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Abstract

In this paper, we study the exponential utility maximization problem in an incom-

plete market with a default time inducing a discontinuity in the price of stock. We

first consider the case of strategies valued in a compact set. Using a verification the-

orem, we prove that the value function associated with the optimization problem can

be characterized as the solution of a Lipschitz BSDE (backward stochastic differential

equation). Then, we consider the case of non constrained strategies. Using dynamic

programming techniques, we prove that the value function is the maximal solution of

a BSDE. Moreover, the value function is the limit of a sequence of processes which are

the solutions of Lipschitz BSDEs. These properties can be generalized to the case of

several default times or a Poisson process.
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Research, tlim@math.jussieu.fr
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1 Introduction

In this paper, we study the exponential utility maximization problem in an incomplete

market with a default time inducing a discontinuity in the price of stock.

Recall that concerning the study of the utility maximization problem from terminal

wealth, there exist two possible approaches:

– The first one is the dual approach formulated in a static way. This dual approach

has been largely studied in the literature. Among them, in a Brownian framework,

we quote Karatzas et al. [17] in a complete market and Karatzas et al. [18] in an

incomplete market. In the case of general semimartingales, we quote Kramkov and

Schachermayer [21], Shachermayer [33] and Delbaen et al. [6] for the particular case

of the exponential utility function. For the case with a default in a markovian setting

we refer to Lukas [24]. Using this approach, these different authors solve the utility

maximization problem in the sense of finding the optimal strategy and also give a

characterization of the optimal strategy via the solution of the dual problem.

– The second approach is the direct study of the primal problem(s) by using stochastic

control tools such as dynamic programming. Recall that these techniques had been

used in finance but only in a markovian setting for a long time. For example the

reference paper of Merton [25] uses the well known Hamilton-Jacobi-Bellman verifi-

cation theorem to solve the utility maximization problem of consumption/wealth in

a complete market. The use in finance of stochastic dynamic techniques (presented

in El Karoui’s course [10] in a general setting) is more recent. One of the first work

in finance using these techniques is that of El Karoui and Quenez [11]. Also, recall

that the backward stochastic differential equations (BSDEs) have been introduced by

Duffie and Epstein [8] in the case of recursive utilities and by Peng [29] for a general

Lipschitz coefficient. In the paper of El Karoui et al. [12], several applications to

finance are provided. One of the achievement of the paper is a verification theorem

which allows to characterize the dynamic value function of an optimization problem

as the solution of a Lipschitz BSDE. This principle has many applications in finance.

One of them can be found in Rouge and El Karoui [31] who study the exponential

utility maximization problem in the incomplete Brownian case and characterize the

dynamic indifference price as the solution of a quadratic BSDE (introduced by Koby-

lanski [20]). Concerning the exponential utility maximization problem, there is also

the work of Hu et al. [16] still in the Brownian case. By using a verification theorem

(different from the previous one), they characterize the logarithm of the dynamic

value function as the solution of a quadratic BSDE.

Due to the presence of jumps, the case of a discontinuous framework is much more involved.

Concerning the study of the exponential utility maximization problem in this case, we refer

to Morlais [26]. In that paper, the price process of stock is driven by an independent Brow-

nian motion and a Poisson point process. The author mainly studies the case of admissible

strategies valued in a compact set (not necessarily convex). Using the same approach as in

Hu et al. [16], she proves that the logarithm of the associated value function is the unique
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solution of a quadratic BSDE (for which she shows an existence and a uniqueness result).

In the non constrained case, she formally obtains that the logarithm of the value function

should be a solution of a quadratic BSDE. Concerning this BSDE, she only obtains an

existence result but none uniqueness result. Hence, this does not allow to characterize the

value function in terms of BSDEs.

In this paper, we first consider the case of strategies valued in a compact set. Using a

verification theorem, we show quite easily that the value function associated with the ex-

ponential utility maximization problem can be characterized as the solution of a Lipschitz

BSDE. Secondly, we consider the case of non constrained strategies. Using dynamic pro-

gramming techniques, the value function is proved to be the maximal solution of a BSDE.

Moreover, we provide another characterization of the value function as the nonincreasing

limit of a sequence of processes which are the solutions of Lipschitz BSDEs. At last, we

give some generalizations of the previous results.

The outline of the paper is as follows. In Section 2, we present the market model and

the maximization problem in the case of only one risky asset. In Section 3, we study the

case of strategies valued in a compact set. In Section 4, we consider the non constrained

case. We first provide a characterization of the value function as the nonincreasing limit

of a sequence of processes which are the solutions of Lipschitz BSDEs. Second, the value

function is proved to be characterized as the maximal solution of a BSDE. In Section 5, we

show that some of the previous results still hold in the case of unbounded coefficients. Then,

we consider the case of coefficients satisfying some exponential integrability conditions. In

the last section, we generalize the previous results to the case of several assets and several

default times and we also extend these results to a Poisson jump model.

2 The market model

Let (Ω,G,P) be a complete probability space. We assume that all processes are de-

fined on a finite time horizon [0, T ], with T < ∞. Suppose that this space is equipped

with two stochastic processes: a unidimensional standard Brownian motion W and a jump

process N defined by Nt = 1τ≤t for any t ∈ [0, T ], where τ is a random variable which

modelizes a default time (see Section 6.1 for several default times). We assume that this

default can appear at any time that is P(τ > t) > 0 for any t ∈ [0, T ]. We denote by

G = {Gt, 0 ≤ t ≤ T} the completed filtration generated by these processes. The filtration

is supposed to be right-continuous and W is a G-Brownian motion.

We denote by M the compensated martingale of the process N and by Λ its com-

pensator. We assume that this compensator Λ is absolutely continuous with respect to

Lebesgue’s measure, so that there exists a process λ such that Λt =
∫ t

0 λsds. Hence, the

G-martingale M satisfies

Mt = Nt −
∫ t

0
λsds . (2.1)

We introduce the following sets which are used throughout the sequel:

– S+,∞ is the set of positive G-adapted P-essentially bounded càd-làg processes.
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– S2 is the set of G-adapted càd-làg processes ϕ such that E[supt |ϕt|2] < +∞.

– L1,+ is the set of positive G-adapted càd-làg processes such that E[Yt] < ∞ for any

t ∈ [0, T ].

– L2(W ) (resp. L2
loc(W )) is the set of G-predictable processes with

E
[ ∫ T

0
|Zt|2dt

]
<∞ (resp.

∫ T

0
|Zt|2dt <∞ a.s. ) .

– L2(M) (resp. L2
loc(M), L1

loc(M)) is the set of G-predictable processes such that

E
[ ∫ T

0
λt|Ut|2dt

]
<∞ (resp.

∫ T

0
λt|Ut|2dt <∞ ,

∫ T

0
λt|Ut|dt <∞ a.s. ) .

We recall the useful martingale representation theorem (see for example Jeanblanc et

al. [14]) which is paramount in the sequel:

Lemma 2.1. Any (P,G)-local martingale m has the representation

mt = m0 +

∫ t

0
asdWs +

∫ t

0
bsdMs, ∀ t ∈ [0, T ] a.s. , (2.2)

where a ∈ L2
loc(W ) and b ∈ L1

loc(M). If m is a square integrable martingale, each term on

the right-hand side of the representation (2.2) is square integrable.

We now consider a financial market which consists of one risk-free asset, whose price

process is assumed for simplicity to be equal to 1 at any date, and one risky asset with

price process S which admits a discontinuity at time τ (we give the results for n assets and

p default times in Section 6.1). Throughout the sequel, we consider that the price process

S evolves according to the equation

dSt = St−(µtdt+ σtdWt + βtdNt) , (2.3)

with the classical assumptions:

Assumption 2.1.

(i) λ, µ, σ and β are uniformly bounded G-predictable processes,

(ii) σt > 0 for any 0 ≤ t ≤ T ,

(iii) the process β satisfies βτ > −1 a.s.

Note that condition (iii) ensures that the process S is positive. Also, it is equivalent to

fact that the process β satisfies βt > −1 for any 0 ≤ t ≤ T a.s. (see Jeanblanc et al. [15]).

We also suppose that E[exp(−
∫ T

0 αsdWs − 1
2

∫ T
0 α2

t dt)] = 1 where αt = (µt + λtβt)/σt,

which ensures the existence of a martingale probability measure and hence the absence of

arbitrage.

4



Throughout the sequel, a process π is called a trading strategy if it is a G-predictable

process and if
∫ T

0
πt
St−

dSt is well defined e.g.
∫ T

0 |πtσt|
2dt+

∫ T
0 λt|πtβt|2dt <∞ a.s. In this

case, πt describes the amount of money invested in the risky asset at time t. Under the

assumption that the trading strategy is self-financing, the wealth process Xx,π associated

with the trading strategy π and an initial capital x satisfies{
dXx,π

t = πt
(
µtdt+ σtdWt + βtdNt

)
,

Xx,π
0 = x .

(2.4)

For a given initial time t and an initial capital x, the wealth process associated with a

trading strategy π is denoted by Xt,x,π.

We assume that the investor in this financial market faces some liability, which is mod-

eled by a random variable ξ (for example, ξ may be a contingent claim written on a default

event, which itself affects the price of the underlying asset). We suppose that ξ ∈ L2(GT )

and is non-negative (note that all the results still hold under the assumption that ξ is only

bounded from below).

