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We consider a circular deconvolution problem, where the density f of a cir-
cular random variable X has to be estimated nonparametrically based on an
iid. sample from a noisy observation Y of X. The additive measurement error
is supposed to be independent of X. The objective of this paper is the con-
struction of a fully data-driven estimation procedure when the error density ϕ
is unknown. However, we suppose that in addition to the iid. sample from Y ,
we have at our disposal an additional iid. sample independently drawn from the
error distribution.

First, we develop a minimax theory in terms of both sample sizes. We pro-
pose an orthogonal series estimator attaining the minimax rates but requiring
an optimal choice of a dimension parameter depending on certain characteristics
of f and ϕ, which are not known in practice. The main issue addressed in our
work is the adaptive choice of this dimension parameter using a model selection
approach. In a first step, we develop a penalized minimum contrast estimator
supposing the degree of ill-posedness of the underlying inverse problem to be
known, which amounts to assuming partial knowledge of the error distribution.
We show that this data-driven estimator can attain the lower risk bound up to a
constant in both sample sizes n and m over a wide range of density classes cover-
ing in particular ordinary and super smooth densities. Finally, by randomizing
the penalty and the collection of models, we modify the estimator such that it
does not require any prior knowledge of the error distribution anymore. Even
when dispensing with any hypotheses on ϕ, this fully data-driven estimator still
preserves minimax optimality in almost the same cases as the partially adaptive
estimator.
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1. Introduction

This work deals with the estimation of the density of a circular random variable from noisy
observations. Such data occur in various fields of natural science, as for example in geology
and biology, to mention but two. Curray (1956) discusses the analysis of directional data
in the context of geological research, where it is often useful to measure and analyze the
orientations of various features. More recently, Cochran et al. (2004) investigated migrating
songbirds’ navigation abilities. They fitted birds with radio transmitters and placed them
in outdoor cages in an artificially turned magnetic field. The observations consisted of
the directions the birds departed in when released. Such directional observations can be
represented as points on a compass rose and hence on the circle. For a more general and
detailed discussion of the particularities of circular data we refer to Mardia (1972) and
Fisher (1993).

Let X be the circular random variable whose density f we are interested in and ε an
independent additive circular error with unknown density ϕ. Denote by Y the contaminated
observation data and by g its density. Throughout this work we will identify the circle with
the unit interval [0, 1), for notational convenience. Thus, X and ε take their values in [0, 1).
Let b·c be the floor function. Taking into account the circular nature of the data, the model
can be written as Y = X + ε − bX + εc or equivalently Y = X + ε mod [0, 1). Then, we
have

g(y) = (f ∗ ϕ)(y) :=

∫
[0,1)

f((y − s)− by − sc)ϕ(s) ds, y ∈ [0, 1),

such that ∗ denotes circular convolution. Therefore, the estimation of f is called a circular
deconvolution problem. Let L2 := L2([0, 1)) be the Hilbert space of square integrable
complex-valued functions defined on [0, 1) endowed with the usual inner product 〈f, g〉 =∫
[0,1) f(x)g(x)dx where g(x) denotes the complex conjugate of g(x). In this work we suppose

that f and ϕ, and hence g, belong to the subset D of all densities in L2. As a consequence,
they admit representations as discrete Fourier series with respect to the exponential basis
{ej}j∈Z of L2, where ej(x) := exp(−i2πjx) for x ∈ [0, 1) and j ∈ Z. Given p ∈ D and j ∈ Z
let [p]j := 〈p, ej〉 be the j-th Fourier coefficient of p. In particular, [p]0 = 1. The key to the
analysis of the circular deconvolution problem is the convolution theorem which states that
g = f ∗ ϕ if and only if [g]j = [f ]j [ϕ]j for all j ∈ Z. Therefore, as long as [ϕ]j 6= 0 for all
j ∈ Z, which is assumed from now on, we have

f = 1 +
∑
|j|>0

[g]j
[ϕ]j

ej with [g]j = Eej(−Y ) and [ϕ]j = Eej(−ε), ∀ j ∈ Z. (1.1)

Note that an analogous representation holds in the case of deconvolution on the real line
when the X-density is compactly supported, but the error term ε, and hence Y , take their
values in R. In this situation, the deconvolution density still admits a discrete represen-
tation as in (1.1), but involving the characteristic functions of ϕ and g rather than their
discrete Fourier coefficients. There is a vast literature on deconvolution on the real line,
with or without compactly supported deconvolution density. In the case the error density
is fully known, a very popular approach based on kernel methods has been considered by
Carroll and Hall (1988), Devroye (1989), Fan (1991, 1992), Stefanski (1990), Zhang (1990),
Goldenshluger (1999, 2000) and Kim and Koo (2002)), to name but a few. Mendelsohn
and Rice (1982) and Koo and Park (1996), for example, have studied spline-based methods,
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while a wavelet decomposition has been used by Pensky and Vidakovic (1999), Fan and
Koo (2002) and Bigot and Van Bellgem (2009), for instance. Situations with only partial
knowledge about the error density have also been considered (c.f. Butucea and Matias
(2005), Meister (2004, 2006), or Schwarz and Van Bellegem (2009)). Consistent deconvolu-
tion without prior knowledge of the error distribution is also possible in the case of panel
data (c.f. Horowitz and Markatou (1996), Hall and Yao (2003) or Neumann (2007)) or by
assuming an additional sample from the error distribution (c.f. Diggle and Hall (1993),
Neumann (1997), Johannes (2009) or Comte and Lacour (2009)). For a broader overview
on deconvolution problems the reader may refer to the recent monograph by Meister (2009).

Let us return to the circular case. In this paper we suppose that we do not know the error
density ϕ, but that we have at our disposal in addition to the iid. sample (Yk)

n
k=1 of size

n ∈ N from g an independent iid. sample (εk)
m
k=1 of size m ∈ N from ϕ. Our purpose is

to establish a fully data-driven estimation procedure for the deconvolution density f which
attains optimal convergence rates in a minimax-sense. More precisely, given classes Frγ and

Edλ (defined below) of deconvolution and error densities, respectively, we shall measure the

accuracy of an estimator f̃ of f by the maximal weighted risk supf∈Frγ supϕ∈Edλ
E‖f̃ − f‖2ω

defined with respect to some weighted norm ‖·‖ω :=
∑

j∈Z ωj |[·]j |2, where ω := (ωj)j∈Z is
a strictly positive sequences of weights. This allows us to quantify the estimation accuracy
in terms of the mean integrated square error (MISE) not only of f itself, but as well of
its derivatives, for example. It is well known that even in case of a known error density
the maximal risk in terms of the MISE in the circular deconvolution problem is essentially
determined by the asymptotic behavior of the sequence of Fourier coefficients ([f ])j∈Z and
([ϕ])j∈Z of the deconvolution density and the error density, respectively. For a fixed decon-
volution density f , a faster decay of the ε-density’s Fourier coefficients ([ϕ])j∈Z results in
a slower optimal rate of convergence. In the standard context of an ordinary smooth de-
convolution density for example, i.e. when ([f ])j∈Z decays polynomially, logarithmic rates
of convergence appear when the error density is super smooth, i.e., ([ϕ])j∈Z has a exponen-
tial decay. This special case is treated in Efromovich (1997), for example. However, this
situation and many others are covered by the density classes

Frγ :=

{
p ∈ D :

∑
j∈Z

γj |[p]j |2 =: ‖p‖2γ 6 r
}

and

Edλ :=

{
p ∈ D : 1/d 6

|[p]j |2

λj
6 d ∀ j ∈ Z

}
,

where r, d > 1 and the positive weight sequences γ := (γj)j∈Z and λ := (λj)j∈Z specify the
asymptotic behavior of the respective sequence of Fourier coefficients. In section 2 we show
a lower bound of the maximal weighted risk which is essentially determined by the sequences
γ, λ and ω. This lower bound is composed of two main terms, each of them depending on
the size of one sample, but not on the other. Let us define an orthogonal series estimator
by replacing the unknown Fourier coefficients in (1.1) by empirical counterparts, that is,

f̂k := 1 +
∑

0<|j|6k

[̂g]j

[̂ϕ]j

1{|[̂ϕ]j |
2 > 1/m}ej with

[̂g]j :=
1

n

n∑
k=1

ej(−Yk) and [̂ϕ]j :=
1

m

m∑
k=1

ej(−εk). (1.2)
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Again, things work out similarly in deconvolution on the real line, where one only has
to replace the empirical Fourier coefficients by the corresponding values of the empirical
characteristic functions. Similar estimators have already been studied by Neumann (1997)
on the real line and by Efromovich (1997) in the circular case, for example. We show below
that the estimator f̂k attains the lower bound and is hence minimax optimal. By comparing
the minimax rates in the cases of known and unknown error density, we can characterize
the influence of the estimation of the error density on the quality of the estimation. In
particular, depending on the Y -sample size n, we can determine the minimal ε-sample size
mn needed to attain the same upper risk bound as in the case of a known error density,
up to a constant. Interestingly, the required sample size mn is far smaller than n in a wide
range of situations. For example, in the super smooth case, it is sufficient that the size of
the ε-sample is a polynomial in n, i.e. mn = nr for any r > 0.
Of course, minimax optimality is only achieved as long as the dimension parameter k is
chosen in an optimal way. In general, this optimal choice of k depends among others on
the sequences γ and λ. However, in the special case where the error density is known to
be super smooth and the deconvolution density is ordinary smooth, the optimal dimension
parameter depends only on λ but not on γ. Hence, the estimator is automatically adaptive
with respect to γ under the optimal choice of k. In this situation Efromovich (1997) provides
an estimator which is also adaptive with respect to the super smooth error density. On
the contrary, Cavalier and Hengartner (2005), deriving oracle inequalities in an indirect
regression problem based on a circular convolution contaminated by Gaussian white noise,
treat the ordinary smooth case only. As in our setting, their observation scheme involves
two independent samples. It is worth to note that in order to apply these estimators, one
has to know in advance at least if the error density is ordinary or super smooth. We provide
in this work a unified estimation procedure which can attain minimax rates in either of the
both cases, that is, which is adaptive over a class including both ordinary and super smooth
error densities. This fully adaptive method to choose the parameter k, only depends on
the observations and not on characteristics of neither f nor ϕ. The central result of the
present paper states that for this automatic choice k̂, the estimator f̂

k̂
attains the lower

bound up to a constant, and is thus minimax-optimal, over a wide range of sequences γ
and λ, covering in particular both ordinary and super smooth error densities.
As far as the two sample sizes are concerned, the assumption made by Cavalier and Hen-
gartner (2005) on the respective noise levels can be translated to our model by stating that
the ε-sample size m is at least as large as the Y -sample size n. This assumption is also
used by Efromovich (1997). However, as mentioned above, without changing the minimax
rates, the ε-sample size can be reduced to mn, which can be far smaller than n. This is a
desirable property, as the observation of the additional sample from ε may be expensive in
practise. Nevertheless, the minimal choice of m depends among others on the sequences γ
and λ and is hence unknown in general. In spite of the minimax rate being eventually dete-
riorated by choosing the sample size m smaller than n, the proposed estimator still attains
this rate in many cases, that is, no price in terms of convergence rate has to be paid for
adaptivity. Surprisingly, even in the cases where the optimal rate is not attained anymore,
the deterioration is only of logarithmic order as far as the error density is either ordinary
or super smooth.
The adaptive choice of k is motivated by the general model selection strategy developed
in Barron et al. (1999). Concretely, following Comte and Taupin (2003), who treat the case
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of a known error density only, k̂ is the minimizer of a penalized contrast

k̂ := argmin
16k6K

{
− ‖f̂k‖2ω + pen(k)

}
.

