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Abstract

Linear Vector AutoRegressive (VAR) models where the innovations could be
unconditionally heteroscedastic and serially dependent are considered. The
volatility structure is deterministic and quite general, including breaks or
trending variances as special cases. In this framework we propose Ordinary
Least Squares (OLS), Generalized Least Squares (GLS) and Adaptive Least
Squares (ALS) procedures. The GLS estimator requires the knowledge of
the time-varying variance structure while in the ALS approach the unknown
variance is estimated by kernel smoothing with the outer product of the
OLS residuals vectors. Different bandwidths for the different cells of the
time-varying variance matrix are also allowed. We derive the asymptotic
distribution of the proposed estimators for the VAR model coefficients and
compare their properties. In particular we show that the ALS estimator is
asymptotically equivalent to the infeasible GLS estimator. This asymptotic
equivalence is obtained uniformly with respect to the bandwidth(s) in a given
range and hence justifies data-driven bandwidth rules. Using these results we
build Wald tests for the linear Granger causality in mean which are adapted
to VAR processes driven by errors with a non stationary volatility. It is also
shown that the commonly used standard Wald test for the linear Granger
causality in mean is potentially unreliable in our framework. Monte Carlo
experiments illustrate the use of the different estimation approaches for the
analysis of VAR models with stable innovations.
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1. Introduction

In the recent years the study of linear time series models in the context of uncon-
ditionally heteroscedastic innovations has become of increased interest. This interest
may be explained by the fact that numerous applied works pointed out that uncon-
ditional volatility is a common feature in economic data. For instance Doyle and
Faust (2005), Ramey and Vine (2006), McConnell and Perez-Quiros (2000), Blanchard
and Simon (2001) among other references, pointed out a declining volatility for many
economic data since the 1980s. Sensier and van Dijk (2004) found that 80% of 214
U.S. macroeconomic time series they considered exhibit a break in volatility.

In the univariate time series case Busetti and Taylor (2003), Cavaliere (2004),
Cavaliere and Taylor (2007) and Kim, Leybourne and Newbold (2002) among other
references, considered the test of unit roots with non stationary volatility, while Sanso,
Arago and Carrion (2004) proposed tests to detect volatility breaks in the residuals.
Robinson (1987) and Hansen (1995) studied univariate linear models with a non sta-
tionary volatility. Phillips and Xu (2005) investigated the Ordinary Least Squares
(OLS) estimation of univariate stable autoregressive processes. Xu and Phillips (2008)
considered the same model and proposed an Adaptive Least Squares (ALS) approach
which are based on nonparametric estimation of the volatility of the innovations using
OLS residuals. The main conclusion of Xu and Phillips (2008) is that the ALS
estimating approach could be much more effective than the OLS estimation. They also
found that the asymptotic behavior of the ALS estimator does not dependent on the
volatility structure. Multivariate processes are often used in econometric applications
because they allow to study cross-correlations between variables. In the multivariate
framework Boswijk and Zu (2007) and Cavaliere, Rahbek and Taylor (2007) studied
cointegrated systems in presence of non stationary volatility.

In this paper we study the inference in linear vector autoregressive (VAR) models
with volatility changes and possibly serially dependent innovations. Three methods
for estimating the VAR coefficients are investigated: OLS, infeasible Generalized Least
Squares (GLS) based on the knowledge of the time-varying volatility structure, and
ALS which is defined like the GLS but using a kernel estimate of the volatility structure.
The kernel smoothing could be used with a single bandwidth for the whole volatility
matrix or with different bandwidths for different cells. In some sense, we extend the
approach of Phillips and Xu (2005) and Xu and Phillips (2008) to the VAR framework.
In particular, we see that in the multivariate case the asymptotic distribution of the
GLS and ALS estimators is no longer free from the time-varying volatility structure.
Moreover, our asymptotic results are uniform with respect to the bandwidth in a given
range. This opens the door to data-driven choices of the smoothing parameter, for
instance by cross-validation. Such uniformity results seems new even for the univariate
case.

As an application of the new estimation methodology, we also consider the problem
of test linear causality in mean. The linear causality in mean, introduced by Granger
(1969), is often used to investigate causal relations between subsets of variables. For
instance Sims (1972), Feige and Pearce (1979) or Stock and Watson (1989) studied
the money-income causality relation. Bataa et al. (2009) studied the links between
the inflations of different countries by testing linear causality relations. This can be
explained by the fact that linear causality in mean can be easily tested by considering
tests of zero restrictions on the parameters of VAR models. However, the existing test
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procedures for checking the linear causality in mean are based on the iid innovation
assumption, while several empirical analysis contradict this setting. For instance, Bataa
et al. (2009) underlined the presence of volatility breaks in their data set. In this paper,
we use our theoretical results on the OLS and ALS estimation to propose new Wald
tests for linear causality in mean adapted to the framework of non-stationary volatility.
The asymptotic chi-square distribution of the new Wald type statistic obtained from
the ALS approach is derived uniformly with respect to the bandwidth(s).

The structure of the paper is as follows. Section 2 outlines the heteroscedastic VAR
model, introduces the assumptions and the definitions of OLS and GLS estimators.
Section 3 contains the results on the asymptotic behavior of the OLS and the infeasible
Generalized Least Squares estimators. We also propose an estimator for the asymptotic
variance of the OLS estimator. The ALS estimator based on kernel smoothing of
OLS residuals is proposed in Section 4 as a feasible asymptotically equivalent version
of GLS estimator. The asymptotic equivalence between ALS and GLS estimators is
proved uniformly in the bandwidths involved in volatility estimation. To prove this
equivalence we use, among other technical arguments, a recent version of a uniform
CLT for martingale differences arrays obtained by Bae et al. (2010), Bae and Choi
(1999). A procedure for estimating the asymptotic variance of the ALS estimator is
also provided. The application of the new inference methodologies to the test of the
linear Granger causality in mean in the presence of time-varying volatility is presented
in Section 5. The benefit from using our new Wald type test statistics and the failure
of the classical Wald test designed for iid innovations is illustrated through an example.
In section 6 the finite sample properties of the different tests considered in this paper
are studied by mean of Monte Carlo experiments. The better precision of the ALS
estimator when compared to the OLS estimator is also highlighted. The proofs are
relegated to the appendix.

The following notations will be used throughout in the paper. We denote by A⊗B
the Kronecker product of two matrices A and B, and A ⊗ A by A⊗2. The vector
obtained by stacking the columns of A is denoted vec(A). The symbol ⇒ denotes the
convergence in distribution and we denote by P−→ the convergence in probability. We
denote by [u] the integer part of a real number u. The determinant of a square matrix
A is denoted by det A.

2. The model and least squares estimation of the parameters

Let us consider the observations X−p+1, . . . , X0, X1, . . . , XT generated by the fol-
lowing VAR model

Xt = A1Xt−1 + · · ·+ ApXt−p + ut (2.1)
ut = Htεt,

where the Xt’s are d-dimensional vectors. The stability condition on the matrices Ai,
detA(z) 6= 0 for all |z|≤1 with A(z)=Id−

∑p
i=1Aiz

i and Id denotes the d×d identity
matrix, is assumed to be hold. For a random variable x we define ‖ x ‖r= (E ‖ x ‖r)1/r,
where ‖ x ‖ denotes the Euclidean norm. We also define Ft as the σ-field generated
by {εs : s ≤ t}. The following assumption on the Ht’s and the process (εt) gives the
framework of our paper.
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Assumption A1: (i) The d × d matrices Ht are invertible and satisfy H[Tr] =
G(r), where the components of the matrix G(r) := {gkl(r)} are measurable deter-
ministic functions on the interval (0, 1], such that supr∈(0,1] |gkl(r)| < ∞, and each gkl

satisfies a Lipschitz condition piecewise on a finite number of some sub-intervals that
partition (0, 1]. The matrix Σ(r) = G(r)G(r)′ is assumed positive definite for all r.
(ii) The process (εt) is α-mixing and such that E(εt | Ft−1) = 0, E(εtε

′
t | Ft−1) = Id

and the components εkt of the process (εt) satisfy supt ‖ εkt ‖4µ< ∞ for some µ > 1
and all k ∈ {1, . . . , d}.

The assumption A1 generalizes the assumption of Xu and Phillips (2008) to the
multivariate case. From the assumption E(εt | Ft−1) = 0, the innovations are possibly
serially dependent. However since G(r) is deterministic and E(εtε

′
t | Ft−1) = Id, we do

not allow the error process to follow a multivariate GARCH model. Cavaliere, Rahbek
and Taylor (2007) considered similar volatility structure to ours. Their assumption is
slightly different from A1 in the sense that they do not require a Lipschitz condition
and allow for a countable number of jumps. Boswijk and Zu (2007) allow the matrix
Ht to be possibly stochastic, but requires the volatility process to be continuous with
other additional assumptions, which in particular excludes important cases like abrupt
shifts. Hafner and Herwartz (2009) assumed no structure on the volatility of the error
process (ut) and allow for conditional heteroscedasticity. Nevertheless their framework
excludes the use of information on the volatility structure and could result in a loss of
efficiency in the statistical inference of the model. In addition Hafner and Herwartz
(2009) also assumed

lim
T→∞

T−1
T∑

t=1

Σt = Σ̇, and lim
T→∞

T−1
T∑

t=1

E{(X̃t−1X̃
′
t−1)⊗ (utu

′
t)} = W,

where Σt = E(utu
′
t), X̃t−1 = (X ′

t−1, . . . , X
′
t−p)

′ ∈ Rpd and W , Σ̇ are positive definite
matrices, and this could be viewed as too restrictive. If we suppose that the volatility
matrix Ht is constant, we retrieve the standard homoscedastic case. However the
assumption of standard errors is often considered to be too restrictive for macroeco-
nomic or financial applications. Indeed many applied studies pointed out that such
data may display unconditional non-stationary volatility (see e.g. Kim and Nelson
(1999), Warnock and Warnock (2000) or Batbekh et al. (2007)). Stărică and Granger
(2005) found that when large samples of stock returns are considered, taking into
account shifts for the unconditional volatility instead of assuming a stationary model
as a GARCH(1,1) improve the volatility forecasts.