Our aim is to study the classical optimization problem

V (x, ξ) = sup
π∈D

E
[
U(Xx,π

T + ξ)
]
, (2.5)

where D is a set of admissible strategies (independent of x) which will be specified through-

out the sequel and U is the exponential utility function

U(x) = − exp(−γx), x ∈ R ,

where γ > 0 is a given constant, which can be seen as a coefficient of absolute risk aversion.

The optimization problem (2.5) can be clearly written as

V (x, ξ) = e−γxV (0, ξ) .

Hence, it is sufficient to study the case x = 0. To simplify notation, we will denote Xπ

(resp. Xt,π) instead of X0,π (resp. Xt,0,π). Also, note that

V (0, ξ) = − inf
π∈D

E
[

exp
(
− γ(Xπ

T + ξ)
)]
. (2.6)

We stress on that some of the results stated below still hold in the case of unbounded

coefficients (see Section 5).

3 Strategies valued in a given compact set

In this section, we study the case where the strategies are constrained to take their

values in a given non empty compact set C of R. Thus, the set of admissible strategies

denoted by C is defined as the set of predictable processes π taking their values in C.

This case cannot be solved by using the dual approach because the set of admissible

strategies is not necessarily convex. In this context, we address the problem of character-

izing dynamically the value function associated with the exponential utility maximization
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problem. We give a dynamic extension of the initial problem (2.6) (with D = C). For any

initial time 0 ≤ t ≤ T , we define the value function J(t, ξ) (also denoted by J(t)) by the

following random variable

J(t, ξ) = ess inf
π∈Ct

E
[

exp
(
− γ(Xt,π

T + ξ)
)∣∣Gt] , (3.1)

where Ct is the set of all restrictions to [t, T ] of the strategies of C. Note that V (0, ξ) =

−J(0, ξ).

Throughout the sequel, we want to characterize this dynamic value function J(.) as the

solution of a BSDE.

For that, for any π ∈ C, we introduce the càd-làg process Jπ satisfying

Jπt = E
[

exp
(
− γ(Xt,π

T + ξ)
)∣∣Gt], ∀ t ∈ [0, T ] .

Since the coefficients are supposed to be bounded and the strategies are constrained to

take their values in a compact set, it is possible to solve very simply the problem by using

a verification principle in terms of Lipschitz BSDEs in the vein of that of El Karoui et al.

[12].

Note first that for any π ∈ C, by using classical techniques of linear BSDEs (see El

Karoui et al. [12]), the process Jπ can be easily shown to be the solution of a linear

Lipschitz BSDE. More precisely, there exist Zπ ∈ L2(W ) and Uπ ∈ L2(M), such that

(Jπ, Zπ, Uπ) is the unique solution in S+,∞ × L2(W ) × L2(M) of the linear BSDE with

bounded coefficients

− dJπt = fπ(t, Jπt , Z
π
t , U

π
t )dt− Zπt dWt − Uπt dMt ; JπT = exp(−γξ) , (3.2)

where fπ(s, y, z, u) = γ2

2 π
2
sσ

2
sy − γπs(µsy + σsz)− λs(1− e−γπsβs)(y + u).

Using the fact that J(t) = ess infπ∈Ct J
π
t for any 0 ≤ t ≤ T , we state that J(.) cor-

responds to the solution of a BSDE, whose driver is the essential infimum over π of the

drivers of (Jπ)π∈C . More precisely,

Proposition 3.1. The following properties hold:

– Let (Y,Z, U) be the solution in S+,∞ × L2(W )× L2(M) of the following BSDE
− dYt = ess inf

π∈C

{γ2

2
π2
t σ

2
t Yt − γπt(µtYt + σtZt)− λt(1− e−γπtβt)(Yt + Ut)

}
dt

− ZtdWt − UtdMt ,

YT = exp(−γξ) .

(3.3)

Then, J(t) = Yt for any 0 ≤ t ≤ T a.s.

– There exists an optimal strategy for J(0) = infπ∈C E[exp(−γ(Xπ
T + ξ))].

Also, a strategy π̂ ∈ C is optimal for J0 if and only if π̂t attains the essential infimum

in (3.3) dt⊗ dP− a.e.
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Proof. Let us introduce the driver f which satisfies ds⊗ dP− a.e.

f(s, y, z, u) = ess inf
π∈C

fπ(s, y, z, u) .

Since the driver f is written as an infimum of linear drivers fπ w.r.t (y, z, u) with uniformly

bounded coefficients, f is clearly Lipschitz (see Lemma B.1 in Appendix B). Hence, by Tang

and Li’s results [34], BSDE (3.3) with Lipschitz driver f

− dYt = f(t, Yt, Zt, Ut)dt− ZtdWt − UtdMt ; YT = exp(−γξ)

admits a unique solution (Y, Z, U) ∈ S2 × L2(W )× L2(M).

Since we have

fπ(t, y, z, u)− fπ(t, y, z, u′) = λt(u− u′)γt , (3.4)

with γt = e−γπtβt − 1, and since there exist some constants −1 < C1 ≤ 0 and 0 ≤ C2 such

that C1 ≤ γt ≤ C2, the comparison theorem in case of jumps (see for example Theorem 2.5

in Royer [32]) can be applied. It implies that Yt ≤ Jπt , ∀ t ∈ [0, T ] a.s. As this inequality is

satisfied for any π ∈ C, it follows that Yt ≤ ess infπ∈C J
π
t a.s.

Also, by applying a measurable selection theorem, one can easily show that there exists

π̂ ∈ C such that dt⊗ dP-a.s.

ess inf
π∈C

{γ2

2
π2
t σ

2
t Yt − γπt(µtYt + σtZt)− λt(1− e−γπtβt)(Yt + Ut)

}
=
γ2

2
π̂2
t σ

2
t Yt − γπ̂t(µtYt + σtZt)− λt(1− e−γπ̂tβt)(Yt + Ut) .

Thus, (Y, Z, U) is a solution of BSDE (3.2) associated with π̂. Therefore, by uniqueness of

the solution of BSDE (3.2), we have Yt = J π̂t , 0 ≤ t ≤ T a.s. Hence, Yt = ess infπ∈Ct J
π
t =

J π̂t , 0 ≤ t ≤ T a.s., and π̂ is an optimal strategy.

Note that Y = J ∈ S+,∞.

Remark 3.1. Let us make the following change of variables: yt = 1
γ log(Yt) , zt = 1

γ
Zt
Yt

,

ut = 1
γ log

(
1 + Ut

Yt−

)
. One can easily verify that the process (y, z, u) is the solution of the

following quadratic BSDE

− dyt = g(t, zt, ut)dt− ztdWt − utdMt ; yT = −ξ , (3.5)

where

g(s, z, u) = ess inf
π∈C

(γ
2

∣∣∣πsσs − (z +
µs + λsβs

γ

)∣∣∣2+|u− πsβs|γ)−(µs + λsβs)z−
|µs + λsβs|2

2γ
,

with |u− πβt|γ = λt
exp(γ(u−πβt))−1−γ(u−πβt)

γ . Hence, our result clearly yields the existence

and the uniqueness of the quadratic BSDE (3.5) and also gives that the logarithm of the

value function is the solution of this BSDE. This corresponds exactly to Morlais’s result [26].

Recall that the proof given in [26] consists in showing first an existence and uniqueness result

for BSDE (3.5) by using a sophisticated approximation method in the vein of Kobylanski

[20] but adapted to the case of jumps. Then, by using a verification theorem quite similar
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to Hu et al.’ theorem [16], the logarithm of the value function is proved to be the solution

of the quadratic BSDE (3.5).

Note that the short proof given here is based on a simple verification principle (in the

vein of El Karoui et al. [12]).

4 The non constrained case

We now study the value function in the case where the admissible strategies are no

longer required to satisfy any constraints (as in the previous section). Since the utility

function is the exponential utility function, the set of admissible strategies is not standard

in the literature. The next subsection studies the choice of a suitable set of admissible

strategies which will allow to dynamize the problem and to characterize the associated

dynamic value function.

4.1 The set of admissible strategies

Recall that in the case of the power or logarithmic utility functions defined (or restricted)

on R+, the admissible strategies are the ones that make the associated wealth positive. Since

we consider the exponential utility function which is finitely valued for all x ∈ R, the wealth

process is no longer required to be positive. However, from a financial point of view, it is

natural to consider strategies such that the associated wealth process is uniformly bounded

by below (see for example Schachermayer [33]) or even such that any increment of the

wealth is bounded by below.

More precisely, we introduce the set of admissible trading strategies A which consists

of all G-predictable processes π which satisfy
∫ T

0 |πtσt|
2dt +

∫ T
0 λt|πtβt|2dt < ∞ a.s. and

such that for any fixed π and any s ∈ [0, T ], there exists a real constant Ks,π such that

Xπ
t −Xπ

s ≥ −Ks,π, s ≤ t ≤ T, a.s.

Recall that in their paper, Delbaen et al. [6] consider the set of strategies Θ2 defined

by

Θ2 :=
{
π , E

[
exp

(
− γ(Xπ

T + ξ)
)]
< +∞ and Xπ is a Q−martingale for all Q ∈ Pf

}
,

where Pf is the set of absolutely continuous local martingale measures Q such that its

entropy H(P|Q) is finite.

In general, there is no existence result on the set A whereas there is one on the set Θ2.

Recall that this existence result has been stated by [6]. More precisely, under the assumption

that the price process is locally bounded, using the dual approach, these authors show the

existence of an optimal strategy on the set Θ2.