Note that we can compute ‖f̂k‖2ω = 1+
∑

0<|j|6k ωj |[ĝ]j |2|[ϕ̂]j |−21{|[ϕ̂]j |2 > 1/m}. As in case
of a known error density, it turns out that the penalty function pen(·) as well as the upper
bound K needed for the right choice of k depend on a characteristic of the error density
which is now unknown. This quantity is often referred to as the degree of ill-posedness of the
underlying inverse problem. Therefore, as an intermediate step, assuming this parameter
to be known, we show an upper risk bound for this partially adaptive estimator f̂

k̂
. We

prove that over a wide range of sequences γ and λ, the adaptive choice of k yields the same
upper risk bound as the optimal choice, up to a constant Finally, we drop the requirement
that the degree of ill-posedness is known. In order to choose k adaptively even in this case,
we replace pen(·) and K by estimates only depending on the data. As in the case of known
degree of ill-posedness, we show an upper risk bound for the now fully adaptive estimator.
It is noteworthy that even though the proofs are more intricate in this case, the result
strongly resembles its analogon in the case of known degree of ill-posedness.
Let us return briefly to deconvolution on the real line with compactly supported X-density.
We note that in this situation the adaptive choice of k can be performed in the same way.
Moreover, the upper risk bounds remain valid, and the adaptive estimator is minimax opti-
mal over a wide range of cases. In fact, the circular structure of the model is only exploited
in the proof of the lower bound and in order to guarantee the existence of the discrete
representation in (1.1), which still holds in case of a compactly supported deconvolution
density.
This article is organized as follows. In the next section, we develop the minimax theory
for the circular deconvolution model with respect to the weighted norms introduced above
and we derive the optimal convergence rates in the ordinary and in the super smooth case.
Section 3 is devoted to the construction of the adaptive estimator in the case of known degree
of ill-posedness. An upper risk bound is shown and convergence rates for the ordinary and
super smooth case are compared to the minimax optimal ones. The last section provides
the fully adaptive generalization of this method. All proofs are deferred to the appendix.

2. Minimax optimal estimation

In this section we develop the minimax theory for the estimation of a circular deconvolution
density under unknown error density when two independent samples from Y and ε are
available. A lower bound depending on both sample sizes is derived and it is shown that
the orthogonal series estimator f̂k defined in (1.2) attains this lower bound up to a constant.
All results in this paper are derived under the following minimal regularity conditions.

Assumption 2.1 Let γ := (γj)j∈Z , ω := (ωj)j∈Z and λ := (λj)j∈Z be strictly positive
symmetric sequences of weights with γ0 = ω0 = λ0 = 1 such that (ωn/γn)n∈N and (λn)n∈N
are non-increasing, respectively.

Remark that λj is even a null sequence as |j| tends to infinity as we suppose ϕ to be a
density in L2. The assumption that ω/γ is non-increasing ensures that the weighted risk is
well defined.
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Lower bounds The next assertion provides a lower bound in case of a known error density,
which obviously will depend on the size of the Y -sample only. Of course, this lower bound
is still valid in case of an unknown error density.

Theorem 2.2 Suppose an iid. Y -sample of size n and that the error density ϕ is known.
Consider sequences ω, γ, and λ satisfying Assumption 2.1 such that

∑
j∈Z γ

−1
j = Γ < ∞

and such that ϕ ∈ Edλ for some d > 1. Define for all n > 1

ψn := ψn(γ, λ, ω) := min
k∈N

{
max

(ωk
γk
,
∑

0<|j|6k

ωj
nλj

)}
and

k∗n := k∗n(γ, λ, ω) := argmin
k∈N

{
max

(ωk
γk
,
∑

0<|j|6k

ωj
nλj

)}
. (2.1)

If in addition η := infn>1{ψ−1n min(ωk∗nγ
−1
k∗n
,
∑

0<|l|6k∗n ωl(nλl)
−1)} > 0, then for all n > 2

and for any estimator f̃ of f we have

sup
f∈Frγ

{
E‖f̃ − f‖2ω

}
>
ηmin(r − 1, 1/(8dΓ))

8
ψn.

The proof of the last assertion is based on Assuoad’s cube technique (c.f. Korostolev and
Tsybakov (1993)), where we construct 22k

∗
n candidates of deconvolution densities which

have the largest possible ‖·‖ω-distance but are still statistically non distinguishable. It is
worth to note that the additional assumption

∑
j∈Z γ

−1
j = Γ < ∞ is only used to ensure

that these candidates are densities. Observe further that in case r = 1, the lower bound
is equal to zero, because in this situation the set Frγ reduces to a singleton containing the
uniform density. In the next theorem we state a lower bound characterizing the additional
complexity due to the unknown error density, which surprisingly depends only on the error
sample size.

Theorem 2.3 Suppose independent iid. samples from Y and ε of size n and m, respectively.
Consider sequences ω, γ, and λ satisfying Assumption 2.1. For all m > 2, let

κm := κm(γ, λ, ω) := max
j∈N

{
ωjγ

−1
j min

(
1,

1

mλj
)
)}
. (2.2)

If in addition there exists a density in E
√
d

λ which is bounded from below by 1/2, then, for

all m > 2 and for any estimator f̃ of f we have

sup
f∈Frγ

sup
ϕ∈Edλ

{
E‖f̃ − f‖2ω

}
>

min(r − 1, 1) min(1/(4d), (1− d−1/4)2)
4
√
d

κm.

The proof of the last assertion takes its inspiration from a proof given in Neumann (1997).
In contrast to the proof of Theorem 2.2 we only have to compare two candidates of error
densities which are still statistically non distinguishable. However, to ensure that these
candidates are densities, we impose the additional condition. It is easily seen that this

condition is satisfied if Λ :=
∑

j∈Z λ
−1/2
j < ∞ and

√
d > max(4Λ2, 1). It is worth to note

that in case d = 1, the set Edλ of possible error densities reduces to a singleton, and hence
the lower bound is equal to zero. Finally, by combination of both lower bounds we obtain
the next corollary.
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Corollary 2.4 Under the assumptions of Theorem 2.2 and 2.3 we have for any estimator f̃
of f and for all n,m > 2 that

sup
f∈Frγ

sup
ϕ∈Edλ

{
E‖f̃ − f‖2ω

}
>
ηmin(r − 1, (8dΓ)−1) min(d−1/2, 4(1− d1/4)2)

16d
{ψn + κm}.

Upper bound The next theorem summarizes sufficient conditions to ensure the optimality
of the orthogonal series estimator f̂k defined in (1.2) provided the dimension parameter k
is chosen appropriately. To be more precise, we use the value k∗n defined in (2.1) which
obviously depends on the sequences ω, γ and λ but surprisingly not on the ε-sample size m.
However, under this choice the estimator attains the lower bound given in Corollary 2.4 up
to a constant and hence it is minimax-optimal.

Theorem 2.5 Suppose independent iid. sample from Y and ε of size n and m, respectively.
Consider sequences ω, γ and λ satisfying Assumption 2.1. Let f̂k∗n be the estimator given
in (1.2) with k∗n defined in (2.1). Then, there exists a numerical constant C > 0 such that
for all n,m > 1 we have

sup
f∈Frγ

sup
ϕ∈Edλ

{
E‖f̂k∗n − f‖

2
ω

}
6 C {(d+ r)ψn + d r κm}.

Note that under slightly stronger conditions on the sequences ω, γ and λ than Assump-
tion 2.1 it can be shown that in case of equally large samples from Y and ε we have always
the rate as in case of known error density. However, below we show that in special cases
the required ε-sample size can be much smaller than the Y -sample size.

2.1. Illustration: estimation of derivatives.

To illustrate the previous results we assume in the following that the deconvolution density f
is an element of the Sobolev space of periodic functions Wp, p ∈ N, given by

Wp =
{
f ∈ Hs : f (j)(0) = f (j)(1), j = 0, 1, . . . , p− 1

}
,

where Hp := {f ∈ L2[0, 1] : f (p−1) absolutely continuous, f (p) ∈ L2[0, 1]} is a Sobolev space
(c.f. Neubauer (1988a,b)). However, if we consider the sequence of weights

γ0 = 1 and γj = |j|2p, |j| > 0,

then, the Sobolev space Wp of periodic functions coincides with Fw. Therefore, let us
denote by Wr

p := Frw, r > 0, an ellipsoid in the Sobolev space Wp. In this illustration, we
shall consider the estimation of derivatives of the deconvolution density f . Therefore, it is
interesting to recall that, up to a constant, for any function h ∈ Wr

p the weighted norm
‖h‖ω with

ω0 = 1 and ωj = |j|2s, |j| > 0,

equals the L2-norm of the s-th weak derivative h(s) for each integer 0 6 s 6 p. By virtue
of this relation, the results in the previous section imply also a lower as well as an upper
bound of the L2-risk for the estimation of the s-th weak derivative of f . Finally, we restrict
our attention to error densities being either
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[os] ordinary smooth, that is, the sequence λ is polynomially decreasing, i.e., λ0 = 1 and
λj = |j|−2a, |j| > 0, for some a > 1/2, or

[ss] super smooth, that is, the sequence λ is exponentially decreasing, i.e., λ0 = 1 and
λj = exp(−|j|2a), |j| > 0, for some a > 0.

It is easily seen that the minimal regularity conditions given in Assumption 2.1 are satisfied.
Moreover, the additional conditions used in Theorems 2.2 and 2.3, i.e., Γ =

∑
j∈Z γ

−1
j <∞

and that there there exists ϕ ∈ E
√
d

λ with ϕ > 1/2, are satisfied in the super smooth case [ss]
if p > 1/2 and in the ordinary smooth case [os] if in addition a > 1. Roughly speaking, this
means that both the deconvolution density and the error density are at least continuous.
The lower bound presented in the next assertion follows now directly from Corollary 2.4.
Here and subsequently, we write an . bn when there exists C > 0 such that an 6 C bn for
all sufficiently large n ∈ N and an ∼ bn when an . bn and bn . an simultaneously.

Proposition 2.6 Suppose independent iid. sample from Y and ε of size n and m, respec-
tively. Then we have for any estimator f̃ (s) of f (s)

[os] in the ordinary smooth case, for all p > 1/2 and a > 1 that

sup
f∈Wr

γ

sup
ϕ∈Edλ

{
E‖f̃ (s) − f (s)‖2

}
& n−2(p−s)/(2p+2a+1) +m−((p−s)∧a)/a,

[ss] in the super smooth case, for all p > 1/2 that

sup
f∈Wr

γ

sup
ϕ∈Edλ

{
E‖f̃ (s) − f (s)‖2

}
& (log n)−(p−s)/a + (logm)−(p−s)/a.

As an estimator of f (s), we shall consider, the s-th weak derivative of the estimator f̂k defined
in (1.2). Given the exponential basis {ej}j∈Z, we recall that for each integer 0 6 s 6 p the

s-th derivative in a weak sense of the estimator f̂k is

f̂
(s)
k =

∑
j∈Z

(2iπj)s[f̂k]jej . (2.3)

Applying Theorem 2.5, the rates of the lower bound given in the last assertion provide, up

to a constant, also an upper bound of the L2-risk of the estimator f̂
(s)
k , which is summarized

in the next proposition. We have thus proved that these rates are optimal and the proposed

estimator f̂
(s)
k is minimax optimal in both cases. Furthermore, it is of interest to characterize

the minimal size m of the additional sample from ε needed to attain the same rate as in case
of a known error density. Hence, we let the ε-sample size depend on the Y -sample size n, too.

Proposition 2.7 Suppose independent iid. sample from Y and ε of size n and m, respec-

tively. Consider the estimator f̂
(s)
k given in (2.3).

[os] In the ordinary smooth case, with dimension parameter k ∼ n1/(2p+2a+1) we have

sup
f∈Wr

γ

sup
ϕ∈Edλ

{
E‖f̂ (s)k − f

(s)‖2
}
. n−2(p−s)/(2p+2a+1) +m−((p−s)∧a)/a

8



and for any sequence (mn)n>1 follows as n→∞

sup
f∈Wr

γ

sup
ϕ∈Edλ

{
E‖f̂ (s)k − f

(s)‖2
}

=

O(n−2(p−s)/(2p+2a+1)) if n2((p−s)∨a)/(2p+2a+1) = O(mn)

O(m
−((p−s)∧a)/a
n ) otherwise.

