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ABSTRACT. Several classical time series models can be written as a regression model between
the components of a strictly stationary bivariate process. Some of those models, such as the ARCH
models, share the property of proportionality of the regression function and the scale function, which
is an interesting feature in econometric and financial models. In this article, we present a procedure
to test for this feature in a non-parametric context. The test is based on the difference between two
non-parametric estimators of the distribution of the regression error. Asymptotic results are proved
and some simulations are shown in the paper in order to illustrate the finite sample properties of the
procedure.
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1. Introduction and motivation of the test

Let (X;, Y),t=0, £1, £2,..., be a bivariate strictly stationary discrete time process, and
assume that there exists a non-parametric relationship of the form

Y =m(X)+o(X))e, 1)

where m(x)=E(Y;| X;=x) is an unknown regression function, ¢?(x)=var(Y;|X,=x) is an
unknown conditional variance function, and & are unobservable errors independent of X;
and satisfying E(¢,)=0 and var(e,)=1.

This general non-parametric framework includes typical time series models, where X,
represents lagged variables of Y, (for instance X; =Y, ;). In particular, consider the ARCH(1)
model (see, e.g. Fan & Yao, 2003, p. 143),

Z,=(ay +a12,271)”26t,

for some constants ag,a; >0, a; <1, where ¢, has mean 0 and variance 1 and is independent
of Z, | for all ¢. Straightforward manipulations allow us to rewrite this model as:

Z?Z(ao +0121271)+C71(ao+“IZ;271)8U 2
where ¢ =c(e — 1) and ¢ is a positive scaling factor given by ¢>=[E(e}) — 1]7'. Clearly
model (2) can be identified as a particular case of the general model (1) by simply taking
Y, =722 X,=27% .m(X)=ay+ a1 X, and o(X,)=c (ag+a,X,). Note that the new errors
verify E(e;)=cE(e2 —1)=0 and var(e,)=c?[E(¢}) — 1]=1. We have therefore seen that the
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ARCH(1) model can be written in the form (1) with the peculiarity that the regression
function is proportional to the square root of the variance function, that is m(-) =ca(-), where
the constant ¢ only depends on the error distribution.

In this paper, we derive a test for the null hypothesis

Hy:m()=ca(), (€)

where ¢ is a fixed positive value, in general unknown, versus the general alternative hypothesis
H, :m(-)+ ca(-). For simplicity of the exposition, we restrict our attention to the case of ¢>0;
in section 6 we will explain how to consider the case ¢<0.

The feature stated in the null hypothesis (3) is not exclusive for ARCH models, but it
holds for other time series models with a multiplicative structure of the form Z, =¢,¢,, where
g, =g(Z, ) for some function g. Different choices of the function g lead to different models,
such as ARCH and fractionally integrated ARCH (FIARCH) models (see Fan & Yao, 2003),
autoregressive conditional duration models in Engle & Russell (1998), or their corresponding
non-parametric versions. Therefore, in time series analysis, this hypothesis is a preliminary
step to be tested before applying other procedures, such as specific tests for ARCH models.

In econometric and financial models, some relation might be expected between the return
(here represented by the regression function, m) and the risk (or the scale function, g), so
the proportionality of m and o is a feature of interest. For a general motivation about the
relationship between the mean and variance functions see, for instance, Engle ez al. (1987)
or Linton (2009).

In other contexts, several authors discussed the problem of estimating and testing the
regression function under the assumption of a constant coefficient of variation, which also
corresponds to the situation described before. For example, McCullagh & Nelder (1989)
considered generalized linear models, Carroll & Ruppert (1988) investigated a parametric
model with a constant coefficient of variation, while Eagleson & Miiller (1997) considered
the problem of non-parametric estimation of the regression function in a model where the
SD function is proportional to the regression function.

The problem of specification testing for non-parametric regression models for stationary
time series has found considerable interest in the recent literature. Most authors investigate
test procedures for parametric hypotheses regarding the mean effect m(x); see, for example,
Masry & Tjestheim (1995), Hjellvik et al (1998), Fan & Li (1999) or Dette & Spreckelsen
(2004), among many others. On the other hand — to the knowledge of the authors — the
problem of testing the hypothesis of a constant coefficient of variation has not been con-
sidered in the literature, despite the fact that this characterizes time series models defined by
a multiplicative structure.

The paper is organized as follows. In section 2, we describe the proposed testing procedure,
which is based on a comparison of two weighted empirical processes of the standardized
non-parametric residuals calculated under the hypothesis of a multiplicative structure and
the alternative of a general non-parametric regression model. Some asymptotic results
establishing weak convergence of the (appropriately standardized) difference of the processes
and the asymptotic distributions of the test statistics are stated in section 3. The asymptotic
distributions of the proposed test statistics are difficult to use in practice. Therefore, in
section 4, we describe a consistent bootstrap procedure to approximate the critical values
of the test, and in section 5 we present the results of a small simulation study that illustrates
the finite sample properties of the bootstrap version of the test. For the sake of simplicity,
in this paper we consider a bivariate time series, while extensions to more general models are
briefly indicated in section 6. The proofs of the main results are complicated and therefore
deferred to the Appendix.
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2. Testing for multiplicative structure

Our testing procedure is based on the comparison of two estimators of the error distribution,
and it can be justified as follows. First, consider the errors of regression model (1):

Y, —m(X,)

o= o(X)

with distribution function F,(y)= P(¢, <y). Note that the stationarity of the process ensures
that the distribution of ¢, is the same for any value of the index ¢. The same happens for the
following random variables,

Y, —co(X))
a(X)) ’

&0 =

with distribution function Fy(y)=P(eo <y).