Let us denote by θ0 = (vec (A1)′, . . . , vec (Ap)′)′ ∈ Rpd2
the vector of the true

parameters. The equation (2.1) becomes

Xt = (X̃ ′
t−1 ⊗ Id)θ0 + ut

ut = Htεt,

where we keep the notation X̃t−1 = (X ′
t−1, . . . , X

′
t−p)′. Using this expression we first

define the OLS estimator
θ̂OLS = Σ̂−1

X̃
vec

(
Σ̂X

)
,
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where

Σ̂X̃ = T−1
T∑

t=1

X̃t−1X̃
′
t−1 ⊗ Id and Σ̂X = T−1

T∑
t=1

XtX̃
′
t−1.

Next, let us define the unconditional variance Σt := HtH
′
t and the Generalized Least

Squares (GLS) estimator that takes into account a time-varying Σt, that is

θ̂GLS = Σ̂−1

X̃
vec

(
Σ̂X

)
, (2.2)

with

Σ̂X̃ = T−1
T∑

t=1

X̃t−1X̃
′
t−1 ⊗ Σ−1

t and Σ̂X = T−1
T∑

t=1

Σ−1
t XtX̃

′
t−1.

Note that since Ht is assumed invertible, Σt is positive definite for all t. If we suppose
that the volatility matrix Σt is constant in time, it is easy to see that θ̂GLS = θ̂OLS .
However the GLS estimator is in general infeasible since the true volatility matrix
appears in the expression (2.2). In the next section we compare the efficiency of the
OLS and GLS estimators.

3. Asymptotic behaviour of the estimators

In order to state the first result of the paper, we need to introduce the following
notations. Since we assumed that detA(z) 6= 0 for all |z| ≤ 1, it is well known that

Xt =
∞∑

i=0

ψiut−i, (3.1)

where ψ0 = Id and the components of the ψi’s are absolutely summable (see e.g.
Lütkepohl (2005, pp 14-16)). From the expression (3.1) we also write

X̃t =
∞∑

i=0

ψ̃iu
p
t−i,

up
t is given by up

t = 1p ⊗ ut, where 1p is the vector of ones of dimension p and

ψ̃i =




ψi 0 0 0
0 ψi−1 0 0

0 0
. . . 0

0 0 0 ψi−p+1


 ,

taking ψj = 0 for j < 0. Let us define by 1p×p the p×p matrix with components equal
to one. The following proposition gives the asymptotic behavior of the OLS and GLS
estimators. For the sake of brevity we only investigate the asymptotic normality, the
consistency is in some sense an easier matter and is hence omitted.

Proposition 3.1. If Assumption A1 holds true, then:

1.
T

1
2 (θ̂GLS − θ0) ⇒ N (0,Λ−1

1 ), (3.2)
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where

Λ1 =
∫ 1

0

∞∑

i=0

{
ψ̃i(1p×p ⊗ Σ(r))ψ̃′i

}
⊗ Σ(r)−1dr

is positive definite;

2.
T

1
2 (θ̂OLS − θ0) ⇒ N (0, Λ−1

3 Λ2Λ−1
3 ), (3.3)

where

Λ2 =
∫ 1

0

∞∑

i=0

{
ψ̃i(1p×p ⊗ Σ(r))ψ̃′i

}
⊗ Σ(r)dr

and

Λ3 =
∫ 1

0

∞∑

i=0

{
ψ̃i(1p×p ⊗ Σ(r))ψ̃′i

}
⊗ Id dr

are positive definite;

3. The asymptotic variance of θ̂GLS is smaller than the asymptotic variance of θ̂OLS,
that is the matrix Λ−1

3 Λ2Λ−1
3 − Λ−1

1 is positive semidefinite.

If we suppose that the error process is homoscedastic, that is Σt = Σu for all t, and
since we assumed E(εtε

′
t | Ft−1) = Id, we obtain

Λ1 = E
[
X̃tX̃

′
t

]
⊗ Σ−1

u , Λ2 = E
[
X̃tX̃

′
t

]
⊗ Σu and Λ3 = E

[
X̃tX̃

′
t

]
⊗ Id,

so that we retrieve the standard result of the iid case (see e.g. Lütkepohl (2005, p 74))

Λ−1
1 = Λ−1

3 Λ2Λ−1
3 = {E[X̃tX̃

′
t]}−1 ⊗ Σu,

although here the error process is assumed dependent. Note that in the homoscedastic
case the OLS and ALS estimator have the same efficiency.

In the univariate case (d = 1), Σ(r) belongs to the real line so that Λ1 simplifies to

Λ1 =
∞∑

i=0

ψ̃i1p×pψ̃i, (3.4)

where the ψ̃i’s are p× p diagonal matrices. This expression corresponds to the asymp-
totic covariance matrix obtained in equation (10) of Xu and Phillips (2008). Moreover,

Λ2 =
∫ 1

0

Σ(r)2dr

∞∑

i=0

{
ψ̃i1p×pψ̃i

}
, Λ3 =

∫ 1

0

Σ(r)dr

∞∑

i=0

{
ψ̃i1p×pψ̃i

}
,

and then we retrieve equation (5) in Xu and Phillips (2008).
A nice feature of the GLS estimator in the univariate case is that the covariance

matrix of the asymptotic distribution does not depend on the volatility function Σ(r).
In the multivariate case the simplification (3.4) is still possible if Σ(r) = σ2(r)Id, with
σ2(r) a scalar function. Nevertheless, we show in Example 3.1 below that (3.4) does
not hold in the general multivariate framework and the asymptotic covariance matrix
in (3.2) depends on the volatility function Σ(r). Moreover, our example shows that
the covariance matrices in (3.2) and (3.3) can be equal in some particular cases of
heteroscedasticity but in general they could be very different.
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Example 3.1. Consider the bivariate model (2.1) with p = 1 and

A1 =
(

a1 0
0 a2

)
, Σ(r) =

(
Σ1(r) 0

0 Σ2(r)

)
.

In this simple case let us compare the asymptotic variances

Varas

(
θ̂2,GLS

)
= (1− a2

1)×
(∫ 1

0

Σ1(r)/Σ2(r)dr

)−1

and

Varas

(
θ̂2,OLS

)
= (1− a2

1)×





∫ 1

0
Σ1(r)Σ2(r)dr

(∫ 1

0
Σ1(r)dr

)2





,

that is the asymptotic variances of the GLS and OLS estimators of the second com-
ponent of the vector θ0 = (a1, 0, 0, a2)′ (which corresponds to the element (2, 1) of the
matrix A1).

First we notice that Varas

(
θ̂2,GLS

)
depends on the volatility structure when Σ1(r) 6=

Σ2(r). In order to illustrate the difference between the variances of θ̂2,OLS and θ̂2,GLS,
we plot the ratio

Varas

(
θ̂2,OLS

)
/Varas

(
θ̂2,GLS

)
(3.5)

in Figure 7.1 taking

Σ1(r) = σ2
10 + (σ2

11 − σ2
10)× 1[τ1,1](r) and Σ2(r) = σ2

20 + (σ2
21 − σ2

20)× 1[τ2,1](r),

where and τi ∈ [0, 1] with i ∈ {1, 2}. This specification of the volatility function is
inspired by Example 1 of Xu and Phillips (2008) (see also Cavaliere (2004)). On the
left graphic we take τ1 = τ2 and σ2

10 = σ2
20 = σ2

11 = 1 but σ2
21 ≥ 1, so that only

(X2t) is heteroscedastic in general. When σ2
21 = 1 or τ1 ∈ {0, 1}, the process (Xt) is

homoscedastic. On the right graphic we take σ2
10 = σ2

20 = 1 and σ2
11 = σ2

21 = 3 but
τ1 6= τ2 in general. When τ1 = τ2, we have Σ1(r) = Σ2(r) and hence we retrieve the
case studied in Example 1 of Xu and Phillips (2008).

As expected the ratio (3.5) is equal to one in the homoscedastic case in the left
graphic. However, departure from this case clearly shows that the difference between
the variances of the two estimators is increasing with σ2

21. In the right graphic we
can see that when τ2 = 0 or 1 the ratio in (3.5) is equal to one although (Xt) is
heteroscedastic. The variances Varas(θ̂2,OLS) and Varas(θ̂2,GLS) are different when
τ2 ∈ (0, 1) and the largest relative difference is attained when we set the volatility shifts
in the middle of the sample.

It appears that the GLS estimator is more efficient than the OLS estimator in general
when the matrix Σt is time-varying. Nevertheless the assumption of known volatility
structure needed to construct the GLS estimator could be unrealistic in practice.
Moreover, the asymptotic distribution of the GLS estimator depends on the unknown
volatility. In the OLS estimation approach only the asymptotic distribution of the
coefficients estimator depends on the unknown volatility. In addition, we can provide
simple consistent estimators of Λ2 and Λ3, which could be further used for instance to
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build confidence intervals for the OLS estimators. For the purpose of estimation of Λ2

and Λ3 let us consider the matrices Ω2 :=
∫ 1

0
Σ(r)⊗2dr, Ω3 :=

∫ 1

0
Σ(r)dr and denote

the OLS residuals by ût.

Proposition 3.2. Under Assumption A1 we have

Ω̂2 := T−1
T∑

t=2

ût−1û
′
t−1 ⊗ ûtû

′
t = Ω2 + op(1), (3.6)

Ω̂3 := T−1
T∑

t=1

ûtû
′
t = Ω3 + op(1), (3.7)

Λ̂2 := T−1
T∑

t=1

X̃t−1X̃
′
t−1 ⊗ ûtû

′
t = Λ2 + op(1). (3.8)

Λ̂3 := Σ̂X̃ = Λ3 + op(1), (3.9)

Using (3.6) and (3.7) and some additional algebra, we can define alternative consis-
tent estimators of Λ2 and Λ3. Indeed, it is shown in the appendix that

vec (Λ2) =
{
I(pd2)2 − (∆⊗ Id)⊗2

}−1 vec
(

Ω2 0d2×(p−1)d2

0(p−1)d2×d2 0(p−1)d2×(p−1)d2

)
(3.10)

and

vec (Λ3) =
{
I(pd2)2 − (∆⊗ Id)⊗2

}−1 vec
(

Ω3 ⊗ Id 0d2×(p−1)d2

0(p−1)d2×d2 0(p−1)d2×(p−1)d2

)
, (3.11)

where 0d2×(p−1)d2 is the null matrix of dimension d2 × (p− 1)d2 and

∆ =




A1 . . . Ap−1 Ap

Id 0 . . . 0
. . . . . .