[ss] In the super smooth case, with dimension parameter k ∼ (log n)1/(2a) we have

sup
f∈Wr

γ

sup
ϕ∈Edλ

{
E‖f̂ (s)k − f

(s)‖2
}
. (log n)−(p−s)/a + (logm)−(p−s)/a

and for any sequence (mn)n>1 follows as n→∞

sup
f∈Wr

γ

sup
ϕ∈Edλ

{
E‖f̂ (s)k − f

(s)‖2
}

=

{
O((log n)−(p−s)/a) if log n = O(logmn)

O((logmn)−(p−s)/a) otherwise.

Note that in the ordinary smooth case we obtain the rate of known error density whenever
n2((p−s)∨a)/(2p+2a+1) = O(mn) which is much less than n = m. This is even more visible in
the super smooth case, here the rate of known error density is attained even if mn = nr for
arbitrary small r > 0. Moreover, we shall emphasize the influence of the parameter a which
characterizes the rate of the decay of the Fourier coefficients of the error density ϕ. Since a
smaller value of a leads to faster rates of convergence, this parameter is often called degree
of ill-posedness (c.f. Natterer (1984)).

3. A model selection approach: known degree of ill-posedness

Our objective is to construct an adaptive estimator of the deconvolution density f . Adap-
tation means that in spite of the unknown error density, the estimator should attain the
optimal rate of convergence over the ellipsoid Frγ for a wide range of different weight se-
quences γ. However, in this section partial information about the error density ϕ is supposed
to be available. To be precise, we assume that the sequence λ and the value d such that
ϕ ∈ Edλ are given in advance. Roughly speaking, this means that the degree of ill-posedness
of the underlying inverse problem is known. In what follows, the orthogonal series estima-
tor f̂k defined in (1.2) is considered and a procedure to choose the dimension parameter k
based on a model selection approach via penalization is constructed. This procedure will
only involve the data and λ, d, and ω. First, we introduce sequences of weights which are
used below.

Definition 3.1

(i) For all k > 1, define ∆k := max06|j|6k ωj/λj, τk := max06|j|6k(ωj)∨1/λj with (q)∨1 :=
max(q, 1) and

δk := 2k∆k
log(τk ∨ (k + 2))

log(k + 2)
.

Let further Σ be a non-decreasing function such that for all C > 0∑
k>1

C τk exp
(
− k log(τk ∨ (k + 2))

3C log(k + 2)

)
6 Σ(C) <∞. (3.1)

9



(ii) Define two sequences N and M as follows,

Nn := Nn(λ) := max {1 6 N 6 n | δN/n 6 δ1},
Mm := Mm(λ, d)

:= max

{
1 6M 6 m

∣∣∣ m7 exp
(
− mλM

72d

)
6

(
504 d

λ1

)7
}
.

It is easy to see that there exists always a function Σ satisfying condition (3.1). Consider the
orthogonal series estimator f̂k defined in (1.2). The adaptive estimator f̂

k̂
is now obtained

by choosing the dimension parameter k̂ such that

k̂ := argmin
16k6(Nn∧Mm)

{
−‖f̂k‖2ω + 60 d

δk
n

}
. (3.2)

Next, we derive an upper bound for the risk of this adaptive estimator. To this end, we
need the following assumption.

Assumption 3.2 The sequence M satisfies d−1 min16|j|6Mm
λj > 2/m for all m > 1.

By construction, this condition is always satisfied for sufficiently large m.

Theorem 3.3 Assume that we have independent iid. Y - and ε-samples of size n and m,
respectively. Consider sequences ω, γ, and λ satisfying Assumption 2.1. Let δ, ∆, N , and
M as in Definition 3.1 and suppose that Assumption 3.2 holds. Consider the estimator f̂

k̂

defined in (1.2) with k̂ given by (3.2). Then, there exists a numerical constant C > 0 such
that for all n,m > 1

sup
f∈Frγ

sup
ϕ∈Edλ

{
E‖f̂

k̂
− f‖2ω

}
6 C

{
(d+ r) min

16k6(Nn∧Mm)
{max(ωk/γk, δk/n)}+ d r κm

+ d

[
δ1 (d/λ1)

7/2

m
+
δ1 + Σ(rdΛ)

n

]}
,

where Λ :=
∑

j∈Z λj and κm is defined in Theorem 2.3.

Comparing the last assertion with the lower bound given in Corollary 2.4, we immediately
obtain the following corollary.

Corollary 3.4 Suppose in addition to the assumptions of Theorem 3.3 that the optimal
dimension parameter k∗n given in Theorem 2.2 is smaller than Nn ∧Mm. If further ξ :=
supk>1{δk/(

∑
0<|j|6k ωj/λj)} <∞, then there is a numerical constant C > 0 such that

sup
f∈Frγ

sup
ϕ∈Edλ

{
E‖f̂

k̂
− f‖2ω

}
6 C

{
ξ(d+r)ψn+dr κm+d

[
δ1 (d/λ1)

7/2

m
+
δ1 + Σ(rdΛ)

n

]}
,

where Λ :=
∑

j∈Z λj and κm is defined in Theorem 2.3.

Under the additional conditions the last assertion establishes the minimax-optimality of
the partially adaptive estimator, since its upper risk-bound differs from the optimal one
given in Corollary 2.4 only by a constant and negligible terms. However, these additional
conditions are not necessary as shown below.
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3.1. Illustration: estimation of derivatives (continued)

In section 2.1, we described two different cases where we could choose the model k such that
the resulting estimator reached the minimax optimal rate of convergence. The following
result shows that in case of unknown error density ϕ ∈ Edλ with a-priori known λ and d, the
adaptive estimator automatically attains the optimal rate over a wide range of values for
the smoothness parameters.

Proposition 3.5 Assume that we have independent iid. Y - and ε-samples of size n and mn,

respectively. Consider the estimator f̂
(s)

k̂
given in (2.3) with k̂ defined by (3.2).

[os] In the ordinary smooth case, we have

∆k = k2a+2s, δk ∼ k2a+2s+1, Nn ∼ n1/(2a+2s+1), Mmn ∼
( mn

logmn

)1/(2a)
.

In case p− s > a we obtain

sup
f∈Wr

γ

sup
ϕ∈Edλ

{
E‖f̂ (s)

k̂
− f (s)‖2

}
=

O(n−2(p−s)/(2p+2a+1)) if n2(p−s)/(2p+2a+1) = O(mn)

O(m−1n ) otherwise,

and in case p− s 6 a, if n2a/(2p+2a+1) = O(mn)

sup
f∈Wr

γ

sup
ϕ∈Edλ

{
E‖f̂ (s)

k̂
− f (s)‖2

}
=

{
O(n−2(p−s)/(2p+2a+1)) if n2a/(2p+2a+1) = O(mn/ logmn)

O(m
−(p−s)/a
n (logmn)(p−s)/a) otherwise,

while if mn = o(n2a/(2p+2a+1))

sup
f∈Wr

γ

sup
ϕ∈Edλ

{
E‖f̂ (s)

k̂
− f (s)‖2

}
= O(m−(p−s)/an (logmn)(p−s)/a).

[ss] In the super smooth case, we have

∆k = k2s exp(k2a), δk ∼ k2a+2s+1 exp(k2a)(log k)−1,

Nn ∼
(

log
n log logn

(log n)(2a+2s+1)/(2a)

)1/(2a)

, Mmn ∼
(

log
mn

logmn

)1/(2a)

and

sup
f∈Wr

γ

sup
ϕ∈Edλ

{
E‖f̂ (s)

k̂
− f (s)‖2

}
=

{
O((log n)−(p−s)/a) if log n = O(logmn)

O((logmn)−(p−s)/a) otherwise.

Compare this result with Proposition 2.7. In case [ss], the adaptive estimator mim-
ics exactly the behavior of the minimax optimal non-adaptive estimator, even though
δk/(

∑
0<|j|6k ωj/λj) ∼ k2a+1/ log k is not bounded and hence the assumptions of Corol-

lary 3.4 are violated. In case [os], if additionally p − s > a, the adaptive estimator still
behaves like its minimax optimal non-adaptive counterpart. However, if p − s 6 a, the
sequence (mn)n>1 must grow a little faster than in the non-adaptive case. Otherwise, the
convergence is slowed down by a logarithmic factor.
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4. Unknown degree of ill-posedness

In this section, we dispense with any knowledge about the error density ϕ, that is, λ and d
are not known anymore. We construct an adaptive estimator in this situation as well.
Recall that in the previous section, the dimension parameter k was chosen using a criterion
function that involved the sequences N , M , and δ which depend on λ and d. We circumvent
this problem by defining empirical versions of these three sequences at the beginning of this
section. The adaptive estimator is then defined analogously to the one from Section 3, but
uses the estimated rather than the original sequences.

Definition 4.1 Let δ̂ := (δ̂k)k>1, N̂ := (N̂n)n>1, and M̂ := (M̂m)m>1 be as follows.

(i) Given ∆̂k := max
06|j|6k

ωj

|[̂ϕ]j |2
1{|[ϕ̂]j |2 > 1/m} and τ̂k := max

06|j|6k
(ωj)∨1

|[̂ϕ]j |2
1{|[ϕ̂]j |2 > 1/m}

let

δ̂k := k∆̂k
log(τ̂k ∨ (k + 2))

log(k + 2)
.

(ii) Given Nu
n := argmax0<N6n

{
max0<j6N ωj/n 6 1

}
let

N̂n := argmin
0<|j|6Nu

n

{ |[̂ϕ]j |2

|j|(ωj)∨1
<

log n

n

}
, and M̂m := argmin

0<|j|6m

{
|[̂ϕ]j |

2 <
(logm)2

m

}
.

It worth to stress that all these sequences do not involve any a-priori knowledge about
neither the deconvolution density f nor the error density ϕ. Now, we choose k̂ as

k̂ := argmin
0<k6(N̂n∧M̂m)

{
− ‖f̂k‖2ω + 600

δ̂k
n

}
. (4.1)

Note that k̂ in contrast to the previous section, this choice does not depend on the se-
quences δ, N , or M , but only on δ̂, N̂ , and M̂ , which can be computed from the observed
data samples. This choice of the regularization parameter is hence fully data-driven. The
constant 600 arising in the definition of k̂, though convenient for deriving the theory, may
be far too large in practice and instead be determined by means of a simulation study as
in Comte et al. (2006), for example.

In order to show an upper risk bound, we need the following assumption.

Assumption 4.2

(i) The sequences N and M from Definition 3.1 (ii) satisfy the additional conditions

max
j>Nn

λj
j(ωj)∨1

6
log n

4dn
and max

j>Mm

λj 6
(logm)2

4dm
.

(ii) For all n ∈ N, Nu
n given in Definition 4.1 (ii) fulfills Nn 6 Nu

n 6 n.

By construction, these conditions are always satisfied for sufficiently large n and m. We are
now able to state the main result of this paper providing an upper risk bound for the fully
adaptive estimator.
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Theorem 4.3 Assume that we have independent iid. Y - and ε-samples of size n and m,
respectively. Consider sequences ω, γ, and λ satisfying Assumption 2.1. Let the sequences δ,
N , and M be as in Definition 3.1 and suppose that Assumptions 3.2 and 4.2 hold. Define

further N l
n := argmax

16j6Nn

{ λj
j(ωj)∨1

> 4d logn
n

}
and M l

m := argmax
16j6Mm

{
λj >

4d (logm)2

m

}
. Consider

the estimator f̂
k̂

defined in (1.2) with k̂ given by (4.1). Then there exists a numerical
constant C such that for all n,m > 1

sup
f∈Frγ

sup
ϕ∈Edλ

{
E‖f̂

k̂
− f‖2ω

}
6 C

{
(r + dζd) min

16k6(N l
n∧M l

m)
{max(ωk/γk, δk/n)}+ d r κm

+ d ζd

[(δ1 + r)(d/λ1)
7

m
+
δ1 + Σ(rdΛζd)

n

]}
,

where Λ :=
∑

j∈Z λj, ζd := log 3d/ log 3, and κm is defined in Theorem 2.3.

Comparing the last assertion with Theorem 3.3, we assert that surprisingly, the estimation
of the sequences δ, N , and M essentially changes the upper bound only by replacing N and
M by N l and M l, respectively. Therefore, in analogy to the results in section 3, we have
the following corollary.

