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ABsTRACT. We discuss consistency of Vanishing Smooth Fictitious Play, a strategy in the
context of game theory, which can be regarded as a smooth fictitious play procedure, where
the smoothing parameter is time-dependent and asymptotically vanishes. This answers a
question initially raised by Drew Fudenberg and Satoru Takahashi.

1. INTRODUCTION AND BACKGROUND

A recurring question in the theory of repeated games is to define properly a notion of good
strategy for a player facing an unknown environment. Consequently, in this paper, we are not
concerned with the formalisation of strategic interactions between rational players, but rather
between a decision maker and nature. Not much is known about the latter, no assumption
is made on its payoff function, its thinking process or its rationality. We take the point of
view of the former, whose objective is to maximize his/her average payoff in the long run.
A naive approach in this direction is to assume that the game is zero-sum and to look for
optimal strategies. However, the fact that his/her opponent is not rational could lead to bad
outcomes. A possible definition of good strategy for the decision maker has been proposed by
Hannan (see [12]). Tt is closely related to the concept of regret. After n stages, the regret
of the decision maker is the difference between the payoff that he could have obtained if he
knew in advance the empirical moves of nature and the average payoff he actually got. A
good strategy for player 1 may then be defined as a strategy which ensures that, regardless
of the behaviour of nature, the regret asymptotically goes to zero. Such a strategy is called
consistent. For instance, fictitious play strategies are known to be non-consistent ([11]) while
smooth fictitious play strategies have been shown to be "almost" consistent by Fudenberg and
Levine [10] (see section 1.2 for a rigorous expository). The main objective of this work is to
discuss the consistency of vanishing smooth fictitious play (VSFP). VSFP is a time-varying
smooth fictitious play with a smoothing parameter decreasing to zero. It initially behaves like
smooth fictitious play and asymptotically like fictitious play. This answers a question that was
raised to us by Drew Fudenberg and Satoru Takahashi.

1.1. Notation. We consider a two-player finite game in normal form. I and L are the (finite)
set of moves of respectively player 1 (the decision maker) and player 2 (the nature). The map
w: I x L — R denotes the payoff function of player 1. The sets of mixed strategies available
to players are denoted X = A(I) and Y = A(L), where

A(l) == {xGRi | Z$i21}7
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and analogously for A(L). As usual 7 is extended to X x Y by multilinearity:

Vee X,yeY, n(x,y) = ZZﬂ(i,l)xiyl.
iel lel
In the following, (i1, ...,1p,...) (respectively (I, ...,1p,...)) will denote the sequence of actions
picked by player 1 (resp. player 2 or his/her opponents). Let (Q2,F,P) be a probability space,
endowed with a filtration (&,,),. Formally, a strategy for player 1 is an adapted process (in)n
on (2, (Fn)n,P). In the whole paper, we assume that there player 1 observes his/her payoff
function as well as the actions of his/her opponent. Hence, if we assume that the agents choose
their next actions according only to the past actions then a strategy for player 1 can simply be
seen as a map from U, (I x L)" to A(I), which to a given finite history h, = (1,01, ..., in, ln)
associates a mixed action o(hy). Throughout, we assume that the agents play independently:
specifically, for (i,1) € I x L, we have
IP)(in+1 =1, lny1 =1 | Stn) = ]P)(inJrl =1 | ffn)P(anrl =1 | Stn) .

Finally, we call
1 n
k=1

the average moves of player 1 at time n, ¥,, the average moves of player 2 and

n

1
T, = — ',l
T nZ’/T(’Lk k)

k=1
the average payoff to player 1.

1.2. Consistency, definition and comments. We now introduce Il : Y — R, defined by

(y) -= maxm(z, y).

A strategy is consistent if, against any strategy of nature, it does at least as much as if
their empirical moves was known in advance. More precisely, let us define the average regret
evaluation along a sequence of moves hy,, = (i1, 11, ...in, ln):
1 o 1 o
‘= ma — l - = ims bm) = 1(Y,,) — .
€n I;le)z,(ﬂ' <$, n mz_:l m> n mz_:lﬂ'(zm’ m) (yn) Tn

Definition 1.1. A strategy for player 1 is said to be consistent if, for any strategy of nature,

limsupe, <0, P — almost surely.
n

It is p-consistent if

limsupe, <n, P — almost surely.
n

For a recent comprehensive overview about consistency in games, see [17] (in french). Given
y €Y, we call br(y) the set of best responses of player 1 to y, namely,
br(y) = Argmax,cxm(z,y).