...
0 Id 0




is a matrix of dimension pd×pd. Therefore replacing Ω2 and Ω3 by respectively Ω̂2 and
Ω̂3, and the A′is by their OLS estimates in the expression of ∆ in (3.10) and (3.11), we
obtain consistent estimators of Λ2 and Λ3. These estimators will be denoted by Λ̂2δ

and Λ̂3δ, where the subscript δ refer to the use of the OLS estimator of ∆.

4. Adaptive estimation

In the previous section we pointed out that the GLS estimator is generally infeasible
in applications. Therefore we consider a feasible weighted estimator obtained using
nonparametric estimation of the volatility function. Our approach generalizes the
work of Xu and Phillips (2008) to the multivariate case. Let us denote by A ¯ B the
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Hadamard (entrywise) product of two matrices of same dimension A and B. Define
the symmetric matrix

Σ̌0
t =

T∑

i=1

wti ¯ ûiû
′
i,

where, as before the ûi’s are the OLS residuals and the kl−element, k ≤ l, of the d× d
matrix of weights wti is given by

wti(bkl) =

(
T∑

i=1

Kti(bkl)

)−1

Kti(bkl),

with bkl the bandwidth and

Kti(bkl) =
{

K( t−i
Tbkl

) if t 6= i,

0 if t = i.

The kernel function K(z) is bounded nonnegative and such that
∫∞
−∞K(z)dz = 1. For

all 1 ≤ k ≤ l ≤ d the bandwidth bkl belongs to a range BT = [cminbT , cmaxbT ] with
cmin, cmax > 0 some constants and bT ↓ 0 at a suitable rate that will be specified
below.

When using the same bandwidth bkl ∈ BT for all the cells of Σ̌0
t , since ûi, i =

1, ..., T are almost sure linear independent each other, Σ̌0
t is almost sure positive definite

provided T is sufficiently large. A similar estimator is considered by Boswijk and Zu
(2007). When using several bandwidths bkl it is no longer clear that the symmetric
matrix Σ̌0

t is positive definite. Then we propose to use a regularization of Σ̌0
t , that is

to replace it by the positive definite matrix

Σ̌t =
{(

Σ̌0
t

)2
+ νT Id

}1/2

where νT > 0, T ≥ 1, is a sequence of real numbers decreasing to zero at a suitable rate
that will be specified below. Our simulation experience indicates that in applications
with moderate and large samples νT could be even set equal to 0.

In practice the bandwidths bkl can be chosen by minimization of a cross-validation
criterion like

T∑
t=1

‖ Σ̌t − ûtû
′
t ‖2,

with respect to all bkl ∈ BT , 1 ≤ k ≤ l ≤ d, where ‖ · ‖ is some norm for a square
matrix, for instance the Frobenius norm that is the square root of the sum of the
squares of matrix elements. Our theoretical results below are obtained uniformly with
respect to the bandwidths bkl ∈ BT and this brings a justification for the common
cross-validation bandwidth selection approach in the framework we consider. To our
best knowledge, this justification is new and hence completes previous procedures of
Xu and Phillips (2008) and Boswijk and Zu (2007).

Let us now introduce the following adaptive least squares (ALS) estimator

θ̂ALS = Σ̌−1

X̃
vec

(
Σ̌X

)
,
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with

Σ̌X̃ = T−1
T∑

t=1

X̃t−1X̃
′
t−1 ⊗ Σ̌−1

t , and Σ̌X = T−1
T∑

t=1

Σ̌−1
t XtX̃

′
t−1.

Assumption A1’: Suppose that all the conditions in Assumption A1(i) hold true.
In addition:

(i) infr∈(0,1] λmin(Σ(r)) > 0 where λmin(Γ) denotes the smallest eigenvalue of the
symmetric matrix Γ.

(ii) supt ‖εkt‖8 < ∞ for all k ∈ {1, ..., d}.
Assumption A2: (i) The kernel K(·) is a bounded density function defined on

the real line such that K(·) is nondecreasing on (−∞, 0] and decreasing on [0,∞) and∫
R v2K(v)dv < ∞. The function K(·) is differentiable except a finite number of points
and the derivative K ′(·) is an integrable function. Moreover, the Fourier Transform
F [K](·) of K(·) satisfies

∫
R |sF [K](s)| ds < ∞.

(ii) The bandwidths bkl, 1 ≤ k ≤ l ≤ d, are taken in the range BT = [cminbT , cmaxbT ]
with 0 < cmin < cmax < ∞ and bT + 1/Tb2+γ

T → 0 as T →∞, for some γ > 0.

Assumption A1’ and A2(ii) are natural extensions to the multivariate framework
of the assumptions used in Theorem 2 of Xu and Phillips (2008). The conditions on
the kernel function are convenient assumptions satisfied by almost all commonly used
kernels. These conditions allow us for simpler technical arguments when investigating
the rates of convergence uniformly with respect to the bandwidths. The condition on
the sequence bT , T ≥ 1, is slightly more restrictive than the one imposed by Xu and
Phillips (2008) in the univariate case, that is bT + 1/Tb2

T → 0, and this is the price we
pay for obtaining the results uniformly in the bandwidths in a range BT .

Let Ω1 :=
∫ 1

0
Σ(r) ⊗ Σ(r)−1dr. In the sequel, we say that a sequence of random

matrices AT , T ≥ 1 is op(1) uniformly with respect to (w.r.t.) bkl ∈ BT as T →
∞ if sup1≤k≤l≤d supbkl∈BT

‖vec (AT ) ‖ P−→ 0. The following proposition gives the
asymptotic behavior of the adaptive estimators uniformly w.r.t the bandwidths.

Proposition 4.1. Under A1’ and A2 and provided Tν2
T → 0, uniformly w.r.t. bkl ∈

BT as T →∞
Λ̌1 := Σ̌X̃ = Λ1 + op(1),

Ω̌1 := T−1
T∑

t=1

Σ̌t ⊗ Σ̌−1
t = Ω1 + op(1)

and √
T (θ̂ALS − θ̂GLS) = op(1).

Proposition 4.1 shows that the ALS and GLS estimators have the same asymptotic
behavior, that is the ALS estimator is consistent in probability and

√
T−asymptotically

normal as soon as the GLS estimator has such properties. The results remains true
even if the bandwidths bkl ∈ BT are data dependent.
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On the other hand, similarly to (3.10) and (3.11),

vec (Λ1) =
{
I(pd2)2 − (∆⊗ Id)⊗2

}−1 vec
(

Ω1 0d2×(p−1)d2

0(p−1)d2×d2 0(p−1)d2×(p−1)d2

)
. (4.1)

Then we also obtain an alternative consistent estimator (uniformly w.r.t. bkl ∈ BT )
Λ̌1δ of Λ1 by replacing Ω1 by Ω̌1, and the A′is by their ALS estimates in the expression
of ∆ in (4.1).

5. Application to the test of the linear Granger causality in mean

In this section we propose tests for linear causality in mean in our framework using
the OLS and the adaptive approaches. Let us consider the subvectors X1t and X2t

such that Xt = (X ′
1t, X

′
2t)

′ where X1t is of dimension d1 < d, and d2 = d − d1. It is
said that (X2t) does not cause linearly (X1t) in mean if we have

EL(X1t | X1t−1, . . . ) = EL(X1t | X1t−1, X2t−1, . . . ),

where EL(X1t | . . . ) is the linear conditional expectation. In our framework since we
assumed that (εt) is a martingale difference, the linear predictor is optimal. Therefore
we have EL(X1t | . . . ) = E(X1t | . . . ), where E(X1t | . . . ) is the conditional expecta-
tion, and we simply refer to the linear Granger causality in mean as Granger causality
in mean in the sequel. We test the null hypothesis that (X2t) does not Granger cause
(X1t) in mean. It is well known that this amounts to test the null hypothesis that
Ai,12 = 0 for all 1 ≤ i ≤ p versus the alternative that there exists i ∈ {1, . . . , p} such
that Ai,12 6= 0, where the Ai,12’s are the matrices given by the d1 first rows and d2

last columns of the Ai’s (see e.g. Lütkepohl (2005)). Define the block diagonal matrix
R = diag(C, . . . , C) of dimension pd1d2 × pd2, where C is a d1d2 × d2-dimensional
matrix given by

C =




0d1×d1d Id1 0d1×d2 0

0
. . . . . . 0

0 0 Id1 0d1×d2


 .

The matrix R is such that we have Rθ0 = r with r is the null vector of dimension
pd1d2 under the null hypothesis. Therefore the tested hypotheses can be written as

H0 : Rθ0 = 0 vs. H1 : Rθ0 6= 0.

In this paper we focus on the Wald type tests, because they are the most commonly
used tests by the practitioners. We first consider the ALS estimator to build tests for
Granger causality in mean. Let us introduce the adaptive Wald test statistics

QALS = T θ̂′ALSR′(RΛ̌−1
1 R′)−1Rθ̂ALS and Qδ

ALS = T θ̂′ALSR′(RΛ̌−1
1δ R′)−1Rθ̂ALS .

The following proposition gives the asymptotic distribution of the ALS test statistics
as a simple consequence of Proposition 4.1. We say that a sequence of random variables
AT , T ≥ 1, converges in law to a chi-square distribution χ2

n uniformly w.r.t. bkl ∈ BT

as T → ∞, if there exists a sequence of random variables ÃT , T ≥ 1, independent of
bkl ∈ BT such that ÃT ⇒ χ2

n and AT − ÃT = op(1) uniformly w.r.t. bkl ∈ BT .
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Proposition 5.1. Under the assumptions of Proposition 4.1, uniformly w.r.t. bkl ∈
BT as T →∞

QALS ⇒ χ2
pd1d2

, (5.1)

Qδ
ALS ⇒ χ2

pd1d2
(5.2)

and
Qmax

ALS = max{QALS , Qδ
ALS} ⇒ χ2

pd1d2
. (5.3)

Based on Proposition 5.1 we propose the following procedure for testing Granger
causality in mean: for a fixed asymptotic level α, reject the null hypothesis H0 if
χ2

pd1d2,1−α < Qmax
ALS , where χ2

pd1d2,1−α is the (1 − α)th quantile of the χ2
pd1d2

law.
Similar procedures could be defined using QALS or Qδ

ALS instead of Qmax
ALS , but the

latter statistic is expected to yield a more powerful test. The tests based on the ALS
estimation will be denoted WALS , W δ

ALS and Wmax
ALS with obvious notations.