Under the null hypothesis Hy, the random variables ¢, and ¢, are equal, and consequently
they have the same distribution. On the other hand, if ¢, and ¢, have the same distribution
then necessarily m(-) = ca(-). This idea is stated in theorem 1, the proof of which can be found
in the Appendix.

Theorem 1
Let m and o be continuous functions. The hypothesis Hy:m(-)=ca(-) (for some ¢ >0 fixed) is
valid if and only if the random variables ¢, and &, have the same distribution.

In practice, the regression errors are estimated from observations (Xi, Y1),...,(X7, Y1)
generated from model (1). For this purpose, we consider the following non-parametric
estimators of the regression and variance functions:

T T
M(x)=> " Bi(x.h)Y; and 6*(x)=>  Bi(x. )Y} —rir'(x),
=1 =1
where B,(x,h)=K((x — X,)hfl)/[Z,T,=1 K((x — X,)h™")] are Nadaraya—Watson-type weights,
K is a known kernel function (typically, a symmetric density), and #=/hy is an appropriate
bandwidth sequence converging to 0 with increasing sample size. Also, let ¢ be any root-T
weakly consistent estimator of the scaling factor c. An obvious example is the statistic

2 = i WX XY, — (X))’
’ S w(X)6* (X))

where w is a weight function with support R,, which arises from the weighted least squares
problem

; 4)

T
min Y w(X,) (m*(X,) — 2o (X))’.
<=1

Note that the minimum is attained for

) S w(X)mP(X)e(X,)
YL wX)et(X)

For the construction of the estimator 6123 we replace ¢2(X;) in the numerator by its residual
(Y, —m(X,))* and in the denominator by 6°(X;). Similarly, m(X,) is estimated by #i(X,). By
interchanging the role of 6°(X;) and (Y, —(X;))? alternative estimates can be obtained, but
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we restrict ourselves to @,25 for the sake of brevity. A structurally different estimate can be
obtained from the method of moments that yields

T y 2y !
2 - t
Cinom = {;w(Xt) (WI(X,) - 1) } (5)

as an estimate of ¢2, where w(-)=w(-)/ 3./_, w(X,), as E[w(X,)(Y./m(X,)— 1)*]=c2E(w(X,))
when H, holds. Under appropriate assumptions on the stationary process it follows that these
estimates are root-7 consistent (see theorems 5 and 6).

In the general non-parametric model (1) the error distribution is estimated by the weighted
empirical distribution of the estimated residuals, that is

- Y, —(X,)
Fun =321 (W §y>, ©)

where () denotes the indicator function: I(t<y)=1if 1<y, and I(t<y)=0if >y. On the
other hand, under the null hypothesis H, of a multiplicative model, we can also estimate the
error distribution by the empirical versions of the random variables ¢, that is,

T o x
Fan=3 anr (P57 <), g
=1 !

As seen in theorem 1, any difference between the two estimators of the error distribution in
(6) and (7) gives evidence against the null hypothesis. A typical example is depicted in Fig. 1,
where we show the empirical distribution functions F,and F corresponding to the cases:
(a) m(x)=0(x)=1+0.1x, and (b) m(x)=1+0.1x, o(x) =0.5/|x]. The statistical comparison
of the two distributions is now performed through the empirical process

W) =T"(Fo(»)—F(y), —oo<y<cc. )

More precisely, we consider Kolmogorov—Smirnov and Cramér-von Mises type statistics
defined over the process (8) :

Txs=sup|W(»)| and Tey = / W () dE,().
s

1.0+
0.8
0.6
0.4

0.2+

1 [ T T T 1
4 -4 -2 0 2 4

Fig 1. The empirical processes F¢ (solid line) and Fyg (dotted line) correspond to the testing problem
(3). The sample size is 7' =200, m(x)=1+0.1x. The left panel corresponds to the null hypothesis of a
multiplicative model Hj:m(x)=ca(x), where both processes are visually non-distinguishable. The right
panel shows the two processes for the alternative 0(x)=0.5\/m.
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The null hypothesis is rejected for large values of the test statistics. In section 3, we study the
asymptotic properties of the process W (y) and — as a corollary — derive the asymptotic limit
of the statistics Txs and T¢y,.

3. Asymptotic results

We assume that the process (X;, Y;),t=0, +1, £2,..., is strictly stationary and absolutely
regular (f-mixing). This means that the sequence of mixing coefficients
B=E{ sup |P(4)=P(A] (X, Yo),(X 1, Y1)l }
AEFP(X,Y)

converges to 0 as t — oo, where F°(X, Y) is the g-algebra generated by {(X, Y¥;),j=t,...,00}.
This definition of absolutely regular sequences is taken from Fan & Yao (2003). For a more
abstract definition of absolute regular sequences and their properties, see Doukhan (1994).

Let us now introduce some additional notation. Throughout this paper, Fy(x)= P(X; <x)
denotes the distribution function of the random variable X;, F(x, y) = P(X, <x, Y; <y) the joint
distribution function of (X;, Y;), and F,(y)=P(¢; <y) the distribution function of the error.
Note that the distributions of these random variables do not depend on ¢, because of the strict
stationarity of the process (X, Y;),t € Z. Lower case letters are used for the corresponding
densities. Some regularity assumptions are needed in order to prove our main results.

(A1). The mixing coefficients satisfy §, = O(t~"), for some b>2.