The discrete-time fictitious play (FP) process has been introduced in [5]. We say that player
1 uses a FP strategy, with prior g, if, for n > 1,

Pins1 = [ Fn) € br(m),

where v, = %Hyo + 757Yn- It is well known that this strategy is not consistent. A simple
example is given by the following (see e.g. [11]).
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Example 1.2. Assume that the game is matching pennies, i.e. the payoff matrix of player 1
is given by

H T

H{1 O
T\0 1

and the prior is g, = (1/3,2/3). If player two acts accordingly to the deterministic rule heads
(H) on odd stages and tails (T) on even stages, then player 1 and 2 always play the opposite
and the average regret satisfies lim,, o0 €, = 1/2.

However, n-consistency can be achieved by small modifications of fictitious play, which are
usually called stochastic fictitious play strategies. Originally, stochastic fictitious play was
introduced by Fudenberg and Kreps in [9] and the concept behind this is that players use
fictitious play in a game where payoff functions are perturbed by some random variables in
the spirit of Harsanyi [13]. On the subject, see also [10], [11] or [2],. In this paper, we adopt
another point of view and assume that player 1 chooses to randomize his/her moves by adding
a small perturbation function to his/her initial payoff map .

Let L : z € X = L(z) = — ) ,c;xilogxz; be the entropy function. We introduce the
perturbed payoff function 7 defined, for z € X, y € Y and 8 > 0 by

7 (2,9, 8) = (z,y) + ;Lm.

Notice that L is a particular case of perturbation function (see [15] for a detailed analysis on
the subject). The function 7 enjoys the following properties:

(i) Forally € Y, 8 > 0, Argmax,c x7(x, y, ) reduces to one point and defines a continuous
map br from Y x R* to X.

(ZZ) Dlﬁ' (br(y7 B)a Y, B) : ler(y7 /8) =0.
The map y € Y — br(y, ) is usually called a smooth best response map.

Definition 1.3. Player 1 plays accordingly to a smooth fictitious play strategy, with the pa-
rameter B > 0 (SFP()) if

P(in+1 =1 | gjn) = br@n,ﬁ)i, Vn > 1.

Theorem 1.4 (Fudenberg and Levine, 1995). For any n > 0, there exists Sy > 0 such that a
SFP(B) strategy is n-consistent for any B > [o.

Smooth fictitious play is closely related to the so-called ezponential weight algorithm and
also to the follow the perturbed leader algorithm (see [6], chapters 4.2 and 4.3), even if the link
with the latter is less obvious. In [18], the authors discuss the consistency of continuous-time
versions of FP and SFP.

1.3. Vanishing smooth fictitious play. A related natural strategy is given by the following.

Definition 1.5. Let (8,),, be a sequence going to infinity. A vanishing smooth fictitious play
strategy induced by (B,) (VSFP(B,)) for player 1 is given by

P (ipy1 =1 | Fp) =br (y,,5n); Yn>1.

Consistency is not verified for any choice of (8,),. If this sequence increases too fast, then
consistency might fail to hold, as shown by the following example.
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Example 1.6. Assume that, once again the game is 2-player matching pennies and that nature
uses the deterministic strategy described in example 1.2. Then, if player one plays accordingly
to a VSFP strategy induced by f, = n and prior 55 = (1/3,2/3), we have

SRS S R R R (L, 1 1
=2 T 62,112 T 62, + 1) = 2T 6+ 1)’2 6(n+1))

After a few lines of calculus (left to the reader) one gets:

1 1
1+exp (=222 ’ 1+exp(—ae22—
P 3@nrD) P {7 3@nr)

Hence (7 (i2n41, l2n+1))n is a sequence of independent random variable taking values in {0, 1},
such that

E ((5[2n+1 | Hjn) = br(’YQnaﬁQn) =

. ) . 1 1
h?]énP (77(2271-1—1; l2n+1) - 1) = hTILn 1+ 62n/3(2n+1) = 1+ 61/3'

Similarly, (7(i2n,l2n))n is a sequence of independent random variables taking values in {0, 1}

and
1

14 e2/3°

Therefore, consistency is not satisfied for VSFP strategies with 3, = n. We now can state
our main result

Hm P (7 (ign, lon) = 1) =

Theorem 1.7. Any VSFP(B,) strategy, with 3, <nP for some 3 < 1, is consistent.

In [4], the authors prove the same result as Theorem 1.4 using stochastic approximations
methods. Specifically, they consider the state variable (Z,,7,,, Tn)n, Write it as a stochastic
approximation process relative to some differential inclusion, and prove that it almost surely
converges to the set

{(x,y,u) : H(y) -7 < 77} .

