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Abstract

Random forests are a scheme proposed by Leo Breiman in the 00’s for
building a predictor ensemble with a set of decision trees that grow
in randomly selected subspaces of data. Despite growing interest and
practical use, there has been little exploration of the statistical prop-
erties of random forests, and little is known about the mathematical
forces driving the algorithm. In this paper, we offer an in-depth anal-
ysis of a random forests model suggested by Breiman in [10], which
is very close to the original algorithm. We show in particular that
the procedure is consistent and adapts to sparsity, in the sense that
its rate of convergence depends only on the number of strong features
and not on how many noise variables are present.
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1 Introduction

1.1 Random forests

In a series of papers and technical reports, Breiman [7, 8, 9, 10] demon-
strated that substantial gains in classification and regression accuracy can be
achieved by using ensembles of trees, where each tree in the ensemble is grown
in accordance with a random parameter. Final predictions are obtained by
aggregating over the ensemble. As the base constituents of the ensemble are
tree-structured predictors, and since each of these trees is constructed using
an injection of randomness, these procedures are called “random forests”.

Breiman’s ideas were decisively influenced by the early work of Amit and
Geman [2] on geometric feature selection, the random subspace method of
Ho [23] and the random split selection approach of Dietterich [19]. As high-
lighted by various empirical studies (see [9, 31, 18, 21] for instance), random
forests have emerged as serious competitors to state of the art methods such
as boosting (Freund [20]) and support vector machines (Shawe-Taylor and
Cristianini [30]). They are fast and easy to implement, produce highly ac-
curate predictions and can handle a very large number of input variables
without overfitting. In fact, they are considered to be one of the most accu-
rate general-purpose learning techniques available. The survey by Genuer et
al. [21] may provide the reader with practical guidelines and a good starting
point for understanding the method.

In Breiman’s approach, each tree in the collection is formed by first selecting
at random, at each node, a small group of input coordinates (also called
features or variables hereafter) to split on and, secondly, by calculating the
best split based on these features in the training set. The tree is grown
using CART methodology (Breiman et al. [11]) to maximum size, without
pruning. This subspace randomization scheme is blended with bagging ([7,
13, 14, 3]) to resample, with replacement, the training data set each time a
new individual tree is grown.

Although the mechanism appears simple, it involves many different driving
forces which make it difficult to analyse. In fact, its mathematical properties
remain to date largely unknown and, up to now, most theoretical studies
have concentrated on isolated parts or stylized versions of the algorithm. In-
teresting attempts in this direction are by Lin and Jeon [27], who establish
a connection between random forests and adaptive nearest neighbor meth-
ods (see also [4] for further results in this direction); Meinshausen [28], who
studies the consistency of random forests in the context of conditional quan-
tile prediction; and Devroye et al. [5], who offer consistency theorems for
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various simplified versions of random forests and other randomized ensemble
predictors. Nevertheless, the statistical mechanism of “true” random forests
is not yet fully understood and is still under active investigation.

In the present paper, we go one step further into random forests by working
out the properties of a model suggested by Breiman in [10]. Though this
model is still simple compared to the true algorithm, it is nevertheless closer
to reality than any other scheme we are aware of. The short draft [10] is
essentially based on intuition and mathematical heuristics, some of them
are questionable and make the document difficult to read and understand.
However, the ideas presented by Breiman are worth clarifying and developing,
and they will serve as a starting point for our study.

Before we formalize the model, some definitions are in order. Through-
out the document, we suppose that we are given a training sample Dn =
{(X1, Y1), . . . , (Xn, Yn)} of i.i.d. [0, 1]d × R-valued random variables (d ≥ 2)
with the same distribution as an independent generic pair (X, Y ) satisfying
EY 2 < ∞. The space [0, 1]d is equipped with the standard Euclidean met-
ric. For fixed x ∈ [0, 1]d, our mission is to estimate the regression function
r(x) = E[Y |X = x] using the data Dn. In this respect, we say that a re-
gression function estimate rn(x) is consistent if E[rn(X) − r(X)]2 → 0 as
n → ∞. The main message of this paper is that Breiman’s procedure is
consistent and adapts to sparsity, in the sense that its rate of convergence
depends only on the number of strong features and not on how many noise
variables are present.

1.2 The model

Formally, a random forest is a predictor consisting of a collection of random-
ized base regression trees {rn(x, Θm,Dn), m ≥ 1}, where Θ1, Θ2, . . . are i.i.d.
outputs of a randomizing variable Θ. These random trees are combined to
form the aggregated regression estimate

r̄n(X,Dn) = EΘ [rn(X, Θ,Dn)] ,

where EΘ denotes expectation with respect to the random parameter, con-
ditionally on X and the data set Dn. In the following, to lighten notation a
little, we will omit the dependency of the estimates in the sample, and write
for example r̄n(X) instead of r̄n(X,Dn). Note that, in practice, the above ex-
pectation is evaluated by Monte-Carlo, i.e., by generating M (usually large)
random trees, and taking the average of the individual outcomes (this pro-
cedure is justified by the law of large numbers, see the appendix in Breiman
[9]). The randomizing variable Θ is used to determine how the successive

3



cuts are performed when building the individual trees, such as selection of
the coordinate to split and position of the split.

In the model we have in mind, the variable Θ is assumed to be independent of
X and the training sample Dn. This excludes in particular any bootstrapping
or resampling step in the training set. This also rules out any data-dependent
strategy to build the trees, such as searching for optimal splits by optimizing
some criterion on the actual observations. However, we allow Θ to be based
on a test sample, independent of, but distributed as, Dn. This important
issue will be thoroughly discussed in Section 3.

With these warnings in mind, we will assume that each individual random
tree is constructed in the following way. All nodes of the tree are associated
with rectangular cells such that at each step of the construction of the tree,
the collection of cells associated with the leaves of the tree (i.e., external
nodes) forms a partition of [0, 1]d. The root of the tree is [0, 1]d itself. The
following procedure is then repeated ⌈log2 kn⌉ times, where log2 is the base-2
logarithm, ⌈.⌉ the ceiling function and kn ≥ 2 a deterministic parameter,
fixed beforehand by the user, and possibly depending on n.

1. At each node, a coordinate of X = (X(1), . . . , X(d)) is selected, with
the j-th feature having a probability pnj ∈ (0, 1) of being selected.