We stress on the following important point: the value function associated with Θ2

coincides with that associated with A. More precisely,

Lemma 4.1. The value function V (0, ξ) associated with A defined by

V (0, ξ) = − inf
π∈A

E
[

exp
(
− γ(Xπ

T + ξ)
)]
, (4.1)
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is equal to the one associated with Θ2.

Proof. This property follows from the results of Delbaen et al. [6]. More precisely, let

V 2(0, ξ) be the value function associated with Θ2. Let us introduce Θ3 the set of strategies

such that the associated wealth process is bounded and let V 3(0, ξ) be the value function

associated with Θ3. By the results of [6], V 2(0, ξ) = V 3(0, ξ). Now, since Θ3 ⊂ A, we have

V (0, ξ) ≥ V 3(0, ξ). Now, by a classical localization argument (quite similar to the one used

in Appendix C), one can easily show that V (0, ξ) = V 3(0, ξ). Hence, V (0, ξ) = V 2(0, ξ).

In this work, our aim is mainly to characterize and even to approximate the value

function V (0, ξ). Our approach consists in giving a dynamic extension of the optimization

problem and in using stochastic calculus techniques in order to characterize the dynamic

value function. In the compact case (with the set C), the dynamic extension was easy (see

Section 3). At any initial time t, the corresponding set Ct of admissible strategies was

simply given by the set of the restrictions to [t, T ] of the strategies of C. For the set A, it

is also very simple (see below). However, in the case of the set Θ2, things are not so clear.

Actually, this is partly linked to the fact that the set A is closed by binding whereas Θ2 is

not. More precisely, one can easily verify that

Lemma 4.2. The set A is closed by binding that is: if π1, π2 are two strategies of A and

if s ∈ [0, T ], then the strategy π3 defined by

π3
t =

{
π1
t if t ≤ s ,
π2
t if t > s ,

belongs to A.

On the other hand, the set Θ2 is clearly not closed by binding because of the integrability

condition E[exp(−γ(Xπ
T + ξ))] < +∞. One could naturally think of considering the space

Θ
′
2 := {π , Xπ is a Q − martingale for all Q ∈ Pf} (instead of Θ2) but this set is not

really appropriate here: in particular it does not allow to have the dynamic programming

principle (in the form of Proposition 4.1 below) because in this case, the Lebesgue theorem

cannot be applied (see Remark 4.2).

However, there are some other possible sets which are closed by binding as for example the

set A′ defined as the set of G-predictable processes π with
∫ T

0 |πtσt|
2dt+

∫ T
0 λt|πtβt|2dt <∞

a.s., and such that for any t ∈ [0, T ] and for any p > 1, the following integrability condition

E
[

sup
s∈[t,T ]

exp
(
− γpXt,π

s

)]
<∞ (4.2)

holds. Note that A ⊂ A′ ⊂ Θ2.

The property of closedness by binding of the set A′ can be easily verified by using

the assumption of p-integrability (4.2) and Cauchy-Schwarz inequality (see Appendix D for

details). Note that the weaker integrability condition E[exp(−γXπ
T )] < +∞ is not sufficient

to ensure this property.
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Remark 4.1. Note first that such a p-exponential integrability condition is not so surprising

here. Indeed, it is well-known that the exponential utility maximization problem is related

to quadratic BSDEs (see for example Rouge and El Karoui [31]) and that this type of p-

exponential integrability condition often appears to solve quadratic BSDEs (see for example

Briand and Hu [5]).

Also, note that in the particular case where there is no default, that is in the case of

a complete market, the optimal strategy belongs to the set A′ (but of course not to A).

Indeed, the optimal terminal wealth is given by X̂T = I(λZ0(T )), where I is the inverse

of U
′
, λ is a fixed parameter, Z0(T ) := exp{−

∫ T
0 αtdWt − 1

2

∫ T
0 α2

t dt} and αt := µt+λtβt
σt

(supposed to be bounded). However, in the general case , there is no existence result for

the set A′ .

Let us now give a dynamic extension of the initial problem associated with A given by

(4.1). For any initial time t ∈ [0, T ], we define the value function J(t, ξ) by the following

random variable

J(t, ξ) = ess inf
π∈At

E
[

exp
(
− γ(Xt,π

T + ξ)
)∣∣Gt] , (4.3)

where the set At is the set of the restrictions to [t, T ] of the strategies of A.

Note that J(0, ξ) = −V (0, ξ). Also, for any t ∈ [0, T ], J(t, ξ) is also equal a.s. to the essinf

in (4.3) but taken over A instead of At.
For the sake of brevity, we shall denote J(t) instead of J(t, ξ). Note that the random vari-

able J(t) is defined uniquely only up to P-almost sure equivalent. The process J(.) will be

called the dynamic value function. This process is adapted but not necessarily càd-làg and

not even progressive.

Similarly, a dynamic extension of the value function associated with A′ can be easily

given. By using a localization argument, one can easily verify (see Appendix C) that

Lemma 4.3. The dynamic value function J(.) associated with A coincides a.s. with the

one associated with A′.

Hence, concerning the dynamic study of the value function, it is equivalent to choose

A or A′ as set of admissible strategies. We have chosen the set A because it appears as a

natural set of admissible strategies from a financial point of view. However, all the results

in this paper still hold with A′ instead of A.

After this dynamic extension of the value function, the aim is now to characterize the

dynamic value function via a BSDE.

4.2 First properties of the dynamic value function

In this section, we will provide a first characterization of the dynamic value function

via a BSDE. Note that it is no longer possible to use a verification theorem like the one

in Section 3 because the associated BSDE is no longer Lipschitz and there is no existence

result for it. One could think to use a verification theorem like that of Hu et al. [16]. But

because of the presence of jumps, it is no longer possible since again there is no existence and

uniqueness results for the associated BSDE as noted by Morlais [26]. In her paper, Morlais
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proves the existence of a solution of this BSDE by using an approximation method but she

does not obtain uniqueness result. Hence, this does not a priori lead to a characterization

of the value function in terms of BSDEs.

Therefore, as it seems not possible to derive a sufficient condition so that a given process

corresponds to the dynamic value function, we will now provide some necessary conditions

satisfied by J(.) and more precisely a dynamic programming principle. Then, using this

property, we will derive a first characterization of the value function via a BSDE.

We first prove the following dynamic programming principle:

Proposition 4.1. For each π ∈ A, the process exp(−γXπ)J(.) is a submartingale.

To prove this proposition, we introduce the random variable Jπt which is defined for any

π ∈ At by

Jπt = E
[

exp
(
− γ(Xt,π

T + ξ)
)∣∣Gt] .

As usual, in order to prove Proposition 4.1, we first prove the following lemma:

Lemma 4.4. The set {Jπt , π ∈ At} is stable by pairwise minimization for any t ∈ [0, T ].

That is, for every π1, π2 ∈ At there exists π ∈ At such that Jπt = Jπ
1

t ∧ Jπ
2

t .

Also, there exists a sequence (πn)n∈N ∈ At such that

J(t) = lim
n→∞

↓ Jπnt a.s.

Proof. Fix t ∈ [0, T ]. Let us introduce the set E = {Jπ1

t ≤ Jπ
2

t } which belongs to Gt. Let

us define π for any s ∈ [t, T ] by πs = π1
s1E + π2

s1Ec . It is clear that π ∈ At because

Xt,π
s = Xt,π1

s 1E + Xt,π2

s 1Ec and the sum of two random variables bounded by below is

bounded by below. By construction of π, it is clear that Jπt = Jπ
1

t ∧ Jπ
2

t a.s.

The second part of the lemma follows by classical results on the essential infimum (see

Appendix A).

Let us now give the proof of Proposition 4.1.

Proof. Let us show that for t ≥ s,

E
[

exp
(
− γ(Xπ

t −Xπ
s )
)
J(t)

∣∣Gs] ≥ J(s) a.s.

Note that Xπ
t − Xπ

s = Xs,π
t . By Lemma 4.4, there exists a sequence (πn)n∈N ∈ At such

that J(t) = lim
n→∞

↓ Jπnt a.s.

Without loss of generality, we can suppose that π0 = 0. For each n ∈ N, we have Jπ
n

t ≤
Jπ

0

t ≤ 1 a.s. Moreover, the integrability property E[exp(−γXs,π
t )] < ∞ holds because

π ∈ A. Together with the Lebesgue theorem, it gives

E
[

lim
n→∞

exp(−γXs,π
t )Jπ

n

t

∣∣Gs] = lim
n→∞

E
[

exp(−γXs,π
t )Jπ

n

t

∣∣Gs]. (4.4)

Recall that Xs,π
t =

∫ t
s

πu
Su−

dSu. Now, we have a.s.

exp
(
− γ

∫ t

s

πu
Su−

dSu

)
Jπ

n

t = E
[

exp
(
− γ
(∫ T

s

π̃nu
Su−

dSu + ξ
))∣∣∣Gt] , (4.5)

11



where the strategy π̃n is defined by

π̃nu =

{
πu if 0 ≤ u ≤ t ,
πnu if t < u ≤ T .

Note that by the closedness property by binding (see Lemma 4.2), π̃n ∈ A for each n ∈ N.

By (4.4) and (4.5), we have a.s.

