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Abstract. We discuss consistency of Vanishing Smooth Fictitious Play, a strategy in the
context of game theory, which can be regarded as a smooth �ctitious play procedure, where
the smoothing parameter is time-dependent and asymptotically vanishes. This answers a
question initially raised by Drew Fudenberg and Satoru Takahashi.

1. Introduction and background

A recurring question in the theory of repeated games is to de�ne properly a notion of good
strategy for a player facing an unknown environment. Consequently, in this paper, we are not
concerned with the formalisation of strategic interactions between rational players, but rather
between a decision maker and nature. Not much is known about the latter, no assumption
is made on its payo� function, its thinking process or its rationality. We take the point of
view of the former, whose objective is to maximize his/her average payo� in the long run.
A naive approach in this direction is to assume that the game is zero-sum and to look for
optimal strategies. However, the fact that his/her opponent is not rational could lead to bad
outcomes. A possible de�nition of good strategy for the decision maker has been proposed by
Hannan (see [12]). It is closely related to the concept of regret. After n stages, the regret
of the decision maker is the di�erence between the payo� that he could have obtained if he
knew in advance the empirical moves of nature and the average payo� he actually got. A
good strategy for player 1 may then be de�ned as a strategy which ensures that, regardless
of the behaviour of nature, the regret asymptotically goes to zero. Such a strategy is called
consistent. For instance, �ctitious play strategies are known to be non-consistent ([11]) while
smooth �ctitious play strategies have been shown to be "almost" consistent by Fudenberg and
Levine [10] (see section 1.2 for a rigorous expository). The main objective of this work is to
discuss the consistency of vanishing smooth �ctitious play (VSFP). VSFP is a time-varying
smooth �ctitious play with a smoothing parameter decreasing to zero. It initially behaves like
smooth �ctitious play and asymptotically like �ctitious play. This answers a question that was
raised to us by Drew Fudenberg and Satoru Takahashi.

1.1. Notation. We consider a two-player �nite game in normal form. I and L are the (�nite)
set of moves of respectively player 1 (the decision maker) and player 2 (the nature). The map
π : I × L → R denotes the payo� function of player 1. The sets of mixed strategies available
to players are denoted X = ∆(I) and Y = ∆(L), where

∆(I) :=

{
x ∈ RI+ |

∑
i∈I

xi = 1

}
,
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and analogously for ∆(L). As usual π is extended to X × Y by multilinearity:

∀x ∈ X, y ∈ Y, π(x, y) =
∑
i∈I

∑
l∈L

π(i, l)xiyl.

In the following, (i1, ..., in, ...) (respectively (l1, ..., ln, ...)) will denote the sequence of actions
picked by player 1 (resp. player 2 or his/her opponents). Let (Ω,F,P) be a probability space,
endowed with a �ltration (Fn)n. Formally, a strategy for player 1 is an adapted process (in)n
on (Ω, (Fn)n,P). In the whole paper, we assume that there player 1 observes his/her payo�
function as well as the actions of his/her opponent. Hence, if we assume that the agents choose
their next actions according only to the past actions then a strategy for player 1 can simply be
seen as a map from ∪n(I × L)n to ∆(I), which to a given �nite history hn = (i1, l1, ..., in, ln)
associates a mixed action σ(hn). Throughout, we assume that the agents play independently:
speci�cally, for (i, l) ∈ I × L, we have

P (in+1 = i, ln+1 = l | Fn) = P (in+1 = i | Fn)P (ln+1 = l | Fn) .

Finally, we call

xn =
1

n

n∑
k=1

δik

the average moves of player 1 at time n, yn the average moves of player 2 and

πn =
1

n

n∑
k=1

π(ik, lk)

the average payo� to player 1.

1.2. Consistency, de�nition and comments. We now introduce Π : Y → R, de�ned by

Π(y) := max
x∈X

π(x, y).

A strategy is consistent if, against any strategy of nature, it does at least as much as if
their empirical moves was known in advance. More precisely, let us de�ne the average regret
evaluation along a sequence of moves hn = (i1, l1, ...in, ln):

en := max
x∈X

π

(
x,

1

n

n∑
m=1

lm

)
− 1

n

n∑
m=1

π(im, lm) = Π(yn)− πn.

De�nition 1.1. A strategy for player 1 is said to be consistent if, for any strategy of nature,

lim sup
n

en ≤ 0, P− almost surely.

It is η-consistent if
lim sup

n
en ≤ η, P− almost surely.

For a recent comprehensive overview about consistency in games, see [17] (in french). Given
y ∈ Y , we call br(y) the set of best responses of player 1 to y, namely,

br(y) = Argmaxx∈Xπ(x, y).

The discrete-time �ctitious play (FP) process has been introduced in [5]. We say that player
1 uses a FP strategy, with prior y0 if, for n ≥ 1,

P(in+1 = · | Fn) ∈ br(γn),

where γn = 1
n+1y0 + n

n+1yn. It is well known that this strategy is not consistent. A simple

example is given by the following (see e.g. [11]).
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Example 1.2. Assume that the game is matching pennies, i.e. the payo� matrix of player 1
is given by

(H T

H 1 0
T 0 1

)
and the prior is y0 = (1/3, 2/3). If player two acts accordingly to the deterministic rule heads
(H) on odd stages and tails (T) on even stages, then player 1 and 2 always play the opposite
and the average regret satis�es limn→∞ en = 1/2.