This is the approach taken in this paper. In section 2 we provide some general stability
results for non-autonomous differential inclusions, namely we estimate the deviation of so-
called perturbed solutions from the set of solutions curves. A concept of Lyapunov function
for non-autonomous systems is used to derive the main result of this section, Proposition 2.13,
which gives a qualitative result on the limit set of good perturbed solutions. We then apply
these results to stochastic approximation processes relative to a non-autonomous differential
inclusion in Section 3. The proof of our main result, Theorem 1.7, is given in Section 4. It
consists to show that (T, 7,,, Un)n is almost surely a good perturbed solution and to apply the
results of Section 2.

2. STABILITY OF ONE-SIDED LIPSCHITZ DIFFERENTIAL INCLUSIONS

Let M c R?. Consider a set-valued map F : R, x M = M taking values in the set of non-
empty, compact, convex subsets of M. Given I = [a,b], let us consider the non-autonomous
differential inclusion

(1) x(s) € F(s,x(s)), sel

A map x : I — M is a solution of (1) if it is absolutely continuous and, for almost every
s €[0,7], x(s) € F(s,x(s)). For AC M welet F~Y(A) = {(s,x) € IxM : F(s,z)NA#0}.
We say that F' is measurable if F'~1(A) is measurable, for any closed set A C M. It is upper
semi-continuous (USC) (resp. lower semi-continuous (LSC)) if, for any closed (resp. open) set
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A C M, F~1(A) is closed (resp. open) in I x M. If M is compact, F is upper semi-continuous
if and only if its graph
Gr(F) ={(s,z,y) eI XM xM: ye€ F(s,x)}
is closed. We call dy the Hausdorff distance, given by
di (A, B) = max {sup d(a, B), sup d(b, A)} :
acA beB

Recall that dy is a pseudo-metric on the set of non-empty subsets of M and a metric if we
restrict to the non-empty compact sets of M. We say that F' is Hausdorff continuous if it is
continuous with respect of the Hausdorff metric:

lim dy(F(t,z), F(t',2") = 0.

t'—t,x'—z
If F'is Hausdorff continuous, we call it L-Lipschitz, for an integrable function L : I — Ry if
dg(F(t,z), F(t,2")) < L(t)||lx — 2|, forae.t €I, Vx, 2’
We now introduce a weaker regularity condition:

Definition 2.1 (Relaxed One-sided Lipschitz). we say that the set-valued map F is Relaxed
One-sided Lipschitz (ROSL) on I x M if there exists an integrable map L : I — M such that,
for any t,t" in I x,2’ € M and any y € F(t,z) there exists y € F(t',x') with

(' —z |y —y) < L(t)||2" — z||?, Vtel
Remark 2.2. If F is L(-)-Lipschitz then it is L(-)-ROSL.

The question of existence of solutions to (1) has been studied extensively. One of the
first result on the topic was proved by Filippov (see [8]) and says that if F(-,-) is Hausdorff
continuous on any closed set of I x M then, for any xy € M, there exists a solution x(-) of (1),
with x(a) = x¢. Under less restrictive assumptions, the same result still holds (see [16])

Theorem 2.3 (Olech, 1975). Assume that
(1) s+ F(s,z) is measurable, for each v € M,
(13) for any s € I, the map x — F(s,x) has a closed graph,
(i4i) The map F is uniformly bounded, i.e., Sup, , SUPye p(s. ) Yl < [ Flloc < +00.
Then there exists a solution x(-) of (1), with x(a) = xy.

On the topic, see also [14].

In the remaining of this section, we assume that F' satisfies the assumptions of the previous
theorem. Such a F' will be called a regular set valued map. The set of solution trajectories on
[a,b] (resp. starting in zp) will be labelled 8(a, b) (resp. 8(xo,a,b)).

Theorem 2.4. Let W : I — M be an absolutely continuous function such that there exists
a measurable map U : I — M and a bounded measurable map r : I — Ry which satisfy, for
almost every s € 1,
d(W (s),5(s)) < r(s), W(s) e F(s,0(s)).
Then
a) if F is ROSL with respect to the integrable function L, then there exists a solution
x: I — M of (1) such that x(a) = W(a) and

sup [x(5) = Ws)I? < [ty (1] 1oir)

s€a,b]
where a(s) = 4L(s)r2(s) + 47(8) || F||co-
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b) if we now assume that F' is Lipschitz continuous, with respect to L then the conclusions
of a) trivially still hold and x can also be chosen such that

sup ||x(s) — W(s)|| < /abr(s)L(s) exp </sbL(T)dT> :

s€la,b]

Proof. We prove the first point. Consider the set-valued map G : I x M = M given by

G(s,x) == {v € F(s,x): (x—W(s)|v—W(s)) <2L(s)||z — W(s)|* + ;a(s)} .