Let us now consider the following Wald test statistics based on the OLS estimation

QOLS = T θ̂′OLSR′(RΛ̂−1
3 Λ̂2Λ̂−1

3 R′)−1Rθ̂OLS ,

Qδ
OLS = T θ̂′OLSR′(RΛ̂−1

3δ Λ̂2δΛ̂−1
3δ R′)−1Rθ̂OLS ,

and the commonly used standard Wald test statistic

QS = T θ̂′OLSR′(RĴ−1R′)−1Rθ̂OLS , with Ĵ =

{
T−1

T∑
t=1

X̃t−1X̃
′
t−1

}
⊗ Ω̂−1

3 .

The following proposition gives the asymptotic behavior of the OLS and standard test
statistics.

Proposition 5.2. Under A1 we have as T →∞

QOLS ⇒ χ2
pd1d2

, (5.4)

Qδ
OLS ⇒ χ2

pd1d2
, (5.5)

Qmax
OLS = max{QOLS , Qδ

OLS} ⇒ χ2
pd1d2

, (5.6)

and

QS ⇒ Z(δ) :=
pd1d2∑

i=1

κiZ
2
i , (5.7)

where the Zi’s are independent N (0, 1) variables, δ = (κ1, . . . , κpd1d2)
′ is the vector of

the eigenvalues of the matrix

Ψ = (RJ−1R′)−
1
2 (RΛ−1

3 Λ2Λ−1
3 R′)(RJ−1R′)−

1
2 , (5.8)

with

J =
∫ 1

0

∞∑

i=0

{
ψ̃i(1p×p ⊗ Σ(r))ψ̃′i

}
dr ⊗ Ω−1

3 .



Causality tests with heteroscedastic errors 13

It is easy to see from (3.7) and (3.9) that Ĵ is a consistent estimator of J . The
results (5.4), (5.5) and (5.7) are direct consequences of Proposition 3.1 and 3.2, so that
the proof is omitted. In the Appendix we only give the proof of (5.6). Similarly to the
tests built using the ALS approach, tests using the results (5.4), (5.5) and (5.6) can be
proposed.

When the errors are homoscedastic (Σt = Σu for all t), we obtain J = E[X̃tX̃
′
t] ⊗

Σ−1
u . Recall that in this case we also have Λ−1

3 Λ2Λ−1
3 = {E[X̃tX̃

′
t]}−1⊗Σu, so that we

obtain Ψ = Ipd1d2 and hence we retrieve the standard result QS ⇒ χ2
pd1d2

. However the
κi’s in (5.7) can be quite different from 1 if the volatility of the errors is not constant
as illustrated in the following example.

Example 5.1. Consider the bivariate VAR(1) process Xt = AXt−1 + ut with true
parameter A = 0. Such a model may be used to test Granger causality in mean between
the components of an uncorrelated process. Like in Example 3.1, let us take

Σ(r) =
(

Σ1(r) 0
0 Σ2(r)

)
.

Suppose that one is interested in testing if (X2t) Granger causes (X1t) in mean. Then
R = (0, 0, 1, 0) and the matrix Ψ is a scalar such that

Ψ =
(∫ 1

0

Σ1(r)dr

)−1

×
(∫ 1

0

Σ2(r)dr

)−1

×
∫ 1

0

Σ1(r)Σ2(r)dr.

As a consequence the sum in (5.7) reduces to a single term corresponding to the
coefficient κ1 = Ψ. If we suppose that the error process is homoscedastic, we obtain
κ1 = 1. However in the general heteroscedastic case we have κ1 6= 1. To illustrate this
let us take

Σ1(r) = σ2
10 + (σ2

11 − σ2
10)r

q

and
Σ2(r) = σ2

20 + (σ2
21 − σ2

20)r
q,

as in Example 2 of Xu and Phillips (2008). The values of κ1 are plotted in Figure
7.2 for q = 1, σ10 = σ20 = 1 and σ2

11, σ
2
21 ∈ [0.25, 16]. It can be seen that in the

heteroscedastic case κ1 can be quite different from 1 and therefore in this case using
the standard Wald procedure based on QS for testing if (X2t) Granger cause (X1t) in
mean could be quite a bad idea.

The tests based on the results (5.4), (5.5) and (5.6) will be denoted WOLS , W δ
OLS ,

Wmax
OLS , and the standard test based on the statistic QS and the χ2

pd1d2
distribution will

be denoted WS .

6. Monte Carlo experiments

We investigated the finite sample properties of the OLS, GLS and ALS estimating
approaches for VAR analysis using simulations and several real data sets. For the
sake of illustration we report here a small part of the results obtained using simulated
data. More details are provided in Patilea and Raïssi (2010). Consider bivariate AR(1)
processes Xt = (X1t, X2t)′ simulated using the model Xt = AXt−1 + ut with

A =
(

a11 a12

a21 a22

)
and ut = Htεt, εt ∼ N (0, I2) iid, (6.1)
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and taking a21 = 0.1 in all the experiments. In this framework (X2t) Granger causes
(X1t) in mean iff a12 6= 0. The volatility structure considered is given by

Σ(r) =
(

(1 + γ1r)(1 + ρ2) ρ(1 + γ1r)
1
2 (1 + γ2r)

1
2

ρ(1 + γ1r)
1
2 (1 + γ2r)

1
2 1 + γ2r

)
,

so that the variances of the error components have a linear trending behavior. Inspired
by the various real data series that we investigated, we set ρ = 0.6 and γ1 = 20,
γ2 = 20/3. For the ALS approach the bandwidth is chosen by cross-validation in a given
range as described in Assumption A2, and we take νT = 0 in all the experiments. In
the sequel the results for the GLS estimation are given only for the sake of comparison,
this method being infeasible in practice. In each experiment N = 1000 independent
trajectories are simulated using (6.1).

First we examine the properties of the estimation methods presented in the previous
sections. The Root Mean Squared Error (RMSE) of the OLS, ALS and GLS methods
of the autoregressive parameters is considered in Figure 7.3. In this experiment only
a11 = a22 vary and we set a21 = 0.1, a12 = 0. The length of the simulated series is
T = 100. As expected the infeasible GLS estimation outperforms the other methods.
However the ALS procedure clearly better estimate the autoregressive parameters when
compared to the OLS estimation.

Next we study the empirical size of the Wald tests under comparison. Therefore
we take a12 = 0, so that (X2t) does not Granger causes (X1t) in mean. We set
a11 = a22 = 0.2. The simulated processes are of lengths T = 50, T = 100, T = 200 and
T = 400. We test the null hypothesis a12 = 0 at the asymptotic nominal level 5% in
Table 1.† Since N = 1000 replications are performed and assuming that the size of the
tests is 5%, the relative rejection frequencies should be between 3.65% and 6.35% with
probability close to 0.95. In Table 1 the relative rejection frequencies are displayed in
bold type when they are outside these size bounds. We first compare the WOLS , WS ,
WALS and WGLS . In accordance with our theoretical results, the WS test could be
far from the nominal level even for large samples. The relative rejection frequencies
of the WOLS , WALS and WGLS tests converge to the asymptotic nominal level as the
samples increase. However we note that the WALS test have better results than the
WOLS test for T = 50. It also appears that the infeasible WGLS test have a better
control of the error of first kind than the other tests for T = 50. We remark that the
tests W δ

OLS , W δ
ALS , W δ

GLS and Wmax
OLS , Wmax

ALS , Wmax
GLS are more liberal than the other

tests for small samples.
A further set of Monte Carlo experiments has been conducted to analyze the empiri-

cal power of the studied tests. For each value a12 ∈ {±0.8,±0.6, · · · ,±0.2, 0}, a number
of N = 1000 independent trajectories of the VAR(1) defined in (6.1) are simulated with
a11 = a22 = 0.2. The null hypothesis a12 = 0 is tested at the asymptotic nominal level
5%. We only consider samples of length T = 100. The results are given in Table
2. The WGLS tests appear more powerful than the other tests. It also emerges that
the ALS tests are more powerful than the OLS tests in presence of unconditional
heteroscedasticity. This can be explained by the fact that the ALS tests are slightly
more sophisticated than the OLS tests. We note a substantial gain of power for the

†Several other values of the autoregressive parameters and specifications of the heteroscedasticity
were experimented, the conclusions were similar but are not reported here.
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Wmax
OLS , Wmax

ALS , and Wmax
GLS when compared to the other tests.

The conclusion of this small simulation experiment is that when the process is non
stationary but stable, the ALS estimation procedure give significant improvements
in the estimation of VAR models when compared to the standard OLS estimation
method. We also noted significant improvements of the ALS based tests in the analysis
of the Granger causality in mean when compared to the OLS based tests in the
unconditionally heteroscedastic case. Indeed from our simulation results the ALS tests
have a better control of the error of first kind and a greater ability to detect the
causality in mean than the OLS based tests in our framework. Finally, as expected
we found that the standard Wald test is not reliable for the test of autoregressive
parameter restrictions when the process is stable but not stationary.

7. Appendix: Proofs

We first state some intermediate results. Define the linear processes

ϑt =
∞∑

i=0

Ciu
k
t−i and ζt =

∞∑

i=0

Diu
q
t−i,

where the components of the Ci’s and Di’s are absolutely summable. The vector uk
t is

given by uk
t = 1k ⊗ ut, where 1k is the vector of ones of dimension k. Let us introduce

vt = vec (ϑtζ
′
t). The following lemmas are straight extensions of the results obtained

in Xu and Phillips (2008) and Phillips and Xu (2005) to the multivariate case. The
proof is omitted, but could be found in Patilea and Raïssi (2010).

Lemma 7.1. (a) If sup1≤t≤T (‖ εit ‖2µ) < ∞, 1 ≤ µ ≤ ∞, for all i ∈ {1, . . . , d},
then we have sup1≤t≤T (‖ vnt ‖µ) < ∞.
(b) If sup1≤t≤T (‖ εit ‖4µ) < ∞, 1 ≤ µ ≤ ∞, for all i ∈ {1, . . . , d}, then we have
sup1≤t≤T (‖ ϑjt ‖4µ) < ∞ for all j ∈ {1, . . . , kd}.
(c) If sup1≤t≤T (‖ εit ‖4µ) < ∞, 1 ≤ µ ≤ ∞, for all i ∈ {1, . . . , d}, then we have
sup1≤t≤T (‖ ϑjt−1ϑlt−1uj′tul′t ‖µ) < ∞ for all j, j′, l, l′ ∈ {1, . . . , kd}.

