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Abstract

There exist several characterizations of concavity for univariate functions.
One of them states that a function is concave if and only if it has non-increasing
differences. This definition provides a natural generalization of concavity for
multivariate functions, called inframodularity. This paper shows that a finite
lottery is preferred to another by all expected utility maximizers with an in-
framodular utility if and only if the first measure can be obtained from the
second via a sequence of suitable transfers. This result is a natural multi-
variate generalization of Rothschild and Stiglitz’s construction based on mean
preserving spreads.
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1 Introduction

A risk averse decision maker prefers to enjoy a sure wealth w rather than w + ¢,
where ¢ is a fair (i.e., zero-mean) random variable: a non-degenerate fair random
variable involves possible losses that, in the preference of a risk averter, are not
compensated by possible gains. It is well known that in a von Neumann-Morgenstern
expected utility context risk aversion coincides with concavity of the decision maker’s
utility function. A random variable Y is riskier than a random variable X if all
risk averters prefer X to Y. Therefore Y is riskier than X if E[u(X)] = E[u(Y)]
for all concave functions u (this implies that X and Y have the same mean). This
comparative concept of riskier depends only on the distributions of X and Y.

Given a random variable Y, one way to make it less risky is to consider a bounded
interval and transfer some probability mass in the distribution of Y from outside the
interval to inside, keeping the mean fixed. It is well known that in a sense this is the
only way to make Y less risky, since Y is riskier than X if and only if the law of X
can be obtained from the law of Y via a sequence of transfers of this type.

Often decisions involve several commodities that are not necessarily priceable.
For instance, when comparing two job offers, a person takes into account the salary,
the type of job, the working environment, the commuting time from home, etc. and
most of these quantities involve randomness of some sort, so that a truly multivariate
evaluation is necessary.

The generalization of risk comparison to the multivariate case seems immediate,
and it has generally taken to be so. A random vector Y is riskier than a random
vector X if all risk averters prefer X to Y. Given a non-degenerate zero-mean random
vector €, a risk averter prefers a sure amount w rather than w + . Or does she?
In R? the natural order is only partial, so it is possible to have E[e] = 0 even if ¢ is
never negative. Therefore this definition of risk aversion departs from the univariate
rationale of fear of losses, and it just embodies the idea of aversion to randomness.

This paper formalizes a concept of fear of loss and shows that it corresponds
to a class of utility functions called inframodular. A stochastic order for random
vectors is then defined, according to which X induces less fear of loss than Y if
E[u(X)] = E[u(Y)] for all inframodular functions w. This is shown to happen if and
only if the distribution of X can be obtained from the distribution of Y via a sequence
of suitable transfers that naturally generalize the ones studied in the univariate case.

1.1 Existing literature

The classical results of Pratt (1964); Arrow (1970) provide a comparative study of
risk aversion in terms of local and global conditions on the decision maker’s univariate
utility function. Rothschild and Stiglitz (1970, 1971, 1972) study the dual problem of
comparison of risks. To do this, they use some balayage results previously unknown in
the economic literature (the reader is referred to Hardy, Littlewood, and Polya, 1929;



Hardy, Littlewood, and Pélya, 1988; Sherman, 1951; Blackwell, 1951, 1953; Cartier,
Fell, and Meyer, 1964; Strassen, 1965, for the classical comparison results). Most
importantly Rothschild and Stiglitz focus on the idea of mean preserving spread, i.e.,
a transfer of probability mass from inside a finite interval to outside the interval, that
does not alter the mean of a distribution. They show that mean preserving spreads
are the building blocks of distribution comparison, since a risk X is preferred to
another risk Y by all risk averters if and only if the distribution of ¥ can be obtained
from the distribution of X via a sequence of mean preserving spreads (their results
are framed in a more general and precise way by Miiller (1996) and Machina and
Pratt (1997)). Rothschild and Stiglitz’s papers have had a tremendous impact on
the literature, reducing many comparisons to analyzing the effect of a single mean
preserving spread. The reader can find some useful reference on the duality between
risk and risk aversion in Scarsini (1994).