(A2). X, is absolutely continuous with density fy. The functions fy, m and o> are twice

continuously differentiable, inf,cg, fx(x)>0 and inf,cg, 6*(x)>0. The weight function w
satisfies w(x) >0 for all x, sup, w(x)<oco and E(w(X;))>0.

(A3). (i) E(|Yol")<oo and sup,.p, E(| Yo |’ | Xo=2x)<oo for some s>242/(b—2).
(i) There exists some j’ such that for all j >/,

sup  E(|YoY; *| Xo =0, X =x;)f;(x0, X;) < 00,

X0, % ERw
where f;(xo,x;) denotes the joint density of (Xj, X;).
(iii)) The errors of the regression model satisfy

E(e | X, FZUX, Y)=E(e)=0 and var(e | X,, FU(X, Y)=E()=1,

where F'}(X, Y) denotes the o-algebra generated by the sequence {(X;, Y;),
j=—00,...,t—1}.

(A4). The function F(x,y) is continuous in (x,y), and twice continuously differentiable
with respect to x and y. Let L(x,y) denote generically the derivatives a%F (x,y), O%F (x,),
(%F(x,y), %F(x,y) or %F(x,y). Then, L(x,y) is continuous in (x,y) and satisfies
sup, |[y*L(x, y)| < oc.

(AS). (i) The bandwidth sequence /i satisfies the following three conditions:

b—2—(1+b)(s—1)

by _
(logT) "' T hy — oo for 6 b3 (b))
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(log h7") ' Th3+° — oo for some §>0,

(log T)™' Th = O(1).

(ii)) The kernel K is a symmetric density function with compact support and is twice
continuously differentiable.

(A6). The estimator ¢ has a stochastic expansion of the form

\ 11 .
i-c > w(X)s(X, &) +op(T7'7),
t=1

CE(w(X) T
where the function s(x, e) is twice continuously differentiable in (x, e), E[s(X;, ¢)|X;]=0 and
E[s**7(X,, &)] < oo for some y>0.

Note that assumption (A2) implies that the support of the weight function, R, is compact.
Introducing a weight function w in the empirical processes (6) and (7) has useful consequences
in the model, as it allows us to consider covariates with unbounded support, as it usually
occurs when the covariate X, represents lagged variables of the time series Y,. As an additional
remark, note that in the case of independence these assumptions can be relaxed in the following
sense: (A1) disappears as the mixing coefficients are zero; in (A3) it suffices to take s =2 as in
Akritas & Van Keilegom (2001), so the assumption is redundant with the model itself; finally,
0=1 in (A5(i)) and hence the first condition on the bandwidth is redundant with the second
one.

The asymptotic results can now be stated. In theorem 2, a stochastic expansion for the
difference F,(y) — F,(y) is obtained. The weak convergence of the corresponding empirical
process is stated in theorem 3 and the asymptotic distributions of the test statistics under
the null hypothesis are presented in corollary 1. The proofs are complicated and therefore
deferred to the Appendix.

Theorem 2
Assume that conditions (A1)-(A6) are satisfied. Then, under the null hypothesis Hy of a
multiplicative model, the following representation holds:

Sy 1

Fo(y)—F.(»)= E(w(X,) T

T
> wX)Wi+op(T1),

t=1

uniformly in —oo <y <oo, where W,=0.5ce? — &, —0.5¢ +s(X,, &), t=1,..., T.

Theorem 3

Assume that conditions (A1)—-(A6) are satisfied. Then, under the null hypothesis Hy of a
multiplicative model, the process T'(F(y) — F,(y)), — co<y<oc, converges weakly to a
centred Gaussian process W (y) with covariance structure given by cov(W(y), W())=
SOVONE@(X) > 552 cov(w(Xn) Wi, w(X) W),

Corollary 1
Assume that conditions (A1)-(A6) are satisfied. Then, under the null hypothesis Hy of a
multiplicative model,

Tis Lsup | W) and Tey / W2(y)dF,().
K

© 2009 Board of the Foundation of the Scandinavian Journal of Statistics.



788 H. Dette et al. Scand T Statist 36

To conclude this section, we show that the least squares estimator ¢, and the moment
estimator ¢, defined in (4) and (5), satisfy condition (A6).

Theorem 5
Assume that conditions (A1)—(AS) are satisfied. Then, under the null hypothesis Hy of a
multiplicative model,

R 1 a*(X) ;
é—c= E(w(X,))TZw( ’)E[ 4(X)]{ —0.5¢e2 4+ +0.5¢} +op(T™"%).

Theorem 6
Assume that conditions (A1)—(AS) are satisfied. Then, under the null hypothesis Hy of a
multiplicative model,

. i 1 12
Cmom c= E(w(X))TZw(XI){ 05(,8 +8[+0 SL}+0P(T )

Note that the representations in theorems 5 and 6 have a very similar structure, but there
appear additional factors ¢*(X;)/E[¢*(X})] in the stochastic expansion of the least squares
estimate ¢ because it is based on the estimate of the regression and variance function.
Although the expansion in theorem 6 appears to be simpler, it implies that the main term
in the representation in theorem 2 equals zero when the moment estimator ¢, is used. As
a consequence, the limit distribution in theorem 3 is degenerate in that case. In order to get
the asymptotic distribution of the test statistics when using ¢,,,,, the standardization of the
process should be changed and a deeper theoretical analysis carried out. This is, however,
beyond the scope of this paper.

In practice, we use a bootstrap calibration to obtain the critical values of the test (see
section 4), and we have found in simulations that the least squares estimate ¢;; yields better
results. In the simulation study presented in section 5 we only show results for that estimator.