Lemma 7.2. Under A1 we have

lim
T→∞

E
[
ϑ[Tr]−1ζ

′
[Tr]−1

]
=

∞∑

i=0

Ci {1k×q ⊗ Σ(r)}D′
i, (7.1)

for values r ∈ (0, 1] at which the functions gij(r) are continuous, and where 1k×q is
the matrix of ones of dimension k × q.

We introduce yt = vec (ϑt−1ϑ
′
t−1 ⊗ Σ−1

t utu
′
tΣ
−1
t ) and zt = vec (ϑt−1ϑ

′
t−1 ⊗ utu

′
t).

Lemma 7.3. Under A1 we have

T−1
T∑

t=1

vt
P−→ lim

T→∞
T−1

T∑
t=1

E(vt). (7.2)
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T−1
T∑

t=1

yt
P−→ lim

T→∞
T−1

T∑
t=1

E(yt) = lim
T→∞

T−1
T∑

t=1

vec
{
E(ϑt−1ϑ

′
t−1)⊗ Σ−1

t

}
. (7.3)

T−1
T∑

t=1

zt
P−→ lim

T→∞
T−1

T∑
t=1

E(zt) = lim
T→∞

T−1
T∑

t=1

vec
{
E(ϑt−1ϑ

′
t−1)⊗ Σt

}
. (7.4)

Lemma 7.4. Under A1 we have

T−1
T∑

t=1

ϑt−1ϑ
′
t−1 ⊗ Σ−1

t
P−→

∫ 1

0

∞∑

i=0

{Ci(1k×k ⊗ Σ(r))C ′i} ⊗ Σ(r)−1dr, (7.5)

T−1
T∑

t=1

ϑt−1ϑ
′
t−1 ⊗ Id

P−→
∫ 1

0

∞∑

i=0

{Ci(1k×k ⊗ Σ(r))C ′i} dr ⊗ Id. (7.6)

In addition we also have

T−
1
2

T∑
t=1

vec (Σ−1
t utϑ

′
t−1) ⇒ N (0, Ξ1) (7.7)

T−
1
2

T∑
t=1

vec (utϑ
′
t−1) ⇒ N (0, Ξ2), (7.8)

where

Ξ1 =
∫ 1

0

∞∑

i=0

{Ci(1k×k ⊗ Σ(r))C ′i} ⊗ Σ(r)−1dr,

and

Ξ2 =
∫ 1

0

∞∑

i=0

{Ci(1k×k ⊗ Σ(r))C ′i} ⊗ Σ(r)dr.

Now we have the ingredients for proving our results.

Proof of Proposition 3.1 1) and 2). For the proof of (3.2) we write using (2.1)
and (2.2)

T
1
2 (θ̂GLS − θ0) = Σ̂−1

X̃
vec (Σ̂Xu), (7.9)

with

Σ̂Xu = T−
1
2

T∑
t=1

Σ−1
t utX̃

′
t−1.

Since we have X̃t =
∑∞

i=0 ψ̃iu
p
t−i, it follow from Lemma 7.4 that

Σ̂X̃ =
∫ 1

0

∞∑

i=0

{
ψ̃i(1p×p ⊗ Σ(r))ψ̃′i

}
⊗ Σ(r)−1dr + op(1) = Λ1 + op(1).
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Using (7.7) we obviously have

Σ̂Xu ⇒ N (0,Λ1),

so that we obtain the result (3.2).
For the proof of (3.3) we write similarly to (7.9)

T
1
2 (θ̂OLS − θ0) = Σ̂−1

X̃
vec (Σ̂Xu),

with

Σ̂Xu = T−
1
2

T∑
t=1

utX̃
′
t−1.

From (7.6) and (7.8) we write

Σ̂X̃ =
∫ 1

0

∞∑

i=0

{
ψ̃i(1p×p ⊗ Σ(r))ψ̃′i

}
dr ⊗ Id + op(1) = Λ3 + op(1), (7.10)

and
vec (Σ̂Xu) ⇒ N (0, Λ2),

with

Λ2 =
∫ 1

0

∞∑

i=0

{
ψ̃i(1p×p ⊗ Σ(r))ψ̃′i

}
⊗ Σ(r)dr,

so that we obtain the result (3.3).
In this part we show that Λ3 is positive definite. To this aim it suffices to show that

the matrix Λ̃3 =
∑∞

i=0 ψ̃i(1p×p ⊗ Σ(r))ψ̃′i is positive definite for all r. Let us consider
a pd-dimensional vector λ 6= 0. If Λ̃3 is not positive definite we have

∞∑

i=0

λ′ψ̃i(1p×p ⊗ Σ(r))ψ̃′iλ =
∞∑

i=0

λ̃′iλ̃i =
∞∑

i=0

λ̃2
i = 0,

where λ̃′i = (λ′1ψiG(r), . . . , λ′pψi−p+1G(r)) with obvious notations. Therefore we have
λ̃i = 0 for all i ∈ N. First consider λ̃0. In this case we have ψ0 = Id and ψ−1 = ψ−2 =
... = ψi−p+1 = 0. Since we assumed that Σ(r) is positive definite we can deduce that
λ1 = 0. Similarly λ̃1 implies that λ2 = 0, λ̃2 implies that λ3 = 0 and so on. Thus
λ = 0, which shows that Λ3 is positive definite. Using similar arguments and since
the Kronecker product of two positive definite matrices is positive definite, it can be
shown that the matrices Λ1 and Λ2 are positive definite.

3) Using the Cholesky decomposition for positive semidefinite matrix we can write

∞∑

i=0

{
ψ̃i(1p×p ⊗ Σ(r))ψ̃′i

}
= Z(r)Z ′(r),

and let
Bk(r) = {Z(r)⊗ Σk−3/2(r)}′, k = 1, 2 r ∈ (0, 1].



18 Valentin Patilea and Hamdi Raïssi

Then, by the properties of the Kronecker product we have

Λk =
∫ 1

0

B′
k(r)Bk(r)dr, k = 1, 2,

and

Λ3 =
∫ 1

0

B′
2(r)B1(r)dr =

∫ 1

0

B′
1(r)B2(r)dr.

Define

Λ =
{∫ 1

0

B′
2(r)B2(r)dr

}−1 ∫ 1

0

B′
2(r)B1(r)dr = Λ−1

2 Λ3.

Following the idea of Lavergne (2008) we can write

0 ¿
∫ 1

0

{B1(r)−B2(r)Λ}′{B1(r)−B2(r)Λ}dr

= Λ1 − Λ′
∫ 1

0

B′
2(r)B1(r)dr −

∫ 1

0

B′
1(r)B2(r)drΛ + Λ′Λ2Λ

= Λ1 − Λ3Λ−1
2 Λ3

and this prove the stated result. Notice that the equality between the two asymptotic
variance holds if and only if B1(r) = B2(r)Λ for almost all r ∈ (0, 1]. ¤

Proof of Proposition 3.2 For the proof of (3.7) we write

T−1
T∑

t=1

ûtû
′
t = T−1

T∑
t=1

utu
′
t −

[
p∑

i=1

{
T−1

T∑
t=1

utX
′
t−i

}
(ÂOLS

i −Ai)′
]

−
[

p∑

i=1

(ÂOLS
i −Ai)

{
T−1

T∑
t=1

Xt−iu
′
t

}]

−
[

p∑

i=1

(ÂOLS
i −Ai)

{
T−1

T∑
t=1

Xt−iX
′
t−i

}
(ÂOLS

i −Ai)′
]

,

= c1 + c2 + c3 + c4, (7.11)

with obvious notations. Using similar arguments to that of the proof of (7.8), it is easy
to see that we have

T−1
T∑

t=1

utX
′
t−i = Op(T−

1
2 ) and T−1

T∑
t=1

X ′
t−iut = Op(T−

1
2 ).

Then since ÂOLS
i − Ai = Op(T−

1
2 ), we write c2 = op(1) and c3 = op(1). From

relation (7.6), it is also easy to see that we have c4 = op(1). Let us define wt =
vec(utu

′
t − vec(G(t/T )G(t/T )′). Since {wt,Ft−1} is α-mixing by Theorem 14.1 in

Davidson (1994), and E ‖ wt ‖2< ∞ by A1, we have by the law of large numbers for
L1-mixingales (Andrews (2008))
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T−1
T∑

t=1

vec(utu
′
t) = lim

T→∞
T−1

T∑
t=1

E{vec(utu
′
t)}+ op(1)

= lim
T→∞

T−1
T∑

t=1

vec(G(t/T )G(t/T )′) + op(1)

= vec
∫ 1

0

Σ(r)dr + op(1),

and we obtain (3.7). For the proof of (3.6) we have similarly to (7.11)

T−1
T∑

t=2

ût−1û
′
t−1 ⊗ ûtû

′
t = T−1

T∑
t=2

ut−1u
′
t−1 ⊗ utu

′
t + op(1).

From the Cauchy-Schwartz inequality and by Assumption A1 we have

E | uit−1ujt−1uktult |µ< {E(uit−1)4µE(ujt−1)4µE(ukt)4µE(ult)4µ} 1
4 < ∞.

Then using again the law of large numbers for L1-mixingales and since

E(ut−1u
′
t−1 ⊗ utu

′
t) = E(ut−1u

′
t−1 ⊗ E(utu

′
t | Ft−1)) = Σt−1 ⊗ Σt,

we write

T−1
T∑

t=2

ut−1u
′
t−1 ⊗ utu

′
t = lim

T→∞
T−1

T∑
t=2

Σt−1 ⊗ Σt + op(1)

= lim
T→∞

T−1
T∑

t=2

Σ(t− 1/T )⊗ Σ(t/T ) + op(1).