2. At each node, once the coordinate is selected, the split is at the mid-
point of the chosen side.

Each randomized tree rn(X, Θ) outputs the average over all Yi for which the
corresponding vector Xi falls in the same cell of the random partition as
X. In other words, letting An(X, Θ) be the rectangular cell of the random
partition containing X,

rn(X, Θ) =

∑n
i=1 Yi1[Xi∈An(X,Θ)]
∑n

i=1 1[Xi∈An(X,Θ)]

1En(X,Θ),

where the event En(X, Θ) is defined by

En(X, Θ) =

[

n
∑

i=1

1[Xi∈An(X,Θ)] 6= 0

]

.

(Thus, by convention, the estimate is set to 0 on empty cells.) Taking finally
expectation with respect to the parameter Θ, the random forests regression
estimate takes the form

r̄n(X) = EΘ [rn(X, Θ)] = EΘ

[
∑n

i=1 Yi1[Xi∈An(X,Θ)]
∑n

i=1 1[Xi∈An(X,Θ)]
1En(X,Θ)

]

.
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Let us now make some general remarks about this random forest model.
First of all, we note that, by construction, each individual tree has exactly
2⌈log2 kn⌉ (≈ kn) terminal nodes, and each leaf has Lebesgue measure 2−⌈log2 kn⌉

(≈ 1/kn). Thus, if X has uniform distribution on [0, 1]d, there will be on
average about n/kn observations per terminal node. In particular, the choice
kn = n induces a very small number of cases in the final leaves, in accordance
with the idea that the single trees should not be pruned.

Next, we see that, during the construction of the tree, at each node, each
candidate coordinate X(j) may be chosen with probability pnj ∈ (0, 1). This

implies in particular
∑d

j=1 pnj = 1. Although we do not precise for the
moment the way these probabilities are generated, we stress that they may
be induced by a test sample. This includes the situation where, at each
node, randomness is introduced by selecting at random (with or without
replacement) a small group of input features to split on, and choosing to
cut the cell along the coordinate—inside this group—which most decreases
some empirical criterion evaluated on the extra sample. This scheme is close
to what the original random forests algorithm does, the essential difference
being that the latter algorithm uses the actual data set to calculate the best
splits. This point will be properly discussed in Section 3.

Finally, the requirement that the splits are always achieved at the middle of
the cell sides is mainly technical, and it could eventually be replaced by a
more involved random mechanism—based on the test sample, at the price of
a much more complicated analysis.

The document is organized as follows. In Section 2, we prove that the random
forests regression estimate r̄n is consistent and discuss its rate of convergence.
As a striking result, we show under a sparsity framework that the rate of
convergence depends only on the number of active (or strong) variables and
not on the dimension of the ambient space. This feature is particularly
desirable in high-dimensional regression, when the number of variables can
be much larger than the sample size, and may explain why random forests
are able to handle a very large number of input variables without overfitting.
Section 3 is devoted to a discussion, and proofs are postponed to Section 4.

2 Consistency results

Throughout the document, we will denote by Nn(X, Θ) the number of data
points falling in the same cell as X, i.e.,

Nn(X, Θ) =

n
∑

i=1

1[Xi∈An(X,Θ)].
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We start the analysis with the following simple theorem, which shows that
the random forests estimate r̄n is consistent.

Theorem 2.1 Assume that the distribution of X has support on [0, 1]d.
Then the random forests estimate r̄n is consistent whenever pnj log kn → ∞
for all j = 1, . . . , d and kn/n → 0 as n → ∞.

Theorem 2.1 mainly serves as an illustration of how the consistency problem
of random forests predictors may be attacked. It encompasses, in particular,
the situation where, at each node, the coordinate to split is chosen uniformly
at random over the d candidates. In this “purely random” model, pnj = 1/d,
independently of n and j, and consistency is ensured as long as kn → ∞
and kn/n → 0. This is however a radically simplified version of the random
forests used in practice, which does not explain the good performance of the
algorithm. To achieve this goal, a more in-depth analysis is needed.

There is empirical evidence that many signals in high-dimensional spaces ad-
mit a sparse representation. As an example, wavelet coefficients of images
often exhibit exponential decay, and a relatively small subset of all wavelet
coefficients allow for a good approximation of the original image. Such sig-
nals have few non-zero coefficients and can therefore be described as sparse in
the signal domain (see for instance [12]). Similarly, recent advances in high-
throughput technologies such as microarrays and aCGH arrays indicate that,
despite the huge dimensionality of problems, only a small number of genes
may play a role in determining the outcome and be required to create good
predictors ([33] for instance). Sparse estimation is playing an increasingly
important role in the statistics and machine learning communities, and sev-
eral methods have recently been developed in both fields, which rely upon the
notion of sparsity (e.g. penalty methods like the Lasso and Dantzig selector,
see [32, 16, 15, 6] and the references therein).

Following this idea, we will assume in our setting that the target regression
function r(X) = E[Y |X], which is initially a function of X = (X(1), . . . , X(d)),
depends in fact only on a nonempty subset S (for Strong) of the d features.
In other words, letting XS = (Xj : j ∈ S) and S = Card S, we have

r(X) = E[Y |XS ]

or equivalently, for any x ∈ [0, 1]d,

r(x) = r⋆(xS) µ-a.s., (2.1)

where µ is the distribution of X and r⋆ : [0, 1]S → R is the section of r
corresponding to S. To avoid trivialities, we will assume throughout that S
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is nonempty, with S ≥ 2. The variables in the set W = {1, . . . , d} − S (for
Weak) have thus no influence on the response and could be safely removed.
In the dimension reduction scenario we have in mind, the ambient dimension
d can be very large, much larger than the sample size n, but we believe that
the representation is sparse, i.e., that very few coordinates of r are non-zero,
with indices corresponding to the set S. Note however that representation
(2.1) does not forbid the somehow undesirable case where S = d. As such,
the value S characterizes the sparsity of the model: the smaller S, the sparser
r.

Within this sparsity framework, it is intuitively clear that the coordinate-
sampling probabilities should ideally satisfy the constraints pnj = 1/S for
j ∈ S (and, consequently, pnj = 0 otherwise). However, this is a too strong
requirement, which has no chance to be satisfied in practice, except maybe
in some special situations where we know beforehand which variables are
important and which are not. Thus, to stick to reality, we will rather require
in the following that pnj = (1/S)(1+ξnj) for j ∈ S (and pnj = ξnj otherwise),
where pnj ∈ (0, 1) and each ξnj tends to 0 as n tends to infinity. We will
see in Section 3 how to design a randomization mechanism to obtain such
probabilities, on the basis of a test sample independent of the training set
Dn.