4. Bootstrap calibration

In section 3, we have obtained the asymptotic distribution of the test statistics Txs and T¢y,.
Although these asymptotic limits have explicit and relatively easy formulae, we prefer not
to use them in practice, as simulations have shown that the convergence to these limiting
distributions is slow, and for small samples the level is not well approximated. To circumvent
this problem, in this section we propose to approximate the distribution of the test statistics
by means of a smooth bootstrap procedure.

Define
Yi=e6(X)+6(X)e,, t=1,...,T, )
where
e, =8 +uZ,, (10)

~k

&,...,&p is an i.i.d. sample from the weighted empirical distribution function

T
E ()= o(XDIE<y),  &=(Y,—m(X,)/6(X)

t=1

© 2009 Board of the Foundation of the Scandinavian Journal of Statistics.
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(t=1,...,T),Zy,...,Zr are iid. standard normal random variables, independent of the
original sample, and v=v, is a sufficiently small constant; in our case, we take v=0.1. Note
that the independence between the error and the covariate allows to consider a regular
bootstrap based on the residuals, as all the dependence structure is kept by the regression
model. Next, let

T T
By =Y a(X)IE <y), E 0= a(X)I(E <y),
t=1 t=1

where & and &, are defined similarly as & and &, =(Y, — ¢6(X,))/6(X;), but by using the
bootstrap data YVr={(X,, Y}),...,(Xr, Y;)} instead of the original data. Now, use these
bootstrap empirical distributions to compute the bootstrap version of the test statistics 7s and
Tcu- Repeat this procedure B times and denote the ordered outcomes by T(CIA); << T(Cﬁf,*
(and similarly for the statistic Tks). Then, the null hypothesis of a multiplicative model is
rejected if

Ten > TV, (11)

where |u]| denotes the integer part of u.

Note that we use a smooth bootstrap procedure. This is because the asymptotic represen-
tation of F(y) — F,(y) given in theorem 2 contains the density function f,(y), and without
using smoothing this would lead to an inconsistent bootstrap procedure; see, for example,
Silverman & Young (1987) and Hall et al. (1989).

This bootstrap procedure is consistent if, conditionally on the sample )7, and under both
the null hypothesis H, and the fixed alternatives, the process Tl/z(l:jj(‘)(y) —E*(y))(—oco<y<00)
converges weakly to the process W (y), in probability, where W(y) is defined in theorem 3. To
prove this, a similar method of proof can be followed as in Neumeyer (2006, 2009) and Dette
et al. (2007). In the former two manuscripts, it is shown that the smooth bootstrap procedure
described before is consistent for approximating the distribution of F,(y) when the data are
i.i.d. In the latter paper, the consistency of the bootstrap is proved for a test for the form of
the variance function in regression, that is similar in structure to the test considered in this
paper, but that is restricted to i.i.d. data.

5. Simulation study

In this section, we study the finite sample properties of the proposed test based on the
Cramér-von Mises statistic Ty in two AR(1) models and two multiplicative models
including the ARCH(1). Note that by corollary 1, the asymptotic distribution of the statistic
T depends on several features of the data-generating process, which are not known by the
statistician. Because the covariance structure in theorem 3 is difficult to estimate in practice,
we have implemented the smooth bootstrap test, outlined in section 4.

To be precise we have estimated the regression function by the local linear estimate 71, while
the variance function was estimated by the Nadaraya—Watson estimate defined in section 2.
The local linear estimate is used for the estimation of the regression function in order to
address boundary effects, which would have a substantial influence on the residual-based
(smooth) bootstrap. The two bandwidths for the estimation of the regression and variance
functions have been chosen separately by least squares cross-validation, and the same band-
widths have been used in the bootstrap procedure. The Cramér—von Mises statistic Tcy, has
been calculated from these data in order to compare the distributions of the residuals. For
the generation of the bootstrap data, we have estimated the constant ¢ in the hypothesis H,
by the least squares estimate defined in (4), where only data corresponding to the [10%, 90%)]
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range of the explanatory variables X; was considered for the estimate, in order to make the
estimate ¢j; less sensitive with respect to outliers in the residuals. In a next step, we have
generated bootstrap data according to the procedure described in the previous section. In
each scenario, 1000 simulation runs with B =100 bootstrap replications have been performed
to estimate the empirical level of the bootstrap test.

Example 1. We consider a classical (heteroscedastic) AR(1)-model
X;=c(1+0.1X,_1)+(14+0.1X,_)) e, teZ, (12)

where the innovations ¢, are i.i.d. and standard normally distributed. In the first part of
Table 1, we show the simulated level of the bootstrap test for the scaling factors ¢=0.5,1,1.5
and sample sizes 7'=150, 100 and 200. We observe that the level is very well approximated in
nearly all cases.

In order to study the power of the test, we consider the non-multiplicative model

X,=c(140.1X,_)+0.5v/|X,_1|e), t€Z (13)

and display the corresponding rejection probabilities in the second part of Table 1. The
alternative of a non-constant coefficient of variation is clearly detected with reasonable power.
The empirical distribution functions £, and F, corresponding to the null hypothesis and
alternative have been depicted in Fig. 1. Note that the parameter ¢ in this table represents the
factor in the null hypothesis and does not correspond to deviations from the null hypothesis.

In order to demonstrate that these results are — in some sense — representative, we consider
a second example, namely the autoregressive model

X,=c-sin(14+0.5X, 1) +sin(1+0.5X, 1)e,, teZ, (14)
with alternative
X;=c-sin(140.5X,_1)+cos(1+0.5X,_)¢,. (15)

Note that this example corresponds to a more oscillating regression and variance function.