For any (s,z), the set G(s,z) is non-empty. Indeed, by the ROSL condition, since W(s) €
F(s,7(s)), there exists v € F(s,z) such that

(= 0(s) | v —W(s)) < L(s)[lz — 5(s)||*.
Hence we have

(&= W(s)|v—W(s)) L(s)llz = o(s)II* + |[o(s) = W () [ ([lol| + W (s)]])

<
< 2L(s)|[W(s) — z||® + 2L(s)r(s)? + 2r(s)| Flso
(s

= 2L )HW(S)—.’L’HZ-F%CV(S).

Now clearly, the set G(s,x) is compact and convex. The map x — G(s,z) has a closed
graph, for any s € I. Finally It is measurable in s since every map involved is measurable.
Consequently, there exists a solution to the non-autonomous differential inclusion

x(s) € G(s,x(s)),

with initial condition x(a) = W(a). In particular, x is a solution of (1) and we also have, for
almost every s
. : 1
(x(s) = W(s) | %(s) = W(s)) < 2L(s)[W (5) = x(5)[|* + S(s).
Hence , for almost every s, we have

x(s) = W(S)2 = 2x(s) = W(s) | x(s) = W(s))

ds
< AL(s)[[W(s) — x(s)|* + a(s)

and point a) follows from the differential form of Gronwall’s lemma.
When the Lipschitz continuity holds, let us consider the set-valued map H : I x M = M
given by

H(s,x) = {v € F(s,2): llo=W(s)l| < L(s)|o = W(s)| + Lis)r(s) }

The fact that H has non-empty values follows from Lipschitz continuity: given s and x, since

W (s) € F(s,9(s)), there exists v € F(s,z)) such that
lo = W(s)| < L(s)|z = (s)]| < L(s) (lz = W(s)l| + [W(s) = o(s)II).-

Hence v € H(s,z) # 0. Also H(s,x) is convex and compact, the map x — H (s, x) has a closed
graph and s — H(s,x) is measurable. Thus, there exists a solution x to the non-autonomous
differential inclusion

x(s) € H(s,x(s)),
with initial condition x(a) = W(a). In particular, x is a solution of (1) and we also have, for
almost every s

15(s) = W(s)|| < L(s)[x(s) = W(s)|| + L(s)r(s)
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By Gronwall’s corollary 5.1, we then have

b b
sup [|x(s) — W(s)|| < / L(s)r(s)exp </ L(T)dT) ds
sel a s

and point b) is proved. W

Corollary 2.5. Let v : I — M be an absolutely continuous map. Assume that there exist
measurable maps v : I — M, § : I — R, bounded and U : I — M integrable such that, for
almost every s € 1,

o(s) = U(s) € F(s,0(s)), llv(s) —v(s)]| < d(s).
Then if F is L(-)-Lipschitz, there exists a solution x on I such that x(a) = v(a) and
sup ||v(s) —x(s)[| < R(a,b),

s€la,b]

where

@) R(a,b) = A(a, b) exp ( / bL(T)dT> + s 5() <exp ( / bL(T)dT> _ 1)

and A(aa b) ‘= SUDselq,b] ” f; U(T)dTH
Proof. Define W : I — M by

Clearly, W is absolutely continuous and, for any s for which v is differentiable, we have

W(s) =w(s) — U(s) € F(s,5(s)). Additionally,
W (s) = 0(s)ll = llv(s) —v(s)]| + ||/ U(r)dr| < d(s) + ‘ / U(r)dr| .
By a direct application of Theorem 2.4 with r(s) = d(s) + || [7 U(7)dr|

, we have

sup [[v(s) — x(s)]| < A(a,b) + /abL(s) (5(3) H /:U(T)cm\) exp (LbL(T)dT) < R(a,b).

s€la,b]

The proof is complete. W
2.1. Uniform Lyapunov function and perturbed solutions.

Definition 2.6. Let A be a compact set in M and U be an open neighbourhood of A. A smooth
map ® : Ry x U — Ry 4s an uniform Lyapunov function for the non-autonomous differential
inclusion (1) with respect to A if the following hold:
a)
A={zxecU: 0 L((P(s,2))s)},
where L((®(s,7))s) :={u€ M : Fs, T +o0, limy, (s, x) = u} is the limit set of the
map s — (s, x).
b) There exists two maps X : R% —1]0,1[ and € : Ry x Ry — Ry with the property that

lim XNT) =0, lim e(t,T)=0 and lim (¢ 7T)=0VT > 0;

T—+00 T—0,t—+00 t—+00
and, for any t > 0,7 > 0 and any solution x on [t,t + T, we have
O(t+ s, x(t+5)) < A(s)P(t,x(t)) + (¢, T), Vs € [0,T].
If U = M then @ is called a global uniform Lyapunov function.
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Definition 2.7. A compact set A is asymptotically stable if it admits an open neighbourhood
U such that, for any € > 0, there exists t > 0 and T > 0 with the property that any solution
starting in M at time t >t is in N°(A) after time t +T.