We have now enough material for a deeper understanding of the random
forests algorithm. To lighten notation a little, we will write

Wni(X, Θ) =
1[Xi∈An(X,Θ)]

Nn(X, Θ)
1En(X,Θ),

so that the estimate takes the form

r̄n(X) =
n
∑

i=1

EΘ [Wni(X, Θ)]Yi.

Let us start with the variance/bias decomposition

E [r̄n(X) − r(X)]2 = E [r̄n(X) − r̃n(X)]2 + E [r̃n(X) − r(X)]2 , (2.2)

where we set

r̃n(X) =

n
∑

i=1

EΘ [Wni(X, Θ)] r(Xi).

The two terms of (2.2) will be examined separately, in Proposition 2.1 and
Proposition 2.2, respectively. Throughout, the symbol V denotes variance.
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Proposition 2.1 Assume that X is uniformly distributed on [0, 1]d and, for
all x ∈ Rd,

σ2(x) = V[Y |X = x] ≤ σ2

for some positive constant σ2. Then, if pnj = (1/S)(1 + ξnj) for j ∈ S,

E [r̄n(X) − r̃n(X)]2 ≤ Cσ2

(

S2

S − 1

)S/2d

(1 + ξn)
kn

n(log kn)S/2d
,

where

C =
288

π

(

π log 2

16

)S/2d

.

The sequence (ξn) depends on the sequences {(ξnj) : j ∈ S} only and tends
to 0 as n tends to infinity.

Remark 1 A close inspection of the end of the proof of Proposition 2.1
reveals that

1 + ξn =
∏

j∈S

[

(1 + ξnj)
−1

(

1 −
ξnj

S − 1

)−1
]1/2d

.

In particular, if a < pnj < b for some constants a, b ∈ (0, 1), then

1 + ξn ≤

(

S − 1

S2a(1 − b)

)S/2d

.

�

The main message of Proposition 2.1 is that the variance of the forests es-
timate is O(kn/(n(log kn)S/2d)). This result is interesting by itself since it
shows the effect of aggregation on the variance of the forest. To understand
this remark, recall that individual (random or not) trees are proved to be
consistent by letting the number of cases in each terminal node become large
(see [17, Chapter 20]), with a typical variance of the order kn/n. Thus, for
such trees, the choice kn = n (i.e., about one observation on average in each
terminal node) is clearly not suitable and leads to serious overfitting and
variance explosion. On the other hand, the variance of the forest is of the
order kn/(n(log kn)S/2d). Therefore, letting kn = n, the variance is of the
order 1/(log n)S/2d, a quantity which still goes to 0 as n grows! Proof of
Proposition 2.1 reveals that this log term is a by-product of the Θ-averaging
process, which appears by taking into consideration the correlation between
trees. We believe that it provides an interesting perspective on why random
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forests are still able to do a good job, despite the fact that individual trees
are not pruned.

Note finally that the requirement that X is uniformly distributed on the
hypercube could be safely replaced by the assumption that X has a density
with respect to the Lebesgue measure on [0, 1]d and the density is bounded
above and below. The case where the density of X is not bounded from
below necessitates a specific analysis, which we believe is beyond the scope
of the present paper. We refer the reader to [4] for results in this direction.

Let us now turn to the analysis of the bias term in equality (2.2).

Proposition 2.2 Assume that X is uniformly distributed on [0, 1]d and r is
L-Lipschitz on [0, 1]d. Then, if pnj = (1/S)(1 + ξnj) for j ∈ S,

E [r̃n(X) − r(X)]2 ≤
2SL2

k
0.75

S log 2
(1+γn)

n

+

[

sup
x∈[0,1]d

r2(x)

]

e−n/2kn ,

where γn = minj∈S ξnj tends to 0 as n tends to infinity.

This result essentially shows that the rate at which the bias decreases to 0
depends on the number of strong variables, not on d. In particular, the quan-
tity kn

−(0.75/(S log 2))(1+γn) should be compared with the ordinary partitioning
estimate bias, which is of the order kn

−2/d under the smoothness conditions
of Proposition 2.2 (see for instance [22]). In this respect, it is easy to see
that kn

−(0.75/(S log 2))(1+γn) = o(kn
−2/d) as soon as S ≤ ⌊0.54d⌋ (⌊.⌋ is the in-

teger part function). In other words, when the number of active variables is
less than (roughly) half of the ambient dimension, the bias of the random
forests regression estimate decreases to 0 much faster than the usual rate.
The restriction S ≤ ⌊0.54d⌋ is not severe, since in all practical situations we
have in mind, d is usually very large with respect to S (this is, for instance,
typically the case in modern genome biology problems, where d may be of
the order of billions, and in any case much larger than the actual number
of active features). Note at last that, contrary to Proposition 2.1, the term
e−n/2kn prevents the extreme choice kn = n (one observation on average in
each terminal node). Indeed, an inspection of the proof of Proposition 2.2
reveals that this exponentially small term accounts for the probability that
Nn(X, Θ) is precisely 0, i.e., An(X, Θ) is empty.

Recalling the elementary inequality ze−nz ≤ e−1/n for z ∈ [0, 1], we may
finally join Proposition 2.1 and Proposition 2.2 and state our main theorem.
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Theorem 2.2 Assume that X is uniformly distributed on [0, 1]d, r is L-
Lipschitz on [0, 1]d and, for all x ∈ Rd,

σ2(x) = V[Y |X = x] ≤ σ2

for some positive constant σ2. Then, if pnj = (1/S)(1+ξnj) for j ∈ S, letting
γn = minj∈S ξnj, we have

E [r̄n(X) − r(X)]2 ≤ Ξn
kn

n
+

2SL2

k
0.75

S log 2
(1+γn)

n

,

where

Ξn = Cσ2

(

S2

S − 1

)S/2d

(1 + ξn) + 2e−1

[

sup
x∈[0,1]d

r2(x)

]

and

C =
288

π

(

π log 2

16

)S/2d

.

The sequence (ξn) depends on the sequences {(ξnj) : j ∈ S} only and tends
to 0 as n tends to infinity.

As we will see in Section 3, it may be safely assumed that the randomization
process allows for ξnj log n → 0 as n → ∞, for all j ∈ S. Thus, under this
condition, Theorem 2.2 shows that with the optimal choice

kn ∝ n1/(1+ 0.75
S log 2

),

we get

E [r̄n(X) − r(X)]2 = O
(

n
−0.75

S log 2+0.75

)

.