de Finetti (1952) is the first to consider a form of bivariate risk aversion that in-
volves the comparison of two lotteries having each two equally probable bi-dimensional
outcomes. The two lotteries involve the same quantities of two commodities, and dif-
fer only for the way the items are combined: in the first lottery one possible outcome
is a small quantity of one commodity combined with a small quantity of the other, and
the other outcome is a large quantity of one commodity combined with a large quan-
tity of the other; in the other lottery the small quantity of one commodity is combined
with the large quantity of the other. Preference of the second lottery over the first is a
form of bivariate risk aversion. These results are re-discovered more than twenty years
later by Richard (1975). Epstein and Tanny (1980) use the framework proposed by
Richard (1975) to prove comparison results in terms of generalized correlation. Even
if they don’t use the term, these authors frame multivariate risk aversion in terms
of submodular utility functions. The relevance of supermodularity /submodularity in
economic theory is widespread (see Topkis, 1998, for an extended analysis of its theory
and applications). Comparison of distribution functions in terms of the supermodular
order is an important tool to study positive dependence (see, e.g, Joe, 1997; Miiller
and Scarsini, 2000).

Kihlstrom and Mirman (1974) propose a multivariate generalization of the Arrow-
Pratt theory of risk aversion, when cardinal utility functions represent the same or-
dinal preferences. Kihlstrom and Mirman (1981) extend these results and study
monotone multivariate risk aversion when preferences are homothetic.

Building on Richard’s results, Duncan (1977) defines a matrix measure of mul-
tivariate local risk aversion and studies its properties in terms of multivariate risk
premiums. Karni (1979) relates local and global concepts of multivariate risk aver-
sion and achieves comparative results in the spirit of Arrow (1970); Pratt (1964).

Multivariate utility functions have been recently studied in the management sci-
ence literature and their construction based on lotteries that combine good and
bad outcomes has been examined (see, e.g.,. Eeckhoudt, Rey, and Schlesinger, 2007;
Tsetlin and Winkler, 2009; Denuit, Eeckhoudt, and Rey, 2010).



Elton and Hill (1992) prove a result a la Rothschild and Stiglitz (1970) for measures
on separable Banach spaces, that includes as a particular case Euclidean spaces. They
show that if one measure dominates another one in terms of the convex order, then
the first can be transformed into the second via a sequence of fusions. Fusions are
basically the reverse operation of mean preserving spread, but in a more general
abstract setting. Elton and Hill (1998) give an elementary proof of their result for
purely atomic measures with a finite number of atoms in R". Although these articles
have no economic motivation, they provide very useful tools that are used in this

paper.

1.2 Fear of loss and inframodularity

This paper focuses on multivariate transfers that naturally generalize the concept
that is so fruitfully used in the univariate case. Aversion to risk represents preference
for a sure amount of money w versus a random amount having expectation w. In
different words a risk averse decision maker does not like to add to her sure wealth w
a random variable € having zero mean. What’s the reason for disliking randomness?
Obviously it has to see with the possibility of ending up with less than the initial
wealth w once ¢ is realized. In fact any non-degenerate random variable with zero
mean can assume negative values with positive probability, therefore can give rise to
a loss. A risk averter fears losses, and the possibility of getting a positive gain does
not compensate for these possible losses. In the univariate case fear of loss coincides
with risk aversion, which coincides with concavity of the agent’s utility function.

It is commonly assumed that this is the case also in the multivariate case. An
agent who prefers any sure multivariate wealth w to a random vector w + €, where
€ has mean vector 0 is risk averse, so her utility function is concave. But does this
embody the same rationale that exists in the univariate case? Since the natural order
on R? is only partial, a random vector € can have zero expectation even if it never
assumes values that are smaller than zero. For instance in R? a random vector that
assumes with equal probability the values (1, —1) and (—1, 1) has zero mean. Is there
any good reason to fear this random variable? This paper argues that the spirit of
the univariate case is best kept by limiting aversion to zero-mean vectors that involve
possible losses and gains, for instance a vector that assumes with equal probability
the values (—1,—1) and (1,1).

To do this consider a transfer that mimics the mean preserving spread as described
by Miiller (1996) and Machina and Pratt (1997), i.e., a transfer that moves mass
from inside a (multidimensional) intervals to the sets below and above the interval.
A loss fearful individual dislikes this transfer. A decision maker who dislikes any
such transfer has an inframodular utility function. The central result of this paper
is the converse of this statement. If a random vector X is preferred to another
random vector Y by all decision makers with an inframodular utility function, then
the distribution of Y can be obtained from the distribution of X via a sequence of



such transfers.