Corollary 4.4 Suppose that in addition to the assumptions of Theorem 4.3 we have that the
optimal dimension parameter k∗n given in Theorem 2.2 is smaller than N l

n ∧M l
m. If further

ξ := supk>1{δk/(
∑

0<|j|6k ωj/λj)} <∞, then there is a numerical constant C > 0 such that

sup
f∈Frγ

sup
ϕ∈Edλ

{
E‖f̂

k̂
− f‖2ω

}
6 C

{
ξ(dζd+r)ψn+dr κm+d ζd

[(δ1 + r)(d/λ1)
7

m
+
δ1 + Σ(rdΛζd)

n

]}
,

where Λ :=
∑

j∈Z λj, ζd := log 3d/ log 3, and κm is defined in Theorem 2.3.

Under the additional conditions the last assertion establishes the minimax-optimality of the
fully adaptive estimator, since its upper risk-bound differs from the optimal one given in
Corollary 2.4 only by a constant and negligible terms. However, these additional conditions
are not necessary as shown below.

4.1. Illustration: estimation of derivatives (continued)

The following result shows that even without any prior knowledge on the error density ϕ,
the fully adaptive penalized estimator automatically attains the optimal rate in the super
smooth case and in the ordinary smooth case as far as p−s > a. Recall that the computation
of the dimension parameter k̂ given in (4.1) involves the sequence (Nu

n )n>1, which in our
illustration satisfies Nu

n ∼ n1/(2s) since ωj = |j|2s, j > 1.

Proposition 4.5 Assume that we have independent iid. Y - and ε-samples of size n and m,

respectively. Consider the estimator f̂
(s)

k̂
given in (2.3) with k̂ defined by (4.1).

[os] In the ordinary smooth case with p− s > a we obtain

sup
f∈Wr

γ

sup
ϕ∈Edλ

{
E‖f̂ (s)

k̂
− f (s)‖2

}
=

O(n−2(p−s)/(2p+2a+1)) if n2(p−s)/(2p+2a+1) = O(mn)

O(m−1n ) otherwise,
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and with p− s 6 a, if n2a/(2p+2a+1) = O(mn)

sup
f∈Wr

γ

sup
ϕ∈Edλ

{
E‖f̂ (s)

k̂
− f (s)‖2

}
=

{
O(n−2(p−s)/(2p+2a+1)) if n2a/(2p+2a+1) = O(mn/(logmn)2)

O(m
−(p−s)/a
n (logmn)2(p−s)/a) otherwise,

while if mn = o(n2a/(2p+2a+1))

sup
f∈Wr

γ

sup
ϕ∈Edλ

{
E‖f̂ (s)

k̂
− f (s)‖2

}
= O(m−(p−s)/an (logmn)2(p−s)/a).

[ss] In the super smooth case, we have

sup
f∈Wr

γ

sup
ϕ∈Edλ

{
E‖f̂ (s)

k̂
− f (s)‖2

}
=

{
O((log n)−(p−s)/a) if log n = O(logmn)

O((logmn)−(p−s)/a) otherwise.

Notice that the last result differs from Proposition 3.5 solely in case [os] with p−s 6 a, where
(logmn) is replaced by (logmn)2. Hence, in all other cases the fully adaptive estimator
attains the minimax optimal rate. In particular, it is not necessary to know in advance
if the error density is ordinary or super smooth. Moreover, as long as mn ∼ n, the fully
adaptive estimator always attains the same optimal rate as in case of known error density.
However, over a wide range of values for the smoothness parameters, the minimax optimal
rate is still obtained even when mn grows slower than n.

A. Proofs

A.1. Proofs of section 2

Lower bounds
Proof of Theorem 2.2. Given ζ := ηmin(r−1, 1/(8dΓ)) and αn := ψn(

∑
0<|j|6k∗n ωj/(λjn))−1

we consider the function f := 1 + (ζαn/n)1/2
∑

0<|j|6k∗n λ
−1/2
j ej . We will show that for any

θ := (θj) ∈ {−1, 1}2k∗n , the function fθ := 1 +
∑

0<|j|6k∗n θj [f ]jej belongs to Frγ and is hence
a possible candidate of the deconvolution density. For each θ, the Y -density corresponding
to the X-density fθ is given by gθ := fθ ∗ ϕ. We denote by gnθ the joint density of an i.i.d.
n-sample from gθ and by Eθ the expectation with respect to the joint density gnθ . Further-

more, for 0 < |j| 6 k∗n and each θ we introduce θ(j) by θ
(j)
l = θl for j 6= l and θ

(j)
j = −θj .

The key argument of this proof is the following reduction scheme. If f̃ denotes an estimator
of f then we conclude

sup
f∈Frγ

E‖f̃ − f‖2ω > sup
θ∈{−1,1}2k∗n

Eθ‖f̃ − fθ‖2ω >
1

22k∗n

∑
θ∈{−1,1}2k∗n

Eθ‖f̃ − fθ‖2ω

>
1

22k∗n

∑
θ∈{−1,1}2k∗n

∑
0<|j|6k∗n

ωjEθ|[f̃ − fθ]j |2

=
1

22k∗n

∑
θ∈{−1,1}2k∗n

∑
0<|j|6k∗n

ωj
2

{
Eθ|[f̃ − fθ]j |2 +Eθ(j) |[f̃ − fθ(j) ]j |

2
}
.

14



Below we show furthermore that for all n > 2 we have{
Eθ|[f̃ − fθ]j |2 +Eθ(j) |[f̃ − fθ(j) ]j |

2
}
>

ζαn
4λjn

. (A.1)

Combining the last lower bound and the reduction scheme gives

sup
f∈Frγ

E‖f̃ − f‖2ω >
1

22k∗n

∑
θ∈{−1,1}2k∗n

∑
0<|j|6k∗n

ωj
2

ζ

4λjn
=
ζ

8
αn

∑
0<|j|6k∗n

ωj
λjn

.

Hence, employing the definition of ζ and αn we obtain the lower bound given in the theorem.
To conclude the proof, it remains to check (A.1) and fθ ∈ Frγ for all θ ∈ {−1, 1}2k∗n . The
latter is easily verified if f ∈ Frγ . In order to show that f ∈ Frγ , we first notice that f
integrates to one. Moreover, f is non-negative because |

∑
0<|j|6k∗n [f ]jej | 6 1, and ‖f‖2γ 6 r,

which can be realized as follows. By employing the condition
∑

j∈Z γ
−1
j = Γ <∞ we have

|
∑

0<|j|6k∗n

[f ]jej | 6
∑

0<|j|6k∗n

|[f ]j | =
(ζαn
n

)1/2 ∑
0<|j|6k∗n

λ
−1/2
j

6
(
ζαn

)1/2( ∑
0<|j|6k∗n

γ−1j

)1/2( ∑
0<|j|6k∗n

γj
nλj

)1/2
6
(
ζαnΓ

)1/2( ∑
0<|j|6k∗n

γj
nλj

)1/2
.

Since ω/γ is non-increasing the definition of ζ, αn and η implies

|
∑

0<|j|6k∗n

[f ]jej | 6
(
ζΓ
)1/2( γk∗n

ωk∗n
αn

∑
0<|j|6k∗n

ωj
λjn

)1/2
6
(ζΓ

η

)1/2
6 1 (A.2)

as well as ‖f‖2γ 6 1 + ζ
γk∗n
ωk∗n

αn

(∑
0<|j|6k∗n

ωj
nλj

)
6 1 + ζ/η 6 r.

It remains to show (A.1). Consider the Hellinger affinity ρ(gnθ , g
n
θ(j)

) =
∫ √

gnθ
√
gn
θ(j)

, then

we obtain for any estimator f̃ of f that

ρ(gnθ , g
n
θ(j)

) 6
∫ |[f̃ − fθ(j) ]j |
|[fθ − fθ(j) ]j |

√
gn
θ(j)

√
gnθ +

∫ |[f̃ − fθ]j |
|[fθ − fθ(j) ]j |

√
gnθ

√
gn
θ(j)

6
(∫ |[f̃ − fθ(j) ]j |2
|[fθ − fθ(j) ]j |2

gn
θ(j)

)1/2
+
(∫ |[f̃ − fθ]j |2

|[fθ − fθ(j) ]j |2
gnθ

)1/2
.

Rewriting the last estimate we obtain{
Eθ|[f̃ − fθ]j |2 +Eθ(j) |[f̃ − fθ(j) ]j |

2
}
>

1

2
|[fθ − fθ(j) ]j |

2ρ(gnθ , g
n
θ(j)

). (A.3)

Next we bound from below the Hellinger affinity ρ(gnθ , g
n
θ(j)

). Therefore, we consider first
the Hellinger distance

H2(gθ, gθ(j)) :=

∫ (√
gθ −

√
gθ(j)

)2
=

∫ ∣∣∣gθ − gθ(j)∣∣∣2(√
g
θ

+
√
g
θ(j)

)2 6 4‖gθ − gθ(j)‖
2 = 16|[f ]j |2|[ϕ]j |2 6

16ζd

η n
,
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where we have used that αn 6 1/η, ϕ ∈ Edλ and gθ > 1/2 because |
∑

0<|j|6k∗n [gθ]jej | 6 1/2,

which can be realized as follows. By using the condition
∑

j∈Z γ
−1
j = Γ < ∞ and ϕ ∈ Edλ

we obtain in analogy to the proof of (A.2) that

|
∑

0<|j|6k∗n

[gθ]jej | 6
∑

0<|j|6k∗n

|[f ]j ||[ϕ]j | 6
(ζαnd

n

)1/2 ∑
0<|j|6k∗n

λ
−1/2
j 6

(ζdΓ

η

)1/2
6 1/2.

Therefore, the definition of ζ implies H2(gθ, gθ(j)) 6 2/n. By using the independence,
i.e., ρ(gnθ , g

n
θ(j)

) = ρ(gθ, gθ(j))
n, together with the identity ρ(gθ, gθ(j)) = 1− 1

2H
2(gθ, gθ(j)) it

follows ρ(gnθ , g
n
θ(j)

) > (1 − n−1)n > 1/4 for all n > 2. By combination of the last estimate
with (A.3) we obtain (A.1) which completes the proof. �

Proof of Theorem 2.3. We construct for each θ ∈ {−1, 1} an error density ϕθ ∈ Edλ and
a deconvolution density fθ ∈ Frγ , such that gθ := fθ ∗ ϕθ satisfies g1 = g−1. To be more

precise, define k∗m := argmax|j|>0{ωjγ−1j min(1,m−1λ−1j )} and αm := ζ min(1,m−1/2λ
−1/2
k∗m

)

with ζ := min(1/(2
√
d), (1 − d−1/4)). Observe that 1 > (1 − αm)2 > (1 − (1 − 1/d1/4))2 >

1/d1/2 and 1 6 (1 + αm)2 6 (1 + (1 − 1/d1/4))2 = (2 − 1/d1/4)2 6 d1/2, which implies
1/d1/2 6 (1+θαm)2 6 d1/2. These inequalities will be used below without further reference.

By assumption there is a density ϕ ∈ E
√
d

λ such that ϕ > 1/2. We show below that

for each θ the function fθ := 1 + (1 − θαm)min(
√
r−1,1)

d1/4
γ
−1/2
k∗m

ek∗m belongs to Frγ and the

function ϕθ := ϕ + θαm[ϕ]k∗mek∗m is an element of E
√
d

λ . Moreover, it is easily verified that

gθ = 1 + (1− α2
m)min(

√
r−1,1)

d1/4
γ
−1/2
k∗m

[ϕ]k∗mek∗m and hence g1 = g−1. We denote by gnθ the joint
density of an i.i.d. n-sample from gθ and ϕmθ the joint density of an i.i.d. m-sample from ϕθ.
Since the samples are independent from each other, pθ := gnθϕ

m
θ is the joint density of all

observations and we denote by Eθ the expectation with respect to pθ. Applying a reduction
scheme we deduce that for each estimator f̃ of f

sup
f∈Frγ

sup
ϕ∈Edλ

E‖f̃ − f‖2ω > max
θ∈{−1,1}

Eθ‖f̃ − fθ‖2ω >
1

2

{
E1‖f̃ − f1‖2ω +E−1‖f̃ − f−1‖2ω

}
.

