converges to the true functional form of the drift

coefficient. We denote the true functional as µ(x) and write the following equation:

1
hd+1
n,T
∫
T

0 Khn,T
(Xs − x) (µ(Xs) − µ(x))ds

1
hd+1
n,T
∫
T

0 Khn,T
(Xs − x)ds
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We want to show that the numerator converges almost surely to 0. To do so, we

exploit the Lipschitz continuity property of the drift function. Write:

∣ 1

hd+1
n,T
∫

T

0
Khn,T

(Xs − x) (µ(Xs) − µ(x))ds∣

≤ 1

hd+1
n,T
∫

T

0
∣Khn,T

(Xs − x)∣ ∣µ(Xs) − µ(x)∣ds

≤ C

hd+1
n,T
∫

T

0
∣Khn,T

(Xs − x)∣ ∣Xs − x∣ds ≤ C(κn,T )
1

hd+1
n,T
∫

T

0
Khn,T

(Xs − x)ds

= C(κn,T )Oa.s. (
1

hd+1
n,T
∫

T

0
Khn,T

(Xs − x)ds)

which gives the desired result.

In order to prove that equation (8.3) converges to zero almost surely, we proceed

as follows. We notice that, as in Bandi and Phillips (2003), the numerator of the

equation can be embedded in a continuous time martingale for any value of Xi∆n,T
.

As a matter of fact we have:

β(i+1)∆n,T
= ∫

(i+1)∆n,T

i∆n,T

σ(Xs)dBs

is a stochastic integral which is Y(i+1)∆n,T
∨Z(i+1)∆n,T

-measurable and such that E [β(i+1)∆n,T
] =

0. Moreover by Itô isometry (see Øksendal, 2003, Lemma 3.15, p. 26):

var(β(i+1)∆n,T
) = E [∫

(i+1)∆n,T

i∆n,T

σ(Xs)dBs]
2

= E [∫
(i+1)∆n,T

i∆n,T

σ2(Xs)ds] < ∞

We can therefore construct the following continuous martingale:

MXi∆n,T (r) =
√
hd+1
n,T

⎛
⎝

1

hd+1
n,T

[nr]

∑
i=1

Khn,T
(Xi∆n,T

− x)∫
(i+1)∆n,T

i∆n,T

σ(Xs)dBs

⎞
⎠

= 1√
hd+1
n,T

[nr]

∑
i=1

Khn,T
(Xi∆n,T

− x)∫
(i+1)∆n,T

i∆n,T

σ(Xs)dBs

(8.5)

whose quadratic variation is equal to:

(8.6) [MXi∆n,T (r)] = 1

hd+1
n,T

[nr]

∑
i=1

K2
h (Xi∆n,T

− x)∫
(i+1)∆n,T

i∆n,T

σ2(Xs)ds
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Using the same method applied for equation (8.2) and using the Ratio Limit theorem,

we can show that:

(8.7) [MXi∆n,T (1)] = Oa.s. (
1

hd+1
n,T
∫

T

0
Khn,T

(Xs − x)ds)

Finally, as in Phillips and Ploberger (1996), expanding the probability space as

needed:

(MXi∆n,T (1))2 / [MXi∆n,T (1)] = Oa.s.(1)

which gives:

√
L̂X(T,x)hd+1

n,T

⎛
⎜⎜⎜⎜
⎝

1
∆n,T

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T
(Xs − x)∫

(i+1)∆n,T

i∆n,T

σ(Xs)dBs

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T
(Xs − x)

⎞
⎟⎟⎟⎟
⎠
= Oa.s.(1)

Therefore, the term in equation (8.3) converges almost surely to zero, provided that

L̂X(T,x)hd+1
n,T

a.s.ÐÐ→∞. This completes the proof.

8.4. Proof of Theorem (4.3). We start by decomposing the estimator into a bias

and a variance component:

(8.2) − µ(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

BIAS

+ (8.3)
²

VARIANCE

We start by analyzing the variance term. We use again the fact that this term

can be written as a sequence of martingale components. Namely, we know that

every martingale array can be written as a time changed Dambis, Dubins-Schwartz

Brownian motion. We call τ , the time change associated to MXi∆n,T (1). This implies:

M
Xi∆n,T
τ (1)√

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T
(Xs − x)

dÐ→ N
⎛
⎜⎜⎜⎜
⎝

0,
[MXi∆n,T

τ (1)]

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T
(Xs − x)

⎞
⎟⎟⎟⎟
⎠

Using dominated convergence and the Ratio Limit Theorem, we can show that the

numerator of the variance of M
Xi∆n,T
τ (1) converges to:

1

hd+1
n,T

n

∑
i=1

K2
h (Xi∆n,T

− x)∫
(i+1)∆n,T

i∆n,T

σ2(Xs)ds

a.s.ÐÐ→ σ2(x) (∫ K2(u)du)
(8.8)
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Now, we turn to the bias term. Write the bias term in the following way:

1
hd+1
n,T
∫
T

0 Khn,T
(Xs − x) (µ(Xs) − µ(x))ds

1
hd+1
n,T
∫
T

0 Khn,T
(Xs − x)ds

a.s.ÐÐ→
1

hd+1
n,T
∫ K(u) (µ(x + uhn,T ) − µ(x))pt(x + uhn,T )λ(du)

1
hn,T ∫ K(u)p(x + uhd+1

n,T )λ(du)

We therefore compute the Taylor expansion of this function around x.