A concave function f on R is characterized by having non-increasing differences:
f(x +¢) — f(z) is non-increasing in x for all positive . A function g : R? — R has
non-increasing differences if and only if it is inframodular. Therefore inframodularity
is a natural generalization of concavity to the multivariate setting. Any inframodular
function is just the negative of a ultramodular function. Ultramodular functions
have been studied and used by many authors, often under different names. Marinacci
and Montrucchio (2005) examine this class of functions in detail and provide several
relevant references.

As mentioned in Miiller and Scarsini (2001), a concave function of a positive linear
combination of variables is inframodular. Therefore the analysis developed here allows
the comparison of portfolios of commodities for any given price vector.

The main results in this paper are proved using functional analytical tools of dual-
ity. Duality theory has been used before to prove stochastic comparison results (see,
among others, Brumelle and Vickson, 1975; Ziegler, 1968; Border, 1991; Castagnoli
and LiCalzi, 1997; Castagnoli and Maccheroni, 2000; Dubra, Maccheroni, and Ok,
2004).

This paper is organized as follows. Section 2 describes different types of transfers.
Section 3 states the main results. Section 4 contains the proofs.

2 Transfers

This section introduces a general definition of transfer. To do this the definition
of some useful classes of functions is needed. The following notation is used:

T VY = (max{xla y1}7 s ,max{xd, yd})7

x Ay = (min{xy,y1},...,min{xy, yq}).

Definition 2.1. (a) Let A = R? be convex. A function f : A — R is conver if for
all z,y € A and all a € [0, 1]

flax+(1-a)y) <af(x)+(1-a)f(y). (2.1)
A function is concave if the reverse inequality holds.

(b) Let A = R? be convex. A function f: A — R is component-wise convex if (2.1)
holds for all ¢,y € A such that xz; = y; for j # ¢, for some i € {1,...,d}. A
function is component-wise concave if the reverse inequality holds.

(c) Let B = R? be a lattice. A function f : B — R is supermodular if for all x,y € B

fl@)+ fly) < flxvy) + flxay).

A function is submodular if the reverse inequality holds.

5



(d) Let C = R? be a convex lattice. A function f : C — R is ultramodular if for all
x,yw,ze(Csuchthatr+y=z4+wandw <z, y< =z

f(®) + f(y) < f(z) + f(w).
A function is inframodular if the reverse inequality holds.

Topkis (1998) is the classical reference for properties and applications of super-
modular functions. The term “ultramodular” has been coined by Marinacci and
Montrucchio (2005), who provide a thorough analysis of this class of functions, pre-
viously known under different, sometime misleading, names, such as “directionally
convex.”

Let S < R? be compact, and let .# be the Borel-o-algebra on S. For a signed
measure g on (S,.%), its positive and negative parts are denoted p* and p—, respec-
tively, |u| = p* + = is the total variation, and |u| := p™(S) + u (S) is the total
variation norm. Denote by M the set of all signed measures on S with finite total
variation norm ||/ < oo and with the property that ™ (S) = u~(S). Notice that for
any two probability measures P, () the difference () — P € M, and that in fact M is
the linear space spanned by the differences of probability measures.

A degenerate probability measure on @ is denoted §,. Given two probability
measures P, (Q supported on a finite subset of R, call the signed measure Q — P a
transfer from @ to P. If

(Q—P) =) Bidy, and (Q—P)" =) aid,,
=1 =1

then the transfer () — P removes probability mass 3; from points y,;, 2 = 1,...,n and
adds probability mass «; to @;, © = 1,...,m. To indicate this transfer write

Z Bifsyi - Z 0, -
i=1 i=1

Definition 2.2. Consider a set M < M of transfers and the class # < ¥ of contin-
uous functions f such that

20l (i) = ) uf (i)

whenever € M, where
o= Z ﬂléyz — Z azéml
i=1 i=1

The class . is said to be induced by M.



This definition has the following economic interpretation. Any decision maker
using expected utility theory with a utility function v € % will prefer Q to P if
Q — Pe M, ie. if ) is obtained from P by a transfer in M.

