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Abstract. We study the well-posedness of initial value problems for scalar
functional algebraic and differential functional equations of mixed type. We

provide a practical way to determine whether such problems admit unique

solutions that grow at a specified rate. In particular, we exploit the fact that
the answer to such questions is encoded in an integer n]. We show how this

number can be tracked as a problem is transformed to a reference problem

for which a Wiener-Hopf splitting can be computed. Once such a splitting
is available, results due to Mallet-Paret and Verduyn-Lunel can be used to

compute n]. We illustrate our techniques by analytically studying the well-

posedness of two macro-economic overlapping generations models for which
Wiener-Hopf splittings are not readily available.

1. Introduction. In this paper we consider a class of initial value problems that
includes the prototypes

ax′(ξ) = x(ξ) +
∫ 1

−1
x(ξ + σ)dσ for all ξ ≥ 0,

x(τ) = ψ(τ) for all − 1 ≤ τ ≤ 0,
(1.1)

in which a is allowed to be any real number, including zero. We wish to determine
whether such systems will admit bounded solutions for any initial condition ψ ∈
C([−1, 0],R) and whether such solutions are unique. If a 6= 0, the first line of (1.1)
is called a functional differential equation of mixed type (MFDE), while if a = 0, we
use the term functional algebraic equation of mixed type (MFAE). The word ‘mixed’
refers to the fact that the nonlocal term in (1.1) involves shifts in the argument of
x that are both positive and negative.

Notice that (1.1) with a 6= 0 differs from traditional initial value problems, in the
sense that the initial condition ψ does not provide sufficient information to calculate
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x′(0). The system (1.1) hence cannot be interpreted as an evolution equation,
requiring us to consider the behaviour of x on the entire interval [0,∞) all at once.

In this sense, it seems reasonable to argue that the initial condition ψ should
be taken from C([−1, 1],R), which after all is a natural state space for (1.1) as it
does allow x′(0) to be computed. However, the resulting problem is highly ill-posed
[13, 24]. For example, there is no guarantee that ψ′(0) exists or agrees with the
value for x′(0) computed from ψ. One might be tempted to incorporate such a
requirement into the state space, but this is just one of a sequence of increasingly
intricate incompatibilities that needs to be addressed. As we will see below, the
choice to take ψ ∈ C([−1, 0],R) is natural both from a mathematical and an applied
perspective.

Macro-Economic Modelling. The primary motivation for this paper comes from
the area of macro-economic research. To set the stage, let us consider an isolated
economy that starts at t = 0. We write k(t) for the production capacity at time
t, which is a measure for the amount of goods and services that can be produced.
At any point in time, this capacity must be divided between investments u(t) and
consumption c(t). The former leads to an increase in the production capacity, while
the latter satisfies the immediate needs of the population. The goal is to optimize
the welfare of the population, which is assumed to depend only on the consumption
c(t). This can be formulated as the optimal control problem

max

∫ ∞
0

e−ρtW
(
c(t)
)
dt, (1.2)

in which the discount factor ρ reflects how future welfare is rated relative to present
welfare, while W measures the welfare associated to consumption.

Typically, time must pass before an investment actually increases the production
capacity. Kydland and Prescott [18] showed that is vital to include such time-lags
in any realistic model, which turns (1.2) into a delayed optimal control problem
[1, 2, 25]. Hughes proved that the resulting Euler-Lagrange optimality conditions
are in fact MFDEs [14]. One hence encounters problems of the form (1.1) if one
wishes to impose initial conditions at the start-up time t = 0.

The model (1.2) neglects the fact that populations typically consist of many
individuals that have competing interests. Since their introduction by Samuelson
[26], overlapping generations models have been used extensively to take this into
account. Such models assume that the population can be split into agegroups, that
each make separate economic decisions based upon their expectations for the future.
To calculate the resulting macro-economic behaviour, one typically assumes that the
decisions that are made actually create economic conditions that are compatible
with the anticipations on which these decisions were based [6, 27, 11, 8].