This result can be made more precise. Denote by F the class of (L, σ2)-
smooth distributions (X, Y ) such that X has uniform distribution on [0, 1]d,
the regression function r is Lipschitz with constant L and, for all x ∈ Rd,
σ2(x) = V[Y |X = x] ≤ σ2.

Corollary 2.1 Let

Ξ = Cσ2

(

S2

S − 1

)S/2d

+ 2e−1

[

sup
x∈[0,1]d

r2(x)

]

and

C =
288

π

(

π log 2

16

)S/2d

.
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Then, if pnj = (1/S)(1 + ξnj) for j ∈ S, with ξnj log n → 0 as n → ∞, for
the choice

kn ∝

(

L2

Ξ

)1/(1+ 0.75
S log 2

)

n1/(1+ 0.75
S log 2

),

we have

lim sup
n→∞

sup
(X,Y )∈F

E [r̄n(X) − r(X)]2

(

ΞL
2S ln 2
0.75

)
0.75

S ln 2+0.75
n

−0.75
S log 2+0.75

≤ Λ,

where Λ is a positive constant independent of r, L and σ2.

This result reveals the fact that the L2-rate of convergence of r̄n(X) to r(X)
depends only on the number S of strong variables, and not on the ambient
dimension d. The main message of Corollary 2.1 is that if we are able to
properly tune the probability sequences (pnj)n≥1 and make them sufficiently
fast to track the informative features, then the rate of convergence of the

random forests estimate will be of the order n
−0.75

S log 2+0.75 . This rate is strictly
faster than the usual rate n−2/(d+2) as soon as S ≤ ⌊0.54d⌋. To understand
this point, just recall that the rate n−2/(d+2) is minimax optimal for the
considered smoothness class F (see for example Ibragimov and Khasminskii
[24, 25, 26]), seen as a collection of regression functions over [0, 1]d. However,
in our setting, the intrinsic dimension of the regression problem is S, not
d, and the random forests estimate cleverly adapts to the sparsity of the
problem. As an illustration, Figure 1 shows the plot of the function S 7→
0.75/(S log 2 + 0.75) for S ranging from 2 to d = 100.

Remark 2 The reduced-dimensional rate n
−0.75

S log 2+0.75 is strictly larger than
the S-dimensional optimal rate n−2/(S+2). We do not know whether the latter
rate can be achieved by the algorithm. �

Remark 3 The optimal parameter kn of Corollary 2.1 depends on the un-
known distribution of (X, Y ), especially on the smoothness of the regression
function and the effective dimension S. To correct this situation, adaptive
(i.e., data-dependent) choices of kn, such as data-splitting or cross-validation,
should preserve the rate of convergence of the estimate. Another route we
may follow is to analyse the effect of bootstrapping the sample before growing
the individual trees (i.e., bagging). It is our belief that this procedure should
also preserve the rate of convergence, even for overfitted trees (kn ≈ n), in
the spirit of [3]. However, such a study is beyond the scope of the present
paper. �

Remark 4 For further references, it is interesting to note that Proposition
2.1 (variance term) is a consequence of aggregation, whereas Proposition 2.2
(bias term) is a consequence of randomization. �
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Figure 1: Plot of the function S 7→ 0.75/(S log 2 + 0.75) for S ranging from 2
to d = 100. The horizontal line shows the value of the d-dimensional rate power

2/(d + 2) ≈ 0.0196.

3 Discussion

The results which have been obtained in Section 2 rely on appropriate behav-
ior of the probability sequences (pnj)n≥1, j = 1, . . . , d. We recall that these
sequences should be in (0, 1) and obey the constraints pnj = (1/S)(1 + ξnj)
for j ∈ S (and pnj = ξnj otherwise), where the (ξnj)n≥1 tend to 0 as n
tends to infinity. In other words, at each step of the construction of the
individual trees, the random procedure should track and preferentially cut
the strong coordinates. In this more informal section, we briefly discuss a
random mechanism for inducing such probability sequences.

Suppose, to start with an imaginary scenario, that we already know which
coordinates are strong, and which are not. In this ideal case, the random
selection procedure described in the introduction may be easily made more
precise as follows. A positive integer Mn—possibly depending on n— is fixed
beforehand and the following splitting scheme is iteratively repeated at each
node of the tree:

1. Select at random, with replacement, Mn candidate coordinates to split
on.
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2. If the selection is all weak, then choose one at random to split on. If
there is more than one strong variable elected, choose one at random
and cut.

Within this framework, it is easy to see that each coordinate in S will be cut
with the “ideal” probability

p⋆
n =

1

S

[

1 −

(

1 −
S

d

)Mn

]

.

Though this is an idealized model, it already gives some information about
the choice of the parameter Mn, which, in accordance with the results of
Section 2 (Corollary 2.1), should satisfy

(

1 −
S

d

)Mn

log n → 0 as n → ∞.

This is true as soon as

Mn → ∞ and
Mn

log n
→ ∞ as n → ∞.

This result is consistent with the general empirical finding that Mn does
not need to be very large (see, for example, Breiman [9]), but not with the
widespread belief that Mn should not depend on n. Note also that if the
Mn features are chosen at random without replacement, then things are even
more simple since, in this case, p⋆

n = 1/S for all n large enough.

In practice, we have only a vague idea about the size and content of the set
S. However, to circumvent this problem, we may use the observations of an
independent test set D′

n (say, of the same size as Dn) in order to mimic the
ideal split probability p⋆

n. To illustrate this mechanism, suppose—to keep
things simple—that the model is linear, i.e.,

Y =
∑

j∈S

ajX
(j) + ε,

where X = (X(1), . . . , X(d)) is uniformly distributed over [0, 1]d, the aj are
non-zero real numbers, and ε is a zero-mean random noise, which is assumed
to be independent of X and with finite variance. Note that, in accordance
with our sparsity assumption, r(X) =

∑

j∈S ajX
(j) depends on XS only.

Assume now that we have done some splitting and arrived at a current set
of terminal nodes. Consider any of these nodes, say A =

∏d
j=1 Aj, fix a

13



coordinate j ∈ {1, . . . , d}, and look at the weighted conditional variance
V[Y |X(j)] P(X(j) ∈ Aj). It is a simple exercise to prove that if X is uniform
and j ∈ S, then the split on the j-th side which most decreases the weighted
conditional variance is at the midpoint of the node, with a variance decrease
equal to a2

j/16 > 0. On the other hand, if j ∈ W, the decrease of the variance
is always 0, whatever the location of the split.

