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Abstract

Clustering with fast algorithms large samples of high dimensional data is an important chal-
lenge in computational statistics. Borrowing ideas from MacQueen (1967) who introduced a
sequential version of the k-means algorithm, we propose in this paper a new class of recur-
sive stochastic gradient algorithms designed for the k-medians loss criterion. By their recursive
nature, these algorithms are very fast and are well adapted to deal with large samples of data
that are allowed to arrive sequentially. A particular attention is paid to the averaged versions
which are known to have better performances. We prove that our stochastic gradient approach
converges almost surely to the set of stationary points of the underlying loss criterion. The per-
formance of the averaged sequential estimator is compared on a simulation study, both in terms
of computation speed and accuracy of the estimations, with more classical partitioning tech-
niques such as k-means, trimmed k-means and PAM (partitioning around medoids). Finally,
this new online clustering technique is illustrated on determining television audience profiles
with a sample of more than 5000 individual television audiences measured over a period of 24
hours.

keyword: averaging, high dimensional data, partitioning around medoids, recursive estimator,
stochastic approximation.

1 Introduction

Clustering with fast algorithms large samples of high dimensional data is an important challenge in
computational statistics and machine learning, with applications in various domains such as image
analysis, biology or computer vision. There is a vast literature on clustering techniques and recent
discussions and reviews may be found in Jain et al. (1999), Garcià-Escudero et al. (2010) or Croux
et al. (2007). Moreover, as argued in Bottou (2010), the development of fast algorithms is even
more crucial when the computation time is limited and the sample is potentially very large, since
fast procedures will be able to deal with larger numbers of observations and will finally provide
better estimates than slower ones.

We focus here on partitioning techniques which are able to deal with large samples of data,
assuming the number k of clusters is fixed in advance. The most popular clustering methods are
probably the non sequential (Forgy (1965)) and the sequential (MacQueen (1967)) versions of the
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k-means algorithms. They are very fast and only require O(kn) operations, where n is the sample
size. They aim at finding local minima of a quadratic criterion and the cluster centers are given
by the barycenters of the elements belonging to each cluster. A major drawback of the k-means
algorithms is that they are based on mean values and, consequently, are very sensitive to outliers.
Such atypical values, which may not be uncommon in large samples, can deteriorate significantly
the performances of theses algorithms, even if they only represent a small fraction of the data. The
k-medians approach is a first attempt to get more robust clustering algorithms; it was suggested by
MacQueen (1967) and developed by Kaufman and Rousseeuw (1990). It consists in considering
criteria based on least norms instead of least squared norms, so that the cluster centers are the
spatial medians, also called geometric or L1-medians (see Small (1990)), of the elements belonging
to each cluster. Many algorithms have been proposed in the literature and the most popular one is
certainly PAM (partitioning around medoids). This algorithm has been proposed by Kaufman and
Rousseeuw (1990) in order to search for local minima among the elements of the sample with a
computation time that is O(kn2). As a consequence, it is not very well adapted for large sample
sizes. Many strategies have been suggested in the literature to reduce the computation time. For
example subsampling (see e.g the algorithm CLARA in Kaufman and Rousseeuw (1990) or in Jin
and Jung (2010)), local distances computation (Zhang and Couloigner (2005)) or the use of weighted
distances during the iteration steps (Park and Jun (2008)), allow to reduce the computation time.

Trimmed k-means (see Garcià-Escudero et al. (2008, 2010) and references therein) is also a
popular modification of the k-means algorithm that is more robust (see Garcià-Escudero and Go-
daliza (1999)). Nevertheless, from a computational point of view, it needs to sort the data and this
step requires O(n2) operations, in the worst cases, at each iteration so that its execution time can
get large when one has to deal with very large samples.

Borrowing ideas from MacQueen (1967) and Hartigan (1975) who have first proposed sequen-
tial clustering algorithms and Cardot et al. (2010) who have studied the properties of stochastic
gradient algorithms that can give efficient estimators of the geometric median in high dimensional
space, we propose in this paper a recursive strategy that is able to estimate the cluster centers by
minimizing a k-medians type criterion. One of the main advantage of our approach, compared to
previous ones, is that it can be computed in only O(kn) operations so that it can deal with very
large datasets and is more robust than the k-means. Note also that by its recursive nature, it allows
automatic update and does not need to store all the data.