However, η-consistency can be achieved by small modi�cations of �ctitious play, which are
usually called stochastic �ctitious play strategies. Originally, stochastic �ctitious play was
introduced by Fudenberg and Kreps in [9] and the concept behind this is that players use
�ctitious play in a game where payo� functions are perturbed by some random variables in
the spirit of Harsanyi [13]. On the subject, see also [10], [11] or [2],. In this paper, we adopt
another point of view and assume that player 1 chooses to randomize his/her moves by adding
a small perturbation function to his/her initial payo� map π.

Let L : x ∈ X 7→ L(x) = −
∑

i∈I xi log xi be the entropy function. We introduce the
perturbed payo� function π̃ de�ned, for x ∈ X, y ∈ Y and β > 0 by

π̃(x, y, β) = π(x, y) +
1

β
L(x).

Notice that L is a particular case of perturbation function (see [15] for a detailed analysis on
the subject). The function π̃ enjoys the following properties:

(i) For all y ∈ Y , β > 0, Argmaxx∈X π̃(x, y, β) reduces to one point and de�nes a continuous
map br from Y × R∗+ to X.

(ii) D1π̃ (br(y, β), y, β) ·D1br(y, β) = 0.

The map y ∈ Y 7→ br(y, β) is usually called a smooth best response map.

De�nition 1.3. Player 1 plays accordingly to a smooth �ctitious play strategy, with the pa-
rameter β > 0 (SFP(β)) if

P (in+1 = i | Fn) = br(yn, β)i, ∀n ≥ 1.

Theorem 1.4 (Fudenberg and Levine, 1995). For any η > 0, there exists β0 > 0 such that a
SFP(β) strategy is η-consistent for any β > β0.

Smooth �ctitious play is closely related to the so-called exponential weight algorithm and
also to the follow the perturbed leader algorithm (see [6], chapters 4.2 and 4.3), even if the link
with the latter is less obvious. In [18], the authors discuss the consistency of continuous-time
versions of FP and SFP.

1.3. Vanishing smooth �ctitious play. A related natural strategy is given by the following.

De�nition 1.5. Let (βn)n be a sequence going to in�nity. A vanishing smooth �ctitious play
strategy induced by (βn) (VSFP(βn)) for player 1 is given by

P (in+1 = i | Fn) = br (yn, βn)i ∀n ≥ 1.

Consistency is not veri�ed for any choice of (βn)n. If this sequence increases too fast, then
consistency might fail to hold, as shown by the following example.
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Example 1.6. Assume that, once again the game is 2-player matching pennies and that nature
uses the deterministic strategy described in example 1.2. Then, if player one plays accordingly
to a VSFP strategy induced by βn = n and prior y0 = (1/3, 2/3), we have

γ2n =

(
1

2
− 1

6(2n + 1)
,
1

2
+

1

6(2n + 1)

)
and γ2n+1 =

(
1

2
+

1

6(n+ 1)
,
1

2
− 1

6(n+ 1)

)
.

After a few lines of calculus (left to the reader) one gets:

E
(
δl2n+1 | Fn

)
= br(γ2n, β2n) =

 1

1 + exp
(

2n
3(2n+1)

) , 1

1 + exp
(
− 2n

3(2n+1)

)
 .

Hence (π(i2n+1, l2n+1))n is a sequence of independent random variable taking values in {0, 1},
such that

lim
n

P (π(i2n+1, l2n+1) = 1) = lim
n

1

1 + e2n/3(2n+1)
=

1

1 + e1/3
.

Similarly, (π(i2n, l2n))n is a sequence of independent random variables taking values in {0, 1}
and

lim
n

P (π(i2n, l2n) = 1) =
1

1 + e2/3
.

Therefore, consistency is not satis�ed for VSFP strategies with βn = n. We now can state
our main result

Theorem 1.7. Any VSFP(βn) strategy, with βn ≤ nβ for some β < 1, is consistent.

In [4], the authors prove the same result as Theorem 1.4 using stochastic approximations
methods. Speci�cally, they consider the state variable (xn, yn, πn)n, write it as a stochastic
approximation process relative to some di�erential inclusion, and prove that it almost surely
converges to the set

{(x, y, u) : Π(y)− π ≤ η} .
This is the approach taken in this paper. In section 2 we provide some general stability
results for non-autonomous di�erential inclusions, namely we estimate the deviation of so-
called perturbed solutions from the set of solutions curves. A concept of Lyapunov function
for non-autonomous systems is used to derive the main result of this section, Proposition 2.13,
which gives a qualitative result on the limit set of good perturbed solutions. We then apply
these results to stochastic approximation processes relative to a non-autonomous di�erential
inclusion in Section 3. The proof of our main result, Theorem 1.7, is given in Section 4. It
consists to show that (xn, yn, un)n is almost surely a good perturbed solution and to apply the
results of Section 2.