The corresponding results are shown in Table 2 and yield a similar picture. We observe
a good approximation of the nominal level and reasonable rejection probabilities under the
alternative.

Example 2. We will conclude this section discussing the application of the methodology
for testing multiplicative, in particular ARCH structures. For this purpose, we consider two

Table 1. Simulated rejection probabilities of the bootstrap test (11) under the null hypothesis of a
multiplicative structure Hy [model (12)] and the alternative of a non-multiplicative model [model

(13)]

T=50 T =100 T =200
Model ¢ o 0.025  0.05 0.10 0.025  0.05 0.10 0.025  0.05 0.10
(12) 0.5 0.026  0.039 0.084 0.041 0.058 0.107 0.038 0.061 0.106
1.0 0.024 0.037 0.084 0.039 0.062 0.109 0.037 0.058 0.105
1.5 0.036  0.052 0.094 0.040 0.057 0.112 0.034 0.053 0.102
(13) 0.5 0.244 0328 0416 0287 0363 0491 0351 0.434 0.570
1.0 0.176  0.236  0.320 0.185 0.249 0371 0.203 0.281  0.393
1.5 0.244 0.288 0364 0254 0.301 0389 0.282 0.312 0.401
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Table 2. Simulated rejection probabilities of the bootstrap test (11) under the null hypothesis of a
multiplicative structure Hy [model (14)] and the alternative of a non-multiplicative model [model

1s)]
T=50 T=100 T =200
Model ¢ o 0.025 0.05 0.10 0.025  0.05 0.10 0.025  0.05 0.10
(14) 0.5 0.025 0.038 0.079 0.026 0.047 0.086 0.033 0.052 0.097
1.0 0.023  0.034 0.081 0.028 0.041 0.089 0.029 0.043 0.094
1.5 0.032  0.052 0.100 0.037 0.055 0.106 0.039 0.057 0.108
(15) 0.5 0.232 0312 0428 0356 0445 0548 0.593 0.641 0.713
1.0 0220 0.266 0.376 0369 0420 0.554 0.586 0.664 0.776
1.5 0.148  0.204 0.312 0229 0305 0.394 0382 0.458 0.602

Table 3. Simulated rejection probabilities of the bootstrap test (11) for an ARCH (1) struc-
ture. Equations (16) and (17) correspond to the ‘null hypothesis’ of a multiplicative model
while (18) and (19) correspond to two alternatives

T=50 T =100 T =200
Model oz 0.025 0.05 0.10 0.025  0.05 0.10 0.025  0.05 0.10
(16) 0.040 0.064 0.132 0.021 0.042 0.091 0.022 0.043 0.085
17) 0.050  0.071 0.122 0.021 0.042 0.082 0.020 0.043  0.087
(18) 0.367 0.463 0.570 0.453 0.581 0.721 0.678 0.734  0.845
(19) 0366 0.431 0.604 0481 0.568 0.701 0.634 0.691 0.783

multiplicative models. We generated data from the ARCH(1)-model

Z,=1/0.754+0.257% \e;, (€7, (16)

where the random variables ¢, are i.i.d. and standard normally distributed. We have applied
the bootstrap test to the ‘data’ (X;, Y,)=(Z2 |, Z?), where the scaling factor is estimated
by the least squares method (4). The corresponding results for sample sizes 7' =50, 100 and
200 are depicted in Table 3. We observe that the nominal level is rather well approximated.
Next, we study the level of the bootstrap test if the data is generated by the multiplicative

model

Z,=+/0.75+0.25(sin(Z,_ )+ |Z,_1Des,  tE€Z, 17)

where the random variables ¢, are i.i.d. and standard normally distributed. We also observe
a rather precise estimation of the nominal level. In order to address the question if the test is
able to detect non-multiplicative structures, we consider two alternatives. First, we consider
the classical AR(1) model

Z,=0.25+0.75Z,_; +0.5¢,, t€Z, (18)

where the random variables ¢, are standard normally distributed. The corresponding results
are depicted in the second part of Table 3 and show that the test clearly detects the alternative
of a non-multiplicative model. As a further alternative, we have considered the model

Z,= { oMzt B2 e z, (19

0.72[—1 +0~53t if Z,,I SOS

(see Fan & Yao, 2003, p. 127) where the random variables ¢, are again standard normally
distributed. The corresponding results are depicted in the fourth row of Table 3 and this
alternative is also detected with reasonable power.
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6. Discussion and extensions

In this article, we have presented a method to test for the proportionality of the regression
function and the scale function in a non-parametric regression set-up with dependent data,
which, to the best of our knowledge, has not been treated in the literature. The proportion-
ality of those two functions is motivated in time series analysis (e.g. ARCH models) and in
financial and econometric models. The implementation of a smoothed bootstrap procedure
yields a good approximation of the nominal level and reasonable power for finite sample sizes.

We have restricted our attention to the case m(-)=co(-), with ¢>0. The case ¢<0 is also
interesting for practical applications, and it can be treated in a similar way. Note that ¢ is
defined in terms of ¢, and the same happens for its estimators. So, to test the multiplicative
model with negative c, it suffices to consider the negative square root of ¢?, and similarly in
the expressions of the estimators. It is important to note that the use of our test requires that
the sign of ¢ is specified in advance. We believe that in practice, one will usually have an idea
of the sign to be employed. A totally different problem, which we do not treat in this paper,
is developing a formal test for the sign of c.