The paper is organized as follows. We first fix notations and present our algorithm. In the third
Section, we state the almost sure consistency of the stochastic gradient k-medians to a stationary
point of the underlying objective function. The proof heavily relies on Monnez (2006). In Section4,
we compare on simulations the performance of our technique with the sequential k-means, the PAM
algorithm and the trimmed k-means when the data are contaminated by a small fraction of outliers.
We note that applying averaging techniques (see Polyak and Juditsky (1992)) to our estimator, with
a small number of different initializations points, is a very competitive approach even for moderate
samples sizes with computation times that are much smaller. In Section 5, we illustrate our new
clustering algorithm on two large samples, of about 5000 individuals, in order to determine profiles
of television audience. Proofs are gathered in Appendix.
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2 The stochastic gradient k-medians algorithm

2.1 Context and definitions

Let (Ω,A,P) be a probability space. Suppose we have n independent realizations Z1, . . . , Zn of a
random vector Z taking values in Rd. The aim is to partition Ω into a finite number k of clusters
Ω1, . . . ,Ωk. Each cluster Ωi is represented by its center, which is an element of Rd denoted by
θi. From a population point of view, the k-means and k-medians algorithms aim at finding local
minima of the function g mapping Rdk to R and defined as follows,

g(x)
def
= E

(
min

r=1,...,k
Φ(‖Z − xr‖)

)
, (1)

where Φ is a real, positive, continuous and non decreasing function. The particular case Φ(u) = u2,
leads to the classical k-means algorithm, whereas φ(u) = |u|, leads to the k-medians.

Before presenting our new recursive algorithm, let us introduce now some notations and recall
the recursive k-means algorithm developed by MacQueen (1967). Let us denote by Ir the indicator
function,

Ir(z;x) =

k∏
j=1

11{‖z−xr‖≤‖z−xj‖},

which is equal to one when xr is the nearest point to z, among the set of points xi, i = 1, . . . , k.
The k-means recursive algorithm proposed by MacQueen (1967) starts with k arbitrary groups, each
containing only one point, X1

1 , . . . , X
k
1 . Then, at each iteration, the cluster centers are updated as

follows,

Xr
n+1 = Xr

n − arnIr(Zn;Xn) (Xr
n − Zn) , (2)

where the step arn = (1+
∑n

`=1 Ir(Z`;X`))
−1 is just the inverse of the number of elements allocated

to cluster r, until iteration n. This also means that Xr
n+1 is simply the barycenter of the elements

allocated to cluster r,

Xr
n+1 =

1

1 + nr

(
Xr

1 +
n∑
`=1

Ir(Z`;X`)Z`

)
,

with nr =
∑n

`=1 Ir(Z`;X`). The interesting point is that this recursive algorithm is very fast and
can be seen as a Robbins-Monro procedure.

2.2 Stochastic gradient k-medians algorithms

Assuming Z has an absolutely continuous distribution, we have P(
∥∥Z − xi∥∥ =

∥∥Z − xj∥∥) = 0,
for any i 6= j and xi 6= xj . Then, the k-medians approach relies on looking for minima, that may be
local, of the function g which can be also be written as follows, for any x such that xj 6= xi when
i 6= j,

g(x) =

k∑
r=1

E[Ir(Z;x) ‖Z − xr‖]. (3)

In order to get an explicit Robbins-Monro algorithm representation, it remains to exhibit the gradient
of g. Let us write g in integral form. Denoting by f the density of the random variable Z, we have,

g(x) =

k∑
r=1

∫
Rd\{xr}

Ir(z;x) ‖z − xr‖ f(z) dz.

3



For j = 1, . . . , d, it can be checked easily that

∂

∂xrj
(‖z − xr‖) =

xrj − zj
‖z − xr‖

,

and since

Ir(z;x)

∣∣∣xrj − zj∣∣∣
‖z − xr‖

f(z) ≤ f(z), for z 6= xr,

the partial derivatives satisfy,

∂g

∂xrj
(x) =

∫
Rd\{xr}

Ir(z;x)
xrj − zj
‖z − xr‖

f(z) dz.

We define, for x ∈ Rdk,

∇rg(x)
def
= E

[
Ir(Z;x)

xr − Z
‖xr − Z‖

]
. (4)

We can now present our stochastic gradient k-medians algorithm. Given a set of k distinct
initialization points in Rd, X1

1 , · · · , Xk
1 , the set of k cluster centers is updated at each iteration as

follows. For r = 1, . . . , k, and n ≥ 1,

Xr
n+1 = Xr

n − arnIr(Zn;Xn)
Xr
n − Zn

‖Xr
n − Zn‖

, (5)

= Xr
n − arn∇rg(Xn)− arnV r

n ,

with Xn = (X1
n, · · · , Xk

n), and

V r
n

def
= Ir(Zn;Xn)

Xr
n − Zn

‖Xr
n − Zn‖

− E

[
Ir(Zn;Xn)

Xr
n − Zn

‖Xr
n − Zn‖

∣∣∣∣∣Fn
]
,

Fn = σ(X1, Z1, . . . , Zn−1). The steps arn, also called gains, are supposed to be Fn-measurable.
We denote by ∇g(x) = (∇1g(x), . . . ,∇kg(x))′ the gradient of g and define Vn

def
= (V 1

n , . . . V
k
n )′.