Finally noting that

lim
T→∞

T−1
T∑

t=2

Σ(t− 1/T )⊗ Σ(t/T ) =
∫ 1

0

Σ(r)⊗2dr + op(1).

we obtain (3.6). The proof of (3.9) follows from (7.10). For the proof of (3.8), we write
as above

T−1
T∑

t=1

X̃t−1X̃
′
t−1 ⊗ ûtû

′
t = T−1

T∑
t=1

X̃t−1X̃
′
t−1 ⊗ utu

′
t + op(1),

so that we obtain the desired result from similar arguments used for the proof of (7.7).
¤

Proof of (3.10), (3.11) and (4.1) We only prove (3.11). The proofs of (3.10) and
(4.1) are similar. From the proof of Theorem 3.1 we have

Σ̂X̃ = Λ3 + op(1). (7.12)
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Using Lemma 7.3 we also obtain

vec {Σ̂X̃}
P−→ lim

T→∞
T−1

T∑
t=1

vec {E(X̃t−1X̃
′
t−1)⊗ Id}.

Straightforward computations show that

vec {E(X̃t−1X̃
′
t−1)⊗ Id} =

∞∑

i=0

{(∆⊗ Id)⊗2}ivec
[(

Σ( t−i−1
T ) 0
0 0

)
⊗ Id

]
.

Then considering similar arguments used in the proof of Lemma 7.2 we write

lim
T→∞

vec {E(X̃[Tr]−1X̃
′
[Tr]−1)⊗ Id}

=
{
I(pd2)2 − (∆⊗ Id)⊗2

}−1 vec
[(

Σ(r)⊗ Id 0
0 0

)]
,

so that we obtain

vec {Σ̂X̃} =
{
I(pd2)2 − (∆⊗ Id)⊗2

}−1 vec
[( ∫ 1

0
Σ(r)dr ⊗ Id 0

0 0

)]
+ op(1).

by using similar arguments of the proof of (7.5). Therefore the result (3.11) follow
from (7.12). ¤

Proof of Proposition 4.1 In the following, c, C, ... denote constants with possibly
different values from line to line. First, let us focus on the asymptotic equivalence
between θ̂ALS and θ̂GLS uniformly w.r.t. the bandwidths bkl ∈ BT . We extend the
arguments of Theorem 2 in Xu and Phillips (2008). Consider the notation

A(Γ) = T−1
T∑

t=1

X̃t−1X̃
′
t−1 ⊗ Γ−1

t , and a(Γ) = T−1/2
T∑

t=1

Γ−1
t utX̃

′
t−1.

Then
√

T (θ̂ALS − θ̂GLS) = A(Σ̌)−1vec
(
a(Σ̌)

)−A(Σ)−1vec (a(Σ))

= A(Σ̌)−1
{
vec

(
a(Σ̌)

)− vec (a(Σ))
}

−A(Σ)−1
{
A(Σ̌)−A(Σ)

}
A(Σ̌)−1vec (a(Σ)) .

By our result (7.5), A(Σ) P−→ Λ1 which is positive definite. Moreover, a(Σ) is bounded
in probability by Markov’s inequality, Lemma 7.1-a) considered with µ ≥ 2 and the
linear processes ϑt = ut and ζt = X̃t−1, and the fact that Σ−1

t is bounded. Hence, like
in the proof of Theorem 2 of Xu and Phillips (2008), to prove that

√
T (θ̂ALS− θ̂GLS) =

op(1), uniformly w.r.t. bkl ∈ BT , it suffices to check

A(Σ̌)−A(Σ) = op(1) and a(Σ̌)− a(Σ) = op(1), (7.13)

uniformly w.r.t. bkl ∈ BT . As a direct by-product we also obtain Λ̌1 − Λ1 = op(1)
uniformly w.r.t. the bandwidths bkl. Let us define

◦
Σt=

T∑

i=1

wti ¯ uiu
′
i and Σ̄t =

T∑

i=1

wti ¯ Σi, (7.14)
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and, following Xu and Phillips (see also Robinson, 1987), notice that the results in
(7.13) are consequences of the following eight rates obtained uniformly w.r.t. bkl ∈ BT :
(a) a(Σ̌0) − a(

◦
Σ) = op(1); (a’) a(Σ̌) − a(Σ̌0) = op(1); (b) a(

◦
Σ) − a(Σ̄) = op(1); (c)

a(Σ̄) − a(Σ) = op(1); (d) A(Σ̌0) − A(
◦
Σ) = op(1); (d’) A(Σ̌) − A(Σ̌0) = op(1); (e)

A
( ◦
Σ

)
− A(Σ̄) = op(1); (f) A(Σ̄) − A(Σ) = op(1). In this proof the norm ‖ · ‖ is

the Frobenius norm which in particular is a sub-multiplicative norm, that is ‖AB‖ ≤
‖A‖‖B‖, and for a positive definite matrix A, ‖A‖ ≤ C[λmin(A)]−1 with C a constant
depending only on the dimension of A. Moreover, ‖A ⊗ B‖ = ‖A‖‖B‖. To simplify
notation, let b denote the d(d + 1) vector of bandwidths bkl, 1 ≤ k ≤ l ≤ d. Below we
will simply write uniformly w.r.t. b instead of uniformly w.r.t. bkl, 1 ≤ k ≤ l ≤ d, and
supb instead of supbkl∈BT ,1≤k≤l≤d.

(a) Using the identity A−1 −B−1 = A−1(B −A)B−1 we can write

a(Σ̌0)− a(
◦
Σ) = T−1/2

T∑
t=1

(
Σ̌0

t

)−1
{ ◦

Σt −Σ̌0
t

} ◦
Σ
−1

t utX̃
′
t−1.

Take the norm on the right-hand side and apply Lemma 7.6(f,h,i), Cauchy-Schwarz
inequality and the fact that T−1

∑T
t=1 ‖utX̃

′
t−1‖2 = Op(1) by Lemma 7.1-a).

(a’) Use the same decomposition to write

a(Σ̌0)− a(Σ̌) = T−1/2
T∑

t=1

(
Σ̌0

t

)−1 {
Σ̌t − Σ̌0

t

}
Σ̌−1

t utX̃
′
t−1. (7.15)

Now, if ‖ · ‖2 denotes the spectral norm, use the inequality

‖B1/2 −A1/2‖2 ≤ 1
2

[
max{‖A−1‖2, ‖B−1‖2}

]1/2 ‖B −A‖2

(see for instance Horn and Johnson (1994), page 557), and deduce that

‖Σ̌0
t − Σ̌t‖2 ≤ νT

2

[
max

{∥∥∥∥
[(

Σ̌0
t

)2
+ νT Id

]−1
∥∥∥∥

2

,

∥∥∥∥
[(

Σ̌0
t

)2
]−1

∥∥∥∥
2

}]1/2

.

Now, if r ∈ (0, 1] and A[Tr] − B = op(1) with B positive definite, it is easy to check
that ‖A−1

[Tr]‖2 ≤ {1+op(1)}‖B−1‖2. Use Lemma 7.5 and Assumption A1’(i) to deduce

that the spectral norms of [
(
Σ̌0

t

)2
+ νT Id]−1 and [

(
Σ̌0

t

)2
]−1 are bounded in probability.

Finally, take spectral norm on the right-hand side of (7.15), use the fact that νT =
o(T−1/2) and deduce (a’).

(b) Consider the identity

A−1 −B−1 = B−1(B −A)B−1 + B−1(B −A)A−1(B −A)B−1
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and write

a(
◦
Σ)− a(Σ̄) = T−1/2

T∑
t=1

[
◦
Σ
−1

t −Σ̄−1
t ]utX̃

′
t−1

= T−1/2
T∑

t=1

Σ̄−1
t [Σ̄t−

◦
Σt]Σ̄−1

t utX̃
′
t−1

+T−1/2
T∑

t=1

Σ̄−1
t [Σ̄t−

◦
Σt]

◦
Σ
−1

t [Σ̄t−
◦
Σt]Σ̄−1

t utX̃
′
t−1

=: T−1/2
T∑

t=1

∆1t(b) + T−1/2
T∑

t=1

∆2t(b)

=: ∆1(b) + ∆2(b).

Note that by equation (22) in Xu and Phillips (2008),

{∆1t(b),Ft} = {Σ̄−1
t [Σ̄t−

◦
Σt]Σ̄−1

t utX̃
′
t−1,Ft}

is a martingale difference (m.d.) sequence indexed by the bandwidths b.‡ To prove
that ∆1(b) = op(1) uniformly w.r.t. b we show that this uniform rate holds cellwise.
For this purpose it easy to see that it suffices to prove that

ST (h) =
1√
T

T∑

i,t=1

εtωiwti(h) = op(1)

uniformly w.r.t. h ∈ BT where {εt,Ft} and {ωt,Ft} are univariate m.d. sequence
satisfying suitable moment conditions and

sup
t≥1

E{ε2
t + ω2

t | Ft−1} < ∞. (7.16)

More precisely, εtωi could be any cell of

Σ̄−1
t [Σi − uiu

′
i]Σ̄

−1
t utX̃

′
t−1.

‡It is important to notice that for a fixed bandwidth the sequence (∆1t(b)) is not adapted to
the filtration (Ft). As a consequence, the expectation E{∆1t(b)′∆1s(b)} is not necessarily zero and
therefore the equality E{‖∆1(b)‖2} = T−1

∑T
t=1 E{‖∆1t(b)‖2} does not necessarily holds.
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Using the Inverse Fourier Transform and a change of variables, we rewrite

ST (h) =
1

T
√

T h

T∑

t,i=1

εtωif̂
−1
T (t/T ;h)K((t− i)/Th)−∆T (h)

=
1

T
√

T h

∫

R

T∑

t,i=1

εtωif̂
−1
T (t/T ; h) exp

(
2π
√−1

t− i

Th
u

)
F [K](u)du−∆T (h)

u=sh=
1√
T

∫

R

{
1√
T

T∑
t=1

εt(1 + |s|)−τ

f̂T (t/T ;h)
exp

(
2π
√−1

t

T
s

)}

×
{

1√
T

T∑

i=1

ωi(1 + |s|)−τ exp
(
−2π

√−1
i

T
s

)}
F [K](sh)

(1 + |s|)−2τ
ds−∆T (h)

=:
1√
T

∫

R

{
1√
T

T∑
t=1

Ŝ1t(h, s)

}{
1√
T

T∑

i=1

S2i(s)

}
F [K](sh)

(1 + |s|)−2τ
ds−∆T (h)

where

∆T (h) =
K(0)

T
√

T h

T∑
t=1

εtωtf̂
−1
T (t/T ; h),

f̂T (t/T ; h) = T−1h−1
∑T

j=1 K((t − j)/Th) and τ is any (arbitrary small) positive
constant. It is easy to see that Assumption A1’(i) and inequality (7.22) imply

sup
h∈BT

|∆T (h)| = op(T−1/2b−1
T ) = op(1).