2. Stability of one-sided Lipschitz differential inclusions

Let M ⊂ Rd. Consider a set-valued map F : R+ ×M ⇒M taking values in the set of non-
empty, compact, convex subsets of M . Given I = [a, b], let us consider the non-autonomous
di�erential inclusion

(1) ẋ(s) ∈ F (s,x(s)), s ∈ I

A map x : I → M is a solution of (1) if it is absolutely continuous and, for almost every
s ∈ [0, T ], ẋ(s) ∈ F (s,x(s)). For A ⊂M we let F−1(A) = {(s, x) ∈ I×M : F (s, x)∩A 6= ∅}.
We say that F is measurable if F−1(A) is measurable, for any closed set A ⊂ M . It is upper
semi-continuous (USC) (resp. lower semi-continuous (LSC)) if, for any closed (resp. open) set
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A ⊂M , F−1(A) is closed (resp. open) in I×M . If M is compact, F is upper semi-continuous
if and only if its graph

Gr(F ) := {(s, x, y) ∈ I ×M ×M : y ∈ F (s, x)}
is closed. We call dH the Hausdor� distance, given by

dH(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
.

Recall that dH is a pseudo-metric on the set of non-empty subsets of M and a metric if we
restrict to the non-empty compact sets of M . We say that F is Hausdor� continuous if it is
continuous with respect of the Hausdor� metric:

lim
t′→t,x′→x

dH(F (t, x), F (t′, x′) = 0.

If F is Hausdor� continuous, we call it L-Lipschitz, for an integrable function L : I → R+ if

dH(F (t, x), F (t, x′)) ≤ L(t)‖x− x′‖, for a.e. t ∈ I, ∀ x, x′

We now introduce a weaker regularity condition:

De�nition 2.1 (Relaxed One-sided Lipschitz). we say that the set-valued map F is Relaxed
One-sided Lipschitz (ROSL) on I ×M if there exists an integrable map L : I →M such that,
for any t, t′ in I x, x′ ∈M and any y ∈ F (t, x) there exists y′ ∈ F (t′, x′) with

(x′ − x | y′ − y) ≤ L(t)‖x′ − x‖2, ∀t ∈ I.

Remark 2.2. If F is L(·)-Lipschitz then it is L(·)-ROSL.

The question of existence of solutions to (1) has been studied extensively. One of the
�rst result on the topic was proved by Filippov (see [8]) and says that if F (·, ·) is Hausdor�
continuous on any closed set of I×M then, for any x0 ∈M , there exists a solution x(·) of (1),
with x(a) = x0. Under less restrictive assumptions, the same result still holds (see [16])

Theorem 2.3 (Olech, 1975). Assume that

(i) s 7→ F (s, x) is measurable, for each x ∈M ,
(ii) for any s ∈ I, the map x 7→ F (s, x) has a closed graph,

(iii) The map F is uniformly bounded, i.e., sups,x supy∈F (s,x) ‖y‖ ≤ ‖F‖∞ < +∞.

Then there exists a solution x(·) of (1), with x(a) = x0.

On the topic, see also [14].
In the remaining of this section, we assume that F satis�es the assumptions of the previous

theorem. Such a F will be called a regular set valued map. The set of solution trajectories on
[a, b] (resp. starting in x0) will be labelled S(a, b) (resp. S(x0, a, b)).

Theorem 2.4. Let W : I → M be an absolutely continuous function such that there exists
a measurable map v : I → M and a bounded measurable map r : I → R+ which satisfy, for
almost every s ∈ I,

d(W (s), v(s)) ≤ r(s), Ẇ (s) ∈ F (s, v(s)).

Then

a) if F is ROSL with respect to the integrable function L, then there exists a solution
x : I →M of (1) such that x(a) = W (a) and

sup
s∈[a,b]

‖x(s)−W (s)‖2 ≤
∫ b

a
α(s) exp

(
4

∫ b

s
L(τ)dτ

)
,

where α(s) = 4L(s)r2(s) + 4r(s)‖F‖∞.
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b) if we now assume that F is Lipschitz continuous, with respect to L then the conclusions
of a) trivially still hold and x can also be chosen such that

sup
s∈[a,b]

‖x(s)−W (s)‖ ≤
∫ b

a
r(s)L(s) exp

(∫ b

s
L(τ)dτ

)
.

Proof. We prove the �rst point. Consider the set-valued map G : I ×M ⇒M given by

G(s, x) :=

{
v ∈ F (s, x) : (x−W (s) | v − Ẇ (s)) ≤ 2L(s)‖x−W (s)‖2 +

1

2
α(s)

}
.

For any (s, x), the set G(s, x) is non-empty. Indeed, by the ROSL condition, since Ẇ (s) ∈
F (s, v(s)), there exists v ∈ F (s, x) such that

(x− v(s) | v − Ẇ (s)) ≤ L(s)‖x− v(s)‖2.
Hence we have

(x−W (s) | v − Ẇ (s)) ≤ L(s)‖x− v(s)‖2 + ‖v(s)−W (s)‖(‖v‖+ ‖Ẇ (s)‖)
≤ 2L(s)‖W (s)− x‖2 + 2L(s)r(s)2 + 2r(s)‖F‖∞

= 2L(s)‖W (s)− x‖2 +
1

2
α(s).

Now clearly, the set G(s, x) is compact and convex. The map x 7→ G(s, x) has a closed
graph, for any s ∈ I. Finally It is measurable in s since every map involved is measurable.
Consequently, there exists a solution to the non-autonomous di�erential inclusion

ẋ(s) ∈ G(s,x(s)),

with initial condition x(a) = W (a). In particular, x is a solution of (1) and we also have, for
almost every s

(x(s)−W (s) | ẋ(s)− Ẇ (s)) ≤ 2L(s)‖W (s)− x(s)‖2 +
1

2
α(s).