Next comes the definition of simple transfers that induce the classes of functions
of Definition 2.1. Here all probability measures are supported on a finite subset of R,
and all transfers involve a mass 0 < n < 1. In the following definition the terminology

of Elton and Hill (1998) is adopted.

Definition 2.3. Given a measure P with finite support on R?, call | P| its total mass
and

bar(P) = | P|"! f z dP()
Rd
the barycenter of P.

For a discrete measure P = >} | o;0,, this simplifies to

2.1 Simple transfers

A simple transfer pu has the form

p= B10y, + B2y, — @10, — Q20g,,

where it is possible that y; = y, or 1 = x,. Therefore a simple transfer involves the
move of some probability mass from at most two points to at most two other points.
In the sequel only simple transfers that preserve the barycenter are considered.
Simple convex transfer
Given x,y, w, z € R? and «, 3,7, € € [0, 1] such that
z=ax+(l-a)y, w=py+(1-7P)=,
Y+ (1 —7)y=cz + (1 —e)w,

a simple transfer 7 (ed, + (1 —€)dw) — 1 (70 + (1 —7)d,) is called conver. The
reverse transfer is called concave. When a = 3, hence v = ¢ = 1/2, the transfer is
called symmetric. Notice that, if « =1 — (3, then w = z.

Figure 1 about here.



Simple component-wise convex transfer

Given x,y,w, z € R? and «, 3,7, € [0, 1] such that x; = y; for all j # i and

z=ax+(l-a)y, w=py+(1-0)=,
Y+ (1—7)y=cz + (1 —)w,
a simple transfer 7 (€0, + (1 — €)dy) — 1 (V0 + (1 —7)dy) is called component-wise

convexr. The reverse transfer is called component-wise concave. As before, when
a = f3, hence v = ¢ = 1/2, the transfer is called symmetric.

Figure 2 about here.

Simple supermodular transfer
Given x, y,w, z € R? such that
T=zAWwW, Y=2zVvVuw,
A simple transfer n (%(L + %(5,1,) —n (%(5m + %5y) is called supermodular. The reverse

transfer is called submodular.

Figure 3 about here.

Simple ultramodular transfer

Given z,y, w, z € R? and v, € [0, 1] such that £ < w, z < y and
Y+ (1—7)y=cz+ (1 —e)w,

a simple transfer 1 (ed, + (1 —€)dy) — 7 (V0 + (1 — 7)dy) is called ultramodular.
The reverse transfer is called inframodular. When v = & = 1/2, the transfer is called
symmetric.

Figure 4 about here.

Component-wise convex and supermodular transfers are particular cases of ultra-
modular transfers. The following proposition shows a stronger property.



Proposition 2.4. Any simple ultramodular transfer can be obtained by combining
simple supermodular and component-wise convex transfers.

It is immediate to see that the classes of convex, concave, component-wise con-
vex, component-wise concave, supermodular, submodular, ultramodular, inframod-
ular functions are induced by the set of simple symmetric transfers with the same
name.

General (non-simple) transfers are obtained by iterating simple transfers. In di-
mension 1 a convex transfer is nothing else than a mean-preserving spread, as studied
by Rothschild and Stiglitz (1970, 1971, 1972). In dimension d concave transfers are
related to fusions (see Elton and Hill, 1992).

Figure 5 about here.

The generalization of a mean preserving spread to R? requires some care. Given a
convex set A — R%, one may think that a transfer of mass from A to A° that preserves
the barycenter is a convex transfer, i.e., can be obtained as a sequence of simple
convex transfers. This is in general not the case, as the following counterexample
easily shows. Take P, Q) probability measures on R? defined as

1 1
P = 1 (0ey +0 e +0ey +0 ¢,) and Q= 2 (0 + 0 g + 0y + )

where e; is the i-th element of the canonical base, x = (2/3,2/3), and y = (2/3, —2/3).
The two measures have the same barycenter (0,0). It is clear that supp(Q) <
[conv(supp(P))]¢ and supp(P) < [conv(supp(Q))]°. However, to have the convex
ordering it would be necessary that the convex hull of the support of one probability
measure be included in the support of the other, but conv(supp(P)) & conv(supp(Q))
and conv(supp(Q)) & conv(supp(P)). Therefore neither @) can be obtained from P
via a sequence of simple convex transfers, nor vice versa.

Figure 6 about here.