Let An be the diagonal matrix of size dk × dk,

An =



a1n
. . .

a1n
. . .

akn
. . .

akn


,

each arn being repeated d times. Then, the k-medians algorithm can be written in a matrix way,

Xn+1 = Xn −An∇g(Xn)−AnVn, (6)

which is a classical stochastic gradient descent.
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2.3 Tuning the stochastic gradient k-medians and its averaged version

The behavior of algorithm (5) depends on the sequence of steps arn, r ∈ {1, . . . , k} and the set
of initialization points X1. These two sets of tuning parameters play distinct roles and we mainly
focus on the choice of the step values, noting that, as for the k-means, the estimation results must be
compared for different sets of initialization points in order to get a better estimation of the cluster
centers. Assume we have a sample of n realizations Z1, . . . , Zn of Z. Then selected estimation is
the one minimizing the following empirical risk,

1

n

n∑
i=1

k∑
r=1

Ir(Zi;Xn) ‖Zi −Xr
n‖ . (7)

Let us denote by nr =
∑n

`=1 Ir(Z`;X`) the number of updating steps for cluster r, until itera-
tion n, for r ∈ {1, . . . , k}. A general form of arn is given by

arn =

{
arn−1 if Ir(Zn;Xn) = 0,

cγ
(1 + cαnr)

α otherwise, (8)

where cγ , cα and 1/2 < α ≤ 1 control the gain.
Adopting a theoretical point of view, one could believe that α should be set to α = 1 with

suitable adapted constants cα and cγ , which are unknown in practice, in order to attain the optimal
parametric rates of convergence. Our experimental results on simulated data, not presented in this
paper, have shown that the convergence of algorithm (5) is then very sensitive to the values of the
parameters cγ and cα which have to be chosen very carefully. Consequently, we prefer to introduce
an averaging step (see for instance Polyak and Juditsky (1992), Pelletier (2000) and Andrieu and
Moulines (2006)), which does not slow down the algorithm, and provides an estimator which is
much more effective. Our averaged estimator of the cluster centers is defined in a recursive way as
follows, for r ∈ {1, . . . , k} and n ≥ 1,

X̄r
n+1 =

 X̄r
n if Ir(Zn;Xn) = 0,

nrX̄
r
n +Xr

n+1

nr + 1
otherwise,

(9)

with starting points X̄r
1 = Xr

1 , r = 1, . . . , k. Then standard choices (see e.g. Bottou (2010) and
references therein) for α and cα are α = 3/4 and cα = 1, so that one only needs to select values for
cγ .

Note that from an asymptotic point of view, it has been proved in Cardot et al. (2010) that the
averaged stochastic gradient estimator of the geometric median is asymptotically efficient under
classical assumptions. This means that it has the same Gaussian asymptotic distribution as the
classic estimator which consists in minimizing the empirical version of (3) in the particular case
k = 1. This has been confirmed on simulations studies and it has also been noted that the averaged
algorithm is not very sensitive to the value of cγ , provided it is not too small compared to the
minimum value of the objective function.

It is also possible to consider refinements of the previous algorithm which consist in starting
the averaging procedure only after a certain number of iterations of algorithm (5). Then, one has
to determine when averaging starts so that it introduces another tuning parameter in the algorithm.
These techniques are not used in the simulation study in order to keep our procedure as simple as
possible.
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3 Almost sure convergence of the algorithm

3.1 A convergence theorem

The following theorem is the main theoretical result of this paper. It states that the recursive algo-
rithm defined in (6) converges almost surely to the set of stationary points of the objective function
defined in (3), under the following assumptions.

(H1) a) The random vector Z is absolutely continuous with respect to Lebesgue measure.
b) Z is bounded: ∃K > 0: ‖Z‖ ≤ K a.s.
c) ∃C: ∀x ∈ Rd such that ‖x‖ ≤ K + 1, E

[
1

‖Z−x‖

]
< C.

(H2) a) ∀n ≥ 1, minr a
r
n > 0.

b) maxr supn a
r
n < min(12 ,

1
8C ) a.s.

c)
∑∞

n=1 maxr a
r
n =∞ a.s.

d) supn
maxr arn
minr arn

<∞ a.s.