∫ K(u)
⎡⎢⎢⎢⎢⎣
hn,T

d+1

∑
j=1

∂µ(x)
∂xj

uj +
h2
n,T

2

d+1

∑
j,l=1

∂2µ(x)
∂xj∂xl

ujul

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
pt(x) + hn,T

d+1

∑
j=1

∂pt(x)
∂xj

uj

⎤⎥⎥⎥⎥⎦
λ(du)

∫ K(u)
⎡⎢⎢⎢⎢⎣
pt(x) + hn,T

d+1

∑
j=1

∂pt(x)
∂xj

uj + o(hn,T )
⎤⎥⎥⎥⎥⎦
λ(du)

Using the symmetry of kernels and neglecting terms of order higher than h2
n,T leads

to:

∫ K(u)
⎡⎢⎢⎢⎢⎣
h2
n,T

⎛
⎝
d+1

∑
j,l=1

∂µ(x)
∂xj

∂pt(x)
∂xl

pt(x)
ujul

⎞
⎠
+
h2
n,T

2

⎛
⎝
d+1

∑
j,l=1

∂2µ(x)
∂xj∂xl

ujul
⎞
⎠

⎤⎥⎥⎥⎥⎦
λ(du)

We define

Hµ(x) = (∂
2µ(x)
∂xj∂xl

)
d

j,l=1

Dµ,p(x) = (∂µ(x)
∂xj

∂pt(x)
∂xl

)
d

j,l=1

where Hµ(x) is the symmetric hessian matrix of the function µ and we rewrite the

bias term as follows:

h2
n,T tr {∫ K(u)u′ (Dµ,p(x) +

1

2
Hµ(x))uλ(du)}

=h2
n,T tr {(Dµ,p(x) +

1

2
Hµ(x))∫ K(u)uu′λ(du)}

=h2
n,Tρ2(K) (tr {Dµ,λ(du)p(x)} +

1

2
tr {Hµ(x)})

using the properties of the trace operator, the relation between Lebesgue and Riemann

integration and assumption (3).

8.5. Proof of Theorem (4.4). We want to prove that:

σ̂2
n,T (x)

a.s.ÐÐ→ σ2(x)
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Using Itô’s lemma, we can show that (Y(i+1)∆n,T
−Yi∆n,T

)2 satisfies the following SDP:

(Y(i+1)∆n,T
− Yi∆n,T

)2 =∫
(i+1)∆n,T

i∆n,T

(2(Ys − Yi∆n,T
)µ(Xs) + σ2(Xs))ds

+∫
(i+1)∆n,T

i∆n,T

2(Ys − Yi∆n,T
)σ(Xs)dBs

This leads us to decompose equation (4.2) as follows:

σ̂2
n,T (x)

= 1

∆n,T

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T
(Xi∆n,T

− x)∫
(i+1)∆n,T

i∆n,T

σ2(Xs)ds

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T
(Xi∆n,T

− x)

(8.9)

(8.10) + 1

∆n,T

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T
(Xi∆n,T

− x)∫
(i+1)∆n,T

i∆n,T

2(Ys − Yi∆n,T
)σ(Xs)dBs

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T
(Xi∆n,T

− x)

(8.11) + 1

∆n,T

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T
(Xi∆n,T

− x)∫
(i+1)∆n,T

i∆n,T

2(Ys − Yi∆n,T
)µ(Xs)ds

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T
(Xi∆n,T

− x)

In order to prove consistency of the diffusion term, we treat the drift as a nuisance

parameter. As in the proof of theorem (4.2), using dominated convergence, the prop-

erties of the diffusion function and the Ratio Limit Theorem, we can prove that

equation (8.9) almost surely converges to the true value of the diffusion term, as long

as L̂X(T,x)
hd+1
n,T

(∆n,T log(1/∆n,T ))1/2 = Oa.s.(1).
For equation (8.10) and equation (8.11), we follow Florens-Zmirou (1993) and Bandi

and Phillips (2003). The term in (Ys−Yi∆n,T
) is a semi-martingale, so that we can use

Burkholder-Davis-Gundy inequality (see,e.g. Protter, 2003, Theorem 48, p. 193) to

show that its expectation can be bounded by the square root of its quadratic variation

which converges at a rate equal to
√

∆n,T . Therefore, following the proof of theorem

(4.2), the component in equation (8.10) can be embedded in a continuous martingale

whose expectation converges to zero as long as

√
L̂X(T,x)hd+1

n,T

∆n,T
diverges to infinity. In
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the same way, the term in (8.11) is bounded as long as

√
L̂X(T,x)hd+1

n,T

∆n,T
diverges (Bandi

and Phillips, 2003; Bandi and Moloche, 2008).