Simple supermodular transfers and their iterations have been studied by Tchen
(1980).

In all the situations examined in this paper transfers are reversible, so if a prob-
ability measure P is obtained from @) via a sequence of transfers of some type, then
(@ is obtained from P via a sequence of transfers of the reverse type. Reversibility is
used in the proof of some results. In general reversibility of transfers does not hold,
for instance fusions are not always reversible, as Elton and Hill (1992) show.



3 Main results

3.1 General ultramodular transfers

For univariate distributions Miiller (1996) and Machina and Pratt (1997) show
that mean-preserving spreads correspond to taking mass from some bounded interval
and moving it above and below this interval, without affecting the mean.

Figures 7 and 8 about here.

The following theorem shows that something similar holds for ultramodular trans-
fers in the multivariate case. The following notation is used: given x € R? define the
upper set and lower set

Ux):={zeR': 2>z} and L(z):={zeR?: 2z <z},
and for two ordered points < y define the interval between x and y:
B(z,y) ={zeR": x <z <y}

Theorem 3.1. Let P,Q two discrete probability measures on R with bar(P) =
bar(Q) such that for some x <y

supp(P) < B(z,y), supp(Q) < L(x) v U(y).

Then ) can be obtained from P via a sequence of simple ultramodular transfers.

Figure 9 about here.

Theorem 3.1 justifies the following definition.

Definition 3.2. Given x < y, a transfer

m

W= Z Bidy, — Z Oy, -
i1

=1

is called wltramodular if

zi,...,2, € B(x,y), wi,...,w, € L(x)uU(y), and Zﬁizi=Zaiwi.
i=1 =1

1=

The reverse transfer is called inframodular.
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It is interesting to notice that the concept of inframodular (or ultramodular)
transfer involves both the vector space and the order structure of R?, whereas the
concave (or convex) transfer is based only on the vector space structure of R%. An
ultramodular transfer moves probability mass from some points in an interval to
other points that are either smaller or larger than all points in the interval. A convex
transfer just moves mass away from a point. In a univariate setting the difference
between the two concepts disappears, but in the multivariate case they represent two
different attitudes towards randomness.

3.2 Integral orders and transfers

Definition 3.3. A probability measure P is dominated by a probability measure @)
with respect to the integral order <z (denoted P <z Q) if

Ju dPéfudQ for all we ..

The economic meaning of this definition is that any expected utility maximizer
with a utility function u € .# prefers the lottery @ to the lottery P.

For the general theory of stochastic orders the reader is referred to Miiller and
Stoyan (2002); Shaked and Shanthikumar (2007). Arlotto and Scarsini (2009) study
a family of integral orders <z where .# can be, among others, any of the classes in
Definition 2.1.

Rothschild and Stiglitz (1970) prove (under some regularity conditions) that if a
measure P on R dominates () in terms of the concave order, then () can be obtained
from P via a sequence of mean preserving spreads. Machina and Pratt (1997) refine
the result using a more general definition of mean preserving spread. Elton and Hill
(1998) prove an analogous theorem for measures on R¢. The following theorem proves
a similar result for the inframodular order.

Theorem 3.4. Let % be the class of inframodular functions, and let P and Q be two
measures on R? with finite support. Then the following statements are equivalent:

(a) P <z Q;
(b) P can be obtained from Q by a finite number of simple inframodular transfers,

(c) P can be obtained from Q by a finite number of inframodular transfers as in
Definition 3.2.

4 Proofs

4.1 General transfers

A set S < R%is called comonotonic if it is totally ordered in the natural component-
wise order of R?. Given a convex set A € R?, the set of its extreme points is denoted

11



by Ex(A).

Lemma 4.1. Let P be any measure supported on B(x,y), and call P* a proba-
bility measure supported on Ex(B(x,y)), such that supp(P*) is comonotonic, and
bar(P*) = bar(P). Then P* can be obtained from P via a sequence of ultramodular
transfers.

Proof. First of all existence of P* is shown. Call P, ..., P; the univariate marginals

of P. For each P; there exists a measure P supported on the extreme points x;,y;

and such that bar(P) = bar(P;). Consider the upper Fréchet bound of d-variate

measures with marginals P, ..., Pj. This is P*.
Take each point z € supp(P) and split its mass into the two points (1, 29, . . . , 2q)
and (y1, 22, ..., 2q4) in such a way that the barycenter is preserved (there is only one

way to do this). Now all the points in the support of the new measure have their
first coordinate equal to either z; or y;. Repeat the operation for all the remaining
coordinates. Now the new measure P is supported only on extreme points of B(z,y).