On the practical side, the conditional variances are of course unknown, but
they may be estimated by replacing the theoretical quantities by their re-
spective sample estimates (as in the CART procedure, see Breiman et al. [9,
Chapter 8] for a thorough discussion) evaluated on the test sample D′

n. This
suggests the following procedure, at each node of the tree:

1. Select at random, with replacement, Mn candidate coordinates to split
on.

2. For each of the Mn elected coordinates, calculate the best split, i.e.,
the split which most decreases the within-node sum of squares on the
test sample D′

n.

3. Select one variable at random among the coordinates which output the
best within-node sum of squares decreases, and cut.

This procedure is indeed close to what the random forests algorithm does.
The essential difference is that we suppose to have at hand a second test
sample D′

n, whereas the original algorithm performs the search of the optimal
cuts on the original observations Dn. This point is important, since the use
of an extra sample preserves the independence of Θ (the random mechanism)
and Dn (the training sample). We do not know whether our results are still
true if Θ depends on Dn, but the analysis does not appear to be simple.
Note also that, at step 3, a threshold (or a test procedure, as suggested in
Amaratunga et al. [1]) should be used to choose among the most significant
variables, whereas the actual algorithm just selects the best one.

This empirical randomization scheme leads to complicate probabilities of cuts
which, this time, vary at each node of each tree and are not easily amenable
to analysis. Nevertheless, observing that the average number of cases per
terminal node is about n/kn, it may be inferred by the law of large numbers
that each variable in S will be cut with probability

pnj ≈
1

S

[

1 −

(

1 −
S

d

)Mn

]

(1 + ζnj),

14



where ζnj is of the order O(kn/n), a quantity which anyway goes fast to 0 as
n tends to infinity. Put differently, for j ∈ S,

pnj ≈
1

S
(1 + ξnj) ,

where ξnj goes to 0 and satisfies the constraint ξnj log n → 0 as n tends to
infinity, provided kn log n/n → 0, Mn → ∞ and Mn/ log n → ∞. This is
coherent with the requirements of Corollary 2.1. We realize however that this
is a rough approach, and that more theoretical work is needed here to fully
understand the mechanisms involved in Breiman’s original randomization
process.

4 Proofs

Throughout this section, we will make repeated use of the following two facts.

Fact 4.1 Let Knj(X, Θ) be the number of times the terminal node An(X, Θ)
is split on the j-th coordinate (j = 1, . . . , d). Then, conditionally on X,
Knj(X, Θ) has binomial distribution with parameters ⌈log2 kn⌉ and pnj (by
independence of X and Θ). Moreover, by construction,

d
∑

j=1

Knj(X, Θ) = ⌈log2 kn⌉.

Recall that we denote by Nn(X, Θ) the number of data points falling in the
same cell as X, i.e.,

Nn(X, Θ) =

n
∑

i=1

1[Xi∈An(X,Θ)].

Let λ be the Lebesgue measure on [0, 1]d.

Fact 4.2 By construction,

λ (An(X, Θ)) = 2−⌈log2 kn⌉.

In particular, if X is uniformly distributed on [0, 1]d, then the distribution
of Nn(X, Θ) conditionally on X and Θ is binomial with parameters n and
2−⌈log2 kn⌉ (by independence of the random variables X,X1, . . . ,Xn, Θ).
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4.1 Proof of Theorem 2.1

Observe first that, by Jensen’s inequality,

E [r̄n(X) − r(X)]2 = E [EΘ [rn(X, Θ) − r(X)]]2

≤ E [rn(X, Θ) − r(X)]2 .

A slight adaptation of Theorem 4.2 in Györfi et al. [22] shows that r̄n is
consistent if both diam(An(X, Θ)) → 0 in probability and Nn(X, Θ) → ∞
in probability.

Let us first prove that Nn(X, Θ) → ∞ in probability. To see this, consider
the random tree partition defined by Θ, which has by construction exactly
2⌈log2 kn⌉ rectangular cells, say A1, . . . , A2⌈log2 kn⌉ . Let N1, . . . , N2⌈log2 kn⌉ denote
the number of observations among X,X1, . . . ,Xn falling in these 2⌈log2 kn⌉

cells, and let C = {X,X1, . . . ,Xn} denote the set of positions of these n + 1
points. Since these points are independent and identically distributed, fixing
the set C and Θ, the conditional probability that X falls in the ℓ-th cell equals
Nℓ/(n + 1). Thus, for every fixed M ≥ 0,

P (Nn(X, Θ) < M) = E [P (Nn(X, Θ) < M | C, Θ)]

= E





∑

ℓ=1,...,2⌈log2 kn⌉:Nℓ<M

Nℓ

n + 1





≤
M2⌈log2 kn⌉

n + 1

≤
2Mkn

n + 1
,

which converges to 0 by our assumption on kn.

It remains to show that diam(An(X, Θ)) → 0 in probability. To this aim,
let Vnj(X, Θ) be the size of the j-th dimension of the rectangle containing
X. Clearly, it suffices to show that Vnj(X, Θ) → 0 in probability for all
j = 1, . . . , d. To this end, note that

Vnj(X, Θ)
D
= 2−Knj(X,Θ),

where, conditionally on X, Knj(X, Θ) has a binomial B(⌈log2 kn⌉, pnj) distri-
bution, representing the number of times the box containing X is split along
the j-th coordinate (Fact 4.1). Thus

E [Vnj(X, Θ)] = E
[

2−Knj(X,Θ)
]

= E
[

E
[

2−Knj(X,Θ) |X
]]

= (1 − pnj/2)⌈log2 kn⌉,
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which tends to 0 as pnj log kn → ∞.

4.2 Proof of Proposition 2.1

Recall that

r̄n(X) =

n
∑

i=1

EΘ [Wni(X, Θ)]Yi,

where

Wni(X, Θ) =
1[Xi∈An(X,Θ)]

Nn(X, Θ)
1En(X,Θ)

and
En = [Nn(X, Θ) 6= 0] .

Similarly,

r̃n(X) =

n
∑

i=1

EΘ [Wni(X, Θ)] r(Xi).