Lemma 2.8. Assume that ® satisfies the property b) and the following property (stronger than
a)):
a') there exists a continuous map g : U — R+ such that
A={zeM:g(x)=0}, [lg(x) = P(s,2)| s+ 0,
uniformly in x € M.
Then A is asymptotically stable.

Lemma 2.9. Let (Pr)i>ky, (Ak)k>k, and (Mg)r>k, be positive sequences of real numbers such
that;

(1) 0 < X\p <1 Vk >kg and
Pri1 < AePr + Mit15
(ii) Denoting Hy := Hi‘:k}())‘i and H;, = Hy, Zi‘:ol H;lni; limy,_soo Hy, = limy_yoo Hy = 0.
Then limg_ oo P = 0.

Proof. Without loss of generality, we assume that kg = 0. A simple recursive argument yields

k—1
®y < Hg (q)o +) Hfm)

=0
and the proof is complete. H
Lemma 2.10. The conditions of previous Lemma are verified in the following cases:
a) Mg = A <1 and limg_,oo i =0,
b) limy_y00 Hiy =0 and ), m; < 4o00.

Proof. For point a), Hy = A\¥ and we have

k k+k'—1
Hk+k/ = Ak+k (ZHl_lTh—F Z Hi_lﬂi>
=0 i=k+1
k'—1
< A¥ max n + A
= =0k i T Nk+1 lz;

< ¥ max 77i+77k+1iy
- i=0,....k 1—X

which gives the result.
For the second point, remember that (Hy)g is a decreasing sequence. Hence

k k+K
Hk+kl = Hk—i—k’ (Z H;lerijik/,l Z 7]i>

=0 1=k+1
k “+00

< Hiw (zﬂglm) £ 3
1=0 i=k+1

Given € > 0, by choosing k large enough, the second term is smaller than . Then we can pick
k' large enough so that the first term is also smaller than e and the proof is complete. W
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Definition 2.11. A map v : Ry — M is a perturbed solution of the non-autonomous differ-
ential inclusion x(s) € F(s,x(s)) if

(1) v is absolutely continuous,

(ii) s+ U(s) is a locally integrable function such that

T
At t+T):= / U(s)ds —t—+400 0,
t

(i73) 0(s) — U(s) € F(s,9(s)) for some measurable map v : R, — M such that
[o(s) —(s)|| < 0(s),
with 6(s) 1 0.

Remark 2.12. Notice that, in the autonomous case, this is Definition (II) in [3]

We say that & is uniformly Lipschitz if there exists Lg > 0 such that, for any s > 0 and
v,v' € M,

‘@(S,’U) - (P(S?U/)‘ < LCIJHU - U/H'

Notice that this condition is verified under the assumptions of Lemma 2.8. We now state the

main result of this section

Proposition 2.13. Assume that v is a perturbed solution relative to a reqular Lipschitz map
F (with L : Ry — Ry ) and that there exists a sequence of positive real numbers (Tg)r such
that

(i) Sk =5, Ti — +o0,
(i7) there exists ko € N such that, for any k > ko

R(Sk, Sk+1) <,

with R defined by (2),
(7i7) @ is a global uniform Lyapunov function with respect to a set A such that, denoting
Hy = Hf:koﬂ)\(Ti) and N = e(Sg_1, Tk) + Yk—1, we have

lim Hy (H™'-n), =0.
(iv) the family ®(s,-) is uniformly Lipschitz:
Then the limit set of v is contained in A.

Proof. First recall that, by Corollary 2.5, for any k € N, there exists a solution x¥ on [Sy, Sk41]
such that x¥(S;) = v(S;) and

sup [|u(s) — x*(s)|| < R(Sk, Sk+1)-
SG[Sk,SkJrl]

By (i) the sequence of solutions curves (x¥)j>, is such that

sup [lu(s) = x*(s)|| < -
SE[Sk,Sk+1}

On the other hand, (i¢) implies that, for any k > ko,
D(Sk11, X (Sk11)) < MThy 1)@ (Sk X(Sk)) + £ (S Trr1)-
Hence, by (iv),

P (Sk+1,v(Sk+1))

IN

DSk, X5(Sk41)) + Lo [0(Ska1) = X<(Ska)|
AMT41)®(Sk, v(Sk)) + Lok + €(Sks Trv1)
M Ty41)@(Sk, v(Sk)) + M1

IN
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Calling @y, := ®(Sk,v(Sk)) and A\; := A(T)+1) we have &, — 0 by Lemma 2.9. Now let v, be
a limit point of v(s): v, = lim, v(s,), for some sequence s, T, +0o. Call k(n) := sup{k € N:
Sk < sp}. For n large enough, k(n) > ko and

(50, v(5n)) < A(8n = Skn)) P(Skn)s V(Skn)) + LoVrn) + €(Sk(n)> Sn — Sk(n)) —*n—s+o0 0
We therefore have
D (51, v5) < P(sp,v(8n)) + La||ve — vpl| = n—+too 0.