Below we show furthermore that for all m > 2 we have

E1‖f̃ − f1‖2ω +E−1‖f̃ − f−1‖2ω >
1

8
‖f1 − f−1‖2ω. (A.4)

Moreover, we have ‖f1 − f−1‖2 = 4α2
mωk∗mγ

−1
k∗m

(r−1)∧1
d1/2

= 4 (r−1)∧1
d1/2

ζ2ωk∗mγ
−1
k∗m

min
(

1, 1
mλk∗m

)
.

Combining the last lower bound, the reduction scheme and the definition of k∗m implies the
result of the theorem.
To conclude the proof, it remains to check (A.4), fθ ∈ Frγ and ϕθ ∈ Edλ for both θ. In order
to show fθ ∈ Frγ , we first observe that fθ integrates to one. Moreover, fθ is non-negative

because |(1− θαm)1∧
√
r−1

d1/4
γ
−1/2
k∗m
| 6 γ

−1/2
k∗m

6 1 and ‖fθ‖2γ = 1 + γk∗m |[fθ]k∗m |
2 6 1 + γk∗n |(1−

θαm)1∧
√
r−1

d1/4
γ
−1/2
k∗m
|2 6 r. Consider ϕθ which obviously integrates to one. Furthermore,

as ϕ > 1/2 the function ϕθ = ϕ + θαm[ϕ]k∗mek∗m is non-negative since |θαm[ϕ]k∗mek∗m | 6
αmλ

1/2
k∗m
d1/2 6 ζm−1/2

√
d 6 1/2 by using the definition of αm and ζ. To check that ϕθ ∈ Edλ,

it remains to show that 1/d 6 [ϕθ]
2
j/λj 6 d for all |j| > 0. Since ϕ ∈ E

√
d

λ , it follows from
the definition of ϕθ that these inequalities are satisfied for all j 6= k∗m and moreover that
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1/d 6
|[ϕ]k∗m |

2

√
dλk∗m

6
(1+θαm)2|[ϕ]k∗m |

2

λk∗m
6
√
d|[ϕ]k∗m |

2

λk∗m
6 d. Finally consider (A.4). As in the proof of

Theorem 2.2 by employing the Hellinger affinity ρ(p1, p−1) we obtain for any estimator f̃
of f that{

E1‖f̃ − f1‖2ω +E−1‖f̃ − f1‖2ω
}
>

1

2
‖f1 − f−1‖2ωρ(p1, p−1).

Next we bound from below the Hellinger affinity ρ(p1, p−1) > 1/4 for all m > 2 which
proves (A.4). From the independence and the fact that g1 = g−1, it is easily seen that

Hellinger affinity satisfies ρ(p1, p−1) = ρ(g1, g−1)
nρ(ϕ1, ϕ−1)

m = ρ(ϕ1, ϕ−1)
m =

(
1 −

1
2H

2(ϕ1, ϕ−1)
)m

. Hence, we conclude ρ(p1, p−1) > (1 − 1/m)m > 1/4, for all m > 2,

since

H2(ϕ1, ϕ−1) 6
∫ ∣∣∣ϕ1 − ϕ−1

∣∣∣2
ϕ1 + ϕ−1

=

∫ ∣∣∣ϕ1 − ϕ−1
∣∣∣2

ϕ
6 2

∫
|ϕ1 − ϕ−1|2

6 2

∫
4α2

m|[ϕ]k∗m |
2e2k∗m 6 8dα2

mλk∗m = 8dζ2m−1 6 2m−1

where we used that ϕ > 1/2 and the definition of αm and ζ. This completes the proof. �

Upper bound
Proof of Theorem 2.5. We begin our proof with the observation that Var([ĝ]j) 6 1/n and
Var([ϕ̂]j) 6 1/m for all j ∈ Z. Moreover, by applying Theorem 2.10 in Petrov (1995) there
exists a constant C > 0 such that E|[ϕ̂]j− [ϕ]j |4 6 C/m2 for all j ∈ Z and m ∈ N. These re-

sults are used below without further reference. Define now f̃ := 1+
∑

0<|j|6k∗n [f ]j1{|[ϕ̂]j |2 >
1/m}ej and decompose the risk into two terms,

E‖f̂ − f‖2ω 6 2E‖f̂ − f̃‖2ω + 2E‖f̃ − f‖2ω =: A+B, (A.5)

which we bound separately. Consider first A which we decompose further,

E‖f̂ − f̃‖2ω 6 2
∑

0<|j|6k∗n

ωjE

[
|[ĝ]j − [g]j |2

|[ϕ̂]j |2
1{|[ϕ̂]j |2 > 1/m}

]

+ 2
∑

0<|j|6k∗n

ωj |[f ]j |2E
[
|[ϕ̂]j − [ϕ]j |2

|[ϕ̂]j |2
1{|[ϕ̂]j |2 > 1/m}

]
=: A1 +A2.

By using the elementary inequality 1/2 6 |[ϕ̂]j/[ϕ]j − 1|2 + |[ϕ̂]j/[ϕ]j |2, the independence
of ϕ̂ and ĝ, and ϕ ∈ Edλ together with the definition of ψn given in (2.1), we obtain

A1 6 4
∑

0<|j|6k∗n

ωj

{mVar([ĝ]j)Var([ϕ̂]j)

|[ϕ]j |2
+
Var([ĝ]j)

|[ϕ]j |2
}
6 8d

∑
0<|j|6k∗n

ωj
nλj
6 8dψn.

Moreover, we have E
|[ϕ̂]j−[ϕ]j |2
|[ϕ̂]j |2 1{|[ϕ̂]j |2 > 1/m} 6 2mE|[ϕ̂]j−[ϕ]j |4

|[ϕ]j |2 +
2Var([ϕ̂]j)
|[ϕ]j |2 6 2(C+1)

m|[ϕ]j |2 6
2(C+1)d
mλj

and E
|[ϕ̂]j−[ϕ]j |2
|[ϕ̂]j |2 1{|[ϕ̂]j |2 > 1/m} 6 1, where we have used again the elementary
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inequality and ϕ ∈ Edλ. By combination of both bounds together with f ∈ Frγ and the
definition of κm given in (2.2) we obtain

A2 6 4(C + 1)d
∑

0<|j|6k∗n

ωj |[f ]j |2 min(1,
1

mλj
) 6 4(C + 1)dr κm.

Consider now B which we decompose further into

E‖f̃ − f‖2ω =
∑
0<|j|

ωj |[f ]j |2(1− 1{0 < |j| 6 k∗n}1{|[ϕ̂]j |2 > 1/m})2

=
∑
|j|>k∗n

ωj |[f ]j |2 +
∑

0<|j|6k∗n

ωj |[f ]j |2P
(
|[ϕ̂]j |2 < 1/m

)
=: B1 +B2,

where B1 6 ‖f‖2γωk∗nγ
−1
k∗n
6 rψn because f ∈ Frγ . Moreover, B2 6 4drκm by using that

P
(
|[ϕ̂]j |2 < 1/m

)
6 4dmin(1,

1

mλj
), (A.6)

which we will show below. The result of the theorem follows now by combination of the
decomposition (A.5) and the estimates of A1, A2, B1 and B2.
To conclude, let us prove (A.6). If |[ϕ]j |2 > 4/m, then we deduce by employing Tchebychev’s
inequality that

P(|[̂ϕ]j |
2 < 1/m) 6 P(|[̂ϕ]j/[ϕ]j | < 1/2) 6 P(|[̂ϕ]j − [ϕ]j | > |[ϕ]j |/2)

6 4
Var([̂ϕ]j)

|[ϕ]j |2
6 4d/(mλj).

On the other hand, in case |[ϕ]j |2 < 4/m the estimate P(|[̂ϕ]j |2 < 1/m) 6 4d/(mλj) holds

too since 1 6 4/(m|[ϕ]j |2) 6 4d/(mλj). Combining the last estimates and P(|[̂ϕ]j |2 <
1/m) 6 1 we obtain (A.6), which completes the proof. �

Illustration: estimation of derivatives
Proof of Proposition 2.6. Since for each 0 6 s 6 p we have E‖f̃ (s) − f (s)‖2 ∼ E‖f̃ − f‖2ω
we intend to apply the general result given Corollary 2.4. In both cases the additional
conditions formulated in Theorem 2.2 and 2.3 are easily verified. Therefore, it is sufficient
to evaluate the lower bounds ψn and κm given in (2.1) and (2.2), respectively. Note that the
optimal dimension parameter k∗n := argminj∈N{max(

ωj
γj
,
∑

0<|l|6j
ωl
nλl

)} satisfies nωk∗n/γk∗n ∼∑
0<|l|6k∗n ωl/λl since both sequences (γj/ωj) and (

∑
0<|l|6j

ωl
nλl

) are non-increasing.

[os] The well-known approximation
∑m

j=1 j
r ∼ mr+1 for r > 0 implies

(γk∗n/ωk∗n)
∑

0<|l|6k∗n ωl/λl ∼ (k∗n)2a+2p+1. It follows that k∗n ∼ n1/(2p+2a+1) and the first

lower bound writes ψn ∼ n−(2p−2s)/(2p+2a+1). Moreover, we have κm ∼ m−([p−s]∧a)/a, since
the minimum in κm = supj∈Z{|j|−2(p−s) min(1, |j|2a/m)} is equal to one for |j| > m1/2a

and |j|−2(p−s) is non-increasing.
[ss] Applying Laplace’s Method (c.f. chapter 3.7 in Olver (1974)) we have
(γk∗n/ωk∗n)

∑
0<|l|6k∗n ωl/λl ∼ (k∗n)2p exp(|k∗n|2a) which implies that k∗n ∼ (log n)1/(2a) and

that the first lower bound can be rewritten as ψn ∼ (log n)−(p−s)/a. Furthermore, we have
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κm ∼ (logm)−(p−s)/a since the minimum in κm = supj∈Z{|j|−2(p−s) min(1, exp(|j|2a)/m)}
is equal to one for |j| > (logm)(1/2a) and |j|−2(p−s) is non-increasing. Consequently, the
lower bounds in Proposition 2.7 follow by applying Corollary 2.4. �

Proof of Proposition 2.7. Since in both cases the condition on the dimension parameter k
ensures that k ∼ k∗n (see the proof of Proposition 2.6) the result follows from Theorem 2.5.

�

A.2. Proofs of section 3

We begin by defining and recalling notations to be used in the proof. Given u ∈ L2[0, 1] we
denote by [u] the infinite vector of Fourier coefficients [u]j := 〈u, ej〉. In particular we use
the notations

f̂k =
k∑

j=−k

[̂g]j

[̂ϕ]j

1{|[̂ϕ]j |
2 > 1/m}ej , f̃k :=

k∑
j=−k

[̂g]j
[ϕ]j

ej , fk :=
k∑

j=−k

[g]j
[ϕ]j

ej ,

Φ̂u :=
∑
j∈Z

[u]j

[̂ϕ]j

1{|[̂ϕ]j |
2 > 1/m}ej , Φ̃u :=

∑
j∈Z

[u]j
[ϕ]j

ej .

Furthermore, let ĝ be the function with Fourier coefficients [ĝ]j := [̂g]j . Given 1 6 k 6 k′

we have then for all t ∈ Sk := span{e−k, . . . , ek}

〈t, fk′〉ω = 〈t, Φ̃g〉ω =

k∑
j=−k

ωj [t]j [g]j
[ϕ]j

=

k∑
j=−k

ωj [t]j [f ]j = 〈t, f〉ω,

〈t, f̃k′〉ω = 〈t, Φ̃ĝ〉ω =
1

n

n∑
i=1

k∑
j=−k

ej(−Yi)
ωj [t]j
[ϕ]j

= 〈t, f̃k〉ω,

〈t, f̂k′〉ω = 〈t, Φ̂ĝ〉ω =
1

n

n∑
i=1

k∑
j=−k

ej(−Yi)
ωj [t]j

[̂ϕ]j

1{|[̂ϕ]j |
2 > 1/m} = 〈t, f̂k〉ω.