More general null hypotheses could be considered in the future, such as testing for a general
relationship of the form

Hy:m(-)=g(a(-), ¢),

where g is a specified function and ¢ is a parameter. Note that the null hypothesis (3) corres-
ponds to the choice g(¢, ¢c)=ct. The estimation of the parameter ¢ under those general null
hypotheses would deserve more attention.

Extensions to models with more than one covariate are also interesting in practice. Let
X;=(X1,..., Xg) denote now a d-dimensional covariate and let (X,, Y;),t=0, £1, +£2,...,
be a strictly stationary process. A completely non-parametric model of the form Y, =m(X,) +
a(X,)¢, can be considered again. Unfortunately, the so-called ‘curse of dimensionality’ not
only makes the estimation of the regression and variance function difficult, but also causes
some additional problems in the estimation of the error distribution.

For this reason, many authors have suggested imposing some structure on the components
of the covariate, such as an additive or a multiplicative structure. In generalized additive
models, each component of the covariate vector has an additive effect on the response and
then all of them are combined through a known link function g:

d
mx)=m(x1.....x)=g | mo+>_ mx;) |,
=1
where the partial functions m; are unknown and mj is a constant. Several procedures have
been proposed in the literature in order to estimate the functions m; non-parametrically:
backfitting, marginal integration, etc.; see, for example, Hastie & Tibshirani (1990), Linton &
Nielsen (1995), Nielsen & Sperlich (2005) among many others. A more delicate issue, which
has not been sufficiently addressed in the literature yet, is the appropriate modelling and
estimation of the variance function ¢%(x) in a multidimensional setting.
Consider, for instance, the ARCH(g) model. As in (2), this model can be written as:

Zl=(a+mZ \+-+a,Zl )+ Nao+aiZ]  + -+ a,Z] e

Thus, if we consider the multidimensional covariate X,=(Z2 ,...,Z% ) and m(x)=
co(X)=ap+a;x; +---+a,x,, we can consider the ARCH(g) model as a special case of a non-
parametric regression model where the regression and SD are proportional and have additive

structure.
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The results given in this paper for the unidimensional case are still valid in the multidimen-
sional case as long as the estimators of the regression and variance function satisfy certain
uniform convergence rates. Some details regarding these rates can be found in the proof of
lemma 1 in the Appendix.
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Appendix: Proofs

In this Appendix, we include the proofs of the theoretical results.

Proof of theorem 1. Assume that the random variables ¢, and ¢, have the same distribution.
In particular, E(g0)=E(g;) and var(eo)=var(e,)=1. Consider the representation &=
(Y, — co(Xy)a(X;) =&+ (m(X))/a(X;) — ¢). By applying expectations on both sides of the
previous expression, we obtain E[m(X,)/a(X;) — c]=0. On the other hand, by calculating
variances (taking into account that X, and ¢, are independent), we obtain var(e)=var(e,) +
var[m(X,) o(X,) — c]. It follows that E[m(X,)/a(X;)—c]=0 and var[m(X,)/a(X,) — c]=0. This
means that m(x)=co(x) with probability 1. The continuity of the functions m and ¢ allows
us to extend the result to the whole support of X;. The converse implication is obvious.

Before writing the proofs of the asymptotic results, we introduce lemma 1.

Lemma 1
Assume that conditions (A1-A6) are satisfied. Then, the following representation holds:

r 1
Fa(y)_Fc(y)_E( X)) TZIU(X, (e, <y)—F,(»)]
fz (y) w(x) N R
T Ew() / 5 L) = a0 1) =m0l () d

+op(T™'?), (20)

uniformly in —oo <y <oo.
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Proof. The proof is based on theorem 1 in Akritas & Van Keilegom (2001) (AVK in the
sequel). In that theorem, an i.i.d. representation for the empirical process F,(y) — F,(y) is
established when the covariate X; has a compact support, w(X;)=1, and when it is assumed
that the data (X}, Y;), t=1,..., T, are i.i.d.

We will restrict attention to indicating which steps in the proof of this theorem need to be
modified. All of the notations used next are taken over from that proof. We start by prov-
ing propositions 3-5 in AVK, which are required in the main proof of the theorem. These
propositions state that

sup |(x) —m(x)| = Op((log T)"*(Thr)™"), (21
XERy
sup |6(x) — a(x)| = Op((log T)"*(Thr)~"?), (22)
XERy
and that
sup |1’ (x) —m'(x)| = Op((log T)"*(Thy) ™),
XERy
sup |6'(x) — o'(x)| = Op((log T)"*(Thy) '),
XERy,
~! — o (v 1(~ )
sup |71’ (xx) — m'(x) Wll gx )+m'(x)| _ Op((log T)(TH3+2)~12),
x,x'ERy |X —X ‘
sup |0- (X) — 0 (-|>2 _;,|((;x )+ o (X )‘ — OP((IOg T)I/Z(Th;-+26)7l/2), (23)
x,x'€Ry -

for some 0 >0. Regarding the validity of (21), this follows from theorem 8 in Hansen (2008).
In that paper, the uniform consistency of kernel estimators in regression is proved when the
data (X, Y;) are assumed to come from a stationary f-mixing process. The rates in (22) and
(23) can be obtained in a similar way, taking into account that the regularity conditions
imposed in assumption (A2) are stronger than the corresponding ones in Hansen (2008).