E
[

exp
(
− γ

∫ t

s

πu
Su−

dSu

)
J(t)

∣∣∣Gs] = lim
n→∞

E
[

exp
(
− γ
(∫ T

s

π̃nu
Su−

dSu + ξ
))∣∣∣Gs]

= lim
n→∞

J π̃
n

s ≥ J(s) ,

from the definition of J(s). Hence, the process exp(−γXπ)J(.) is a submartingale for any

π ∈ A.

Remark 4.2. The integrability property E[exp(−γXs,π
t )] < ∞ is required in the proof of

this property. Indeed, if it is not satisfied, equality (4.4) does not hold since the Lebesgue

theorem (and the monotone convergence theorem) cannot be applied. We stress on that

the importance of the integrability condition is due to the fact that we study an essential

infimum of positive random variables. Note that in the case of an essential supremum of

positive random variables, the dynamic programming principle holds without any integra-

bility condition (see for example the case of the power utility function in Lim and Quenez

[23]).

Consequently, the set of G-predictable processes π such that for any p > 1, for any

s ∈ [0, T ] and for any t ∈ [s, T ], E[exp(−γpXs,π
t )] < ∞, appears as the largest set of

strategies which ensures the above dynamic programming principle. Note that the set

A′ is nearly the same but with an integrability condition which is uniform with respect

to t ∈ [s, T ] (see (4.2)). This uniform integrability in time will be useful to ensure a

characterization of the value function via a BSDE (see Remark 4.6).

Also, the value function can easily be characterized as follows:

Proposition 4.2. The process J(.) is the largest G-adapted process such that e−γX
π
J(.) is

a submartingale for any admissible strategy π ∈ A with J(T ) = exp(−γξ). More precisely,

if Ĵ is a G-adapted process such that exp(−γXπ)Ĵ is a submartingale for any π ∈ A with

ĴT = exp(−γξ), then we have J(t) ≥ Ĵt a.s., for any t ∈ [0, T ].

Proof. Fix t ∈ [0, T ]. For any π ∈ A, E[exp(−γXπ
T )ĴT |Gt] ≥ exp(−γXπ

t )Ĵt a.s. This implies

ess inf
π∈At

E
[

exp
(
− γ(Xt,π

T + ξ)
)∣∣Gt] ≥ Ĵt a.s. ,

which gives clearly that J(t) ≥ Ĵt a.s.

With this property, it is possible to show that there exists a càd-làg version of the value

function J(.). More precisely, we have:
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Proposition 4.3. There exists a G-adapted càd-làg process J such that for any t ∈ [0, T ],

Jt = J(t) a.s.

Moreover, the two processes are indistinguishable.

A direct proof is given in Appendix E.

Remark 4.3. Note that Proposition 4.2 can be written under the form: J is the largest

G-adapted càd-làg process such that the process exp(−γXπ)J is a submartingale for any

π ∈ A with JT = exp(−γξ).

We now prove that the process J is bounded. More precisely, we have:

Lemma 4.5. The process J verifies

0 ≤ Jt ≤ 1, ∀ t ∈ [0, T ] a.s.

Proof. Fix t ∈ [0, T ]. The first inequality is easy to prove, because it is obvious that

0 ≤ E
[

exp
(
− γ(Xt,π

T + ξ)
)∣∣Gt] a.s. ,

for any π ∈ At, which implies 0 ≤ Jt.
The second inequality is due to the fact that the strategy defined by πs = 0 for any s ∈ [t, T ]

is admissible, which implies Jt ≤ E[exp(−γξ)|Gt] a.s. As the contingent claim ξ is supposed

to be non negative, we have Jt ≤ 1 a.s.

Remark 4.4. If ξ is only bounded by below by a real constant −K, then J is still upper

bounded but by exp(γK) instead of 1.

Using the previous characterization of the value function (see Proposition 4.2), we now

prove that the value function J is characterized by a BSDE. Since we work in terms of

necessary conditions satisfied by the value function, the study is more technical than in the

cases where a verification theorem can be applied.

Since J is a càd-làg submartingale and is bounded (see Lemma 4.5), it admits a unique

Doob-Meyer decomposition (see Dellacherie and Meyer [7], Chapter 7)

dJt = dmt + dAt ,

where m is a square integrable martingale and A is an increasing G-predictable process

with A0 = 0. From the martingale representation theorem (see Lemma 2.1), the previous

Doob-Meyer decomposition can be written under the form

dJt = ZtdWt + UtdMt + dAt , (4.6)

with Z ∈ L2(W ) and U ∈ L2(M).

Using the dynamic programming principle (Proposition 4.1), we will now precise the process

A of (4.6). This will allow to show that the value function J is a subsolution of a BSDE.

Let us introduce the set A2 of the nondecreasing adapted càd-làg processes K with K0 = 0

and E|KT |2 <∞.
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Proposition 4.4. – There exists a process K ∈ A2 such that the process (J, Z, U,K) ∈
S+,∞ × L2(W )× L2(M)×A2 is a solution of the following BSDE
− dJt = ess inf

π∈A

{γ2

2
π2
t σ

2
t Jt − γπt(µtJt + σtZt)− λt(1− e−γπtβt)(Jt + Ut)

}
dt

− dKt − ZtdWt − UtdMt ,

JT = exp(−γξ) .

(4.7)

– Furthermore, (J, Z, U,K) is the maximal solution in S+,∞×L2(W )×L2(M)×A2 of

BSDE (4.7) that is, for any solution (J̄ , Z̄, Ū , K̄) of the BSDE in S+,∞ × L2(W ) ×
L2(M)×A2, we have J̄t ≤ Jt, ∀ t ∈ [0, T ] a.s.

Remark 4.5. Due to the presence of the nondecreasing process K, the process J is said

to be a subsolution (and even the maximal one) of the BSDE associated with the terminal

condition exp(−γξ) and the driver given by the above essinf.

Proof. We prove the first point of this proposition. Applying first Itô’s formula to the

semimartingale exp(−Xπ)J , we obtain

d(e−γX
π
t Jt) = dAπt + dmπ

t ,

with Aπ0 = 0 and dAπt = e−γX
π
t

[
dAt +

{γ2

2
π2
t σ

2
t Jt − λt

(
1− e−γπtβt

)
(Ut + Jt)− γπt(σtZt + µtJt)

}
dt
]
,

dmπ
t = e−γX

π
t−
[
(Zt − γπtσtJt)dWt + (Ut + (e−γπtβt − 1)(Ut + Jt−))dMt

]
.

Using then the DP, we argue that exp(−Xπ)J is a submartingale for any π which yields

dAt ≥ ess sup
π∈A

{
λt
(
1− e−γπtβt

)
(Ut + Jt) + γπt(σtZt + µtJt)−

γ2

2
π2
t σ

2
t Jt

}
dt . (4.8)

We then define the process K by K0 = 0 and

dKt = dAt − ess sup
π∈A

{
λt
(
1− e−γπtβt

)
(Ut + Jt) + γπt(σtZt + µtJt)−

γ2

2
π2
t σ

2
t Jt

}
dt .

It is clear that the process K is nondecreasing from (4.8). Since the strategy defined by

πt = 0 for any t ∈ [0, T ] is admissible, we have

ess sup
π∈A

{
λt
(
1− e−γπtβt

)
(Ut + Jt) + γπt(σtZt + µtJt)−

γ2

2
π2
t σ

2
t Jt

}
≥ 0 .

Hence, 0 ≤ Kt ≤ At a.s. As E|AT |2 < ∞, we have K ∈ A2. Thus, the Doob-Meyer

decomposition (4.6) of J can be written as follows

dJt = ess sup
π∈A

{
λt
(
1− e−γπtβt

)
(Ut + Jt) + γπt(σtZt + µtJt)−

γ2

2
π2
t σ

2
t Jt

}
dt

+ dKt + ZtdWt + UtdMt ,
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with Z ∈ L2(W ), U ∈ L2(M) and K ∈ A2. This ends the proof of the first point.

We now prove the second point. Let (J̄ , Z̄, Ū , K̄) be a solution of (4.7) in S+,∞ ×
L2(W ) × L2(M) × A2. Let us prove that the process exp(−γXπ)J̄ is a submartingale for

any π ∈ A.

From the product rule, we get

d
(
e−γX

π
t J̄t
)

= dM̄π
t + dĀπt + e−γX

π
t dK̄t ,

with Āπ0 = 0 and
dĀt =− ess inf

π∈A

{γ2

2
π2
t σ

2
t J̄t − γπt(µtJ̄t + σtZ̄t)− λt

(
1− e−γπtβt

)
(J̄t + Ūt)

}
dt ,

dĀπt =e−γX
π
t

{[γ2

2
π2
t σ

2
t J̄t − γπt(µtJ̄t + σtZ̄t)− λt

(
1− e−γπtβt

)
(J̄t + Ūt)

]
dt+ dĀt

}
,

dM̄π
t =e−γX

π
t−
[
(Z̄t − γπtσtJ̄t)dWt +

(
Ūt + (e−γπtβt − 1)

(
Ūt + J̄t−

))
dMt

]
.

Since the strategy π is admissible, there exists a constant Cπ such that exp(−γXπ
t ) ≤ Cπ

for any t ∈ [0, T ]. With this, one can easily derive that E[supt∈[0,T ] exp(−γXπ
t )J̄t] <

+∞ and that E[
∫ T

0 exp(−γXπ
t )dK̄t] < +∞. It follows that the local martingale M̄π is a

martingale and that the process exp(−γXπ)J̄ is a submartingale.