Hence , for almost every s, we have

d

ds
‖x(s)−W (s)‖2 = 2(x(s)−W (s) | ẋ(s)− Ẇ (s))

≤ 4L(s)‖W (s)− x(s)‖2 + α(s)

and point a) follows from the di�erential form of Gronwall's lemma.
When the Lipschitz continuity holds, let us consider the set-valued map H : I ×M ⇒ M

given by

H(s, x) :=
{
v ∈ F (s, x) : ‖v − Ẇ (s)‖ ≤ L(s)‖x−W (s)‖+ L(s)r(s)

}
.

The fact that H has non-empty values follows from Lipschitz continuity: given s and x, since
Ẇ (s) ∈ F (s, v(s)), there exists v ∈ F (s, x)) such that

‖v − Ẇ (s)‖ ≤ L(s)‖x− v(s)‖ ≤ L(s) (‖x−W (s)‖+ ‖W (s)− v(s)‖) .
Hence v ∈ H(s, x) 6= ∅. Also H(s, x) is convex and compact, the map x 7→ H(s, x) has a closed
graph and s 7→ H(s, x) is measurable. Thus, there exists a solution x to the non-autonomous
di�erential inclusion

ẋ(s) ∈ H(s,x(s)),

with initial condition x(a) = W (a). In particular, x is a solution of (1) and we also have, for
almost every s

‖ẋ(s)− Ẇ (s)‖ ≤ L(s)‖x(s)−W (s)‖+ L(s)r(s)
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By Gronwall's corollary 5.1, we then have

sup
s∈I
‖x(s)−W (s)‖ ≤

∫ b

a
L(s)r(s) exp

(∫ b

s
L(τ)dτ

)
ds

and point b) is proved. �

Corollary 2.5. Let v : I → M be an absolutely continuous map. Assume that there exist
measurable maps v : I → M , δ : I → R+ bounded and U : I → M integrable such that, for
almost every s ∈ I,

v̇(s)− U(s) ∈ F (s, v(s)), ‖v(s)− v(s)‖ ≤ δ(s).
Then if F is L(·)-Lipschitz, there exists a solution x on I such that x(a) = v(a) and

sup
s∈[a,b]

‖v(s)− x(s)‖ ≤ R(a, b),

where

(2) R(a, b) = ∆(a, b) exp

(∫ b

a
L(τ)dτ

)
+ sup
s∈[a,b]

δ(s)

(
exp

(∫ b

a
L(τ)dτ

)
− 1

)
and ∆(a, b) := sups∈[a,b] ‖

∫ s
a U(τ)dτ‖.

Proof. De�ne W : I →M by

W (s) := v(s)−
∫ s

a
U(τ)dτ.

Clearly, W is absolutely continuous and, for any s for which v is di�erentiable, we have
Ẇ (s) = v̇(s)− U(s) ∈ F (s, v(s)). Additionally,

‖W (s)− v(s)‖ = ‖v(s)− v(s)‖+ ‖
∫ s

a
U(τ)dτ‖ ≤ δ(s) +

∥∥∥∥∫ s

a
U(τ)dτ

∥∥∥∥ .
By a direct application of Theorem 2.4 with r(s) = δ(s) +

∥∥∫ s
a U(τ)dτ

∥∥ , we have
sup
s∈[a,b]

‖v(s)− x(s)‖ ≤ ∆(a, b) +

∫ b

a
L(s)

(
δ(s) + ‖

∫ s

a
U(τ)dτ‖

)
exp

(∫ b

s
L(τ)dτ

)
≤ R(a, b).

The proof is complete. �

2.1. Uniform Lyapunov function and perturbed solutions.

De�nition 2.6. Let A be a compact set in M and U be an open neighbourhood of A. A smooth
map Φ : R+ × U → R+ is an uniform Lyapunov function for the non-autonomous di�erential
inclusion (1) with respect to A if the following hold:

a)
A = {x ∈ U : 0 ∈ L((Φ(s, x))s)} ,

where L((Φ(s, x))s) := {u ∈M : ∃sn ↑ +∞, limn Φ(sn, x) = u} is the limit set of the
map s 7→ Φ(s, x).

b) There exists two maps λ : R∗+ →]0, 1[ and ε : R+ × R+ → R+ with the property that

lim
T→+∞

λ(T ) = 0, lim
T→0,t→+∞

ε(t, T ) = 0 and lim
t→+∞

ε(t, T ) = 0 ∀T > 0;

and, for any t > 0, T > 0 and any solution x on [t, t+ T ], we have

Φ(t+ s,x(t+ s)) ≤ λ(s)Φ(t,x(t)) + ε(t, T ), ∀s ∈ [0, T ].

If U = M then Φ is called a global uniform Lyapunov function.
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De�nition 2.7. A compact set A is asymptotically stable if it admits an open neighbourhood
U such that, for any ε > 0, there exists t > 0 and T > 0 with the property that any solution
starting in M at time t > t is in N ε(A) after time t+ T .

Lemma 2.8. Assume that Φ satis�es the property b) and the following property (stronger than
a)):

a′) there exists a continuous map g : U → R+ such that

A = {x ∈M : g(x) = 0}, ‖g(x)− Φ(s, x)‖ →s→+∞ 0,

uniformly in x ∈M .