We now verify how the proof of lemma 1 in AVK can be adapted to the present set-up. One
major change is required in this proof: the condition on the boundedness of the bracketing
integral (see (20) in AVK) should be replaced by

/Om V1o Ny( F. |- [1.p) di < oo, (24)
where the class F is now defined as
w(x)
F= {(x, )= Fwiry U 3000 +di00) ~ Te <)
1
~ Ew ) E[w(X)F(ydo(X;) + di (X)) + Fo(3):

~1+0

—co<y<oo,di € CIR,). dr € Ty (Rﬂ.)}.
Here, Cf*‘;(Rw) and C‘;M(Ru,) are as in AVK, and for any function g,
lgll3,5 = /0 | B~ )05 (u) du,
where 7! is the inverse cadlag of the decreasing function u — Bl (|u] being the integer part
of u, and f, being the mixing coefficient) and Q, is the inverse cadlag of the tail function

u— P(Jg| >u) (see section 4.3 in Dedecker & Louhichi, 2002). Note that we can restrict the
functions d; and d> to R, as w lives on R,,.
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For verifying (24), let us fix 2 >0 and let [d%, dV], [d,dV], and [y*, U] be 2*-brackets for
a given d|,d,, and y, defined in the same way as in AVK, except that we omit the indices
i,j,k for notational simplicity. Take y >0 (the case y <0 can be dealt with in a similar way).
For any 0<z <M, where M =sup, w(x)/E(w(X;))<oo, let

p)=P {%[l(st < VAU )+ dY (X)) — (e <y dHX) + dH X)) > z}.

Then,

p(2)<p(0)
<P{I(e, <yVdY(X)+dY (X)) — 1(e, <yFd" (X)) +d" (X)) >0}
< P(yrdM (X)) +dM (X)) <& <yUdY(X)+dY (X))

= [ PO+ ) <6 0 )+ ) ) AR )
< [1R0d 0 +d° W] 0~ FO@ 0+ 0 [0} dFy 0+ K

= / L&)+ E) | )Y (x) — dH ()] +[dY (x) — d* ()]} dFy (x) + Ky 22
<Ko ||dV — G|y + K[| dY — dt |+ K1
<K ||dY —d" |+ Ks||dY — d" ||, + K 2? < (K; + K> + K3) 7,

for some &(x) between dX(x) and dY(x), some &(x) between d(x) and dY(x), and some
K, K;, K3 >0. It follows that the quantile function Q(u) corresponding to the previous
survival function is bounded by

M if 0 <u<p(0),
Q(”)S{o if p(0)<u<1. (25)

Hence,

2

H WD 1, < UV () 4+ dY (X)) — 16 <y (X)) + dH X))

E(w(X)))

-p(0)
<M? B ) du < M2 (0)p(0) < K22,
0

2.5

for some constant 0 < K<oo. This shows that

w(X;) N
‘ZE( oy UE<» 1<)

1 YE(X,)+1(X;) — m(X;) o
a ME {W(Xt) |:E' ( a(X,) ) _Fa(y)] } ’ =op(T~1?), (26)

sup (T
y

and it is easy to show that (26) remains valid when the factor E(w(X,)) in front of the first
two terms is replaced by 7! Z,Tzl w(X,), by using the fact that 7! Z,Tzl w(X;)— E(w(X,)=
Op(T"?). Now, write
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T
E0)—F(0)=)_ o(X){I(e,<y)—F.()}

t=1

! , YE(X0) + (X)) —m(X,) .
* mE{w(X,) |:FS ( a(X)) ) _Fs(y):| } +op(T7"%)

1
T E(w(X,) T Zw(Xz) {I(e,<y)—F.(»)}

_SO) / wix )y(U(X)*G(X))JrM(X)*m(X)
T Ewx) a(x)

where the last equality follows in a similar way as in the proof of theorem 1 in AVK. This
completes the proof.

fr(x)dx +o0p(T712),

Proof of theorem 2. Lemma 1 states that

. I B (e Y, —m(X))
F.(»)—F.(y)= m? Zw(){,) {1 (W §y> *Fs(y)}
O / wix )y((?(x)—a(x))—l—)h(x)—m(x)
E(w(X,)) a(x)

and similarly it can be shown that

. 1 1 <& ' — '
FaO(y)_Fa(y):mT Zw(X,){I <Y+;I()X) SJ’) —Fg(J/)}

f:(») / (x )y(&(x)—o—(x))+é6(x)—ca(x)
E( (X)) a(x)

uniformly in y, provided é — c=O0p(T~?), which follows from (A6) and the central limit

theorem for mixing sequences; see, for instance, Fan & Yao (2003, theorem 2.20). Now,

taking into account that under the null hypothesis m(x)=ca(x), we obtain

Sx(x)dx+0p(T7"?) (27)

fx(x)dx+o0p(T7),

Fa)=Fin= 0 [0S ) deon(r 1),

The uniform rates given in (21) ensure that lemmas 8 and 9 in Pardo-Fernandez et al. (2007)
can be applied here:

/ we) M )dx——Zw(X, L) o)

/ (x )ca(x) ca(x)f( )dx

e { (¥, = m(X) — ca*(X,)

202(X,) +S(X,,s,)} +op(T12).

Hence,

F;O(V)_ﬁ}(y)

__ S 1 ¢ (Y=mX)\'_ Y-mX) ¢ .
E(M(X’))TZ e {2( o)) )* =59) z“(X”&’)}
+op(T™1),

which equals the representation given in the statement of the theorem.
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Proof of theorem 3. The leading term of the representation given in theorem 2 factorizes in
a deterministic function, f,(y)/E(w(X;)), and a sum of random variables, 7! Zszl w(X)W,,
where W,=0.5ce2 — ¢ — 0.5¢ +5(X,, &), not depending on y. The weak convergence of the
process T'2(F o(y) — F,(»)) follows from the central limit theorem for the o-mixing processes.
See, for instance, theorem 2.21 in Fan & Yao (2003). Indeed, the process w(X;) W, has expec-
tation 0 and verifies condition (i) of the aforementioned theorem owing to conditions (Al),
(A3), and (A6). Note that, as w(X,)W, is a transformation of the bidimensional process
(X;, Y,), it inherits its mixing property [see remark (ii) on p. 69 in Fan & Yao (2003)].