We have

E [r̄n(X) − r̃n(X)]2 = E

[

n
∑

i=1

EΘ [Wni(X, Θ)] (Yi − r(Xi))

]2

= E

[

n
∑

i=1

E
2
Θ [Wni(X, Θ)] (Yi − r(Xi))

2

]

(the cross terms are 0 since E[Yi|Xi] = r(Xi)

= E

[

n
∑

i=1

E
2
Θ [Wni(X, Θ)]σ2(Xi)

]

≤ σ2
E

[

n
∑

i=1

E
2
Θ [Wni(X, Θ)]

]

= nσ2
E
[

E
2
Θ [Wn1(X, Θ)]

]

,

where we used a symmetry argument in the last equality. Observe now that

E
2
Θ [Wn1(X, Θ)] = EΘ [Wn1(X, Θ)] EΘ′ [Wn1(X, Θ′)]

(where Θ′ is distributed as, and independent of, Θ)

= EΘ,Θ′ [Wn1(X, Θ)Wn1(X, Θ′)]

= EΘ,Θ′

[

1[X1∈An(X,Θ)]1[X1∈An(X,Θ′)]

Nn(X, Θ)Nn(X, Θ′)
1En(X,Θ)1En(X,Θ′)

]

≤ EΘ,Θ′

[

1[X1∈An(X,Θ)∩An(X,Θ′)]

Nn(X, Θ)Nn(X, Θ′)
1En(X,Θ)1En(X,Θ′)

]

.
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Consequently,

E [r̄n(X) − r̃n(X)]2 ≤ nσ2
E

[

1[X1∈An(X,Θ)∩An(X,Θ′)]

Nn(X, Θ)Nn(X, Θ′)
1En(X,Θ)1En(X,Θ′)

]

.

Therefore

E [r̄n(X) − r̃n(X)]2

≤ nσ2
E

[

1[X1∈An(X,Θ)∩An(X,Θ′)]
(

1 +
∑n

i=2 1[Xi∈An(X,Θ)]

) (

1 +
∑n

i=2 1[Xi∈An(X,Θ′)]

)

]

= nσ2
E

[

E

[

1[X1∈An(X,Θ)∩An(X,Θ′)]
(

1 +
∑n

i=2 1[Xi∈An(X,Θ)]

)

×
1

(

1 +
∑n

i=2 1[Xi∈An(X,Θ′)]

) |X,X1, Θ, Θ′

]]

= nσ2
E

[

1[X1∈An(X,Θ)∩An(X,Θ′)]E

[

1
(

1 +
∑n

i=2 1[Xi∈An(X,Θ)]

)

×
1

(

1 +
∑n

i=2 1[Xi∈An(X,Θ′)]

) |X,X1, Θ, Θ′

]]

= nσ2
E

[

1[X1∈An(X,Θ)∩An(X,Θ′)]E

[

1
(

1 +
∑n

i=2 1[Xi∈An(X,Θ)]

)

×
1

(

1 +
∑n

i=2 1[Xi∈An(X,Θ′)]

) |X, Θ, Θ′

]]

by the independence of the random variables X,X1, . . . ,Xn, Θ, Θ′. Using the
Cauchy-Schwarz inequality, the above conditional expectation can be upper
bounded by

E
1/2

[

1
(

1 +
∑n

i=2 1[Xi∈An(X,Θ)]

)2 |X, Θ

]

× E
1/2

[

1
(

1 +
∑n

i=2 1[Xi∈An(X,Θ′)]

)2 |X, Θ′

]

≤
3 × 22⌈log2 kn⌉

n2

(by Fact 4.2 and technical Lemma 4.1)

≤
12k2

n

n2
.
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It follows that

E [r̄n(X) − r̃n(X)]2 ≤
12σ2k2

n

n
E
[

1[X1∈An(X,Θ)∩An(X,Θ′)]

]

=
12σ2k2

n

n
E
[

EX1

[

1[X1∈An(X,Θ)∩An(X,Θ′)]

]]

=
12σ2k2

n

n
E [PX1 (X1 ∈ An(X, Θ) ∩ An(X, Θ′))] . (4.1)

Next, using the fact that X1 is uniformly distributed over [0, 1]d, we may
write

PX1 (X1 ∈ An(X, Θ) ∩ An(X, Θ′)) = λ (An(X, Θ) ∩ An(X, Θ′))

=

d
∏

j=1

λ (Anj(X, Θ) ∩ Anj(X, Θ′)) ,

where

An(X, Θ) =
d
∏

j=1

Anj(X, Θ) and An(X, Θ′) =
d
∏

j=1

Anj(X, Θ′).

On the other hand, we know (Fact 4.1) that, for all j = 1, . . . , d,

λ (Anj(X, Θ))
D
= 2−Knj(X,Θ),

where, conditionally on X, Knj(X, Θ) has a binomial B(⌈log2 kn⌉, pnj) distri-
bution and, similarly,

λ (Anj(X, Θ′))
D
= 2−K ′

nj(X,Θ′),

where, conditionally on X, K ′
nj(X, Θ′) is binomial B(⌈log2 kn⌉, pnj) and inde-

pendent of Knj(X, Θ). In the rest of the proof, to lighten notation, we write
Knj and K ′

nj instead of Knj(X, Θ) and K ′
nj(X, Θ′), respectively. Clearly,

λ (Anj(X, Θ) ∩ Anj(X, Θ′))≤2−max(Knj ,K ′
nj)

= 2−K ′
nj2−(Knj−K ′

nj)+

and, consequently,

d
∏

j=1

λ (Anj(X, Θ) ∩ Anj(X, Θ′))≤2−⌈log2 kn⌉

d
∏

j=1

2−(Knj−K ′
nj)+
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(since, by Fact 4.1,
∑d

j=1 Knj = ⌈log2 kn⌉). Plugging this inequality into
(4.1) and applying Hölder’s inequality, we obtain

E [r̄n(X) − r̃n(X)]2 ≤
12σ2kn

n
E

[

d
∏

j=1

2−(Knj−K ′
nj)+

]

=
12σ2kn

n
E

[

E

[

d
∏

j=1

2−(Knj−K ′
nj)+ |X

]]

≤
12σ2kn

n
E

[

d
∏

j=1

E
1/d
[

2−d(Knj−K ′
nj)+ |X

]

]

.

Each term in the product may be bounded by technical Proposition 4.1, and
this leads to

E [r̄n(X) − r̃n(X)]2 ≤
288σ2kn

πn

d
∏

j=1

min

(

1,

[

π

16⌈log2 kn⌉pnj(1 − pnj)

]1/2d
)

≤
288σ2kn

πn

d
∏

j=1

min

(

1,

[

π log 2

16(log kn)pnj(1 − pnj)

]1/2d
)

.

Using the assumption on the form of the pnj , we finally conclude that

E [r̄n(X) − r̃n(X)]2 ≤ Cσ2

(

S2

S − 1

)S/2d

(1 + ξn)
kn

n(log kn)S/2d
,

where

C =
288

π

(

π log 2

16

)S/2d

and

1 + ξn =
∏

j∈S

[

(1 + ξnj)
−1

(

1 −
ξnj

S − 1

)−1
]1/2d

.