Consequently 0 € £(®(s,v,)) and the proof is complete. W

3. STOCHASTIC APPROXIMATIONS
Consider a discrete time stochastic process (vy,), in M, defined by the recursive formula

(3) Unt1 — Vn = Ynt1Unt1 € g1 Fn(vn),

where F,, : M = M is a set-valued map, (7). is a positive sequence, decreasing to 0 and
(Upn)n a sequence of M-valued random variables defined on a probability space (2, F, P). Set
T =y iy v and m(s) :=sup{j | 7; < s}. We make the following additional assumptions:

(7) For all ¢ > 0,
Zefc/% < 00,
n

(73) (Upn)n is uniformly bounded and
E (Un+1 ’ ?7l> = 07
(7i7) The map F : Ry x M = M, given by
F(tv U) = Fm(t) (U)
is regular.

We call v(-) the continuous time affine interpolated process induced by (vy,), and 7(-) (resp.
U(-)) the piecewise constant deterministic processes induced by (75 )n (resp. (Un)n):

Vit — s
v(ri+8) =x; + 37“:; “for s €[0,7i11], F(1i +8):=ir1 for s€[0,7is1],
i+1

and analogously for U.

Lemma 3.1. For almost every s € Ry, v(+) is differentiable and we have

0(s) = U(s) € F(8,Vn(s))-

Proof. We have
Um(s)+1 — Um(s)
U(S):Ums—i— (t_Tms)
(=) Im(s)+1 (=)

Hence, if s ¢ {1, n € N*}, v(-) is differentiable and

’U(S) _ Um(s)+1 — Um(s) .

Ym(s)+1

Consequently
?J(S) - U(S) € Fm(s) (Um(s)) = F(S/Um(s))'
The proof is complete W
In the sequel, we use the notation v(s) := vy,(s). Notice that v is a piecewise constant map
on R+.
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1
o

Given positive real numbers ¢ and 7', we call

/t s,

The following lemma is classical (it is proved in [7] or [1] for instance)

3.1. Particular case v, = 1/n. We focus here on the classical case where the step size is

We then have 7, ~ logn and m(s) = O(e®)..

A(t,t 4+ T') the random variable

Lemma 3.2. There exists positive constants C' and C' (depending on ||U||s) such that, for

any a > 0,
—a?e!
P(A(t,t+T)> o) < Cexp( o7 ) .

Notice that, by Lemmas 3.1 and 3.2 and a Borel-Cantelli argument, v is almost surely a
perturbed solution, with §(s) = A75(s) < 2Ae™*, where A = || F||co + ||U]|00-

Proposition 3.3. Assume that F is Lipschitz, with Lipschitz function L such that L(s) < Ls.

Then there exist T > 0, and v > 0 such that, with probability one, there exists kg € N with

the property that points (i) and (ii) of Proposition 2.13 are verified for v, with Ty, = T and
vk

Ve =€

Proof. Pick T' < 1/2L. Point (i) is trivially satisfied, as Sy = k7. We have fk(éfﬂ)T Lrdr =
kELT? + LT?/2. Hence

(k+1)T
A5(Sk) exp (/ LTdT) <2Aexp (KT(LT — 1) + LT?/2) .
kT

On the other hand, by previous lemma,

(k+1)T 1 . — e~ 2k kT
P AT, (k+1)T Lrdr| > =% < ¢
(KT, (k +1)T) exp /kT Tar | = e = Lbexp (4C/exp(2kLT2+LT2)T)

—exp (k(T — 2LT? — 27))
< .
s Cew ( AC'T exp(LT?)