Now recall that J is the largest process such that exp(−γXπ)J is a submartingale for any

π ∈ A with JT = exp(−γξ) (see Proposition 4.2). Therefore, we get

J̄t ≤ Jt, ∀ t ∈ [0, T ] a.s.

Remark 4.6. Note that the integrability property E[supt∈[0,T ] exp(−γXπ
t )] is used in the

proof of the second point.

4.3 Approximation of the value function by Lipschitz BSDEs

Throughout the sequel, the value function is characterized as the limit of a nonincreas-

ing sequence of processes (Jk)k∈N as k tends to +∞, where for each k ∈ N, Jk corresponds

to the value function associated with the set of admissible strategies which are bounded by k.

For each k ∈ N, we denote by Akt the subset of strategies of At uniformly bounded by

k, and we consider the associated value function Jk(.) defined for any t ∈ [0, T ] by

Jk(t) = ess inf
π∈Akt

E
[

exp
(
− γ(Xt,π

T + ξ)
)∣∣Gt] . (4.9)

By similar argument as for J , there exists a càd-làg version of Jk(.) denoted by Jk. As

previously, the following dynamic programming principle holds:

Lemma 4.6. The process exp(−γXπ)Jk is a submartingale for any π ∈ Ak.
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We now show that the sequence (Jk)k∈N converge to J . More precisely, we have:

Theorem 4.1. (Approximation of the value function)

– For any t ∈ [0, T ], we have
Jt = lim

k→∞
↓ Jkt a.s.

– For each k ∈ N, the process Jk is the solution of the Lipschitz BSDE (3.3) with C
replaced by Bk, where Bk is the set of all strategies (not necessarily in A) taking their

values in [−k, k].

Proof. Let us prove the first point of the theorem.

Fix t ∈ [0, T ]. It is obvious with the definitions of sets At and Akt that Akt ⊂ At for each

k ∈ N and hence

Jt ≤ Jkt a.s.

Moreover, since Akt ⊂ Ak+1
t for each k ∈ N, the sequence of positive random variables

(Jkt )k∈N is nonincreasing. Let us define the random variable

J̄(t) = lim
k→∞

↓ Jkt a.s.

From the previous inequality we get that Jt ≤ J̄(t) a.s., and this holds for any t ∈ [0, T ].

It remains to prove that Jt ≥ J̄(t) a.s. for any t ∈ [0, T ].

Step 1: Let us now prove that the process J̄(.) is a submartingale. Fix 0 ≤ s < t ≤ T .

From Lemma 4.6, Jk is a submartingale, which gives for each k ∈ N

E
[
Jkt
∣∣Gs] ≥ Jks ≥ J̄(s) a.s.

The dominated convergence theorem (which can be applied since 0 ≤ Jkt ≤ 1 for each

k ∈ N) gives
E
[
J̄(t)

∣∣Gs] = lim
k→∞

E
[
Jkt
∣∣Gs] ≥ J̄(s) a.s. ,

which gives step 1.

Step 2: Let us show that the process exp(−γXπ)J̄(.) is a submartingale for any bounded

strategy π ∈ A.

Let π be a bounded admissible strategy. Then, there exists n ∈ N such that π is uniformly

bounded by n. For each k ≥ n, since π ∈ Ak, exp(−γXπ)Jk is a submartingale from

Lemma 4.6. Then, by the dominated convergence theorem, the process exp(−γXπ)J̄(.)

can be easily proved to be a submartingale.

Step 3: Note now that the process J̄(.) is a submartingale not necessarily càd-làg. How-

ever, by a theorem of Dellacherie-Meyer [7] (see VI.18), we know that the nonincreasing

limit of a sequence of càd-làg submartingales is indistinguishable from a càd-làg adapted

process. Hence, there exists a càd-làg version of J̄(.) which will be denoted by J̄ . Note

that J̄ is still a submartingale.
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Step 4: Let us show that J̄t ≤ Jt, ∀ t ∈ [0, T ] a.s. Since by steps 1 and 3, J̄ is a càd-làg

submartingale of class D, it admits the following Doob-Meyer decomposition

dJ̄t = Z̄tdWt + ŪtdMt + dĀt ,

where Z̄ ∈ L2(W ), Ū ∈ L2(M) and Ā is a nondecreasing G-predictable process with Ā0 = 0.

As before, we use the fact that the process exp(−γXπ)J̄ is a submartingale for any bounded

strategy π ∈ A to give some necessary conditions satisfied by the process Ā.

Let π ∈ A be a uniformly bounded strategy. The product rule gives

d(e−γX
π
t J̄t) = dM̄π

t + dĀπt ,

with Āπ0 = 0 and dĀπt = e−γX
π
t

{
dĀt +

[γ2

2
π2
t σ

2
t J̄t + λt(e

−γπtβt − 1)(Ūt + J̄t)− γπt(µtJ̄t + σtZ̄t)
]
dt
}
,

dM̄π
t = e−γX

π
t−
[
(Z̄t − γπtσtJ̄t)dWt + (Ūt + (e−γπtβt − 1)(Ūt + J̄t−))dMt

]
.

Let Ā be the set of uniformly bounded admissible strategies. Since the process e−γX
π
J̄ is

a submartingale for any π ∈ Ā, we have dĀπt ≥ 0 a.s. for any π ∈ Ā. Hence, there exists a

process K̄ ∈ A2 such that

dĀt = − ess inf
π∈Ā

{γ2

2
π2
t σ

2
t J̄t − γπt(µtJ̄t + σtZ̄t)− λt(1− e−γπtβt)(J̄t + Ūt)

}
dt+ dK̄t .

Now, the following equality holds dt⊗ dP− a.e. (see Appendix F for details)

ess inf
π∈Ā

{γ2

2
π2
t σ

2
t J̄t − γπt(µtJ̄t + σtZ̄t)− λt(1− e−γπtβt)(J̄t + Ūt)

}
= ess inf

π∈A

{γ2

2
π2
t σ

2
t J̄t − γπt(µtJ̄t + σtZ̄t)− λt(1− e−γπtβt)(J̄t + Ūt)

}
. (4.10)

Hence, (J̄ , Z̄, Ū , K̄) is a solution of BSDE (4.7), and Theorem 4.4 implies that

J̄t ≤ Jt, ∀ t ∈ [0, T ] a.s. ,

which ends the proof of the first point.

Let us prove the second point that is, for each k ∈ N, Jk is characterized as the solution

of a Lipschitz BSDE.

For each k ∈ N and for any t ∈ [0, T ], let Bkt be the set of the restrictions to [t, T ] of the

strategies of Bk. By a localization argument (see Appendix G for details), one can show

that the value function associated with Ak coincides with that associated with Bk, that is

Jkt = ess inf
π∈Bkt

E
[

exp(−γ(Xt,π
T + ξ))

∣∣Gt] a.s. , (4.11)

with Jk defined by (4.9).

It follows that by Proposition 3.1, for each k ∈ N, the process Jk is the solution of the

Lipschitz BSDE (3.3) with C replaced by Bk. This ends the proof of the theorem.
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4.4 Characterization of the dynamic value function as the maximal so-

lution of a BSDE

In this section, we add the following assumption:

Assumption 4.1. ξ is bounded

In this case, it is possible to prove that the dynamic value function J is the maximal

solution of a BSDE (and not only the maximal subsolution). More precisely,

Theorem 4.2. (Characterization of the value function)

The value function (J, Z, U) is the maximal solution in S+,∞ × L2(W ) × L2(M) of the

following BSDE:
− dJt = ess inf

π∈A

{γ2

2
π2
t σ

2
t Jt − γπt(µtJt + σtZt)− λt(1− e−γπtβt)(Jt + Ut)

}
dt

− ZtdWt − UtdMt ,

JT = exp(−γξ) .

(4.12)

Remark 4.7. (i) Recall that A can be replaced by A′ in the above essential infimum.

(ii) Let π̂ ∈ Θ2 be the optimal strategy for J0 (which exists by Delbaen et al. [6]). If

π̂ ∈ A′, then π̂t attains the above essential infimum.

(iii) Recall that if there is no default, the optimal strategy π̂ for J0 belongs to A′ and that

our result corresponds to that of Hu et al. [16] in the complete case (by making the

exponential change of variable yt = 1
γ log(Jt)).

Proof. : For each k ∈ N, let us denote by (Jk, Zk, Uk) the solution of the associated

Lipschitz BSDE (3.3) with C replaced by Bk. We make the following change of variables

ykt =
1

γ
log(Jkt ) ,

zkt =
1

γ

Zkt
Jkt

,

ukt =
1

γ
log
(

1 +
Ukt
Jk
t−

)
.

It is clear that the process (yk, zk, uk) is a solution of the following quadratic BSDE

− dykt = gk(t, zkt , u
k
t )dt− zkt dWt − ukt dMt ; ykT = −ξ ,

where

gk(s, z, u) = ess inf
π∈Bk

(γ
2

∣∣∣πsσs−(z+
µs + λsβs

γ

)∣∣∣2 + |u−πsβs|γ
)
−(µs+λsβs)z−

|µs + λsβs|2

2γ

with |u− πβt|γ = λt
exp(γ(u−πβt))−1−γ(u−πβt)

γ .
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Recall now that by a result of Morlais [26], the sequence (yk, zk, uk)k∈N converges to

(y, z, u) in the following sense

E
(

sup
t∈[0,T ]

|ykt − yt|
)

+ |zk − z|L2(W ) + |uk − u|L2(M) → 0 ,

where (y, z, u) is solution of

− dyt = g(t, yt, zt, ut)dt− ztdWt − utdMt ; yT = −ξ ,

with

g(s, z, u) = ess inf
π∈B̄

(γ
2

∣∣∣πsσs−(z+
µs + λsβs

γ

)∣∣∣2 + |u−πsβs|γ
)
−(µs+λsβs)z−

|µs + λsβs|2

2γ
,

where B̄ = ∪kBk. Note that the proof of this result (see [26]) is based on similar arguments

as those used in the proof of the monotone stability convergence theorem for quadratic

BSDEs of Kobylanski [20].