Consider the function ν = ĝ − g with Fourier coefficients [ν]j = [̂g]j − [g]j = [̂g]j − E[̂g]j ,
then we have for every t ∈ Sk,

〈t, Φ̂ĝ − f〉ω = 〈t, Φ̂ĝ − Φ̃g〉ω = 〈t, Φ̃ĝ − Φ̃g〉ω + 〈t, Φ̂ĝ − Φ̃ĝ〉ω
= 〈t, Φ̃ν〉ω + 〈t, Φ̂ĝ − Φ̃ĝ〉ω = 〈t, Φ̃ν〉ω + 〈t, Φ̂ν − Φ̃ν〉ω + 〈t, Φ̂g − Φ̃g〉ω. (A.7)

At the end of this section we will prove three technical Lemmata (A.2, A.4 and A.3) which
are used in the following proof.

Proof of Theorem 3.3. We consider the contrast

Υ(t) := ‖t‖2ω − 2〈t, Φ̂ĝ〉ω, ∀ t ∈ L2[0, 1].

Obviously it follows for all t ∈ Sk that Υ(t) = ‖t− f̂k‖2ω − ‖f̂k‖2ω and, hence

arg min
t∈Sk

Υ(t) = f̂k, ∀ k > 1. (A.8)
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Moreover, the adaptive choice k̂ of the dimension parameter can be rewritten as

k̂ = argmin
16k6(Nn∧Mm)

{
Υ(f̂k) + 60

dδk
n

}
. (A.9)

Let pen(k) := 60dδk/n, then for all 1 6 k 6 (Nn ∧Mm) we have

Υ(f̂
k̂
) + pen(k̂) 6 Υ(f̂k) + pen(k) 6 Υ(fk) + pen(k),

using first (A.9) and then (A.8). This inequality implies

‖f̂
k̂
‖2ω − ‖fk‖2ω 6 2〈f̂

k̂
− fk, Φ̂ĝ〉ω + pen(k)− pen(k̂),

and hence, using (A.7), we have for all 1 6 k 6 (Nn ∧Mm)

‖f̂
k̂
− f‖2ω 6 ‖f − fk‖2ω + pen(k)− pen(k̂)

+ 2〈f̂
k̂
− fk, Φ̃ν〉ω + 2〈f̂

k̂
− fk, Φ̂ν − Φ̃ν〉ω + 2〈f̂

k̂
− fk, Φ̂g − Φ̃g〉ω. (A.10)

Consider the unit ball Bk := {f ∈ Sk : ‖f‖ω 6 1} and, for arbitrary τ > 0 and t ∈ Sk, the
elementary inequality

2|〈t, h〉ω| 6 2‖t‖ω sup
t∈Bk
|〈t, h〉ω| 6 τ‖t‖2ω +

1

τ
sup
t∈Bk
|〈t, h〉ω|2 = τ‖t‖2ω +

1

τ

k∑
j=−k

ωj |[h]j |2.

Combining the last estimate with (A.10) and f̂
k̂
− fk ∈ Sk̂∨k ⊂ SNn∧Mm we obtain

‖f̂
k̂
− f‖2ω 6 ‖f − fk‖2ω + 3τ ‖f̂

k̂
− fk‖2ω + pen(k)− pen(k̂)

+
1

τ
sup

t∈B
k∨k̂

|〈t, Φ̃ν〉ω|2 +
1

τ
sup

t∈B
k∨k̂

|〈t, Φ̂ν − Φ̃ν〉ω|2 +
1

τ
sup

t∈B(Nn∧Mm)

|〈t, Φ̂g − Φ̃g〉ω|2.

Decompose |〈t, Φ̂ν − Φ̃ν〉ω|2 = |〈t, Φ̂ν − Φ̃ν〉ω|21{Ωq}+ |〈t, Φ̂ν − Φ̃ν〉ω|21{Ωc
q} further using

Ωq :=

{
∀ 0 <|j| 6Mm :

∣∣∣ 1

[̂ϕ]j

− 1

[ϕ]j

∣∣∣ 6 1

2|[ϕ]j |
∧ |[̂ϕ]j |

2 > 1/m

}
. (A.11)

Since 1{|[̂ϕ]j |2 > 1/m}1{Ωq} = 1{Ωq}, it follows that for all 1 6 |j| 6 (Nn ∧Mm) we have(
[ϕ]j

[̂ϕ]j

1{|[̂ϕ]j |
2 > 1/m} − 1

)2

1{Ωq} = |[ϕ]j |2 1{Ωq}
∣∣∣∣ 1

[̂ϕ]j

− 1

[ϕ]j

∣∣∣∣2 6 1

4
.

Hence, supt∈Bk |〈t, Φ̂ν − Φ̃ν〉ω|2 1{Ωq} 6 1
4 supt∈Bk |〈t, Φ̃ν〉ω|2 for all 1 6 k 6 (Nn ∧Mm).

Letting τ := 1/8 it follows from ‖f̂
k̂
− fk‖2ω 6 2‖f̂

k̂
− f‖2ω + 2‖fk − f‖2ω that

1

4
‖f̂
k̂
− f‖2ω 6

7

4
‖f − fk‖2ω + 10

(
sup

t∈B
k∨k̂

|〈t, Φ̃ν〉ω|2 −
(

6 dδ
k∨k̂

)
/n

)
+

+
(

60 dδ
k∨k̂

)
/n+ pen(k)− pen(k̂)

+ 8 sup
t∈B(Nn∧Mm)

|〈t, Φ̂ν − Φ̃ν〉ω|2 1{Ωc
q}+ 8 sup

t∈B(Nn∧Mm)

|〈t, Φ̂g − Φ̃g〉ω|2.
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Since ω/γ is non-increasing we obtain ‖f − fk‖2ω 6 rωk/γk for all f ∈ Frγ . Furthermore,

notice that 60 d δ
k∨k̂/n = pen(k∨ k̂) 6 pen(k) + pen(k̂). By taking the expectation on both

sides we conclude that there exists a numerical constant C > 0 such that

sup
f∈Frγ

sup
ϕ∈Rdλ

E‖f̂
k̂
− f‖2ω 6 C (d+ r) min

16k6(Nn∧Mm)

{
max

(ωk
γk
,
δk
n

)}
+ C sup

f∈Frγ
sup
ϕ∈Rdλ

∑
16|k′|6(Nn∧Mm)

E

(
sup
t∈Bk′

|〈t, Φ̃ν〉ω|2 −
(

6 dδk′
)
/n

)
+

+ C sup
f∈Frγ

sup
ϕ∈Rdλ

E

[
sup

t∈B(Nn∧Mm)

|〈t, Φ̂ν − Φ̃ν〉ω|2 1{Ωc
q}
]

+ C sup
f∈Frγ

sup
ϕ∈Rdλ

E

[
sup

t∈B(Nn∧Mm)

|〈t, Φ̂g − Φ̃g〉ω|2
]
.

In order to bound the second term, apply Lemma A.2 with δ∗k = d δk and ∆∗k = d∆k. Due
to the properties of Nn and of the function Σ from Definition 3.1, there is a numerical
constant C > 0 such that

Nn∑
k=1

E

(
sup
t∈Bk
|〈t, Φ̃ν〉ω|2 − 6

d δk
n

)
+

6
Cd

n

{
δ1 + Σ(‖ϕ‖2 ‖f‖2)

}
.

It is readily verified that ‖ϕ‖2 6 dΛ for all ϕ ∈ Edλ and ‖f‖2 6 r for all f ∈ Frγ . The result
follows now by virtue of Lemma A.3, A.4, A.5, and Definition 3.1 (i). �

In the proof of Lemma A.2 below we will need the following Lemma, which can be found
in Comte et al. (2006).

Lemma A.1 (Talagrand’s Inequality) Let T1, . . . , Tn be independent random variables and
ν∗n(r) = (1/n)

∑n
i=1

[
r(Ti)−E[r(Ti)]

]
, for r belonging to a countable class R of measurable

functions. Then,

E[sup
r∈R
|ν∗n(r)|2 − 6H2

2 ]+ 6 C

(
v

n
exp(−(nH2

2/6v)) +
H2

1

n2
exp(−K2(nH2/H1))

)
with numerical constants K2 = (

√
2− 1)/(21

√
2) and C and where

sup
r∈R
‖r‖∞ 6 H1, E

[
sup
r∈R
|ν∗n(r)|

]
6 H2, sup

r∈R

1

n

n∑
i=1

Var(r(Ti)) 6 v.

Lemma A.2 Let (δ∗k)k∈Z and (∆∗k)k∈Z be sequences such that

δ∗k >
∑

06|j|6k

ωj
|[ϕ]j |2

and ∆∗k > max
06|j|6k

ωj
|[ϕ]j |2

and let K2 := (
√

2− 1)/(21
√

2). Then, there is a numerical constant C > 0 such that

Nn∑
k=1

E

[(
sup
t∈Bk
|〈t, Φ̃ν〉ω|2 −

6 δ∗k
n

)
+

]
6 C

{
‖ϕ‖2 ‖f‖2

n

Nn∑
k=1

∆∗k exp

(
− 1

6 ‖ϕ‖2 ‖f‖2
(δ∗k/∆

∗
k)

)
+

1

n2
exp

(
−K2

√
n
) Nn∑
k=1

δ∗k

}
.
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Proof. For t ∈ Sk define the function rt :=
∑

06|j|6k ωj [t]j [ϕ]
−1
j ej , then it is readily seen

that 〈t, Φ̃ν〉ω = 1
n

∑n
k=1 rt(Yk) − E[rt(Yk)]. Next, we compute constants H1, H2, and v

verifying the three inequalities required in Lemma A.1, which then implies the result.
Consider H1 first:

sup
t∈Bk
‖rt‖2∞ = sup

y∈R

∑
06|j|6k

ωj |[ϕ]j |
−2 |ej(y)|2 =

∑
06|j|6k

ωj |[ϕ]j |−2 6 δ∗k =: H2
1 .

Next, find H2. Notice that

E[ sup
t∈Bk
|〈t, Φ̃ν〉ω|2] =

1

n

∑
06|j|6k

ωj |[ϕ]j |−2 Var(ej(Y1)).

As Var(ej(Y1)) 6 E[| ej(Y1) |2] = 1, we define E[supt∈Bk |〈t, Φ̃ν〉|2] 6 δ∗k/n =: H2
2 .

Finally, consider v. Given t ∈ Bk and a sequence (zj)j∈Z let [t] := ([t]−k, . . . , [t]k)
T and de-

note by Dk(z) := diag[z−k, . . . , zk] the corresponding diagonal matrix. Define the Hermitian

and positive semi-definite matrix Ak :=
(

[ϕ]
−1
j [ϕ]−1j′ [ϕ]j−j′ [f ]j−j′

)
j,j′=−k,...,k

. Straightfor-

ward algebra shows supt∈Bk Var(rt(Y1)) 6 supt∈Bk〈AkDk(ω) [t], Dk(ω)[t]〉C2k+1 , hence

sup
t∈Bk

1

n

n∑
k=1

Var(rt(Yk)) 6 sup
t∈Bk
〈A1/2

k Dk(ω)[t], A
1/2
k Dk(ω)[t]〉C2k+1

= sup
t∈Bk
‖A1/2

k Dk(ω)[t]‖2C2k+1 = ‖Dk(
√
ω)AkDk(

√
ω)‖C2k+1 .

Clearly, we have Ak = Dk([ϕ]−1) Bk Dk([ϕ]
−1

), where Bk :=
(
[ϕ]j−k [f ]j−k

)
j,k=−k,...,k.

Consequently,

sup
t∈Bk

1

n

n∑
k=1

Var(rt(Yk)) 6 ‖Dk(
√
ω [ϕ]−1)‖2C2k+1 ‖Bk‖C2k+1 .