For any pair of points s, t € supp(P), move as much mass as possible to s At and sV ¢,
keeping the barycenter fixed. In the end the obtained measure is exactly P*. ]

Lemma 4.1 says that using a sequence of ultramodular transfers any measure
on a compact interval can be trnaformed into the unique measure whose univariate
marginals are maximal with respect to the convex order (therefore are supported on
the extreme points of the interval), and whose joint distribution is the upper Fréchet
bound in the class of d-variate distributions with these marginals.

Corollary 4.2. If bar(P) = ax + (1 — o)y, then supp(P) = {x, y}.

Proof of Proposition 2.4. The proof is similar to the one of Lemma 4.1 and therefore
omitted. O]

Proof of Theorem 3.1. Consider each point in supp(Q)n L(x) one by one and move its
mass along the first coordinate upwards towards z;, while moving the mass of points
in supp(Q) N U(y) downwards towards y;, all this without changing the barycenter.
Stop when no mass can be moved further, namely when either all mass in L(x) rests
on points having first coordinate equal to x;, or all mass in U(y) rests on points
having first coordinate y;. Call the obtained probability measure ();. Repeating the
same procedure with the other coordinates yields a probability measure ()4 with the
property that there is an index set I < {1,...,d} such that for all z € supp(Qq) it is
either z; = x; for all i € I (if z € L(x)) or z; = y; for all i ¢ I (if z € U(y)).

In light of Lemma 4.1 the proof can be finished by showing that ), can be obtained
from P* via a sequence of ultramodular transfers. To do so it is sufficient to show
that for a fixed z € supp(Q,) a measure P, can be obtained from P* via a sequence
of ultramodular transfers, where P, is comonotone and has the same mass in z as Q4

and
d

supp(P%) € {2} v X {zi, ui}-

i=1

12



The proof then follows by induction.

Without loss of generality assume z € L(x) and distinguish two cases.

If § := Qu({z}) < P*({x}) then P, can be obtained from P* by moving the mass
0 from the point @ to the point z using a sequence of ultramodular transfers indexed
over j ¢ I that move mass along the j-th coordinate from z; to z; < z; and at the
same time move mass from some point s in the support of P* with s; = z; along the
same coordinate from x; to y;. As a consequence the j-th marginal is transformed
from the one of P* (supported on z; and y;) to the one of P, (supported on z;, z;
and y;). Once this is done some supermodular transfers within x¢ ,{z;,y;} may be
necessary to get the comonotone probability measure P, .

In the other case n := P*({x}) < Q4({z}). Then move all the mass n from the
point & to the point z as above. Then continue moving mass from the smallest
point ' > x with @’ € supp(P*) to the point z in the same fashion. Iterate this
as long as necessary to move mass ¢ to the point z. Again, at the end of this
procedure some supermodular transfers within x¢ ,{z;, y;} may be necessary to obtain
the comonotone probability measure P,. O]

The proof of Theorem 3.4 requires some known results from functional analysis,
and some theory of discrete ultramodularity. These results are described in the next
subsections.

4.2 Duality theory

For S c R? compact, denote by € the set of a continuous functions on S. By the
compactness assumption on S these functions are all bounded and therefore integrable
with respect to any p € M.

Integrals are often written as a bilinear form {f, puy = { fdp=§f dut —=§ f du .

Some results from functional analysis are presented. The details can be found,
e.g., in Choquet (1969, §22).

A pair (E, F') of vector spaces is said to be in duality, if there is a bilinear mapping
(-, Ex F - R. The duality is said to be strict, if for each 0 # z € E there is a
y € F with {z,y) # 0 and if for each 0 # y € F there is an z € E with (x,y) # 0.

Unfortunately the duality (M, %) is not strict, as {f,uy) = 0 for all p € M only
implies f to be constant. But strict duality can be obtained by identifying functions
which differ only by a constant. Formally, define an equivalence relation f ~ g
if f— g is constant. Equivalently, fix some sy € S and require f(sq) = 0. With
utility functions in mind, it is quite natural to identify functions that differ only by
a constant, as they lead to the same preference relation. Denote the corresponding
quotient space by %-..