(H3)
∑k

r=1

∑∞
n=1 (arn)2 <∞ a.s.

(H3’)
∑k

r=1

∑∞
n=1 E

[
(arn)2 Ir(Zn;Xn)

]
<∞.

Theorem 1. Assume that X1 is absolutely continuous and that ‖Xr
1‖ ≤ K, for r = 1, . . . , k. Then

under Assumptions (H1a,c), (H2a,b), (H3) or (H3’), g(Xn) and

k∑
r=1

∞∑
n=1

arn ‖∇rg(Xn)‖2

converge almost surely.
Moreover, if the hypotheses (H1b) and (H2c,d) are also fulfilled then ∇g(Xn) and the distance
between Xn and the set of stationary points of g converge almost surely to zero.

A direct consequence of Theorem 1 is that if the set of stationary points of g is finite, then the
sequence (Xn)n necessarily converges almost surely towards one of these stationary points because
Xn+1 − Xn converges almost surely towards zero. By Cesaro means arguments, the averaged
sequence X̄n also converges almost surely towards the same stationary point.

3.2 Comments on the hypotheses

Note first that if the data do not arrive online and X1 is chosen randomly among the sample units
thenX1 is absolutely continuous and ‖Xr

1‖ ≤ K, for r = 1, . . . , k under (H1a) and (H1b). Hypoth-
esis (H1c) is a stronger version of a more classical hypothesis needed to get consistent estimators of
the spatial median (see Chaudhuri (1996)). As noted in Cardot et al. (2010), it is closely related to
small ball properties of Z and is fulfilled when

P (‖Z − x‖ ≤ ε) ≤ cε2,

for a constant c that does not depend on x and ε small enough. This implies in particular that
hypothesis (H1c) can be satisfied only when the dimension d of the data satisfies d ≥ 2.

Hypotheses (H2) and (H3) or (H3’) deal with the stepsizes. Considering the general form of
gains arn given in (8), they are fulfilled when the sizes nr of all the clusters grows to infinity at the
same rate and α ∈]1/2, 1].
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4 A simulation study

We first perform a simulation study to compare our recursive k-medians algorithm with the follow-
ing well known clustering algorithms : k-means (function kmeans in ), trimmed k-means (func-
tion tkmeans in the package tclust, with a trimming coefficient α set to default, α = 0.05)
and PAM (function pam in the package cluster). Our codes are available on request.

We consider two bivariate random Gaussian vectorsZ1 (resp. Z2) with mean vectors θ1 = (2, 2)

(resp. θ2 = (−2,−2)) and covariance matrices
(

2 1
1 3

)
(resp.

(
3 1
1 2

)
).

We consider the mixture

Z = (1− ε) (π1Z1 + π2Z2) + εδz

with z = (−10, 10), π1 = 0.6 and π2 = 0.4. Point z is an outlier and parameter ε controls the level
of contamination. When ε = 0, the two components of the mixture Z are Gaussian random vectors
so that any reasonable clustering process should find, when the number of clusters k is equal to 2,
the cluster centers at θ1 and θ2. A sample of n = 200 realizations of Z is drawn in Figure 1.

-10 -5 0 5

-5
0

5
10

X1

X
2

Figure 1: A sample of n = 200 realizations of Z. An outlier is located at position (-10,10). The
centers θ1 and θ2 of the two natural clusters are denoted by a black triangle and a black circle.

As argued in Section 2.3, we only consider the averaged estimator, defined in (9). It depends
on α, cα and cγ . The descent parameter cγ plays the most important role in the convergence of the
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averaged algorithm and we fixed cα = 1 and α = 3/4. To evaluate the sensitivity of our recursive
procedure, we consider the set {1, 2, 5, 7, 10} of values for the parameter cγ . For the k-means,
trimmed k-means and k-medians clustering procedures, a set on 10 initial starting points X1 is
randomly chosen among the individuals of the sample. We select the estimate of the cluster centers
which minimizes the corresponding empirical criterion (equation (7), for the k-medians).

4.1 Estimation of the centers of the clusters

To compare the performances of the different estimation procedures, we draw 1000 samples of sizes
n = 250, n = 500 and n = 2000 and measure the estimation errors of the cluster centers by

min

(√∥∥∥θ̂1 − θ1∥∥∥2 +
∥∥∥θ̂2 − θ2∥∥∥2,√∥∥∥θ̂1 − θ2∥∥∥2 +

∥∥∥θ̂2 − θ1∥∥∥2) ,
where θ̂1 and θ̂2 are the estimated cluster centers.