We have that ‖Dk(
√
ω [ϕ]−1)‖2C2k+1 = max06|j|6k ωj |[ϕ]j |−2 6 ∆∗k. It remains to show the

boundedness of ‖Bk‖C2k+1 . Let `2 be the space of square-summable sequences in C and
define the operator B : `2 → `2 by (Bz)k :=

∑
j∈Z[ϕ]j−k [f ]j−kzj , k ∈ Z. Then it is

easily verified that for any z ∈ `2 with ‖z‖`2 = 1, the Cauchy-Schwarz inequality yields
‖Bz‖2`2 6 ‖ϕ‖

2 ‖f‖2, and hence ‖B‖2`2 6 ‖ϕ‖
2 ‖f‖2. Given the orthogonal projection Πk

in `2 onto Sk the operator Πk BΠk : Sk → Sk has the matrix representation Bk via the
isomorphism Sk ∼= C2k+1 and hence ‖Πk BΠk‖`2 = ‖Bk‖C2k+1 . Orthogonal projections
having a norm bounded by 1, we conclude that ‖Bk‖C2k+1 6 ‖B‖`2 for all k ∈ N, which
implies supt∈Bk

1
n

∑n
k=1Var(rt(Yk)) 6 ‖ϕ‖2 ‖f‖2 ∆∗k =: v and completes the proof. �

Lemma A.3 There is a numerical constant C > 0 such that for every k,m ∈ N

E

[
sup
t∈Bk
|〈t, Φ̂g − Φ̃g〉ω|2

]
6 C d r κm(γ, λ, ω).

Proof. Firstly, as f ∈ Frγ , it is easily seen that

E

[
sup
t∈B0k
|〈t, Φ̂g − Φ̃g〉ω|2

]
6 r sup

0<|j|6k

ωj
γj
E[|Rj |2],
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where Rj is defined by

Rj :=

(
[ϕ]j

[̂ϕ]j

1{|[̂ϕ]j |
2 > 1/m} − 1

)
. (A.12)

In view of the definition (2.2) of κm, the result follows from E[|Rj |2] 6 C min
{

1, 1
m|[ϕ]j |2

}
,

which can be realized as follows. Consider the identity

E|Rj |2 = E

[ ∣∣∣∣ [ϕ]j

[̂ϕ]j

− 1

∣∣∣∣21{|[̂ϕ]j |
2 > 1/m}

]
+ P[|[̂ϕ]j |

2 < 1/m] =: RIj +RIIj . (A.13)

Trivially, RIIj 6 1. If 1 6 4/(m |[ϕ]j |2), then obviously RIIj 6 4 min
{

1, 1
m|[ϕ]j |2

}
. Other-

wise, we have 1/m < |[ϕ]j |2/4 and hence, using Tchebychev’s inequality,

RIIj 6 P[|[̂ϕ]j − [ϕ]j | > |[ϕ]j | /2 ] 6
4 Var([̂ϕ]j)

|[ϕ]j |2
6 4 min

{
1,

1

m|[ϕ]j |2
}
,

where we have used that Var([̂ϕ]j) 6 1/m for all j. Now consider RIj . We find that

RIj = E

[ |[̂ϕ]j − [ϕ]j |2

|[̂ϕ]j |2
1{|[̂ϕ]j |

2 > 1/m}
]
6 mVar(|[̂ϕ]j) 6 1. (A.14)

On the other hand, using that E[|[̂ϕ]j − [ϕ]j |4] 6 c/m2 for some numerical constant c > 0
(cf. Petrov (1995), Theorem 2.10), we obtain

RIj 6 E

[ |[̂ϕ]j − [ϕ]j |2

|[̂ϕ]j |2
1{|[̂ϕ]j |

2 > 1/m} 2

{ |[̂ϕ]j − [ϕ]j |2

|[ϕ]j |2
+
|[̂ϕ]j |2

|[ϕ]j |2

}]

6
2mE[|[̂ϕ]j − [ϕ]j |4]

|[ϕ]j |2
+

2 Var([̂ϕ]j)

|[ϕ]j |2
6

2c

m |[ϕ]j |2
+

2

m |[ϕ]j |2
.

Combining with (A.14) gives RIj 6 2(c+ 1) min
{

1, 1
m|[ϕ]j |2

}
, which completes the proof. �

Lemma A.4 There is a numerical constant C > 0 such that

E

[
sup

t∈B(Nn∧Mm)

|〈t, Φ̂ν − Φ̃ν〉ω1{Ωc
q}|2

]
6 Cdδ1(P[Ωc

q])
(1/2).

Proof. Given with Rj from (A.12) we begin our proof observing that

E

[
sup

t∈BMm
|〈t, Φ̂ν − Φ̃ν〉ω 1{Ωc

q}|2
]
6

1

n

∑
0<|j|6(Nn∧Mm)

ωj
|[ϕ]j |2

E[|Rj |21{Ωc
q}],

and using the independence of the two samples andVar([̂g]j) 6 n
−1. Since dδk >

∑
0<|j|6k

ωj
|[ϕ]j |2

for all ϕ ∈ Edλ, the Cauchy-Schwarz inequality yields

E

[
sup

t∈BMm
|〈t, Φ̂ν − Φ̃ν〉ω 1{Ωc

q}|2
]
6 d (P[Ωc

q])
1/2 δNn

n
max

0<|j|6Nn
(E[|Rj |4])1/2.
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Proceeding analogously to (A.13) and (A.14), there exists a numerical constant C such that
E[|Rj |4] 6 C. The result follows then by Definition 3.1 (ii). �

Lemma A.5 Consider the event Ωq defined in (A.11). We have P[Ωc
q] 6 4(504 d/λ1)

7m−6

for all m > 1.

Proof. Consider the complement of Ωq given by

Ωc
q =

{
∃ 0 <|j| 6Mm :

∣∣∣ [ϕ]j

[̂ϕ]j

− 1
∣∣∣ > 1

2
∨ |[̂ϕ]j |

2 < 1/m

}
.

It follows from Assumption 3.2 that |[ϕ]j |2 > 2/m for all 0 < |j| 6Mm. This yields

Ωc
q ⊆

{
∃ 0 <|j| 6Mm :

∣∣∣∣ [̂ϕ]j
[ϕ]j
− 1

∣∣∣∣ > 1

3

}
.

By Hoeffding’s inequality,

P[|[̂ϕ]j/[ϕ]j − 1| > 1/3] 6 2 exp

(
− m |[ϕ]j |2

72

)
(A.15)

which implies the result by employing the definition of Mm. �

Illustration: estimation of derivatives
Proof of Proposition 3.5. In the light of the proof of Proposition 2.6 we apply Theorem 3.3,
where in both cases the additional conditions are easily verified and the result follows by
an evaluation of the upper bound.
[os] Let k∗n := n1/(2a+2p+1) and note that k∗n . Nn. Thus, the upper bound is

(k∗n ∧Mmn)−2(p−s) +m−(1∧((p−s)/a))n . (A.16)

We consider two cases. First, let p−s > a. Suppose that n2(p−s)/(2p+2a+1) = O(mn). Then,

k∗n
Mmn

=
n1/(2a+2p+1)(
mn

logmn

)(1/2a) =
n1/(2a+2p+1)

m
1/2(p−s)
n

m
1/2(p−s)
n (logmn)1/2a

m
1/2a
n

= o(1).

This means that k∗n .Mmn , so the resulting upper bound is (k∗n)−2(p−s)+m−1n . (k∗n)−2(p−s).
Suppose now that mn = o(n2(p−s)/(2p+2a+1)). If in addition k∗n = O(Mmn), then the first
summand in (A.16) reduces to (k∗n)−2(p−s) and hence the upper bound is m−1n . On the other
hand, if Mmn/k

∗
n = o(1), then the first term is (Mn)−2(p−s) .M−2amn (logmn)−1 = m−1n , since

p− s > a. Combining both cases, we obtain the result in case p− s > a.
Now assume p − s 6 a. First, suppose that k∗n = O(Mmn). Then, then the first summand
in (A.16) reduces to (k∗n)−2(p−s) and moreover n2a/(2p+2a+1) = O(mn). Therefore, the
upper bound is (k∗n)−2(p−s). Consider now Mmn = o(k∗n). Then (A.16) can be rewritten as

(mn/ logmn)−(p−s)/a+m
−(p−s)/a
n which results in the rate (mn/ logmn)−(p−s)/a. Combining

both cases gives the result. More precisely, mn = o(n2a/(2p+2a+1)) implies Mmn = o(k∗n).
On the other hand, in case n2a/(2p+2a+1) = O(mn), if k∗n/Mmn = O(1), then the rate is
(k∗n)−2p, while if Mmn/k

∗
n = o(1), we have the rate (mn/ logmn)−p/a.
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[ss] Choose k∗n ∼ (log n)1/2a(1 + o(1)). And note that Nn ∼ (log n)1/2a(1 + o(1)) and
Mmn ∼ (logmn)1/2a(1 + o(1)). The upper risk bound is now (k∗n ∧Mmn)−2p + (logmn)p/a.
Consider two cases. Firstly, log n/ logmn = O(1). This implies Nn/Mmn = O(1) and hence
k∗n/Mmn = O(1). This means that the upper bound is in fact (k∗n)−2p + (logmn)−p/a ∼
(log n)−p/a. In the case logmn/ log n = o(1), an analogous argument proves the claim,
which completes the proof. �

A.3. Proofs of section 4

Proof of Theorem 4.3. Define ∆ϕ
k := max06|j|6k ωj/|[ϕ]j |2, τϕk := max06|j|6k(ωj)∨1/|[ϕ]j |2,

and δϕk := 2k∆ϕ
k

{
log(τϕk ∨ (k + 2)) / log(k + 2)

}
. Then, it is easily seen that

δϕk 6 δk d
log(3d)

log 3
= δk d ζd ∀ k > 1. (A.17)

with ζd = (log(3d))/(log 3). Moreover, define the event Ωqp := Ωq ∩ Ωp where Ωq is given
in (A.11) and

Ωp :=
{

(N l
n ∧M l

m) 6 (N̂n ∧ M̂m) 6 (Nn ∧Mm)
}
. (A.18)

Observe that on Ωq we have (1/2)∆ϕ
k 6 ∆̂k 6 (3/2)∆ϕ

k for all 1 6 k 6 Mm and hence

(1/2)[∆ϕ
k ∨ (k + 2)] 6 [∆̂k ∨ (k + 2)] 6 (3/2)[∆ϕ

k ∨ (k + 2)], which implies

(1/2)k∆ϕ
k

( log[∆ϕ
k ∨ (k + 2)]

log(k + 2)

)(
1− log 2

log(k + 2)

log(k + 2)

log(∆ϕ
k ∨ [k + 2])

)
6 δ̂k 6 (3/2)k∆ϕ

k

( log(∆ϕ
k ∨ [k + 2])

log(k + 2)

)(
1 +

log 3/2

log(k + 2)

log(k + 2)

log(∆ϕ
k ∨ [k + 2])

)
.

Using log(∆ϕ
k ∨ (k + 2))/log(k + 2) > 1, we conclude from the last estimate that

δϕk /10 6(log 3/2)/(2 log 3)δϕk 6 (1/2)δϕk [1− (log 2)/ log(k + 2)] 6 δ̂k
6 (3/2)δϕk [1 + (log 3/2)/ log(k + 2)] 6 3δϕk .

Letting pen(k) := 60 δϕk n
−1 and p̂en(k) := 600 δ̂kn

−1, it follows that on Ωq

pen(k) 6 p̂en(k) 6 30 pen(k) ∀ 1 6 k 6Mm.

On Ωqp = Ωq ∩ Ωp, we have k̂ 6Mm. Thus,(
pen(k ∨ k̂) + p̂en(k)− p̂en(k̂)

)
1{Ωqp} 6

(
pen(k) + pen(k̂) + p̂en(k)− p̂en(k̂)

)
1{Ωqp}

6 31 pen(k) ∀1 6 k 6Mm. (A.19)

Furthermore, we have ∆̂k 6 ∆ϕ
km for every k > 1, which implies δ̂k 6 m (1 + logm)δϕk .