13



Lemma 4.3. M and €. are in strict duality under the bilinear mapping

<-,->:MX<€~—>R,
o, [) = ff dy.

A crucial role in our further investigations is played by the bipolar theorem for
convex cones. The notion of polars is introduced following the notation of Choquet
(1969).

The polar M° of a set M < E (in the duality (E, F') ) is defined as

M° ={yeF: {(x,yy> —1for all z € M}. (4.1)

The polar of a set N < F' is defined analogously.

Given a vector space V', a subset K < V' is called a cone if x € K implies ax € K
for all & = 0. Given any subset M < V| the convex cone co(M) generated by M is
the smallest convex cone that contains M.

Define the dual cone of an arbitrary set M < E by

M*={ye F: {x,y) =0 for all z € M}.

It is easy to see that M™ is a convex cone. Moreover, notice that for a convex cone
K the polar and dual cones coincide: K° = K*.

For any duality (E, F') define the weak topology o(FE,F) on E as the weakest
topology on FE such that the mappings x — {z,y) are continuous for all y € F'. Now
the bipolar theorem for convex cones can be stated as follows (see Choquet, 1969,
Corollary 22.10).

Theorem 4.4. Suppose E and F' are in strict duality and X < E is an arbitrary set.
Then X** is the weak closure of the conver cone generated by X.

4.3 Discrete inframodularity and concavity

Now consider the classes of functions of Definition 2.1 when their domain is a
suitable finite set.

First recall the definition of discrete concavity for functions defined on a finite
subset of the real line. Let S = {x1,29,...,2,} < R be a finite set, where the
elements are ordered, i.e. 1 < xy < ... < x,. For a function f : S — R define the
difference operator

Af(x;) = i) = f(a:z)’ x; € {x1, 29, ..., Tpn_1}

Tiv1 — X4

A function f : S — R is said to be discrete concave if x; — Af(z;) is decreasing.
This is equivalent to requiring that for any three consecutive points x;, x;11, Ti10 € S

f(@iz1) = af(zige) + (1 —a) f(z),
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where o = (x;01 — ;) /(Ti42 — i), 1.€., « is such that x;,1 = axio + (1 — a)z;.
This definition of discrete concavity is consistent with the usual definition of con-
cavity for functions f : R — R, as the following lemma shows.

Lemma 4.5. (i) The restriction of any concave function f : R — R to the finite
subset S is discrete concave.

(ii) Any discrete concave function f:S — R can be extended to a concave function

f:R—->R.

Proof. Property (i) is obvious, and to show property (ii) one can use the linear in-
terpolation in the intervals [z;, z;;1], and outside of [z1,x,] one can use the linear
extension

flan +1) = f(2) + Af(zp-1)t and  fz1 — 1) = fz1) — Af(z)t, ¢t >0.
[

A similar definition of discrete inframodular function on a finite lattice S < R? is
now given. Assume that

d d
S = >< S; = ><{xi,17~'7xi,m}7
i=1

i=1

is a finite lattice, where, as before, the elements of S; are ordered, ie., x;; <
. < Zjy,. Define the difference operator in direction ¢ computed at point x =

(T1kys - Tak,) 8S

f(xl,k e L1 ki1 Tiki+15 LitLkiy1s - - - o Ld ok ) — f(x)
Aif(x) = SRR AL W o , xelS k <n,;.
Tiki+1 — Tiky
The function f : S — Ris discrete component-wise concave, if z; — A; f(x1, ...,z . ..
is decreasing for all i = 1,...,d, for any fixed x; € S;,j # 4. As in the univariate case

this is equivalent to requiring for any three consecutive points ; i, , Zi k,+1, Ti g, +2 and
for any fixed x; € S, j # 4 that

f(xlv"'wri,ki-i-lw”axd) = af(xlv“'uxi,k¢+27"'7‘rd) + (1 _a)f(xla"'7Ii,ki7"‘7xd)7

where o = (@i ;41 — Tig; )/ (Tiks42 — Tik; ), 1.€., a is such that z; 5,11 = aw; g0+ (1 —
Q)T -
The classical definition of submodularity is valid on any lattice and is equivalent
to the requirement that
NA;f(x) <0 foralli+#y, and all (x14,,...,Tak,) €S

with ]’Cl < n,, k’j < n;.
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Lemma 4.6. The following conditions are equivalent:

(a) The function f is inframodular.