As an illustrating example, let us discuss the work of d’Albis et al. [5], which
models a population of individuals that all live for a fixed time that we scale to
unity. We write c(s, t) ≥ 0 for the consumption at time t of an individual born at
time s and similarly a(s, t) for the assets that such an individual owns. Everybody
earns an age-independent income w(t) and receives interest on their assets at the
rate r(t), which leads to the budget constraint

∂a(s, t)

∂t
= r(t)a(s, t) + w(t)− c(s, t). (1.3)

In addition, everybody is born with zero assets and may not die in debt, i.e., we
assume a(s, s + 1) ≥ a(s, s) = 0. Subject to these constraints, everybody acts to
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maximize his or her total life-time welfare

W (s) =

∫ s+1

s

ln
(
c(s, τ)

)
dτ. (1.4)

Solving the above optimization problem shows that for any s ≥ 0 and t ∈ [s, s+1],
the optimal consumption is given by

c∗(s, t) =

∫ s+1

s

w(σ) exp[

∫ t

σ

r(τ)dτ ]dσ. (1.5)

Writing a∗(s, t) for the corresponding optimal asset allocation, we note that the
total amount of capital k(t) that is available in the economy is given by the sum of
the assets of everybody that is alive at time t, i.e.,

k(t) =

∫ t

t−1

a∗(σ, t)dσ. (1.6)

The economy features a unique commodity which can be used for both consumption
and investments. We will assume that the rate Q at which this commodity can be
produced at time t depends on the available amount of capital k(t) and labour l(t)
via

Q
(
t, k(t), l(t)

)
= Ak(t)α

(
e(t)l(t)

)1−α
, (1.7)

for some constants A > 0 and 0 < α < 1. The factor e(t) is included to correct
for the increase in labour efficiency over time. At every time t, the interest rate
r(t) can be interpreted as the price for capital, while the wages w(t) can be seen as
the price for labour. These prices can be determined by partial differentiation of Q
with respect to k(t) and l(t), yielding

r(t) = αAk(t)α−1
(
e(t)l(t)

)1−α
,

w(t) = (1− α)Ak(t)αe(t)1−αl(t)−α.
(1.8)

Following [23], we assume that capital investments increase labour efficiency and
write e(t) = k(t). Restricting ourselves to a fixed population size l(t) = 1, the
expressions (1.8) reduce to

r(t) = αA,
w(t) = (1− α)Ak(t).

(1.9)

In combination with (1.6), these identities can be used [5, Eq. A.7-A.9] to describe
the dynamical behaviour of the capital market by the MFDE

k′(t) = Ak(t)− (1− α)A
[ ∫ t

t−1
k(σ)(σ + 1− t)eαA(t−σ)dσ

+
∫ t+1

t
k(σ)(t+ 1− σ)eαA(t−σ)dσ

]
.

(1.10)

This equation can be turned into an autonomous MFDE by considering the new
variable e−αAtk(t).

To incorporate the fact that populations do not extend arbitrarily far into the
past, we will assume that (1.10) describes the dynamics of k(t) for all t ≥ 0. From
the form of (1.10), it is clear that we will need to supply initial values k(σ) for
−1 ≤ σ ≤ 0 before our model can be used to calculate k(t) for t > 0. It is not
clear however, whether such an initial condition always leads to a unique bounded
solution k of (1.10).
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Indeterminacy. Venditti and his coworkers [20] coined the term indeterminacy to
describe the situation where several different sequences of self-fulfilling expectations
may exist simultaneously. The topic of indeterminacy has attracted significant
economic interest, since it may provide some insight into the mechanism by which
countries that have similar economic structures and initial conditions sometimes
undergo a completely different economic development.

Many authors have considered the issue of indeterminacy in a two generation
model, in which the population is divided into an old and a young group [10, 28,
9, 11]. After a fixed amount of time, the young group becomes old, the old group
dies and a new young group is born. The resulting economic models can be written
as discrete dynamical systems on Rn for which m ≤ n initial conditions can be
freely chosen. The details depend heavily on parameters such as the number of
different commodities that can be exchanged and the role that pension and labour
plays. Restricting oneself to trajectories that converge to an equilibrium, the degree
of indeterminacy can be readily computed by subtracting the number of initial
conditions m from the dimension of the stable manifold around the equilibrium
under consideration, assuming that suitable non-degeneracy conditions are satisfied.

The distinguishing feature of the model (1.10) is that births and deaths occur
in continuous time, rather than at discrete time intervals. First used by Cass and
Yaari [3], even the simplest of such continuum models admit economic features
that can only be observed in discrete models by incorporating relatively complex
interactions. The price that needs to be paid is that dimension counting arguments
no longer suffice to study the indeterminacy of (1.10), since the dimension of the
space of initial conditions C([−1, 0],R) and the dimension of the natural state space
C([−1, 1],R) are both infinite. Nevertheless, using the techniques developed in this
paper, the notion of indeterminacy can be quantified and calculated for various
economic models featuring a continuum of overlapping generations.

Initial Value Problems. The initial value problems for MFDEs that we consider in
this paper can be written in the general form

x′(ξ) = L evξx for all ξ ≥ 0,
x(τ) = ψ(τ) for all rmin ≤ τ ≤ 0.