The first quartile (Q1), the median value and the third quartile (Q3) of the estimation errors are
presented in Table 1 when there is no contamination, i.e ε = 0. For small sample sizes, the best
performances are obtained for the Mac Queen algorithm and the trimmed k-means. The recursive
k-medians algorithm also gives interesting estimates, provided the value of cγ is not too small,
cγ = 1 or not too large, cγ = 10. As the sample size increases, the performances of the stochastic
gradient k-medians get better. When n = 2000, the recursive k-medians gives the best results for
all the considered values of cγ . This means that the averaged procedure is not very sensitive to the
tuning parameter cγ provided the sample size is large enough and, as noted in Cardot et al. (2010),
the value of cγ is at least of the same order as the minimum value of the objective function to be
minimized.

Table 1: Estimation errors of the clusters centers for different sample sizes, when there is no con-
tamination by outliers, ε = 0.

n=250 n=500 n=2000
Estimator [Q1 median Q3] [Q1 median Q3] [Q1 median Q3]
cγ = 1 0.30 0.41 0.58 0.22 0.30 0.41 0.14 0.19 0.26
cγ = 2 0.28 0.39 0.51 0.21 0.29 0.40 0.14 0.19 0.26
cγ = 5 0.28 0.38 0.53 0.21 0.29 0.41 0.14 0.20 0.26
cγ = 7 0.29 0.42 0.57 0.22 0.31 0.43 0.14 0.20 0.27
cγ = 10 0.35 0.51 0.75 0.26 0.37 0.53 0.15 0.21 0.29

PAM 0.34 0.44 0.57 0.25 0.33 0.44 0.16 0.21 0.28
Trimmed k-means 0.26 0.36 0.50 0.20 0.28 0.42 0.16 0.23 0.30

MacQueen 0.26 0.35 0.47 0.22 0.30 0.37 0.18 0.22 0.27

We can note in Table 2 that the performances of the MacQueen algorithm are affected by the
presence, even in a very small proportion (ε = 0.02), of outliers. The trimmed k-means is the
most effective approach when the sample size is not too large, i.e. n = 250 or n = 500. When the
sample size is larger, n = 2000, the best estimations are obtained with the trimmed k-means and the
recursive k-medians algorithms, for values of cγ ranging from 1 to 10. Once again, as the sample
size increases, the stochastic k-medians becomes less sensitive to the choice of cγ .
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Table 2: Comparison of the estimation errors of the centers of the clusters for different sample sizes,
when ε = 0.02.

n=250 n=500 n=2000
Estimator [Q1 median Q3] [Q1 median Q3] [Q1 median Q3]
cγ = 1 0.31 0.43 0.58 0.23 0.32 0.42 0.13 0.20 0.26
cγ = 2 0.29 0.40 0.54 0.21 0.30 0.41 0.14 0.19 0.26
cγ = 5 0.29 0.40 0.57 0.21 0.30 0.42 0.14 0.20 0.26
cγ = 7 0.31 0.44 0.61 0.23 0.32 0.45 0.14 0.20 0.27
cγ = 10 0.41 0.58 0.85 0.27 0.40 0.57 0.15 0.22 0.30

PAM 0.34 0.45 0.59 0.24 0.33 0.43 0.15 0.21 0.26
Trimmed k-means 0.26 0.37 0.51 0.19 0.26 0.39 0.14 0.20 0.27

MacQueen 0.47 0.61 0.77 0.43 0.52 0.64 0.40 0.45 0.51

4.2 Computation time

The codes of all the considered estimation procedures call C routines and provide the same
output. Mean computation times, for 100 runs, various sample sizes and numbers of clusters are
reported in Table 3. From a computational point of view, the recursive k-means based on the Mac-
Queen algorithm as well as the averaged stochastic k-medians algorithm are always faster than the
others and the gain increases as the sample size gets larger. For example, when k = 5 and n = 2000
our procedure is approximately 30 times faster than the trimmed k-means and 350 times faster than
the PAM algorithm. This also means that when the allocated computation is fixed and the dataset
is very large, the recursive k-medians algorithm can deal with sample sizes that are 30 times larger
than the trimmed k-means and 350 times larger than the PAM algorithm.