(b) A;f(x) is a decreasing function of x.

(¢) The function f:S — R is submodular and component-wise concave.

For the proof of the above lemma see, e.g. Marinacci and Montrucchio (2005).
The following consistency result holds.

Lemma 4.7. (a) if f : R? — R is inframodular, then its restriction to S is discrete
inframodular.

(b) any discrete inframodular function f : S — R can be extended to an inframodular
function f:R? — R.

Proof. Part (a) is obvious. For (b) the extension has to be defined. Between grid
points this is done in a component-wise linear fashion. For z € x&, [z, k,, ©; 1, , | write
the coordinates as z; = a;z;k, ., +(1—a;)z;k,, i = 1,...,d. The coordinate-wise linear
extension can then be defined iteratively, starting with

f(Zl, T2 koy - - - >$d,kd) = O41f(-771,k1+17 L2 koy -+ - ,xd,kd) + (1 - Oél)f(flf1,k1,$2,k2> <. axd,kzd)~

In step ¢ define

f(Zl, e By Ry $i+1’ki+1, . 7xd:kd) = ozif(zl, N7 xi,ki“rl? . ;xd,kd)
+ (1 — ai)f(zl, ceey i1, LL‘Z”ki, Ce >$d,kd)-
Thus a piecewise linear extension of f : S — R to conv(S) = x%,[x;1, Tin,] has

been obtained. It is straightforward to see that this piecewise linear extension is
component-wise concave and submodular (this construction is similar to the extension
of a subcopula to a copula: see Schweizer and Sklar, 1983). Outside of conv(S) extend
the function by component-wise linear extrapolation as in Miiller and Scarsini (2001,
proof of Theorem 2.7), which leads to a function that is inframodular on the entire
R O

The two properties of Lemma 4.7 together imply that the set of discrete inframod-
ular functions f : S — R is equivalent to the set of restrictions of inframodular func-
tions f : R? — R to S, if S is a finite lattice. It follows therefore that for probability
measures P and ) with finite support in R¢ the following statements are equivalent:

(i) §f dP < f dQ for all inframodular functions f: R — R;

(ii) §f dP < §f dQ for all discrete inframodular functions f : S — R, where S is
the smallest finite lattice containing the supports of P and Q).
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4.4 Stochastic orders and transfers

Using the properties of the two previous subsections Theorem 3.4 can now be
proved.

Proof of Theorem 3.4. The equivalence of (b) and (c) follows from Theorem 3.1, and
it is clear that (b) implies (a). Thus it remains to show that (a) implies (b). Hence
assume that P and @ are probability measures on R? with finite support fulfilling
§ fdP < § fdQ for all inframodular functions f : R — R. It follows from Lemma 4.7
that this is equivalent to the statement that {f dP < {f dQ for all inframodular
functions f : S — R, where S is the smallest lattice containing the supports of P
and @). Using the terminology of duality theory as described in Subsection 4.2 the
condition can be rewritten as Q — P € .#*, where .% is the set of all inframodular
functions f : S — R. The fact that .# is induced by the set M of inframodular
transfers can be rewritten as .% = M*, thus Q — P € M**,

Therefore it follows from Theorem 4.4 that () — P is in the weak closure of the
convex cone generated by M. As S is finite, the set M of inframodular transfers on
this set is also finite, and therefore the convex cone generated by M is weakly closed.
Thus Q — P = >, vipi with vz > 0 and p; € M. As P and @ are probability
measures, it is possible to choose 7; < 1. But this means that () can be obtained
from P by a finite number of inframodular transfers +; ;. O]
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5 Figures
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Figure 1: Simple symmetric concave transfer
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Figure 2: Simple symmetric component-wise concave transfers
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Figure 3: Simple submodular transfer
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Figure 4: Simple symmetric inframodular transfer
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Figure 5: General concave transfer (fusion)

Figure 6: These are not convex transfers
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Figure 7: General mean preserving spread
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Figure 8: General mean preserving contraction

Figure 9: General inframodular transfer
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