Note now that by localization arguments (as in Appendix F or G), one can easily show that

in the above essinf, the set B̄ can be replaced by A or even by A′.
Let us now define the following processes

J∗t = eγyt ,

Z∗t = γJ∗t zt ,

U∗t = (eγut − 1)J∗t− .

Note that (J∗, Z∗, U∗) is clearly a solution of BSDE (4.12).

Also, using the above convergence property and our characterization of J as the nonin-

creasing limit of (Jk)k∈N (see Theorem 4.1), we have

Jt = lim
k→∞

Jkt = lim
k→∞

eγy
k
t = eγyt = J∗t a.s.

Moreover, the uniqueness of the Doob-Meyer decomposition (4.6) of J implies that Z∗t = Zt
and U∗t = Ut dt⊗ dP− a.s. Hence, (J, Z, U) is a solution of BSDE (4.12). In other words,

J is not only a subsolution but a solution of this BSDE. Since by Theorem 4.4, J is the

maximal subsolution of BSDE (4.12), it follows that J is the maximal solution of BSDE

(4.12). This makes the proof ended.

5 Case of unbounded coefficients

In this section, we consider the case of unbounded coefficients and condition (i) of

Assumption 2.1 is replaced by∫ T

0

(
|µt|+ |σt|2 + λt|βt|2

)
dt <∞ a.s.
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5.1 Case of unbounded coefficients

In this part, we consider the general case of unbounded coefficients. We have:

Proposition 5.1. The two following properties hold:

– The dynamic value function J is the maximal subsolution of BSDE (4.7).

– For any t ∈ [0, T ], we have
Jt = lim

k→∞
↓ Jkt a.s.

For the proof, it is sufficient to note that the proofs of Proposition 4.4 and of the first

point of Theorem 4.1 still hold in the case of unbounded coefficients because the arguments

used do not require any assumption of boundedness on the coefficients.

Remark 5.1. If β is bounded, then the price process is locally bounded and hence, by

Delbaen et al.’s result [6] the value function J0 is equal to the value function associated

with the set Θ2. Also, under this assumption, the dynamic value functions associated

respectively with A and A′ coincide. Note that the proofs of these two assertions are based

on the same arguments as those used in the proofs of Lemmas 4.1 and 4.3.

5.2 Case of coefficients which satisfy some exponential integrability con-

ditions

In this section, we consider the case of coefficients not necessarily bounded but satisfying

some integrability conditions. We first study the particular case of strategies valued in a

convex-compact set and second the non constrained case.

5.2.1 Case of strategies valued in a convex-compact set

Suppose that the set of admissible strategies is given by C (see Section 3) where C is a

convex-compact set with 0 ∈ C. Here, it simply corresponds to a closed interval of R since

we are in the one dimensional case. However, the following results clearly still hold in the

multidimensional case (see Section 6.1). Let J(.) be the associated dynamic value function

to Ct defined as in Section 3 (see (3.1)). Using some classical results of convex analysis (see

for example Ekeland and Temam [9]), we easily derive the following existence property:

Proposition 5.2. There exists a unique optimal strategy π̂ ∈ C for the optimization problem

(2.5), that is

J(0) = inf
π∈C

E
[

exp
(
− γ(Xπ

T + ξ)
)]

= E
[

exp
(
− γ(X π̂

T + ξ)
)]
.

Proof. Note that C is strongly closed and convex in L2([0, T ] × Ω). Hence, C is closed for

the weak topology. Moreover, since C is bounded, C is compact for the weak topology.

We define the function φ(π) = E[exp(−γ(Xπ
T + ξ))] on L2([0, T ] × Ω). This function is

clearly convex and continuous for the strong topology in L2([0, T ]×Ω). By classical results

of convex analysis, it is s.c.i for the weak topology. Now, there exists a sequence (πn)n∈N
of C such that φ(πn)→ minπ∈C φ(π) as n→∞.
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Since C is weakly compact, there exists an extracted sequence still denoted by (πn) which

converges for the weak topology to π̂ for some π̂ ∈ C. Now, since φ is s.c.i for the weak

topology, it implies that
φ(π̂) ≤ lim inf φ(πn) = min

π∈C
φ(π).

Therefore, φ(π̂) = infπ∈C φ(π). The uniqueness of the optimal strategy derives from the

convexity property of the set C and the strict convexity property of the function x 7→
exp(−γx).

We now want to characterize the value function J(.) as the unique solution of a BSDE.

For that, we cannot apply the same techniques as in the case of bounded coefficients. Indeed,

since the coefficients are not necessarily bounded, the drivers of the associated BSDEs are

no longer Lipschitz. Hence, the existence and uniqueness properties do not a priori hold.

Therefore, in order to show the desired characterization of J(.), we will use the dynamic

programming principle and also the existence of an optimal strategy.

In order to have a dynamic programming principle similar to Proposition 4.2, we suppose

that the coefficients satisfy the following integrability condition:

Assumption 5.1. β is uniformly bounded and

E
[

exp
(
a

∫ T

0
|µt|dt

)]
+ E

[
exp

(
b

∫ T

0
|σt|2dt

)]
<∞ ,

with a = 2γ||C||∞ and b = 8γ2||C||2∞.

By classical computations, one can easily derive that for any t ∈ [0, T ] and any π ∈ Ct,
the following integrability property holds

E
[

sup
s∈[t,T ]

exp
(
− γXt,π

s

)]
<∞ . (5.1)

Using this integrability property, the process J(.) can be proved to satisfy the fol-

lowing dynamic programming principle: J(.) is the largest G-adapted process such that

exp(−γXπ)J(.) is a submartingale for any π ∈ C with J(T ) = exp(−γξ).
We now show the following characterization of the dynamic value function:

Theorem 5.1. (Characterization of the value function)

There exist Z ∈ L2(W ) and U ∈ L2(M) such that (J, Z, U) is the unique solution in

S+,∞ × L2(W )× L2(M) of BSDE (3.3).

Also, the optimal strategy π̂ ∈ C for J0 is characterized by the fact that π̂t attains the

essential infimum in (3.3), dt⊗ dP− a.e.

Note first that the two following lemmas hold:

Lemma 5.1. (Optimality criterion)

Fix π̂ ∈ C. The strategy π̂ ∈ C is optimal for J(0) if and only if the process exp(−γX π̂)J(.)

is a martingale.

Lemma 5.2. There exists a càd-làg version of J(.) which will be denoted by J .
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Proof of Theorem 5.1

Step 1: Let us prove that there exist Z ∈ L2(W ) and U ∈ L2(M) such that (J, Z, U) is a

solution in S+,∞ × L2(W )× L2(M) of BSDE (3.3).

Note first that since 0 ∈ C, the process J satisfies 0 ≤ Jt ≤ 1, ∀ t ∈ [0, T ] a.s. From the

Doob-Meyer decomposition, since the process J is a bounded càd-làg submartingale, there

exist Z ∈ L2(W ), U ∈ L2(M) and A a nondecreasing process with A0 = 0 such that

dJt = ZtdWt + UtdMt + dAt .

Since for any π ∈ C the process exp(−γXπ)J(.) is a submartingale, one can easily derive

that

dAt ≥ ess sup
π∈C

{
γπt(µtJt + σtZt) + λt(1− e−γπtβt)(Jt + Ut)−

γ2

2
π2
t σ

2
t Jt

}
dt .

Now, by Proposition 5.2, there exists an optimal strategy π̂ ∈ C. The optimality criterion

(Lemma 5.1) gives

dAt =
{
γπ̂t(µtJt + σtZt) + λt(1− e−γπ̂tβt)(Jt + Ut)−

γ2

2
π̂2
t σ

2
t Jt

}
dt ,

which implies

dAt = ess sup
π∈C

{
γπt(µtJt + σtZt) + λt(1− e−γπtβt)(Jt + Ut)−

γ2

2
π2
t σ

2
t Jt

}
dt .

Hence, (J, Z, U) is solution of BSDE (3.3).

Using similar arguments as in the proof of Theorem 4.4, one can derive that (J, Z, U)

is the maximal solution in S+,∞ × L2(W )× L2(M) of BSDE (3.3).

Step 2: Let us show that (J, Z, U) is the unique solution of BSDE (3.3). Let (J̄ , Z̄, Ū) be

a solution of BSDE (3.3). By a measurable selection theorem, we know that there exists at

least a strategy π̄ ∈ C such that dt⊗ dP− a.e.

ess inf
π∈C

{γ2

2
π2
t σ

2
t J̄t − γπt(µtJ̄t + σtZ̄t)− λt(1− e−γπtβt)(J̄t + Ūt)

}
=
γ2

2
π̄2σ2

t J̄t − γπ̄t(µtJ̄t + σtZ̄t)− λt(1− e−γπ̄tβt)(J̄t + Ūt) .