The variance of the limit distribution is: Var(W1)+2Z/°O=1c0V( W4, W1). Taking into
account (Al(ii)), it is easy to check that cov(W,;, Wi)=cov(s(Xi;, Y14,), (X1, ¥1)).

Proof of corollary 1. The continuous mapping theorem ensures the convergence of the
statistic Txs. For Tcy, we will show that dF .(y) can be replaced by dF,(y) in the integral.
Given that the processes W (y) and TV2(F,(y) — F,(y)) are weakly convergent (the weak con-
vergence of the second process can be obtained in a similar way as the weak convergence of
W () in theorem 3), the Skorohod construction (see Serfling, 1980, p. 23) implies

sup [ W (1) — W) —as0 and  sup|F.(y) — F,(y)| —as 0. (28)
y y
Now write

‘ / () () — / chwda(y)‘

<

[oro- W%y))dﬁa(y)‘ + ‘ [ wond o -Fo).

Both terms on the right-hand side of this inequality are negligible a.s. The first one is o(1) a.s.
owing to the first expression in (28). The second one is also o(1) a.s. because of the second
expression in (28) and the application of the Helly—Bray theorem (see p. 97 in Rao, 1965) to
each of the trajectories of the corresponding limit process, which are bounded and continu-
ous almost surely. This concludes the proof.

Proof of theorems 5 and 6. For the sake of brevity, we restrict ourselves to a derivation
of the stochastic expansion for the moment estimate ¢,,,,. The corresponding result for the
least squares estimate can be obtained by similar arguments (see Wieczorek, 2007). Write

2 ~2 A
e L, _c"—¢ _c+¢ . 2 . )
Cmom —C€ ~ = 2 O = — Azmom (Coom — €)= _*3(Cmom -+ OP(|Cmom - C| ).
2 c2é ¢

mom mom

Hence, it is sufficient to consider

1 1 1 1
Gl == Y w(X)[ - | e Y WX — 2
mom E(U)(Xt)) T ; ( 1) ['/Ir ’”l;] E(M(X[)) T ; ( r)(’?: )
T
- w(X;) } 2 -2
+ w(X)— —=——— —c77), 29
> |50~ o [ = 29)
where 5, = Y,//m(X,)—1=c"'¢, and #, = Y,/i(X,) — 1. For the first term here, consider
1;]27’12: Yzmz(Xt)_th(Xt) m(X;) —m(Xy)
O R Xma(xy) T m(Xm(X)
2Ym,

07(X,) = m(X)+op(T~'"),

a m*(X;)
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uniformly on R, which follows from (21). Let v(x, y)= —2y(y/m(x) — 1)/m?(x). Then,
1
E(w(Xt)) T Z W =i

= m / w(x)v(x, y)(ri(x) —m(x) d(F(x,y) — F(x, ))

4 m / W)Ox ) (E) — m(x) dF (e, )+ 0p(T1), (30)

where F(x,y)=T"" Z,T:] I(X;<x, Y;<y). The second term of (30) equals

1 . 1z )
E(w(X,) / w(x)o(x, )y () Z Kn(x — X)o(X)e dF (x, v)+0p(T 1)

1

o E(w(X)) Tc? Zw(Xt)st+0P(T ),

as E(v(X,, ;)| X,)=—2/[c*m(X,)] under H,. The first term of (30) can be written as:

cr N
m w(x)v(x,y)dr(x)d(F(x,y)—F(x,y)), (31)

where ¢7 — 0, and dr(x)=c;' (7(x) — m(x)). We will show that this term is op(T~?) by
making use of the techniques from empirical processes. Let C;T*(R,), «>0, be the class of
all differentiable functions d defined on R,, such that ||d||;;, <1, where

d'(x)—d'(x'
o190 —d' )]

|x — x'|*

ld||1+»=max{sup|d(x)|, sup|d’(;

Note that by (21) and (23), we have that P(dr € C/T*(R,)) — | as T — oo, if ¢r and
o>0 are chosen such that c}lh*“= O(h~?) (we can restrict the function dr to R, as w=0
outside R,). Next, note that the class F={(x,y) — w(x)v(x,»)d(x):d € CI**(R,)} is
P-Donsker, where P is the joint probability measure of (X;, Y;). This is because the bracketing
number Ny(4, C} T*(R,), L,) of the class C} **(R,) satisfies (1>0)

log Ny(4, €} **(Ry), L) < K271+
(see corollary 2.7.2 in Van der Vaart & Wellner, 1996), and hence

/ log Ny(4, F, L;)dA< oo
0

for r>2b/(b—1). See p. 146 in Dedecker & Louhichi (2002) and the proof of theorem 3 for
more details. It now follows that

1

E(w(X) T E{w(X,)v(X,, Y,)d(X,)}

sup

deClH*(Ry)

1
Z wX (X, Y)d(X0) = g

sup
deCl T *(Ry)

= OP(T71/2)9

‘E(w(x,)) / W) () d(F (x, ) = F(x. )

and hence (31) is Op(crT~"?)=0p(T~"2). It now also follows that the third term of (29) is
OP(T—I/Z).
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