Table 3: Comparison of the mean computation time in seconds, for 100 runs, of the different esti-
mators for various sample sizes and number of clusters k.

n=250 n=500 n=2000
Estimator k=2 k=4 k=5 k=2 k=4 k=5 k=2 k=4 k=5
k-medians 0.33 0.35 0.36 0.45 0.47 0.48 1.14 1.25 1.68

PAM 1.38 3.34 4.21 5.46 15.12 20.90 111 302.00 596.00
Trimmed k-means 2.20 5.45 6.76 5.32 11.19 13.48 22.97 42.72 51.00

MacQueen 0.21 0.29 0.31 0.25 0.43 0.50 0.60 1.38 1.76

When the sample size and the dimension increase the computation time is even more critical.
For instance, when d = 1440 and n = 5422 as in the example of Section 5.2, sequential estimation
procedures are at least 1000 times faster than the trimmed k-means. It takes about 3.0 seconds for
our averaged k-medians to converge, 5.5 seconds for the sequential k-means and more than 5700
seconds for the trimmed k-means.

5 Determining television audience profiles with k-medians

The Médiamétrie company provides every day the official estimations of television audience in
France. Television consumption can be measured both in terms of how long do people watch each
channel and when do they watch television. Médiamétrie has a panel of about 9000 individuals
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equipped at home with sensors that are able to record and send the audience of the different tele-
vision channels. Among this panel, a sample of around 7000 people is drawn every day and the
television consumption of the people belonging to this sample is sent to Médiamétrie at night, be-
tween 3 and 5 AM. Online clustering techniques are then interesting to determine automatically,
the number of clusters being fixed in advance, the main profiles of viewers and then relate these
profiles to socio-economic variables. In these samples, Médiamétrie has noted the presence of some
atypical behaviors so that robust techniques may be helpful.

5.1 Clustering aggregated audiences

We first consider aggregated data and deal with the cumulated audiences of the different channels.
We focus our study on two days of september 2010, a sunday and a tuesday. We have initial samples
with size nS = 7337 for the sunday and with size nT = 7173 for the tuesday and we observe, for
each individual i in the sample, a vector Zi ∈ R7 whose components correspond to the cumulated
audience, measured in hours, for each television channel (numbered from 1 to 7 for confidentiality
reasons). Note that about 28 % of the individuals in the two samples did not watch television at all
during these two days. They form a particular cluster and have not been taken into account in the
clustering procedure, so that we consider, in the following, subsamples of the initial samples which
have sizes nS = 5202 and nT = 5188.

We perform our recursive averaged clustering procedure and consider k = 6 clusters. The
centers of the clusters are presented in Figure 2 and are sorted according to the total cumulated
audience. They have been estimated with a tuning parameter cγ = 1 and 100 different initial
starting points for the algorithm. We have noted that the results do not vary much when cγ take
values around 1, which lead to the smallest values of the empirical version of (3).

Cl.1 Cl.2 Cl.3 Cl.4 Cl.5 Cl.6

Channel  7
Channel  6
Channel  5
Channel  4
Channel  3
Channel  2
Channel  1

h
o
u
rs

0
1

2
3

4
5

6
7

Cl.1 Cl.2 Cl.3 Cl.4 Cl.5 Cl.6

Channel  7
Channel  6
Channel  5
Channel  4
Channel  3
Channel  2
Channel  1

h
o
u
rs

0
1

2
3

4
5

6
7

Figure 2: Cumulated audience for the different clusters denoted by Cl.1 - Cl.6. Bar widths are
proportional to cluster sizes. For confidentiality reasons, the television channels have been renamed.
On the left, the cluster spatial medians during the sunday. On the right, the cluster spatial medians
during the tuesday.
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When analyzing and comparing the cluster centers for the sunday and the tuesday, the first
surprising fact is the similarity between some clusters of the two different days whereas one could
expect very different profiles. For example, Cluster 1, which represents people watching television
a long period of time during the day, has approximately the same distribution along the different
television channels for the sunday and the tuesday. It is a profile of people that have high levels of
television consumption and spend around 5 hours in front of the channel 7. This profile represents
about 7.0% of the sample for the sunday and 5.1% for the tuesday. Cluster 6, which represents about
38% of the sample, for both days, is also nearly unchanged and corresponds to people that do not
spend much time watching television. The third cluster centers, in terms of sample sizes, are also
very stable for both days. People belonging to these clusters, which represent about 14.2% of the
sample for the sunday and 11.9% of the sample for the tuesday, correspond to a profile of people
that mainly watch channel 2 and a rather long period of time during these two days. Cluster 5 is
also unchanged, it represents about 13% of the sample for both days and is very similar to cluster
1, up to a scale factor. The main difference between the two studied days essentially comes from
cluster 4. For the tuesday, it corresponds to a group of people mainly watching channel 5 and there
is no equivalent group during the sunday.