Then A is asymptotically stable.

Lemma 2.9. Let (Φk)k≥k0, (λk)k≥k0 and (ηk)k≥k0 be positive sequences of real numbers such
that;

(i) 0 < λk < 1 ∀k ≥ k0 and

Φk+1 ≤ λkΦk + ηk+1;

(ii) Denoting Hk := Πk−1
i=k0

λi and H̃k = Hk
∑k−1

i=0 H
−1
i ηi; limk→∞Hk = limk→∞ H̃k = 0.

Then limk→∞Φk = 0.

Proof. Without loss of generality, we assume that k0 = 0. A simple recursive argument yields

Φk ≤ Hk

(
Φ0 +

k−1∑
i=0

H−1
i ηi

)
and the proof is complete. �

Lemma 2.10. The conditions of previous Lemma are veri�ed in the following cases:

a) λk = λ < 1 and limk→∞ ηk = 0,
b) limk→∞Hk = 0 and

∑
i ηi < +∞.

Proof. For point a), Hk = λk and we have

H̃k+k′ = λk+k′

(
k∑
i=0

H−1
i ηi +

k+k′−1∑
i=k+1

H−1
i ηi

)

≤ λk
′

max
i=0,...,k

ηi + ηk+1

k′−1∑
i=0

λi

≤ λk
′

max
i=0,...,k

ηi + ηk+1
1

1− λ
,

which gives the result.
For the second point, remember that (Hk)k is a decreasing sequence. Hence

H̃k+k′ = Hk+k′

(
k∑
i=0

H−1
i ηi +H−1

k+k′−1

k+k′∑
i=k+1

ηi

)

≤ Hk+k′

(
k∑
i=0

H−1
i ηi

)
+

+∞∑
i=k+1

ηi.

Given ε > 0, by choosing k large enough, the second term is smaller than ε. Then we can pick
k′ large enough so that the �rst term is also smaller than ε and the proof is complete. �
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De�nition 2.11. A map v : R+ →M is a perturbed solution of the non-autonomous di�er-
ential inclusion ẋ(s) ∈ F (s,x(s)) if

(i) v is absolutely continuous,
(ii) s 7→ U(s) is a locally integrable function such that

∆(t, t+ T ) :=

∫ t+T

t
U(s)ds→t→+∞ 0,

(iii) v̇(s)− U(s) ∈ F (s, v(s)) for some measurable map v : R+ →M such that

‖v(s)− v(s)‖ ≤ δ(s),
with δ(s) ↓s 0.

Remark 2.12. Notice that, in the autonomous case, this is De�nition (II) in [3]

We say that Φ is uniformly Lipschitz if there exists LΦ > 0 such that, for any s ≥ 0 and
v, v′ ∈M , ∣∣Φ(s, v)− Φ(s, v′)

∣∣ ≤ LΦ‖v − v′‖.
Notice that this condition is veri�ed under the assumptions of Lemma 2.8. We now state the
main result of this section

Proposition 2.13. Assume that v is a perturbed solution relative to a regular Lipschitz map
F (with L : R+ → R+) and that there exists a sequence of positive real numbers (Tk)k such
that

(i) Sk :=
∑k

i=1 Ti → +∞,
(ii) there exists k0 ∈ N such that, for any k ≥ k0

R(Sk, Sk+1) ≤ γk,
with R de�ned by (2),

(iii) Φ is a global uniform Lyapunov function with respect to a set A such that, denoting
Hk := Πk

i=k0+1λ(Ti) and ηk := ε(Sk−1, Tk) + γk−1, we have

lim
k→+∞

Hk

(
H−1 · η

)
k

= 0.

(iv) the family Φ(s, ·) is uniformly Lipschitz:

Then the limit set of v is contained in A.

Proof. First recall that, by Corollary 2.5, for any k ∈ N, there exists a solution xk on [Sk, Sk+1]
such that xk(Sk) = v(Sk) and

sup
s∈[Sk,Sk+1]

‖v(s)− xk(s)‖ ≤ R(Sk, Sk+1).

By (ii) the sequence of solutions curves (xk)k≥k0 is such that

sup
s∈[Sk,Sk+1]

‖v(s)− xk(s)‖ ≤ γk.

On the other hand, (iii) implies that, for any k ≥ k0,

Φ(Sk+1,x
k(Sk+1)) ≤ λ(Tk+1)Φ(Sk,x

k(Sk)) + ε(Sk, Tk+1).

Hence, by (iv),

Φ(Sk+1, v(Sk+1)) ≤ Φ(Sk+1,x
k(Sk+1)) + LΦ

∥∥∥v(Sk+1)− xk(Sk+1)
∥∥∥

≤ λ(Tk+1)Φ(Sk, v(Sk)) + LΦγk + ε(Sk, Tk+1)

= λ(Tk+1)Φ(Sk, v(Sk)) + ηk+1
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Calling Φk := Φ(Sk, v(Sk)) and λk := λ(Tk+1) we have Φk → 0 by Lemma 2.9. Now let v∗ be
a limit point of v(s): v∗ = limn v(sn), for some sequence sn ↑n +∞. Call k(n) := sup{k ∈ N :
Sk ≤ sn}. For n large enough, k(n) ≥ k0 and

Φ(sn, v(sn)) ≤ λ(sn − Sk(n))Φ(Sk(n), v(Sk(n)) + LΦγk(n) + ε(Sk(n), sn − Sk(n))→n→+∞ 0.