Clearly, the sequence (ξn), which depends on the {(ξnj) : j ∈ S} only, tends
to 0 as n tends to infinity.
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4.3 Proof of Proposition 2.2

We start with the decomposition

E [r̃n(X) − r(X)]2

= E

[

n
∑

i=1

EΘ [Wni(X, Θ)] (r(Xi) − r(X))

+

(

n
∑

i=1

EΘ [Wni(X, Θ)] − 1

)

r(X)

]2

=E

[

EΘ

[

n
∑

i=1

Wni(X, Θ) (r(Xi) − r(X)) +

(

n
∑

i=1

Wni(X, Θ) − 1

)

r(X)

]]2

≤ E

[

n
∑

i=1

Wni(X, Θ) (r(Xi) − r(X)) +

(

n
∑

i=1

Wni(X, Θ) − 1

)

r(X)

]2

(by Jensen’s inequality).

Consequently,

E [r̃n(X) − r(X)]2

= E

[

n
∑

i=1

Wni(X, Θ) (r(Xi) − r(X))

]2

+ E
[

r(X) 1Ec
n(X,Θ)

]2

≤ E

[

n
∑

i=1

Wni(X, Θ) (r(Xi) − r(X))

]2

+

[

sup
x∈[0,1]d

r2(x)

]

P (E c
n(X, Θ)) .

(4.2)

Let us examine the first term on the right-hand side of (4.2). Observe that

E

[

n
∑

i=1

Wni(X, Θ) (r(Xi) − r(X))

]2

≤ E

[

n
∑

i=1

√

Wni(X, Θ)
√

Wni(X, Θ) |r(Xi) − r(X)|

]2

≤ E

[(

n
∑

i=1

Wni(X, Θ)

)(

n
∑

i=1

Wni(X, Θ) (r(Xi) − r(X))2

)]

≤ E

[

n
∑

i=1

Wni(X, Θ) (r(Xi) − r(X))2
]

(since the weights are subprobability weights).
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Thus, denoting by ‖X‖S the norm of X evaluated over the components in S,
we obtain

E

[

n
∑

i=1

Wni(X, Θ) (r(Xi) − r(X))

]2

≤ E

[

n
∑

i=1

Wni(X, Θ) (r⋆(XiS) − r⋆(XS))2

]

≤ L2
n
∑

i=1

E
[

Wni(X, Θ)‖Xi − X‖2
S

]

= nL2
E
[

Wn1(X, Θ)‖X1 − X‖2
S

]

(by symmetry).

But

E
[

Wn1(X, Θ)‖X1 −X‖2
S

]

= E

[

‖X1 − X‖2
S

1[X1∈An(X,Θ)]

Nn(X, Θ)
1En(X,Θ)

]

= E

[

‖X1 − X‖2
S

1[X1∈An(X,Θ)]

1 +
∑n

i=2 1[Xi∈An(X,Θ)]

]

= E

[

E

[

‖X1 −X‖2
S

1[X1∈An(X,Θ)]

1 +
∑n

i=2 1[Xi∈An(X,Θ)]

|X,X1, Θ

]]

= E

[

‖X1 − X‖2
S1[X1∈An(X,Θ)]E

[

1

1 +
∑n

i=2 1[Xi∈An(X,Θ)]

|X,X1, Θ

]]

= E

[

‖X1 − X‖2
S1[X1∈An(X,Θ)]E

[

1

1 +
∑n

i=2 1[Xi∈An(X,Θ)]

|X, Θ

]]

(by the independence of the random variables X,X1, . . . ,Xn, Θ.

By Fact 4.2 and technical Lemma 4.1,

E

[

1

1 +
∑n

i=2 1[Xi∈An(X,Θ)]

|X, Θ

]

≤
2⌈log2 kn⌉

n
≤

2kn

n
.

Consequently,

E

[

n
∑

i=1

Wni(X, Θ) (r(Xi) − r(X))

]2

≤ 2L2knE
[

‖X1 − X‖2
S1[X1∈An(X,Θ)]

]

.
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Letting

An(X, Θ) =
d
∏

j=1

Anj(X, Θ),

we obtain

E

[

n
∑

i=1

Wni(X, Θ) (r(Xi) − r(X))

]2

≤ 2L2kn

∑

j∈S

E

[

|X
(j)
1 − X(j)|21[X1∈An(X,Θ)]

]

= 2L2kn

∑

j∈S

E

[

ρj(X,X1, Θ)E
X

(j)
1

[

|X
(j)
1 − X(j)|21

[X
(j)
1 ∈Anj(X,Θ)]

]]

where, in the last equality, we set

ρj(X,X1, Θ) =
∏

t=1,...,d,t6=j

1
[X

(t)
1 ∈Ant(X,Θ)]

.

Therefore, using the fact that X1 is uniformly distributed over [0, 1]d,

E

[

n
∑

i=1

Wni(X, Θ) (r(Xi) − r(X))

]2

≤ 2L2kn

∑

j∈S

E
[

ρj(X,X1, Θ)λ3 (Anj(X, Θ))
]

.

Observing that

λ (Anj(X, Θ)) × E
[X

(t)
1 : t=1,...,d,t6=j]

[ρj(X,X1, Θ)]

= λ (An(X, Θ))

= 2−⌈log2 kn⌉

(Fact 4.2),

we are led to

E

[

n
∑

i=1

Wni(X, Θ) (r(Xi) − r(X))

]2

≤ 2L2
∑

j∈S

E
[

λ2 (Anj(X, Θ))
]

= 2L2
∑

j∈S

E
[

2−2Knj(X,Θ)
]

= 2L2
∑

j∈S

E
[

E
[

2−2Knj(X,Θ) |X
]]

,
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where, conditionally on X, Knj(X, Θ) has a binomial B(⌈log2 kn⌉, pnj) distri-
bution (Fact 4.1). Consequently,

E

[

n
∑

i=1

Wni(X, Θ) (r(Xi) − r(X))

]2

≤ 2L2
∑

j∈S

(1 − 0.75pnj)
⌈log2 kn⌉

≤ 2L2
∑

j∈S

exp

(

−
0.75

log 2
pnj log kn

)

= 2L2
∑

j∈S

1

k
0.75

S log 2
(1+ξnj)

n

≤
2SL2

k
0.75

S log 2
(1+γn)

n

,

with γn = minj∈S ξnj.