5.2 Clustering temporal profiles
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Figure 3: A sample of 5 observations of individual audience profiles measured every minute over a
period of 24 hours.

Another interesting question is to build profiles of the evolution along time of the total audience.
We have now a sample of n = 5422 individual audiences, aggregated along all television channels,
measured every minute over a period of 24 hours during the 6th september 2010. An observation

11



Zi is a vector in [0, 1]d, with d = 1440, each component giving the fraction of time spent watching
television during the corresponding minute of the day. A sample of 5 individual temporal profiles is
drawn in Figure 3.

The cluster centers, estimated with our averaged algorithm for k = 5,with a parameter cγ = 0.2
and 100 different starting points, are drawn in Figure 4. They have been ordered in decreasing order
according to their sizes and labelled Cl.1 to Cl.5. Cluster 1 (Cl.1) is thus the largest cluster and it
contains about 35% of the sample. It corresponds to individuals that do not watch television much
during the day, with a cumulated audience of about 42 minutes. At the opposite, cluster 5, which
represents about 12% of the sample, is associated to high audience rates during nearly all the day
with a cumulated audience of about 592 minutes. Clusters 2, 3 and 4 correspond to intermediate
consumption levels and can be distinguished according the audience during the evening and at night.
For example cluster 4, which represents 16% of the sample, is related to people watching television
late at night, with a cumulated audience of about 310 minutes.
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Figure 4: Cluster centers for temporal television audience profiles measured every minute over a
period of 24 hours.
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Appendix : Proof of Theorem 1

The proof of Theorem 1 relies on the following light version of the main theorem in Monnez (2006),
section 2.1.

Theorem 2 (Monnez (2006)). Assuming

(A1a) g is a non negative function;

(A1b) There exists a constant L > 0 such that, for all n ≥ 1,

g(Xn+1)− g(Xn) ≤ 〈Xn+1 −Xn,∇g(Xn)〉+ L ‖Xn+1 −Xn‖2 a.s.;

(A1c) The sequence (Xn) is almost surely bounded and∇g is continuous almost everywhere on the
compact set containing (Xn);

(A2) There exists four sequences of random variables (Bn), (Cn),(Dn) and (En) in R+ adapted
to the sequence (Fn) such that a.s.:

(A2a)
∥∥√AnE[Vn|Fn]

∥∥2 ≤ Bng(Xn) + Cn and
∑∞

n=1(Bn + Cn) <∞;

(A2b) E[‖AnVn‖2 |Fn] ≤ Dng(Xn) + En and
∑∞

n=1(Dn + En) <∞;

(A4) supn a
r
n < min(12 ,

1
4L) a.s.,

∑∞
n=1 maxr a

r
n =∞ a.s. and

sup
n

maxr a
r
n

minr arn
<∞ a.s.

then the distance of Xn to the set of stationary points of g converges almost surely to zero.

Proof of Theorem 1.

Step 1: proof of (A1b)

Let A = Xn and B = Xn+1. Since Xn is absolutely continuous with respect to Lebesgue
measure,

∑k
r=1 Ir(Z;A) = 1 a.s. and one gets

g(B) = E
[
min
r
‖Z −Br‖

]
= E

[
k∑
r=1

Ir(Z;A) min
j

∥∥Z −Bj
∥∥] ,

and it comes

g(B) ≤
k∑
r=1

E [Ir(Z;A) ‖Z −Br‖] ,

which yields

g(B)− g(A) ≤
k∑
r=1

E [Ir(Z;A) (‖Z −Br‖ − ‖Z −Ar‖)] .

The application x 7→ ‖z − xr‖ is a continuous function whose gradient

∇r ‖z − xr‖ =
xr − z
‖xr − z‖

13



is also continuous for xr 6= z. Then almost surely for d ≥ 2, there exists Cr = Ar + µr(Br −Ar),
0 ≤ µr ≤ 1, such that

‖Z −Br‖ − ‖Z −Ar‖ = 〈Br −Ar,∇r ‖Z − Cr‖〉.