Since

1√
T

∫

R

|F [K](sh)|
(1 + |s|)−2τ

ds ≤ C
1√

Tb1+2τ
T

∫

R
|sF [K](s)| ds = O

((
Tb2+γ

T

)−1/2
)

provided τ is sufficiently small, it suffices to prove

sup
h∈BT

sup
s∈R

∣∣∣∣∣
1√
T

T∑
t=1

Ŝ1t(h, s)

∣∣∣∣∣ = op(1) (7.17)

and

sup
s∈R

∣∣∣∣∣
1√
T

T∑

i=1

S2i(s)

∣∣∣∣∣ = op(1) (7.18)

Let us notice that

f̂T (t/T ; h) = h−1
T∑

j=1

∫ t−j+1
T

t−j
T

K

(
[Tr]
Th

)
dr

z=r/h
=

∫ t
T h

t−T
T h

K

(
[Tzh]
Th

)
dz.

For 0 < c−1
max ≤ ϑ ≤ c−1

min define

fT (t/T ; bT /ϑ) =
∫ tϑ

T bT

(t−T )ϑ
T bT

K (z) dz.
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Then, if K(·) is differentiable, for any 1 ≤ t ≤ T and h ∈ BT

∣∣∣f̂T (t/T ; h)− fT (t/T ;h)
∣∣∣ ≤

∫ ∞

−∞

∣∣∣∣K (z)−K

(
[Tzh]
Th

)∣∣∣∣ dz

≤
∫ ∞

−∞

∫ z

[T zh]
T h

|K ′(v)| dvdz

≤
∫ ∞

−∞

∫ z

z− 1
T h

|K ′(v)| dvdz

=
∫ ∞

−∞
|K ′(v)|

∫ v+ 1
T h

v

dzdv ≤ C

TbT
.

When the K(·) is differentiable except a finite number of points, the same type of upper
bound can be derived after minor and obvious changes. Hence, with the notation

S1t(ϑ, s) =
εt(1 + |s|)−τ

fT (t/T ; bT /ϑ)
exp

(
2π
√−1

t

T
s

)
, 0 < c−1

max ≤ ϑ ≤ c−1
min, s ∈ R,

since for any real numbers a and b, a−1 = b−1+(b−a)/ab and knowing that f̂T (·; bT /ϑ)
and fT (·; bT /ϑ) are uniformly bounded away from zero (see inequality (7.22) below),
we obtain

sup
ϑ

sup
s

∣∣∣∣∣
1√
T

T∑
t=1

{
Ŝ1t(ϑ, s)−S1t(bT /ϑ, s)

}∣∣∣∣∣ ≤
C√
T bT

1
T

T∑
t=1

|εt|=Op(T−1/2b−1
T )=op(1).

Therefore is suffices to prove

sup
c−1

max≤ϑ≤c−1
min

sup
s∈R

∣∣∣∣∣
1√
T

T∑
t=1

S1t(ϑ, s)

∣∣∣∣∣ = op(1) (7.19)

in place of (7.17). For proving (7.18) and (7.19) we use a uniform CLT for m.d. indexed
by a class of functions, see Bae et al. (2010), Bae and Choi (1999). Here our indexing
classes functions depend on c−1

max ≤ ϑ ≤ c−1
min and s ∈ R, respectively on s ∈ R, and we

prove that their covering numbers are of polynomial order independent of T . Now we
can explain the unique role of the (1+ |s|)τ function: it cuts the high frequencies of the
complex exponential function and allows one to obtain polynomial covering numbers.
Consider the family of functions F11 = {ϕ11(·; ϑ) : [0, 1] → [0, 1] : c−1

max ≤ ϑ ≤ c−1
min}

and F12 = {ϕ12(·; s) : [0, 1] → C : s ∈ R} where

ϕ11(r;ϑ)=fT (r; bT /ϑ)=FK(ϑr/bT )− FK(ϑ(r − 1)/bT ), ϕ12(r; s)=
exp

(
2π
√−1 rs

)

(1 + |s|)τ
,

where FK(·) is the cumulative distribution function associated to the density K(·). By
Lemma 22-ii) and Lemma 16 of Nolan and Pollard (1987), the class F11 is a V C−class
(also called Euclidean) for a constant envelope. The V C−property for F12 is proved
for instance in Lopez and Patilea (2010).

Now we check the conditions of Theorem 1 of Bae et al. (2010) in order to derive
(7.18) and (7.19). For simplicity, we only provide the details for (7.19). With the
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notation of Bae et al. (2010), j = t, n = j(n) = T , ETt = Ft, X = R × [0, 1],
VTt(f) = T−1/2εtϕ12(t/T ; s)ϕ11(t/T ;ϑ)−1 with (ϑ, s) ∈ T = [c−1

max, c−1
min] × R, the

family F being composed of the functions f(ε, r) = εϕ12(r; s)ϕ11(r; ϑ)−1, (ϑ, s) ∈ T ,
with envelope F (ε, r) = Cε for some sufficiently large constant C. Moreover, define

{d(2)
µn

(f, g)}2 = d2((ϑ1, s1), (ϑ2, s2)) =
∫ 1

0

E

{
ε2
[Tr]

(
ϕ12(r; s1)
ϕ11(r; ϑ1)

− ϕ12(r; s2)
ϕ11(r; ϑ2)

)2
}

dr

Notice that sup0<r≤1 E(ε2
[Tr]) < C̃ for some constant C̃, ϕ11(·; ϑ) is uniformly bounded

and bounded away from zero (see (7.22)), ϕ12(·; s) is uniformly bounded, and

∫ 1

0

(
ϕ12(r; s1)
ϕ11(r; ϑ1)

− ϕ12(r; s2)
ϕ11(r; ϑ2)

)2

dr

≤ C1(ϑ1−ϑ2)2
∫ 1

0

{K(r/cmaxbT )r/bT }2 +{K((r−1)/cmaxbT )(r−1)/bT }2 dr

+C2

∫ 1

0

{ϕ12(r; s1)− ϕ12(r; s2)}2 dr

≤ C3{bT (ϑ1 − ϑ2)2 + (s1 − s2)2},

∀(ϑ1, s1), (ϑ2, s2) ∈ T , for some constants C1, · · · , C3 > 0. Moreover, for any ρ > 0
there exists cρ > 0 such that

∫ 1

0
ϕ2

12(r; s)dr ≤ ρ, ∀s ≥ cρ. Using these properties, on one
hand we check that the pseudometric space (T , d(·, ·)) is totally bounded and, on the
other hand, we check that condition (2) of Bae et al. (2010) holds for some sufficiently
large L given that the conditional variance of εt is deterministic and bounded. The
convergence to zero for Ln(δ) in Bae et al. (2010) is a direct consequence of our
unconditional moment conditions on εt. The uniformly integrable entropy condition is
ensured by the V C−property satisfied by the classes F11 and F12 and the finite second
order moment for εt. Now, all the required ingredients are gathered to apply Theorem
1 of Bae et al. (2010) and to deduce our property (7.19).

For the uniform op(1) rate of ∆2 take the norms and apply Lemma 7.6(c,e,f) and
the moment assumptions.

The results (c) to (f) are obtained by obvious adaptation of the corresponding proofs
in Xu and Phillips (2008), hence the details are omitted.

Finally, to derive the result for Ω̌1, use again the identity A−1 − B−1 = A−1(B −
A)B−1, the inequality ‖A ⊗ B‖ = ‖A‖‖B‖, the triangle inequality and apply Lemma
7.6(e,g,h,j). ¤

Lemma 7.5. Let gkl(r−) = limr̃↑r gkl(r̃) and gkl(r+) = limr̃↓r gkl(r̃), for r ∈ (0, 1]
and 1 ≤ k, l,≤ d. Define the d × d−matrices G(r−) = {gkl(r−)} and G(r+) =
{gkl(r+)} and Σ(r−) = G(r−)G(r−)′, Σ(r+) = G(r+)G(r+)′. Set Σ(1+) = 0. Under
the assumptions of Proposition 4.1,

Σ̌0
[Tr]

P−→ Σ(r−)
∫ 0

−∞
K(z)dz + Σ(r+)

∫ ∞

0

K(z)dz,

uniformly with respect to r ∈ (0, 1].
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Proof of Lemma 7.5 It suffices to notice that equation (19) of Xu and Phillips (2008)
can be obtained uniformly w.r.t. r ∈ (0, 1] and bkl ∈ BT , 1 ≤ k ≤ l ≤ d and to prove

sup
bkl∈BT ,1≤k≤l≤d

sup
r∈(0,1]

{‖A[Tr]‖+ ‖B[Tr]‖} = op(1),

for A[Tr] = Σ̌0
[Tr]−

◦
Σ[Tr] and B[Tr] =

◦
Σ[Tr] −Σ̄[Tr] where

◦
Σt and Σ̄t are defined in

equation (7.14). The uniform convergence of A[Tr] and B[Tr] is easily obtained from
Lemma 7.6(d,g). ¤

In the following lemma, which is an extension of the statements (d) to (l) in Lemma
A of Xu and Phillips (2008), we gather some results used in the proof of Proposition
4.1. Let wti,kl = wti(bkl) denote the element kl of the d×d matrix wti that is a function
of the bandwidth bkl.

Lemma 7.6. Let ‖ · ‖ denote the Frobenius norm. Under the assumptions of Proposi-
tion 4.1:

(a) For all T ≥ 1 and 1 ≤ k ≤ l ≤ d,

max
1≤t≤T

T∑

i=1

sup
bkl∈BT

wti,kl ≤ C < ∞,

for some constant C.
(b) For all T ≥ 1 and 1 ≤ k ≤ l ≤ d, max1≤t,i≤T supbkl∈BT

wti,kl ≤ C/TbT for some
constant C > 0.