To finish the proof, it remains to bound the second term on the right-hand
side of (4.2), which is easier. Just note that

P (E c
n(X, Θ)) = P

(

n
∑

i=1

1[Xi∈An(X,Θ)] = 0

)

= E

[

P

(

n
∑

i=1

1[Xi∈An(X,Θ)] = 0 |X, Θ

)]

=
(

1 − 2−⌈log2 kn⌉
)n

(by Fact 4.2)

≤ e−n/2kn .

Putting all the pieces together, we finally conclude that

E [r̃n(X) − r(X)]2 ≤
2SL2

k
0.75

S log 2
(1+γn)

n

+

[

sup
x∈[0,1]d

r2(x)

]

e−n/2kn ,

as desired.

4.4 Some technical results

The following result is an extension of Lemma 4.1 in Györfi et al. [22]. Its
proof is given here for the sake of completeness.
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Lemma 4.1 Let Z be a binomial B(N, p) random variable, with p ∈ (0, 1].
Then

(i)

E

[

1

1 + Z

]

≤
1

(N + 1)p
.

(ii)

E

[

1

Z
1[Z≥1]

]

≤
2

(N + 1)p
.

(iii)

E

[

1

1 + Z2

]

≤
3

(N + 1)(N + 2)p2
.

Proof of Lemma 4.1 To prove statement (i), we write

E

[

1

1 + Z

]

=

N
∑

j=0

1

1 + j

(

N

j

)

pj(1 − p)N−j

=
1

(N + 1)p

N
∑

j=0

(

N + 1

j + 1

)

pj+1(1 − p)N−j

≤
1

(N + 1)p

N+1
∑

j=0

(

N + 1

j

)

pj(1 − p)N+1−j

=
1

(N + 1)p
.

The second statement follows from the inequality

E

[

1

Z
1[Z≥1]

]

≤ E

[

2

1 + Z

]

and the third one by observing that

E

[

1

1 + Z2

]

=
N
∑

j=0

1

1 + j2

(

N

j

)

pj(1 − p)N−j.
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Therefore

E

[

1

1 + Z2

]

=
1

(N + 1)p

N
∑

j=0

1 + j

1 + j2

(

N + 1

j + 1

)

pj+1(1 − p)N−j

≤
3

(N + 1)p

N
∑

j=0

1

2 + j

(

N + 1

j + 1

)

pj+1(1 − p)N−j

≤
3

(N + 1)p

N+1
∑

j=0

1

1 + j

(

N + 1

j

)

pj(1 − p)N+1−j

≤
3

(N + 1)(N + 2)p2

(by (i)).

�

Lemma 4.2 Let Z1 and Z2 be two independent binomial B(N, p) random
variables. Set, for all z ∈ C⋆, ϕ(z) = E[zZ1−Z2].

(i) For all z ∈ C⋆,

ϕ(z) =
[

p(1 − p)(z + z−1) + 1 − 2p(1 − p)
]N

.

(ii) For all j ∈ N,

P(Z1 − Z2 = j) =
1

2πi

∫

Γ

ϕ(z)

zj+1
dz,

where Γ is the positively oriented unit circle.

(iii) For all d ≥ 1,

E
[

2−d(Z1−Z2)+
]

≤
24

π

∫ 1

0

exp
(

−4Np(1 − p)t2
)

dt.

Proof of Lemma 4.2 Statement (i) is clear and (ii) is an immediate
consequence of Cauchy’s integral formula (Rudin [29]). To prove statement
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(iii), write

E
[

2−d(Z1−Z2)+
]

=

N
∑

j=0

2−dj
P ((Z1 − Z2)+ = j)

=

N
∑

j=0

2−dj
P (Z1 − Z2 = j)

≤
∞
∑

j=0

2−dj
P (Z1 − Z2 = j)

=
1

2πi

∫

Γ

ϕ(z)

z

∞
∑

j=0

(

2−d

z

)j

dz

(by statement (ii))

=
1

2π

∫ π

−π

ϕ(eiθ)

1 − 2−de−iθ
dθ

(by setting z = eiθ, θ ∈ [−π, π])

=
2d−1

π

∫ π

−π

[1 + 2p(1 − p)(cos θ − 1)]N
eiθ

2deiθ − 1
dθ

(by statement (i)).

Noting that
eiθ

2deiθ − 1
=

2d − eiθ

22d − 2d+1 cos θ + 1
,

we obtain

E
[

2−d(Z1−Z2)+
]

≤
2d−1

π

∫ π

−π

[1 + 2p(1 − p)(cos θ − 1)]N
2d − cos θ

22d − 2d+1 cos θ + 1
dθ.

The bound
2d − cos θ

22d − 2d+1 cos θ + 1
≤

2d + 1

(2d − 1)2

27



leads to

E
[

2−d(Z1−Z2)+
]

≤
2d−1(2d + 1)

π(2d − 1)2

∫ π

−π

[1 + 2p(1 − p)(cos θ − 1)]N dθ

=
2d(2d + 1)

π(2d − 1)2

∫ π

0

[1 + 2p(1 − p)(cos θ − 1)]N dθ

=
2d(2d + 1)

π(2d − 1)2

∫ π

0

[

1 − 4p(1 − p) sin2(θ/2)
]N

dθ

(cos θ − 1 = −2 sin2(θ/2))

=
2d+1(2d + 1)

π(2d − 1)2

∫ π/2

0

[

1 − 4p(1 − p) sin2 θ
]N

dθ.

Using the elementary inequality (1−z)N ≤ e−Nz for z ∈ [0, 1] and the change
of variable

t = tan(θ/2),

we finally obtain

E
[

2−d(Z1−Z2)+
]

≤
2d+2(2d + 1)

π(2d − 1)2

∫ 1

0

exp

(

−
16Np(1 − p)t2

(1 + t2)2

)

1

1 + t2
dt

≤ Cd

∫ 1

0

exp
(

−4Np(1 − p)t2
)

dt,

with

Cd =
2d+2(2d + 1)

π(2d − 1)2
.

The conclusion follows by observing that Cd ≤ 24/π for all d ≥ 1. �

Evaluating the integral in statement (iii) of Lemma 4.2 leads to the following
proposition:

Proposition 4.1 Let Z1 and Z2 be two independent binomial B(N, p) ran-
dom variables, with p ∈ (0, 1). Then, for all d ≥ 1,

E
[

2−d(Z1−Z2)+
]

≤
24

π
min

(

1,

√

π

16Np(1 − p)

)

.
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