Hence, BSDE (3.3) can be written under the form

dJ̄t =
{
γπ̄t(µtJ̄t + σtZ̄t) + λt(1− e−γπ̄tβt)(J̄t + Ūt)−

γ2

2
π̄2σ2

t J̄t

}
dt+ Z̄tdWt + ŪtdMt .

Let us introduce by Bt = exp(−γX π̄
t ). Itô’s formula and rule product give

d(BtJ̄t) =
(
BtZ̄t − γσtπ̄tBtJ̄t

)
dWt +

[
(e−γβtπ̄t − 1)Bt− J̄t + e−γβtπ̄tBt−Ūt

]
dMt .

By Assumption 5.1 and since J̄ is bounded, one can derive that the local martingale BJ̄

satisfies E[sup0≤t≤T |BtJ̄t|] <∞. Hence, BJ̄ is a martingale. Thus,

J̄t = E
[BT
Bt

e−γξ
∣∣∣Gt] = E

[
exp(−γ(Xt,π̄

T + ξ))
∣∣Gt] .
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Hence,
J̄t ≥ ess inf

π∈C
E
[

exp(−γ(Xt,π
T + ξ))

∣∣Gt] = Jt .

Now, by step 1, J is the maximal solution of BSDE (3.3). This yields that for any t ∈ [0, T ],

Jt ≤ J̄t, a.s. Hence, Jt = J̄t, ∀ t ∈ [0, T ] a.s. and π̄ is optimal and the proof is ended. 2

For completeness, the proofs of the two above lemmas are given.

Proof of Lemma 5.1. Suppose that π̂ is optimal for J(0). Hence,

J(0) = inf
π∈A

E
[

exp
(
− γ(Xπ

T + ξ)
)]

= E
[

exp
(
− γ(X π̂

T + ξ)
)]
.

Since the process exp(−γX π̂)J(.) is a submartingale and since J(0) = E[exp(−γ(X π̂
T + ξ))],

the process exp(−γX π̂)J(.) is a martingale.

Suppose now that the process exp(−γX π̂)J(.) is a martingale. Then, E[exp(−γX π̂
T )J(T )] =

J(0). Also, since for any π ∈ A, the process exp(−γXπ)J(.) is a submartingale and

J(T ) = exp(−γξ), it is clear that J(0) ≤ inf
π∈A

E[exp(−γ(Xπ
T + ξ))]. Consequently,

J(0) = inf
π∈A

E
[

exp
(
− γ(Xπ

T + ξ)
)]

= E
[

exp
(
− γ(X π̂

T + ξ)
)]
.

In other words, π̂ is an optimal strategy. 2

Proof of Lemma 5.2. The proof is simple here because we have an existence result. More

precisely, by Proposition 5.2, there exists π̂ ∈ C which is optimal for J0. Hence, by the

optimality criterium (Proposition 5.1), we have J(t) = exp(−γX π̂
t )E[exp(−γ(X π̂

T + ξ))|Gt]
for any t ∈ [0, T ] (in other words, π̂ is also optimal for J(t)). By classical results on the

conditional expectation, there exists a càd-làg version denoted by J . Box

5.2.2 The non constrained case

In this part, the set of admissible strategies is given by A. Under some exponential

integrability conditions on the coefficients, we can also precise the characterization of the

value function J as the limit of (Jk)k∈N as k tends to +∞.

Assumption 5.2. β is uniformly bounded, E[
∫ T

0 λtdt] <∞ and for any p > 0 we have

E
[

exp
(
p

∫ T

0
|µt|dt

)]
+ E

[
exp

(
p

∫ T

0
|σt|2dt

)]
<∞ .

Again, for each k ∈ N, we consider the set Bkt . Since Assumption 5.2 is satisfied, the

integrability condition (G.1) holds and hence, for each k ∈ N,

Jkt = ess inf
π∈Bkt

E
[

exp
(
− γ(Xt,π

T + ξ)
)∣∣Gt] a.s.

In this case, for each k ∈ N, the process Jk is characterized as the unique solution of BSDE

(3.3) with C = Bk. Therefore, we have:

Theorem 5.2. (Characterization of the value function)

The value function J is characterized as the nonincreasing limit of the sequence (Jk)k∈N
as k tends to +∞, which are the unique solutions of BSDEs (3.3) with C = Bk for each

k ∈ N.
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6 Generalizations

In this section, we give some generalizations of the previous results. The proofs are not

given, but they are identical to the proofs of the case with a default time and a stock. In all

this section, elements of Rn, n ≥ 1, are identified to column vectors, the superscript ′ stands

for the transposition, ||.|| the square norm, 1 the vector of Rn such that each component

of this vector is equal to 1. Let U and V two vectors of Rn, U ∗ V denotes the vector such

that (U ∗ V )i = UiVi for each i ∈ {1, . . . , n}. Let X ∈ Rn, diag(X) is the matrix such that

diag(X)ij = Xi if i = j else diag(X)ij = 0.

6.1 Several default times and several stocks

We consider a market defined on the complete probability space (Ω,G,P) equipped with

two stochastic processes: an n-dimensional Brownian motion W and a p-dimensional jump

process N = (N i, 1 ≤ i ≤ p) with N i
t = 1τ i≤t, where (τ i)1≤i≤p are p default times. We

denote by G = {Gt, 0 ≤ t ≤ T} the completed filtration generated by these processes. This

filtration is supposed to be right-continuous and W is a G-Brownian motion. We make the

following assumptions on the default times:

Assumption 6.1. (i) The defaults do not appear simultaneously: P(τ i = τ j) = 0 for

i 6= j.

(ii) Each default can appear at any time: P(τ i > t) > 0.

We denote for each j ∈ {1, . . . , p} by M j the compensated martingale of N j and Λj its

compensator. We assume that Λj is absolutely continuous w.r.t. Lebesgue’s measure, so

that there exists a process λj such that Λjt =
∫ t

0 λ
j
sds.

We consider a financial market which consists of one risk-free asset, whose price process

is assumed for simplicity to be equal to 1 at any time, and n risky assets, whose price

processes (Si)1≤i≤n admit p discontinuities at times (τ j)1≤j≤p. Throughout the sequel, we

consider that the price process S := (Si)1≤i≤n evolves according to the equation

dSt = diag(St−)(µtdt+ σtdWt + βtdNt) , (6.1)

with the classical assumptions:

Assumption 6.2.

(i) µ, σ, β and λ are uniformly bounded G-predictable processes such that σ is nonsingular

for any t ∈ [0, T ],

(ii) there exist d coefficients θ1, . . . , θd that are G-predictable processes such that

µit +

p∑
j=1

λjtβ
i,j
t =

d∑
j=1

σi,jt θ
j
t , ∀ t ∈ [0, T ] a.s., 1 ≤ i ≤ n ,

we suppose that θj is bounded,
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(iii) the process β satisfies βi,jτj > −1 a.s. for each i ∈ {1, . . . , n} and j ∈ {1, . . . , p}.

Using the same techniques as in the previous sections, all the results stated in the

previous sections can be generalized to this framework. In particular, we have:

Theorem 6.1. There exist Z ∈ L2(W ) and U ∈ L2(M) such that (J, Z, U) is the maximal

solution in S+,∞ × L2(W )× L2(M) of the BSDE
− dJt = ess inf

π∈A

{γ2

2
||π′tσt||2Jt − γπ′t(µtJt + σtZt)− (1− e−γπ′tβt)(λtJt + λt ∗ Ut)

}
dt

− ZtdWt − UtdMt ,

JT = exp(−γξ) .

6.2 Poisson jumps

We consider a market defined on the complete probability space (Ω,G,P) equipped

with two independent processes: a unidimensional Brownian motion W and a real-valued

Poisson point process p defined on [0, T ]× R\{0}, we denote by Np(ds, dx) the associated

counting measure, such that its compensator is N̂p(ds, dx) = n(dx)ds and the Levy measure

n(dx) is positive and satisfies n({0}) = 0 and
∫
R\{0}(1 ∧ |x|)

2n(dx) < ∞. We denote by

G = {Gt, 0 ≤ t ≤ T} the completed filtration generated by the two processes W and Np.

We denote by Ñp(ds, dx) (Ñp(ds, dx) = Np(ds, dx)−N̂p(ds, dx)) the compensated measure,

which is a martingale random measure.

The financial market consists of one risk-free asset, whose price process is assumed to

be equal to 1, and one single risky asset, whose price process is denoted by S. In particular,

the stock price process satisfies

dSt = St−
(
µtdt+ σtdWt +

∫
R\{0}

βt(x)Np(dt, dx)
)
.

µ, σ and β are assumed to be uniformly bounded G-predictable processes. Moreover, the

process σ (resp. β) satisfies σt > 0 (resp. βt(x) > −1 a.s.). Note that this case corresponds

to that studied in Morlais [26].

Using the same techniques as in the previous sections, all the results stated in the

previous sections can be generalized to this framework. In particular, we have:

Theorem 6.2. There exist Z ∈ L2(W ) and U ∈ L2(Ñp) such that (J, Z, U) is the maximal

solution in S+,∞ × L2(W )× L2(Ñp) of the BSDE

− dJt = ess inf
π∈A

{γ2

2
|πtσt|2Jt − γπt(µtJt + σtZt)−

∫
R\{0}

(1− e−γπtx)(Jt + Ut(x))n(dx)
}
dt

− ZtdWt −
∫
R\{0}

Ut(x)Ñp(dt, dx) ,

JT = exp(−γξ) .