We therefore have

Φ(sn, v∗) ≤ Φ(sn, v(sn)) + LΦ‖v∗ − vn‖ →n→+∞ 0.

Consequently 0 ∈ L(Φ(s, v∗)) and the proof is complete. �

3. Stochastic approximations

Consider a discrete time stochastic process (vn)n in M , de�ned by the recursive formula

(3) vn+1 − vn − γn+1Un+1 ∈ γn+1Fn(vn),

where Fn : M ⇒ M is a set-valued map, (γn)n is a positive sequence, decreasing to 0 and
(Un)n a sequence of M -valued random variables de�ned on a probability space (Ω,F, P ). Set
τn :=

∑n
i=1 γi and m(s) := sup{j | τj ≤ s}. We make the following additional assumptions:

(i) For all c > 0, ∑
n

e−c/γn <∞,

(ii) (Un)n is uniformly bounded and

E (Un+1 | Fn) = 0,

(iii) The map F : R+ ×M ⇒M , given by

F (t, v) := Fm(t)(v)

is regular.

We call v(·) the continuous time a�ne interpolated process induced by (vn)n and γ(·) (resp.
U(·)) the piecewise constant deterministic processes induced by (γn)n (resp. (Un)n):

v(τi + s) = xi + s
vi+1 − vi
γi+1

for s ∈ [0, γi+1], γ(τi + s) := γi+1 for s ∈ [0, γi+1[,

and analogously for U .

Lemma 3.1. For almost every s ∈ R+, v(·) is di�erentiable and we have

v̇(s)− U(s) ∈ F (s, vm(s)).

Proof. We have

v(s) = vm(s) +
vm(s)+1 − vm(s)

γm(s)+1
(t− τm(s))

Hence, if s /∈ {τn, n ∈ N∗}, v(·) is di�erentiable and

v̇(s) =
vm(s)+1 − vm(s)

γm(s)+1
.

Consequently

v̇(s)− U(s) ∈ Fm(s)(vm(s)) = F (s, vm(s)).

The proof is complete �
In the sequel, we use the notation v(s) := vm(s). Notice that v is a piecewise constant map

on R+.
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3.1. Particular case γn = 1/n. We focus here on the classical case where the step size is 1
n .

We then have τn ∼ log n and m(s) = O(es)1. Given positive real numbers t and T , we call
∆(t, t+ T ) the random variable ∫ t+T

t
U(s)ds.

The following lemma is classical (it is proved in [7] or [1] for instance)

Lemma 3.2. There exists positive constants C and C ′ (depending on ‖U‖∞) such that, for
any α > 0,

P (∆(t, t+ T ) ≥ α) ≤ C exp

(
−α2et

C ′T

)
.

Notice that, by Lemmas 3.1 and 3.2 and a Borel-Cantelli argument, v is almost surely a
perturbed solution, with δ(s) = Aγ(s) ≤ 2Ae−s, where A = ‖F‖∞ + ‖U‖∞.

Proposition 3.3. Assume that F is Lipschitz, with Lipschitz function L such that L(s) ≤ Ls.
Then there exist T > 0, and γ > 0 such that, with probability one, there exists k0 ∈ N with
the property that points (i) and (ii) of Proposition 2.13 are veri�ed for v, with Tk = T and
γk = e−γk.

Proof. Pick T < 1/2L. Point (i) is trivially satis�ed, as Sk = kT . We have
∫ (k+1)T
kT Lτdτ =

kLT 2 + LT 2/2. Hence

Aγ(Sk) exp

(∫ (k+1)T

kT
Lτdτ

)
≤ 2A exp

(
kT (LT − 1) + LT 2/2

)
.

On the other hand, by previous lemma,

P

(
∆(kT, (k + 1)T ) exp

(∫ (k+1)T

kT
Lτdτ

)
≥ 1

2
e−γk

)
≤ C exp

(
−e−2γkekT

4C ′ exp (2kLT 2 + LT 2)T

)

≤ C exp

(
− exp

(
k(T − 2LT 2 − 2γ)

)
4C ′T exp(LT 2)

)
.

Choose γ in ]0, T (1− 2LT )/2[. Then, for k large enough

Aγ(Sk) exp

(∫ (k+1)T

kT
Lτdτ

)
≤ 1

2
e−γk.

Consequently, if we call Ak the event{
(∆(Sk, Sk+1) +Aγ(Sk)) exp

(∫ Sk+1

Sk

L(τ)dτ

)
≥ e−γk

}
,

then

P (Ak) ≤ C exp

(
− exp

(
k(T − 2LT 2 − 2γ)

)
4C ′T exp(LT 2)

)
.