Consequently for all d ≥ 2,

g(B)− g(A) ≤
k∑
r=1

E [Ir(Z;A)〈Br −Ar,∇r ‖Z − Cr‖〉] ,

so that

g(B)− g(A) ≤
k∑
r=1

E [Ir(Z;A)〈Br −Ar,∇r ‖Z − Cr‖ − ∇r ‖Z −Ar‖〉]

+
k∑
r=1

E [Ir(Z;A)〈Br −Ar,∇r ‖Z −Ar‖〉]
def
= (1) + (2)

On the one hand

(2) =

k∑
r=1

〈Br −Ar,∇rg(A)〉 = 〈B −A,∇g(A)〉,

and on the other hand

(1) ≤
k∑
r=1

‖Br −Ar‖E [‖∇r ‖Z − Cr‖ − ∇r ‖Z −Ar‖‖] ,

hence since

‖∇r ‖Z − Cr‖ − ∇r ‖Z −Ar‖‖ =

∥∥∥∥ Cr − Z
‖Cr − Z‖

− Ar − Z
‖Ar − Z‖

∥∥∥∥ ≤ 2
‖Cr −Ar‖
‖Ar − Z‖

,

it comes, with (H1c)

(1) ≤ 2
k∑
r=1

‖Br −Ar‖ ‖Cr −Ar‖E
[

1

‖Z −Ar‖

]
≤ 2C

k∑
r=1

‖Br −Ar‖2 = 2C ‖B −A‖2 .

Consequently, one gets

g(B)− g(A) ≤ 〈B −A,∇g(A)〉+ 2C ‖B −A‖2 .

Step 2: Proof of the assertion: ∀n ≥ 1, for all r = 1, ...k, ‖Xr
n‖ ≤ K + 2 supn a

r
n

Let us prove by induction on n that for all n ∈ N∗, for all r = 1, . . . , k, ‖Xr
n‖ ≤ K+2 supn a

r
n.

This inequality is trivial for the case n = 1: ‖Xr
1‖ ≤ K. Let n ∈ N∗ such that ‖Xr

n‖ ≤ K +
2 supn a

r
n, ∀r ∈ {1, . . . , k}. Let r ∈ {1, . . . , k}. First we assume that ‖Xr

n‖ ≤ K + arn. Then it
comes ∥∥Xr

n+1

∥∥ ≤ ‖Xr
n‖+ arnIr(Zn;Xn) ≤ ‖Xr

n‖+ arn ≤ K + 2arn.

Now in the case when K + arn < ‖Xr
n‖ ≤ K + 2 supn a

r
n, one gets

‖Xr
n‖ > K + arn ≥ ‖Zn‖+ arn,
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and then
‖Xr

n − Zn‖ ≥ |‖Xr
n‖ − ‖Zn‖| > arn.

Since for Ir(Zn;Xn) = 0, Xr
n+1 = Xr

n, it remains to deal with the unique index r such that
Ir(Zn;Xn) = 1. In that case,

Xr
n+1 = Xr

n − arn
Xr
n − Zn

‖Xr
n − Zn‖

=

(
1− arn
‖Xr

n − Zn‖

)
Xr
n + arn

Zn
‖Xr

n − Zn‖
.

By (H1b) and from the inequalities arn/ ‖Xr
n − Zn‖ < 1 and ‖Zn‖ ≤ K < ‖Xr

n‖, it comes,

∥∥Xr
n+1

∥∥ < (1− arn
‖Xr

n − Zn‖

)
‖Xr

n‖+ arn
‖Xr

n‖
‖Xr

n − Zn‖
= ‖Xr

n‖ ,

which leads to
∥∥Xr

n+1

∥∥ ≤ K + 2 supn a
r
n and concludes the proof by induction.

Step 3: Proof of (A1c)

From the integral form

∂g

∂xrj
(x) =

∫
Rd\{xr}

Ir(z;x)
xrj − zj
‖z − xr‖

f(z)dz,

it is easy to see that ∂g
∂xrj

is a continuous function of x.

Step 4: Proof of (A2a)

The definition of V r
n implies that E[V r

n |Fn] = 0 and hence it comes E[Vn|Fn] = 0.

Step 5: Proof of (A2b)

E
[
‖AnVn‖2 |Fn

]
=

k∑
r=1

E
[
(arn)2 ‖V r

n ‖
2 |Fn

]
≤

k∑
r=1

(arn)2 E

[
Ir(Zn;Xn)

‖Xr
n − Zn‖

2

‖Xr
n − Zn‖

2

∣∣∣Fn]

≤
k∑
r=1

(arn)2.

Hence assuming (H3), it comes

E

[ ∞∑
n=1

E
[
‖AnVn‖2 |Fn

]]
<∞.

In the case when (H3’) holds instead of (H3), one has

E

[ ∞∑
n=1

E
[
‖AnVn‖2 |Fn

]]
≤
∞∑
n=1

k∑
r=1

E
[
(arn)2Ir(Zn;Xn)

]
<∞.

15



Consequently,
∞∑
n=1

E
[
‖AnVn‖2 |Fn

]
<∞ a.s,

which concludes the proof.
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