Choose v in |0,7(1 — 2LT')/2[. Then, for k large enough

(k+1)T 1
A5(Sk) exp / Lrdr | < ek,
kT 2

Consequently, if we call A the event

Sk+1

{assun + aqsen ([ i) 2 e,

k

then

P (Ax) < Cexp (—exp (T — 2117 - 27»)

AC'T exp(LT?)
By an application of Borel-Cantelli lemma, with probability one, there exists kg € N such that,

for any k > ko,
Skt1

(A(Sk, Sia1) + AT(Sk)) exp ( /5

and the proof is complete. H

L(T)ClT) <e 7k

k

Imore precisely, =le* <m(s) <e®—1
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Proposition 3.4. Assume that F is Lipschitz, with Lipschitz function L such that L(s) < 7%,
for some B € (0,1). Then if we call Ty, := (Bk)~! there exist some constant v > 1 such that,
with probability one, there exists ko € N such that points (i) and (ii) of Proposition 2.18 are
verified for v, with v, =~ F

Proof. By our choice of the sequence Ty, exp(5Sk) < exp (1 + log k) < 3k. Hence

Sk41
exp ( / L(T)d7> < exp(Tip 1) < o,
Sk

for some constant Cy which depends on 3. Additionally, 7(S) < 2e~% < 2k~Y#. Hence

AY(Sk) exp (Tk+1eﬁs’““) < l-jjﬁ"
Choose v € (1, 62—21) By Lemma 3.2,
Skt 1 —k~2ve%
P <A(Sk,5k+1)exp </Sk L(Td7'> > 2k7> < Cexp <40’00Tk+1>
—k—2v+1/8
< Cexp (C’C’oﬁl(k‘—l— 1)1>
<

_p2v+141/8
Cexp T

for some positive constant C]. Now, since v < 1/, we have for k large enough

1
A7(S (T ﬂskﬂ) <.
V(Sk) exp ( Try1e < 5
Consequently, if we call A the event

Sk41

1
{(A(Sk’a Sk+1) + A¥(Sk)) exp </ L(q-)d7—> > kﬂ} :
S
e 2v+1+1/8
o )
By an application of Borel-Cantelli lemma, with probability one, there exists kg € N such that,
for any k > N,

k

then
P (Ag) < Cexp (

Skt1
(A(Sk, Sks1) + A7(Sk)) exp ( / L(T)dT) <
k
and the proof is complete. W

4. PROOF OF THEOREM 1.7

4.1. Vanishing perturbed best response dynamics. Consider the map
I:Y xRy =R,y maxn(z,y, f) = (br(y, 8).y, ).
AS]

Our state variable is vy, := (T, Un, Tn) € M 1= X XY X [—||7]|c0, [|T]|oc]. We have

1 1
Tn+1 — Tn — n4+1 (5in+1 - EO’((sin-&-l | Hjﬂ)) = n+1 (=%n + br(y,, en)) -
Notice that 1
Un+1 — Un — Un+1 S 7Fn(vn)7

n+1 n+1
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where
— the noise sequence
Un+1 = (UnJrl - Un) - E(UTH»I — Unp | Stn)

is a bounded martingale difference,
— the set valued map F,, is given by

Fn(ﬂf, Y, 7T) = {(br(ya Bn) -, T Y, W(br(yu Bn)u T) —-m TE Y}
Let F': Ry x M = M be the map given by F(s,v) := Fy,(s(v).
Lemma 4.1. F' is a regular set-valued map.

Proof. The fact that F' has non-empty compact convex values is straightforward, as well as
measurability. Also, the map F' takes values in M, which is compact. Thus F' is uniformly
bounded. Given s € R, we now need to check upper semi-continuity of v — F(s,v), which
is equivalent to {(v,w), w € F(s,v)} being closed. Let (2, yn, ) converge to (z,y, 7). We
then have br(yn, By (s)) — br(y, Bp(s))- Hence,
(br(yna Bm(s))a Tn, T (br(yTw Bm(s))a Tn)) — (br(ya ﬁm(s))7 T, (br(% Bm(s))a T)) € F(S, z,Y, 7T)'
The proof is complete. W
Theorem 4.2. Let A = {(z,y,7) € M |II(y) — 7w < 0}. There exist a global uniform Lya-
punov function ® relative to the compact set A and the non-autonomous differential inclusion
v(s) € F(s,v(s)).

Proof: We prove that properties a’) and b) hold. Let ® : Ry x M — R, defined by

O(s,z,y,m) = { 0l o) =7 %f Ly, fn(s)) 2

0 if H(y, 5m(s)) <.
Notice that
A= {(.’13, Y, 7T) : g(:z:,y,ﬂ) = O} and Hg(?)) - (I)(va)H —s—+00 0

uniformly, where g(z,y, ) := max{0,II(y) — w}. Let ¢ and T be positive real numbers and