By an application of Borel-Cantelli lemma, with probability one, there exists k0 ∈ N such that,
for any k ≥ k0,

(∆(Sk, Sk+1) +Aγ(Sk)) exp

(∫ Sk+1

Sk

L(τ)dτ

)
≤ e−γk,

and the proof is complete. �

1more precisely, e−1
e

es ≤ m(s) ≤ es − 1
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Proposition 3.4. Assume that F is Lipschitz, with Lipschitz function L such that L(s) ≤ eβs,
for some β ∈ (0, 1). Then if we call Tk := (βk)−1 there exist some constant γ > 1 such that,
with probability one, there exists k0 ∈ N such that points (i) and (ii) of Proposition 2.13 are
veri�ed for v, with γk = γ−k

Proof. By our choice of the sequence Tk, exp(βSk) ≤ exp (1 + log k) ≤ 3k. Hence

exp

(∫ Sk+1

Sk

L(τ)dτ

)
≤ exp(Tk+1e

βSk+1) ≤ C0,

for some constant C0 which depends on β. Additionally, γ(Sk) ≤ 2e−Sk ≤ 2k−1/β . Hence

Aγ(Sk) exp
(
Tk+1e

βSk+1

)
≤ 3A

k1/β
.

Choose γ ∈ (1, β+1
2β ). By Lemma 3.2,

P
(

∆(Sk, Sk+1) exp

(∫ Sk+1

Sk

L(τdτ

)
≥ 1

2kγ

)
≤ C exp

(
−k−2γeSk

4C ′C0Tk+1

)
≤ C exp

(
−k−2γ+1/β

C ′C0β−1(k + 1)−1

)

≤ C exp

(
−k−2γ+1+1/β

C ′1

)
for some positive constant C ′1. Now, since γ < 1/β, we have for k large enough

Aγ(Sk) exp
(
Tk+1e

βSk+1

)
≤ 1

2kγ
.

Consequently, if we call Ak the event{
(∆(Sk, Sk+1) +Aγ(Sk)) exp

(∫ Sk+1

Sk

L(τ)dτ

)
≥ 1

kγ

}
,

then

P (Ak) ≤ C exp

(
−k−2γ+1+1/β

C ′1

)
.

By an application of Borel-Cantelli lemma, with probability one, there exists k0 ∈ N such that,
for any k ≥ N,

(∆(Sk, Sk+1) +Aγ(Sk)) exp

(∫ Sk+1

Sk

L(τ)dτ

)
≤ 1

kγ
,

and the proof is complete. �

4. Proof of Theorem 1.7

4.1. Vanishing perturbed best response dynamics. Consider the map

Π̃ : Y × R∗+ → R, y 7→ max
x∈X

π(x, y, β) = π (br(y, β), y, β) .

Our state variable is vn := (xn, yn, πn) ∈M := X × Y × [−‖π‖∞, ‖π‖∞]. We have

xn+1 − xn −
1

n+ 1

(
δin+1 − Eσ(δin+1 | Fn)

)
=

1

n+ 1
(−xn + br(yn, εn)) .

Notice that

vn+1 − vn −
1

n+ 1
Un+1 ∈

1

n+ 1
Fn(vn),
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where

− the noise sequence

Un+1 = (vn+1 − vn)− E(vn+1 − vn | Fn)

is a bounded martingale di�erence,
− the set valued map Fn is given by

Fn(x, y, π) := {(br(y, βn)− x, τ − y, π(br(y, βn), τ)− π, τ ∈ Y }
Let F : R+ ×M ⇒M be the map given by F (s, v) := Fm(s)(v).

Lemma 4.1. F is a regular set-valued map.

Proof. The fact that F has non-empty compact convex values is straightforward, as well as
measurability. Also, the map F takes values in M , which is compact. Thus F is uniformly
bounded. Given s ∈ R+, we now need to check upper semi-continuity of v 7→ F (s, v), which
is equivalent to {(v, w), w ∈ F (s, v)} being closed. Let (xn, yn, πn) converge to (x, y, π). We
then have br(yn, βm(s))→ br(y, βm(s)). Hence,(
br(yn, βm(s)), τn, π

(
br(yn, βm(s)), τn

))
→
(
br(y, βm(s)), τ, π

(
br(y, βm(s)), τ

))
∈ F (s, x, y, π).

The proof is complete. �

Theorem 4.2. Let A = {(x, y, π) ∈M | Π(y)− π ≤ 0}. There exist a global uniform Lya-
punov function Φ relative to the compact set A and the non-autonomous di�erential inclusion

v̇(s) ∈ F (s,v(s)).

Proof: We prove that properties a′) and b) hold. Let Φ : R+ ×M → R+, de�ned by

Φ(s, x, y, π) =

{
Π̃(y, βm(s))− π if Π̃(y, βm(s)) ≥ π
0 if Π̃(y, βm(s)) < π.

Notice that

A = {(x, y, π) : g(x, y, π) = 0} and ‖g(v)− Φ(s, v)‖ →s→+∞ 0

uniformly, where g(x, y, π) := max{0,Π(y) − π}. Let t and T be positive real numbers and
(x(s), y(s), π(s)) be a solution of the non-autonomous di�erential inclusion (1) on [t, t + T ],
such that and π(s) ≤ π̃(y(s), βm(s)). Let

Ψ(s) := Φ(s, x(s), y(s), π(s)) = π̃
(
br(y(s), βm(s)), y(s), βm(s)

)
− π(s).