Appendix
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A Essential supremum

Recall the following classical result (see Neveu [27]):

Theorem A.1. Let F be a non empty family of measurable real valued functions f : Ω→ R̄
defined on a probability space (Ω,F ,P). Then, there exists a measurable function g : Ω→ R̄
such that

(i) for all f ∈ F, f ≤ g a.s.,

(ii) if h is a measurable function satisfying f ≤ h a.s., for all f ∈ F , then g ≤ h a.s.

This function g, which is unique a.s., is called the essential supremum of F and is denoted

ess supf∈F f .

Moreover, there exists at least one sequence (fn)n∈N in F such that ess supf∈F f = limn→∞ fn
a.s. Furthermore, if F is filtrante croissante (i.e. f, g ∈ F then there exists h ∈ F such

that both f ≤ h a.s., and g ≤ h a.s.), then the sequence (fn)n∈N may be taken nondecreasing

and ess supf∈F f = limn→∞ ↑ fn a.s.

B A classical lemma of analysis

Lemma B.1. The supremum of affine functions, whose coefficients are bounded by a con-

stant c > 0, is Lipschitz and the Lipschitz constant is equal to c.

More precisely, let A be the set of [−c, c]n × [−k, k]. Then, the function f defined for any

y ∈ Rn by
f(y) = sup

(a,b)∈A
{a.y + b}

is Lipschitz with Lipschitz constant c.

Proof.
sup

(a,b)∈A
{a.y + b} ≤ sup

(a,b)∈A
{a.(y − y′)}+ sup

(a,b)∈A
{a.y′ + b}.

Which implies

f(y)− f(y′) ≤ c||y − y′||.

By symmetry, we have also

f(y′)− f(y) ≤ c||y − y′||,

which gives the desired result.

C Proof of Lemma 4.3

We have to prove that the dynamic value function J(.) associated with A coincides a.s.

with the one associated with A′.
Fix t ∈ [0, T ]. Put J

′
(t) := ess inf

π∈A′t
E[exp(−γ(Xt,π

T + ξ))|Gt], where A′t is the set of the

restrictions to [t, T ] of the strategies of A′. Since At ⊂ A
′
t, it follows that J

′
(t) ≤ J(t) a.s.
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To prove the other inequality, it is sufficient to show that for any π ∈ A′t, there exists a

sequence (πn)n∈N of At such that πn → π, dt⊗ dP a.s. Let us define πn by

πns = πs1s≤τn , ∀ s ∈ [t, T ] ,

where τn is the stopping time defined by τn = inf{s ≥ t, |Xt,π
s | ≥ n}.

It is clear that for each n ∈ N, πn ∈ At. Thus, exp(−γXt,πn

T ) = exp(−γXt,π
T∧τn)

a.s.−→
exp(−γXt,π

T ) as n → +∞. By definition of A′t, E[sups∈[t,T ] exp(−γXt,π
s )] < ∞. Hence,

by the Lebesgue Theorem, E[exp(−γ(Xt,πn

T + ξ))|Gt] → E[exp(−γ(Xt,π
T + ξ))|Gt] a.s. as

n→ +∞. Therefore, we have J(t) ≤ J ′(t) a.s. which ends the proof.

D Proof of the closedness by binding of A′

Lemma D.1. Let π1, π2 be two admissible strategies of A′ and s ∈ [0, T ]. The strategy π3

defined by

π3
t =

{
π1
t if t ≤ s,
π2
t if t > s,

belongs to A′.

Proof. For any u ∈ [0, T ], we have for any p > 1

(i) if u > s, then

E[ sup
r∈[u,T ]

exp(−γpXu,π3

r )] = E[ sup
r∈[u,T ]

exp(−γpXu,π2

r )] <∞,

(ii) if u ≤ s, then

E[ sup
r∈[u,T ]

exp(−γpXu,π3

r )] ≤ E[ sup
r∈[u,T ]

exp(−γpXu,π1

r )]

+ E[ sup
r∈[s,T ]

exp(−γp(Xu,π1

s +Xs,π2

r ))].

By Cauchy-Schwarz inequality,

E[ sup
r∈[s,T ]

exp(−γp(Xu,π1

s +Xs,π2

r ))] ≤ E[ sup
r∈[u,T ]

exp(−2γpXu,π1

r )]1/2

× E[ sup
r∈[s,T ]

exp(−2γpXs,π2

r )]1/2.

Hence, E[supr∈[u,T ] exp(−γpXu,π3

r )] <∞.
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E Proof of the existence of a càd-làg modification of J

The proof is not so simple since we do not know if there exists an optimal strategy in A.

Let D = [0, T ] ∩ Q, where Q is the set of rational numbers. Since J(.) is a submartingale,

the mapping t→ J(t, ω) defined on D has for almost every ω ∈ Ω and for any t of [0, T [ a

finite right limit
J(t+, ω) = lim

s∈D,s↓t
J(s, ω),

(see Karatzas and Shreve [19], Proposition 1.3.14 or Dellacherie and Meyer [7], Chapter 6).

Note that it is possible to define J(t+, ω) for any (t, ω) ∈ [0, T ]×Ω by J(T+, ω) := J(T, ω)

and
J(t+, ω) := lim sup

s∈D,s↓t
J(s, ω), t ∈ [0, T [.

From the right-continuity of the filtration G, the process J(.+) is G-adapted. It is possible

to show that J(.+) is a G-submartingale and even that the process exp(−γXπ)J(.+) is a

G-submartingale for any π ∈ A. Indeed, from Proposition 4.2, for any s ≤ t and for each

sequence of rational numbers (tn)n∈N converging down to t, we have

E
[

exp(−γXπ
tn)J(tn)

∣∣Gs] ≥ exp(−γXπ
s )J(s) a.s.

Let n tend to +∞. By the Lebesgue theorem, we have that for any s ≤ t,

E
[

exp(−γXπ
t )J(t+)

∣∣Gs] ≥ exp(−γXπ
s )J(s) a.s. (E.1)

This clearly implies that for any s ≤ t, E[exp(−γXπ
t )J(t+)|Gs] ≥ exp(−γXπ

s )J(s+) a.s.,

which gives the submartingale property of the process exp(−γXπ)J(.+). Using the right-

continuity of the filtration G and inequality (E.1) applied to π = 0 and s = t, we get

J(t+) = E
[
J(t+)

∣∣Gt] ≥ J(t) a.s.

On the other hand, by the characterization of J(.) (see Proposition 4.2), and since the

process exp(−γXπ)J(.+) is a G-submartingale for any π ∈ A, we have that for any t ∈ [0, T ],

J(t+) ≤ J(t) a.s.

Thus, for any t ∈ [0, T ],

J(t+) = J(t) a.s.

Furthermore, the process J(.+) is càd-làg. The result follows by taking Jt = J(t+).

F Proof of equality (4.10)

For any π ∈ A, we define the strategy πkt = πt1|πt|≤k for each k ∈ N. The strategy πk is

uniformly bounded but not necessarily admissible. For that we define for each (k, n) ∈ N×N
the stopping time

τk,n := inf{t, |Xπk

t | ≥ n} ,
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and the strategy πk,nt := πkt 1t≤τk,n . By construction, it is clear that the strategy πk,n ∈ Ak

for each (k, n). Since πt = limk limn π
k,n
t dt⊗ dP a.s., the following equality

ess inf
π∈Ā

{γ2

2
π2
t σ

2
t J̄t − γπt(µtJ̄t + σtZ̄t)− λt(1− e−γπtβt)(J̄t + Ūt)

}
=

ess inf
π∈A

{γ2

2
π2
t σ

2
t J̄tγπt − (µtJ̄t + σtZ̄t)− λt(1− e−γπtβt)(J̄t + Ūt)

}
holds dt⊗ dP a.s.

G Proof of equality (4.11)

Fix k ∈ N and t ∈ [0, T ]. Note first that for each k ∈ N, ∀ p > 1 and ∀ t ∈ [0, T ], the

following integrability property is satisfied

sup
π∈Bk

E
[

exp(−γpXπ
t )
]
<∞ . (G.1)

Put J̄kt := ess infπ∈Bkt
E[exp(−γ(Xt,π

T + ξ))|Gt]. Since Akt ⊂ Bkt , we get J̄kt ≤ Jkt . To

prove the other inequality, we state that there exists a sequence (πn)n∈N of Akt such that

πn → π, dt⊗ dP a.s., for any π ∈ Bkt . Let us define πn by

πns = πs1s≤τn , ∀ s ∈ [t, T ] ,

where τn is the stopping time defined by τn = inf{s ≥ t, |Xt,π
s | ≥ n}.

It is clear that for each n ∈ N, πn ∈ Akt . Thus, exp(−γXt,πn

T ) = exp(−γXt,π
T∧τn)

a.s.−→
exp(−γXt,π

T ) as n → +∞. By (G.1), the set of random variables {exp(−γXt,π
T ), π ∈ Bkt }

is uniformly integrable. Hence, E[exp(−γ(Xt,πn

T + ξ))|Gt]→ E[exp(−γ(Xt,π
T + ξ))|Gt] a.s. as

n→ +∞. Therefore, we have Jkt ≤ J̄kt a.s. which ends the proof.
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