Consequently, p̂en(k) 6 10m (1+logm) pen(k) 6 600m (1+logm)d ζd δ1 for all 1 6 k 6 Nn

by employing (A.17) and the definition of Nn. Therefore, on Ωc
q ∩ Ωp, where k̂ 6 Nn, we

have pen(k ∨ k̂) 6 60 d ζd δ1 for all 1 6 k 6 Nn, and hence

(pen(k∨ k̂) + p̂en(k)− p̂en(k̂))1{Ωc
q ∩ Ωp} 6 60 d ζd δ1(1 + 10m (1 + logm))1{Ωc

q ∩ Ωp}.
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(A.20)

Now consider the decomposition

E‖f̂
k̂
− f‖2ω = E‖f̂

k̂
− f‖2ω1{Ωqp}+E‖f̂

k̂
− f‖2ω1{Ωc

q ∩ Ωp}+E‖f̂
k̂
− f‖2ω1{Ωc

p}.

Below we show that there exist a numerical constant C such that for all n,m > 1 and all
1 6 k 6 N l

n ∧M l
m we have

E‖f̂
k̂
− f‖2ω1{Ωqp} 6 C

{
‖f − fk‖2ω + d ζd

δk
n

+ r d κm

+ d ζd
δ1 + Σ(ζd ‖ϕ‖2 ‖f‖2)

n

}
, (A.21)

E‖f̂
k̂
− f‖2ω1{Ωc

q ∩ Ωp} 6 C
{
‖f − fk‖2ω + r d κm

+ d ζd

[
δ1 + Σ(ζd ‖ϕ‖2 ‖f‖2)

n
+
δ1
(
d/λ1

)7
m

]}
,

(A.22)

E‖f̂
k̂
− f‖2ω1{Ωc

p} 6 C
( d
λ1

)7 (1 + ‖f‖2ω)

m
. (A.23)

The desired upper bound follows for every 1 6 k 6 (N l
n ∧M l

m) by virtue of Definition 4.1
and Assumption 4.2.
Proof of (A.21). Following the proof in case of known degree of ill-posedness (Section A.2)
line by line, it is easily seen that for 1 6 k 6 (N l

n ∧M l
m),

(1/2)‖f̂
k̂
− f‖2ω1{Ωqp} 6 (3/2)‖f − fk‖2ω + 10

Nn∑
k=1

(
sup
t∈Bk
|〈t, Φ̃ν〉ω|2 − 6

δϕk
n

)
+

+ 8 sup
t∈BNn∧Mm

|〈t, Φ̂g − Φ̃g〉ω|2 +
(

pen(k ∨ k̂) + p̂en(k)− p̂en(k̂)
)
1{Ωqp}

6 (3/2)‖f − fk‖2ω + 10

Nn∑
k=1

(
sup
t∈Bk
|〈t, Φ̃ν〉ω|2 − 6

δϕk
n

)
+

+ 8 sup
t∈BNn∧Mm

|〈t, Φ̂g − Φ̃g〉ω|2 + 31 pen(k),

where the last inequality follows from (A.19). The third term is bounded by employing
Lemma A.3. In order to control the second term, apply Lemma A.2 with δ∗k = δϕk and
∆∗k = ∆ϕ

k . Using (A.17), ∆ϕ
k 6 d τk, ζd log(τϕk ∨ (k + 2)) > log(τk ∨ (k + 2)) and the

definition of Σ, we conclude with Assumption 3.2 that there exists a numerical constant
C > 0 such that

Nn∑
k=1

E

(
sup
t∈B0k
|〈t, Φ̃ν〉ω|2 − 6

δϕk
n

)
+

6
Cd ζd
n

{
δ1 + Σ(‖ϕ‖2 ‖f‖2ζd)

}
. (A.24)

Consequently, combining these estimates proves inequality (A.21).
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Proof of (A.22). On Ωc
q ∩Ωp, we have N l

n ∧M l
m 6 N̂n ∧ M̂m 6 Nn ∧Mm. Applying (A.20),

it follows in analogy to proof of Theorem 3.3 that for all 1 6 k 6 N l
n ∧M l

m

(1/2)‖f̂
k̂
− f‖2ω1{Ωc

q ∩ Ωp} 6 (3/2)‖f − fk‖2ω + 10

Nn∑
k=1

(
sup
t∈Bk
|〈t, Φ̃ν〉ω|2 − 6

δϕk
n

)
+

+ 8 sup
t∈B

Nln∧Ml
m

|〈t, Φ̂ν − Φ̃ν〉ω 1{Ωc
q}|2 + 8 sup

t∈B
Nln∧Ml

m

|〈t, Φ̂g − Φ̃g〉ω|2

+
(

pen(k ∨ k̂) + p̂en(k)− p̂en(k̂)
)
1{Ωc

q ∩ Ωp}

6 (3/2)‖f − fk‖2ω + 10

Nn∑
k=1

(
sup
t∈Bk
|〈t, Φ̃ν〉ω|2 − 6

δϕk
n

)
+

+ 8 sup
t∈B

Nln∧Ml
m

|〈t, Φ̂ν − Φ̃ν〉ω 1{Ωc
q}|2 + 8 sup

t∈B
Nln∧Ml

m

|〈t, Φ̂g − Φ̃g〉ω|2

+ 60 d ζd δ1(1 + 10m (1 + logm))1{Ωc
q ∩ Ωp}.

Due to Lemma A.3, A.4, and (A.24), there exists a numerical constant C such that

E‖f̂
k̂
− f‖2ω1{Ωc

q ∩ Ωp} 6 C
{
‖f − fk‖2ω + drκm

+ d ζd

[
δ1 + Σ(ζd ‖ϕ‖2 ‖f‖2)

n
+ δ1(P[Ωc

q])
(1/2) + δ1m (1 + logm)P[Ωc

q]

]}
.

Employing Lemma A.5 now proves (A.22).

Proof of (A.23). Let f̆k := 1 +
∑

0<|j|6k[f ]j1{|[̂ϕ]j |2 > 1/m}ej . It is easy to see that

‖f̂k − f̆k‖2 6 ‖f̂k′ − f̆k′‖2 for all k′ 6 k and ‖f̆k − f‖2 6 ‖f‖2 for all k > 1. Thus, using
that 1 6 k̂ 6 (Nu

n ∧m), we can write

E‖f̂
k̂
− f‖2ω1{Ωc

p} 6 2{E‖f̂
k̂
− f̆

k̂
‖2ω1{Ωc

p}+E‖f̆
k̂
− f‖2ω1{Ωc

p}}

6 2

{
E‖f̂(Nu

n∧m) − f̆(Nu
n∧m)‖2ω1{Ωc

p}+ ‖f‖2ω P[Ωc
p]

}
.

Moreover, applying Theorem 2.10 in Petrov (1995) we conclude

E‖f̂(Nu
n∧m) − f̆(Nu

n∧m)‖2ω1{Ωc
p}

6 2m
∑

0<|j|6(Nu
n∧m)

ωj

{
E([̂g]j − [ϕ]j [f ]j)

2
1{Ωc

p}+E([ϕ]j [f ]j − [̂ϕ]j [f ]j)
2
1{Ωc

p}
}

6 2m
{ ∑
0<|j|6(Nu

n∧m)

ωj

[
E

(
[̂g]j − [g]j

)4]1/2
P[Ωc

p]
1/2

+
∑

0<|j|6(Nu
n∧m)

ωj |[f ]j |2[E([̂ϕ]j − [ϕ]j)
4]1/2P[Ωc

p]
1/2
}

6 2m
{

(2m max
16j6Nu

n

ωj)(cn
−1) + (cm−1)‖f‖2ω

}
P[Ωc

p]
1/2,

which implies, using Definition 4.1 (ii),

E‖f̂
k̂
− f‖2ω1{Ωc

p} 6 C
{(

m2 + ‖f‖2ω
)
P[Ωc

p]
1/2 + ‖f‖2ω P[Ωc

p]

}
.
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Lemma A.6 below together with Definition 3.1 (ii) yields, for some numeric C > 0,

E‖f̂
k̂
− f‖2ω1{Ωc

p} 6 C
{

(d/λ1)
7/2

m
+

(d/λ1)
7/2 ‖f‖2ω
m3

+
(d/λ1)

7 ‖f‖2ω
m6

}
which completes the proof. �

Lemma A.6 Consider the event Ωp defined in (A.18). Then we have

P(Ωc
p) 6 6 (504 d/λ1)

7m−6 ∀ n,m > 1.

Proof. Let ΩI := {(N l
n∧M l

m) > (N̂n∧M̂m)} and ΩII := {(N̂n∧M̂m) > (Nn∧Mm)}. Then

we have Ωc
p = ΩI ∪ΩII . Consider ΩI = {N̂n < (N l

n ∧M l
m)}∪ {M̂m < (N l

n ∧M l
m)} first. By

definition of N l
n, we have that min16|j|6N l

n

|[ϕ]j |2
|j|(ωj)∨1 >

4(logn)
n , which implies

{N̂n < (N l
n ∧M l

m)} ⊂
{
∃1 6 |j| 6 (N l

n ∧M l
m) :

|[̂ϕ]j |2

|j|(ωj)∨1
<

log n

n

}
⊂

⋃
16|j|6N l

n∧M l
m

{ |[̂ϕ]j |
|[ϕ]j |

6 1/2

}
⊂

⋃
16|j|6N l

n∧M l
m

{
|[̂ϕ]j/[ϕ]j − 1| > 1/2

}
.

One can see that from min16|j|6M l
m
|[ϕ]j |2 > 4(logm)2

m it follows in the same way that{
M̂m < (N l

n ∧M l
m)

}
⊂

⋃
16|j|6N l

n∧M l
m

{
|[̂ϕ]j/[ϕ]j − 1| > 1/2

}
.

Therefore, ΩI ⊂
⋃

16|j|6Mm

{
|[̂ϕ]j/[ϕ]j − 1| > 1/2

}
, since M l

m 6 Mm. Hence, as in (A.15)

applying Hoeffding’s inequality together with the definition of Mm gives

P[ΩI ] 6
∑

16|j|6Mm

2 exp

(
− m |[ϕ]j |2

72

)
6 4 (504 d/λ1)

7m−6. (A.25)

Consider ΩII = {N̂n > (Nn ∧Mm)} ∩ {M̂m > (Nn ∧Mm)}. In case (Nn ∧Mm) = Nn, use
logn
4n > max|j|>Nn

|[ϕ]j |2
|j|(ωj)∨1 due to Assumption 4.2, such that

ΩII ⊂ {N̂n > Nn} ⊂
{
∀1 6 |j| 6 Nn :

|[̂ϕ]j |2

|j|(ωj)∨1
>

log n

n

}
⊂
{ |[̂ϕ]Nn |
|[ϕ]Nn |

> 2
}
⊂
{
|[̂ϕ]Nn/[ϕ]Nn − 1| > 1

}
.

In case (Nn ∧Mm) = Mm, it follows analogously from (logm)2

4m > max|j|>Mm
|[ϕ]j |2 that

ΩII ⊂ {M̂m > Mm} ⊂
{
|[̂ϕ]Mm

/[ϕ]Mm − 1| > 1
}
.
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Therefore, ΩII ⊂
{
|[̂ϕ]Nn∧Mm

/[ϕ]Nn∧Mm − 1| > 1
}

and hence as in (A.15) applying Hoeff-

ding’s inequality together with the definition of Mm gives

P[ΩII ] 6 2 exp

(
− m |[ϕ]Nn∧Mm |2

72

)
6 2(504 d/λ1)

7m−7. (A.26)

Combining (A.25) and (A.26) implies the result. �

Illustration: estimation of derivatives
Proof of Proposition 4.5. We start our proof with the observation that in both cases the
sequences δ, ∆, N and M are the same as in Proposition 3.5 and it is easily verified
that the additional Assumption 4.2 is satisfied. Moreover in case [os] we have N l

n ∼
(n/(log n))1/(2a+2s+1) and M l

m ∼ (m/(logm)2)1/(2a). Let k∗n := n1/(2a+2p+1) and note
that still k∗n . N l

n. In case [ss] we have N l
n ∼ {log(n/(log n)(2p+2a+1)/(2a))}1/(2a) =

(log n)1/(2a)(1 + o(1)) and M l
m ∼ {log(m/(logm)3)}1/(2a) = (logm)1/(2a)(1 + o(1)). The

rest of the proof in both cases is almost identical to the one of proposition 3.5 but uses N l
n

and M l
m rather than Nn and Mm, and we omit the details. �
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Prépublication map5 2003-10, Université Paris Descartes.
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