Recall that βm(s) is piecewise constant on [t, t + T ]. For almost every s, by de�nition of

br(y(s), βm(s)), we have D1π̃
(
br(y(s), βm(s)), y(s), βm(s)

)
D1br(y(s), βm(s)) = 0. Hence, for

almost every s ∈ [t, t+ T ],

Ψ̇(s) = π
(
br(y(s), βm(s)), ẏ(s)

)
− π̇(s)

= π
(
br(y(s), βm(s)), τ(s), βm(s)

)
− π

(
br(y(s), βm(s)), y(s), βm(s)

)
−π(br(y(s), βm(s)), τ(s), βm(s)) + π(s)

≤ −Ψ(s) +
1

βm(s)
.

By Gronwall's Lemma we therefore have

Ψ(t+ T ) ≤ e−TΨ(t) +
T

βm(t)

Consequently, Φ is a global uniform Lyapunov function with respect to A, which proves the
result. �



14 MICHEL BENAÏM AND MATHIEU FAURE

4.2. VSFP and external consistency, proof of Theorem 1.7. The set-valued map F is
regular and L(·)-Lipschitz, with L(s) = Lβm(s), for some constant L depending on the payo�

function π (see Lemma 5.2). Hence we can assume, without loss of generality that L(s) ≤ eβs.
We call v the piecewise linear interpolated process relative to (vn)n. By Proposition 3.4, almost
surely, points (i) and (ii) of Proposition 2.13 are satis�ed for k ≥ k0, with Tk = (βk)−1 and
γk = k−γ , γ > 0. We now need to check points (iii) and (iv).

By Theorem 4.2, Φ is a global uniform function Lyapunov relative to

A = {(x, y, π) ∈M | Π(y)− π ≤ 0} ,

with λ(T ) = e−T and ε(t, T ) = T
βm(t)

, for some positive constant c. Hence ηk = k−γ + c
Tk+1

k .

Clearly, by point b) of Remark 2.10, point (iii) is checked because
∑

i ηi < ∞ and Hk =

e
−

∑k
i=k0

Ti = O(k−1/β)
Now let b be a positive constant and consider the map φ : Y × [−‖π‖∞, ‖π‖∞]→ R+, given

by

φ(y, π) =

{
Π̃(y, b)− π if Π̃(y, b) ≥ π
0 if Π̃(y, b) < π.

Let (y, π) be such that Π̃(y, b) > π. Then clearly

∂

∂y
φ(y, π) =

∂

∂y
π̃(br(y, b), y, b)

= D1π̃(br(y, b), y, b) · ∂
∂y

br(y, b) +D2π̃(br(y, b), y, b) · Id

= π(br(y, b), ·)

and
∂

∂π
φ(y, π) = Id.

Thus φ is Lipschitz with some constant that does not depend on b. As a consequence, point
(iv) is veri�ed for Φ and we have

L((vn)n) ⊂ A.

�

5. appendix

5.1. A Gronwall's Lemma.

Lemma 5.1. Let y be a continuously di�erentiable function on I = [a, b] and α, β be non-
negative, continuous maps. If, for every s ∈ I, ‖ẏ(s)‖ ≤ α(s)‖y(s)‖+ β(s) then

‖y(s)‖ ≤ ‖y(a)‖ exp

(∫ s

a
α(τ)dτ

)
+

∫ s

a
β(u) exp

(∫ s

u
α(τ)dτ

)
ds

Proof. Notice that

‖y(s)‖ ≤ ‖y(a)‖+

∫ s

a
‖ẏ(u)‖du ≤ ‖y(a)‖+

∫ s

a
β(u)du+

∫ s

a
α(u)‖y(u)‖du

and apply Gronwall's integral form. �
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5.2. Some remarks on the Logit function.

Lemma 5.2. The logit map with parameter β > 0:

σ : ∆N → ∆N , x = (x1, ..., xN ) 7→ (σ1, ..., σN ),

where

σi(x) :=
exp(βxi)∑N
j=1 exp(βxj)

is Lipschitz continuous for the in�nte norm, with Lipschitz constant 2β.

Proof. We have

‖σ(x)− σ(x′)‖1 =
(
u | σ(x)− σ(x′)

)
,

where u = (sg(σ1(x) − σ1(x′)), .., sg(σN (x) − σN (x′))). Let Φ : [x, x′] → ∆N : Φ(y) = (u |
σ(y)). By the mean value Theorem, there exists y ∈ [x, x′] such that

‖σ(x)− σ(x′)‖1 = Φ(x)− Φ(x′) = (∇Φ(y) | x− x′) =
N∑
i=1

ui(∇σi(y) | x− x′).

Therefore we have

‖σ(x)− σ(x′)‖1 ≤ ‖x− x′‖∞
N∑
i=1

ui‖∇σi(y)‖1.

Now,

∂σi(y)

∂yj
=

β exp(βyi)Ii=j
∑

k exp(βyk)− β exp(βyj) exp(βyi)

(
∑

k exp(βyk))2

= β
(
σi(y)Ii=j − σi(y)σj(y)

)
.

Hence

‖∇σi(y)‖1 = β

σi(y)− (σi(y))2 +
∑
j 6=i

σi(y)σj(y)


= 2βσi(y)(1− σi(y)).

Finally

‖σ(x)− σ(x′)‖1 ≤ 2β‖x− x′‖∞
N∑
i=1

uiσ
i(y)(1− σi(y)) ≤ 2β‖x− x′‖∞

and the proof is complete since ‖σ(x)− σ(x′)‖∞ ≤ ‖σ(x)− σ(x′)‖1. �
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