(c) For all T , infb∈BT min1≤t≤T λmin(Σ̄t) ≥ C > 0 for some constant C.
(d) As T →∞,

max
1≤t≤T

E

(
sup
b∈BT

‖ ◦
Σt −Σ̄t‖4

)
= Op(

(
1/(TbT )2

)
. (7.20)

(e) For δ = 1, 2, as T →∞,

max
1≤t≤T

sup
b∈BT

‖ ◦
Σt −Σ̄t‖δ = Op(T−δ/4b

−δ/2
T ).

(f) As T →∞, (
inf

b∈BT

min
1≤t≤T

λmin(
◦
Σt)

)−1

= Op(1).

(g) As T →∞,

max
1≤t≤T

sup
b∈BT

‖Σ̌0
t−

◦
Σt ‖ = Op(T−1/2b

−1/2
T ).

(h) As T →∞, (
inf

b∈BT

min
1≤t≤T

λmin(Σ̌0
t )

)−1

= Op(1).

(i) As T →∞, supb∈BT

∑T
i=1 ‖Σ̌0

t−
◦
Σt ‖2 = Op(T−2b−2

T )
(j) As T →∞, supb∈BT

T−1
∑T

t=1 ‖Σ̄t − Σt‖ = o(1).
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Proof of Lemma 7.6 (a) Using the monotonicity of K(·) we can write

max
1≤t≤T

T∑

i=1

sup
bkl∈BT

wti,kl ≤ max
1≤t≤T

∑T
i=1 K((t− i)/bT cmax)∑T

i=1 K((t− i)/bT cmin)−K(0)
. (7.21)

Now, using again the monotonicity of K(·) and adapting the lines of Lemma A(c) in
Xu and Phillips (2008), for any h ∈ BT and any 1 ≤ t ≤ T ,

1
Th

T∑

i=1

K

(
t− i

Th

)
=

T∑

i=1

∫ t−i+1
T h

t−i
T h

K

(
[Thz]
Th

)
dz ≤

∫ ∞

−∞
max

[
K (z) ,K

(
z − 1

Th

)]
dz ≤ 2.

This allows to control the numerator on the right-hand side of (7.21). On the other
hand, using similar arguments and the fact that K(0) > 0, for any h ∈ BT , any
1 ≤ t ≤ T and any 0 < γ1 < γ2 < ∞,

1
Th

T∑

i=1

K

(
t− i

Th

)
≥

∫ t
T h

t−T
T h

min
[
K (z) ,K

(
z − 1

Th

)]
dz

≥ min
[∫ −γ1

−γ2

K(z)dz,

∫ γ2

γ1

K(z)dz

]
, (7.22)

provided that T is sufficiently large. The last two integrals in the minimum are strictly
positive for a suitable choice of γ1, γ2. This fixed lower bound considered for h = cminbT

allows to control the denominator on the right-hand side of (7.21) and thus to prove
(a) with a constant depending on γ1, γ2 and cmax/cmin.

(b) For all 1 ≤ k ≤ l ≤ d,

wti,kl ≤
1

TbT cmin
K

(
t−i

TbT cmax

)

1
TbT cmax

∑T
j=1 K

(
t−j

TbT cmin

) .

Now, use the fact that K is bounded, cmax/cmin < ∞ and Lemma A(c) of Xu and
Phillips (2008) to derive the upper bound.

(c) This is an easy consequence of Assumption A1’(i) and the proof of Lemma 7.5,
equation (19), that holds uniformly w.r.t. r ∈ (0, 1] and bkl ∈ BT , 1 ≤ k ≤ l ≤ d.

(d) Let ai(k, l) denote a generic element of the d × d−matrix uiu
′
i − Σi. Then we

can write

E


 sup

b∈BT

∥∥∥∥∥
T∑

i=1

wti(uiu
′
i − Σi)

∥∥∥∥∥

4

 ≤ E


 sup

b∈BT




d∑

k,l=1

∣∣∣∣∣
T∑

i=1

wtiai(k, l)

∣∣∣∣∣




4



≤ c

d∑

k,l=1

E


 sup

b∈BT

∣∣∣∣∣
T∑

i=1

wti,klai(k, l)

∣∣∣∣∣

4



≤ c

d∑

k,l=1

E




∣∣∣∣∣
T∑

i=1

sup
b∈BT

wti,kl|ai(k, l)|
∣∣∣∣∣

4
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where c depends only on d. Now, by Lemma A(f) of Xu and Phillips (2008) and (a)-(b)
above, for 1 ≤ k ≤ l ≤ d

E

(
T∑

i=1

sup
b∈BT

wti,kl|ai(k, l)|
)4

≤
[

max
1≤t≤T

T∑

i=1

sup
b∈BT

wti,kl

]2 T∑

i=1

sup
b∈BT

wti,klE|ai(k, l)|4≤ c

(TbT )2
,

for c a constant depending only on K, cmax/cmin and the upper bounds of the 4th
order moments of the components of uiu

′
i − Σi. Now, (7.20) follows.

(e) By Markov’s inequality and obvious algebra we can write

P

(
max

1≤t≤T
sup
b∈BT

‖ ◦
Σt −Σ̄t‖δ > CT−δ/4b

−δ/2
T

)

= P

(
max

1≤t≤T
sup
b∈BT

‖ ◦
Σt −Σ̄t‖4 > C4/δT−1b−2

T

)

≤ C−4/δTb2
T E

(
max

1≤t≤T
sup
b∈BT

‖ ◦
Σt −Σ̄t‖4

)

≤ C−4/δTb2
T

T∑
t=1

E

(
sup
b∈BT

‖ ◦
Σt −Σ̄t‖4

)

= C−4/δTb2
T T max

1≤t≤T
E

(
sup
b∈BT

‖ ◦
Σt −Σ̄t‖4

)

= C−4/δO(1)

where for the last equality we use (d).
(f)+(h) Using equation (3.5.33) in Horn and Johnson (1994) and (e) above we have

min
1≤t≤T

λmin(
◦
Σt) ≥ min

1≤t≤T
λmin(Σ̄t)− max

1≤t≤T

∣∣∣λmin(
◦
Σt)− λmin(Σ̄t)

∣∣∣

≥ min
1≤t≤T

λmin(Σ̄t)− sup
b∈BT

max
1≤t≤T

‖ ◦
Σt −Σ̄t‖

= min
1≤t≤T

λmin(Σ̄t) + op(1),

and hence (f) follows from (c). Similar algebra applies for (h) which will follow as a
consequence of (g).

(g)+(i) Adapt the proof of Lemma A(i) and A(k) of Xu and Phillips (2008) using a
decomposition like in our equation (7.11).

(j) Apply Lemma A(l) of Xu and Phillips (2008) componentwise, that is d2 times.
¤

Proof of (5.3) and (5.6). Let us denote

Ξ̂ = RΛ̂−1
3 Λ̂2Λ̂−1

3 R′ and Ξ̂δ = RΛ̂−1
3δ Λ̂2δΛ̂−1

3δ R′.

From the expressions of QOLS and Qδ
OLS we write

| QOLS −Qδ
OLS |≤ T ‖ Rθ̂OLS ‖2‖ Ξ̂−1 − Ξ̂−1

δ ‖= op(1),
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since T ‖ Rθ̂OLS ‖2= Op(1) and ‖ Ξ̂−1 − Ξ̂−1
δ ‖= op(1) from the consistency of the

estimators of Λ2 and Λ3. In addition we write

QOLS + Qδ
OLS

2
=

T

2
θ̂′OLSR′{Ξ̂−1 + Ξ̂−1

δ }Rθ̂OLS .

Noting that {Ξ̂−1 + Ξ̂−1
δ }/2 = RΛ−1

3 Λ2Λ−1
3 R′ + op(1), we have {QOLS + Qδ

OLS}/2 ⇒
χ2

pd1d2
. Since max(a, b) = {a + b+ | a − b |}/2, the result (5.6) follows from (5.4) and

(5.5). The result (5.3) can be obtain in a similar way. ¤
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Table 1: Empirical size (in %) of the different Wald tests. The innovations are heteroscedastic
with γ1 = 20, ρ = 0.6, and we take a11 = a22 = 0.2, a21 = 0.1, a12 = 0.

T 50 100 200 400
WOLS 8.8 5.8 4.8 5.2
W δ

OLS 9.7 6.5 5.0 5.4
Wmax

OLS 10.2 6.8 5.0 5.5
WS 9.3 8.1 6.6 8.0

WALS 7.1 5.5 4.9 4.8
W δ

ALS 8.3 6.2 5.6 5.4
Wmax

ALS 8.3 6.3 5.6 5.4
WGLS 5.2 4.1 5.2 4.2
W δ

GLS 5.7 4.0 4.2 3.4
Wmax

GLS 6.3 4.4 5.4 4.2

Table 2: Empirical power (in %) of the different Wald tests. The innovations are
heteroscedastic with γ1 = 20 and ρ = 0.6. We take a11 = a22 = 0.2 and a21 = 0.1.

a12 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8
WOLS 96.9 81.4 48.1 17.3 14.2 40.3 70.0 90.6
W δ

OLS 97.5 82.4 49.9 18.2 15.5 41.5 70.8 90.9
Wmax

OLS 97.7 83.4 51.5 18.7 15.7 42.2 71.4 91.3
WS 98.4 85.4 53.9 20.1 17.1 46.3 75.5 92.8

WALS 98.8 86.7 50.8 17.7 13.5 45.2 75.4 93.0
W δ

ALS 98.9 87.8 54.2 19.4 15.6 48.4 77.4 94.5
Wmax

ALS 98.9 87.8 54.2 19.4 15.6 48.4 77.4 94.5
WGLS 99.1 88.7 52.6 17.7 14.2 48.0 79.5 96.1
W δ

GLS 99.1 89.9 52.9 18.1 12.4 46.9 78.3 95.1
Wmax

GLS 99.2 90.4 55.5 19.0 14.5 49.6 80.5 96.1
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τ1 σ21 τ2

τ1

Figure 7.1: The ratio Varas

(
θ̂2,OLS

)
/Varas

(
θ̂2,GLS

)
of Example 3.1.

τ1 σ21

Figure 7.2: The coefficient κ1 of Example 5.1.
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RMSE×102

a11

Figure 7.3: The RMSE of the estimators of the parameter a11 over N = 1000 replications with
varying a11 = a22, and a12 = 0, a21 = 0.1. We take γ1 = 20, ρ = 0.6 and T = 100. The RMSE
are displayed in blue for the ALS estimators, in green for the OLS estimators and in red for the GLS
estimators.