(z(s),y(s),m(s)) be a solution of the non-autonomous differential inclusion (1) on [t,t + T7,
such that and 7(s) < 7(y(s), Bm(s))- Let

lII(s) = (I)(S7 l’(S), y(S), 7[-(8)) =7 (br(y(5)7 ﬂm(s))v y(S), ﬁm(s)) - 7[-(8)'
Recall that 3, is piecewise constant on [t,t + T]. For almost every s, by definition of

br(y(s)vﬂm(s))u we have D7 (br(y(8)7/8m(s))7y(5)a 6m(s)) ler(y(8)7/8m(s)) = 0. Hence, for
almost every s € [t,t + T,
) — #(s)

\II(S) = Tr(br(y(s)vﬁm(s))vy(s) -7
= 7 (br(y(s), Bm(s))v T( )7 /Bm(s)) -7 (br(y<3>7 ﬁm(s))? y(S), Bm(s))

_ﬂ-(br(y(s)v 6m(s))7 T(S)’ Bm(s)) + W(S)

S

1
< —U(s)+ .
Bm(s)
By Gronwall’s Lemma we therefore have
T
U(t+T) <e TW(t)+
Bm(t)

Consequently, ® is a global uniform Lyapunov function with respect to A, which proves the
result. W
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4.2. VSFP and external consistency, proof of Theorem 1.7. The set-valued map F is
regular and L(-)-Lipschitz, with L(s) = Lf3,(,), for some constant L depending on the payoff

function 7 (see Lemma 5.2). Hence we can assume, without loss of generality that L(s) < e®*.
We call v the piecewise linear interpolated process relative to (v, ). By Proposition 3.4, almost
surely, points (i) and (ii) of Proposition 2.13 are satisfied for k > ko, with T}, = (8k)~! and
Y = k™7, v > 0. We now need to check points (iii) and (iv).

By Theorem 4.2, ® is a global uniform function Lyapunov relative to

A= {(ﬁ,y,ﬂ') eEM | H(y) -7 < 0}7

with \(T) = e~ T and ¢(¢,T) = ,BL@), for some positive constant ¢. Hence g, = k=7 + c%.
Clearly, by point b) of Remark 2.10, point (iii) is checked because ) .1 < oo and Hj =
e~ Zf:ko T _ O(k—l/ﬁ)

Now let b be a positive constant and consider the map ¢ : Y X [—||7 |00, ||7]|cc] = Ry, given
by

oy, m) = { 0 if TI(y, b) < .
Let (y,n) be such that II(y,b) > 7. Then clearly

0 0 .
@7y¢(yvﬂ-) - @W(br(y’ b)vyvb)

- 0 -
= Dlﬂ-(br(ya b)7 Y, b) : @br(yv b) + DQW(br(y> b)7 Y, b) : Id

= ﬂ-(br(yv b)? )
and

0

Thus ¢ is Lipschitz with some constant that does not depend on b. As a consequence, point
(iv) is verified for ® and we have

L((vn)n) C A.
[ |

5. APPENDIX

5.1. A Gronwall’s Lemma.

Lemma 5.1. Let y be a continuously differentiable function on I = [a,b] and «, B be non-
negative, continuous maps. If, for every s € I, ||y(s)|| < a(s)||y(s)|| + B(s) then

o)l < @l ([ atrar) + [ s ([ atriar) as

Proof. Notice that

Iyl < @)+ [ gl < lly(a)]] + / " B(u)du + / " o)y () | du

and apply Gronwall’s integral form. W
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5.2. Some remarks on the Logit function.

Lemma 5.2. The logit map with parameter > 0:

o AN S AN g = (21, ..., zn) = (0} ..., 0N),
where (B
; exp(Bz;
o)==
Zj:l exp(Bz;)

is Lipschitz continuous for the infinte norm, with Lipschitz constant 2.

Proof. We have

lo(@) - 0@} = (u| o(x) - o(a’)
where u = (sg(o'(z) — o'(2')), .., sg(c™ (z) — o™ (2'))). Let @ : [z,2'] = AN : ®(y) = (u |
o(y)). By the mean value Theorem, there exists y € [z, 2'] such that

lo(z) —o(2)||1 = ®(x) — ®(2') = (VO(y) | x — 2) Zuz (Vo'i(y) |z — ).
Therefore we have

lo(z) —o(z )||1<||a:—xHOOZuZHVJ lie

Now,
00'(y) _  Bexp(Byi)li=; 3 i exp(Byk) — Bexp(By;) exp(By:)
dy; >k exp(Byr))?
= B(o'(yLizj — o' (y)o'(y)) -
Hence
IVa')lli = B o' (y) = (o' W)*+ D> o'(y)o’
i
= 280" (y)(1 —o'(y)).
Finally

N
lo(z) = o(2) |l < 28l = 2'l|oe Y wio' (y)(1 = 0*(y)) < 28]z — '||oo
i=1
and the proof is complete since ||o(z) — o(2')||co < [Jo(z) — o (2')||;. W
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