8.6. Proof of theorem (4.5). Using the same procedure as in theorem (4.3), we

decompose our estimator into a bias and a variance component:

(8.9) − σ2(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

BIAS

+(8.10) + (8.11)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

VARIANCE

For the variance, the component in equation (8.11) converges to zero almost surely

as noted in the previous proof. Using the Ratio Limit theorem we can prove that

equation (8.10) converges in distribution to a normal with variance equal to:

(8.12) 4σ4(x) (∫ K2(u)du)

We then turn to the bias term. We can follow the same procedure that for theorem

(4.3). Define:

Hσ2(x) = (∂
2σ2(x)
∂xj∂xl

)
d

j,l=1

Dσ2,p(x) = (∂σ
2(x)
∂xj

∂pt(x)
∂xl

)
d

j,l=1

where Hσ(x) is the symmetric hessian matrix of the function σ. Then the bias term

is equal to:

h2
n,Tρ2(K) (tr {Dσ2,p(x)} +

1

2
tr {Hσ2(x)})

8.7. Additional Proofs.

Theorem 8.5. Suppose Yt is a stationary process conditionally on Zt and Zt is Harris

Recurrent. Then Xt = (Yt, Zt) is a joint Harris Recurrent process.

Proof. Remember that Xt lies in a Polish space (E,E). We have to show that there

exists a measure m, such that:

0 <m(A) < ∞ ∀A ⊂ E

i.e. a σ−finite measure on E, such that X is m-irreducible (see Definition 8.1).

We start to show that, for every set A and t→∞, if a measure exists, it is σ−finite.

Take any set A ⊂ E , such that A = B ×C, where B and C are compact, with Zs+1 ∈ B
and Ys+1 ∈ C. We denote by φz the invariant measure of the process Zt and by π(y∣z)
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the stationary probability measure of Y given Z. We can write down the transition

probability for the joint process, under the markovianity of X, as:

∫
∞

0
P (Xs+1 ∈ A∣Xs)ds

= ∫
∞

0
P (Zs+1 ∈ B,Ys+1 ∈ C ∣Zs, Ys)ds

= ∫
∞

0
P (Zs+1 ∈ B∣Zs)P (Ys+1 ∈ C ∣Zs, Ys, Zs+1 ∈ B)ds

≤ (∫
∞

0
P (Zs+1 ∈ B∣Zs)ds)(∫

∞

0
P (Ys+1 ∈ C ∣Zs, Ys, Zs+1 ∈ B)ds)

= (∫ P (Zs+1 ∈ B)φz(dz))(∫
∞

0
P (Ys+1 ∈ C ∣Zs, Ys, Zs+1 ∈ B)ds)

= (∫ P (Zs+1 ∈ B)φz(dz))(∫ P (Ys+1 ∈ C ∣Zs+1 ∈ B)π(dy∣z))

with a straightforward application of Bayes’ theorem. Finally:

φz(B) = ∫ P (Zs+1 ∈ B)φz(dz) < ∞

since A is bounded, and:

π(y ∈ C ∣z ∈ B) = ∫ P (Ys+1 ∈ C ∣Zs+1 ∈ B)π(dy∣z) ∈ (0,1]

This implies:

(8.13) ∫
∞

0
P (Xs+1 ∈ A∣Xs)ds < ∞

Therefore, for every set A, there exists a σ−finite measure for X. This concludes the

first part of the proof.

Now, denote τA = inf{t ≥ 0,Xt ∈ A}, the hitting time of set A, for a given realization

of Xt, x = (z, y) ∉ A. For any arbitrary measure m:

(8.14) Px(τA < ∞) = 1

implies m(A) > 0 (Revuz, 1984). We set τ zB = inf{t ≥ 0, Zt ∈ B} and τ yC = inf{t ≥
0, Yt ∈ C}. Then define:

Px(τA < ∞) = Px(τ zB < ∞, τ yC < ∞)

= Px(τ zB < ∞)Px(τ yC < ∞∣τ zB < ∞)
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where the conditional probability is well defined since τ zB is a stopping time and

{τ zB < ∞} ∈ Z∞ (Protter, 2003). Since Y is stationary conditional on Z, we have that:

Ex(τ yC ∣τ zB < ∞) < ∞

which implies:

{ sup
t≥0,τzB<∞

τ yC} < ∞ → Px(τ yC < ∞∣τ zB < ∞) = 1

We then obtain (8.14), from the Harris recurrence of Z.

Therefore, for every set A, X is m-irreducible and m is a σ−finite measure by

(8.13). By definition (8.1), X is Harris recurrent. This concludes the proof. ∎
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