(1.11)

Here x is a continuous real-valued function on the interval [rmin,∞) and the op-
erator L is a bounded linear map from C

(
[rmin, rmax],R) into R. We will use the

notation evξx ∈ C([rmin, rmax],R) to denote the state of x evaluated at ξ, defined
by [evξx](θ) = x(ξ + θ) for all rmin ≤ θ ≤ rmax. We require rmin < 0 and rmax > 0
and take the initial condition ψ from the set C([rmin, 0],R).

The algebraic problems that we study can be written as

0 = M evξx for all ξ ≥ 0,
x(τ) = ψ(τ) for all rmin ≤ τ ≤ 0,

(1.12)

in which M is a special type of linear map from C
(
[rmin, rmax],R) into R. In

particular, we will require that a number of formal differentiations reduces the
MFAE (1.12) to the MFDE (1.11). For example, differentiating our prototype
system (1.1) with a = 0 yields x′(ξ) = x(ξ − 1)− x(ξ + 1), which can be written as
(1.11) with Lφ = φ(−1)− φ(1).

We will consider the initial value problems (1.11) and (1.12) on exponentially
weighted spaces. In particular, let us choose an exponential weight η ∈ R and
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consider the function space

BC⊕η = {x ∈ C
(
[rmin,∞),R

)
| ‖x‖η := sup

ξ≥rmin

e−ηξ |x(ξ)| <∞}. (1.13)

Our goal in this paper is to develop a feasible approach to determine whether (1.11)
and (1.12) admit solutions x ∈ BC⊕η for every initial condition ψ ∈ C

(
[rmin, 0],R

)
and whether such solutions are unique.

Let us emphasize here that well-posedness results for the linear systems (1.11)
and (1.12) also play an important role in nonlinear settings. Consider for example
the nonlinear initial value problem

x′(ξ) = x(ξ + 1) + x(ξ − 1) + x(ξ)2 for all ξ ≥ 0,
x(τ) = ψ(τ) for all rmin ≤ τ ≤ 0.

(1.14)

Let us write Q for the set of bounded solutions to the linearized equation x′(ξ) =
x(ξ + 1) + x(ξ − 1) posed on R+. In addition, write

Q = ev0

(
Q
)
, Qε = {φ ∈ Q | ‖φ‖ ≤ ε}. (1.15)

Using techniques developed in [16, 17], one may show that there exists a smooth
function

u∗ : Qε → C([−1, 1],R), u∗(φ) = φ+O(‖φ‖2), (1.16)

such that u∗(Qε) defines a local stable manifold for the equilibrium x = 0. We hence
see that the nonlinear initial value problem (1.14) admits solutions that decay to
zero for all sufficiently small initial data ψ ∈ C([−1, 0],R) if and only if the linear
problem (1.11) with Lφ = φ(1) + φ(−1) is well-posed with respect to BC⊕0 .

Characteristic Equations. In the special case that rmax = 0, the problem (1.11)
reduces to an initial value problem for a retarded functional differential equation
(RFDE). Such systems have been studied extensively during the last three decades,
resulting in a rich and diverse literature on the subject. Using the theory described
in [12], the well-posedness of (1.11) can be read off directly from the characteristic
function ∆L : C→ C, that can be written as

∆L(z) = z − Lez·. (1.17)

Indeed, consider any η ∈ R with the property that the characteristic equation
∆L(z) = 0 admits no roots with Re z ≥ η. It then follows from [12, Theorem 7.6.1]
that any φ ∈ C([rmin, 0],R) can be extended to a solution x ∈ BC⊕η . If this property
fails, one can determine the codimension of the set of initial conditions that can be
extended by studying the number and multiplicity of the roots of ∆L(z) = 0 that
have Re z ≥ η.

Such a direct criterion no longer exists when rmax > 0. The investigation is
complicated by the fact that the characteristic equation ∆L(z) = 0 will in general
have an infinite number of roots on both sides of the imaginary axis. For example,
for the prototype system (1.1) with a = 1 we have

z∆L(z) = z
[
z − 1−

∫ 1

−1

ezσdσ
]

= z2 − z − ez + e−z. (1.18)

This transcendental equation can no longer be bounded by a polynomial on the
half plane Re z ≥ 0, as is always possible for an RFDE. The reason that we may
nevertheless expect to obtain well-posedness results for (1.11) and (1.12) is that the
space C([rmin, 0],R) containing the initial conditions now differs from the natural
state space C([rmin, rmax],R).



742 HERMEN JAN HUPKES AND EMMANUELLE AUGERAUD-VÉRON

The key result that allows the well-posedness of (1.11) to be analyzed was ob-
tained by Mallet-Paret and Verduyn Lunel in [22]. In particular, under a non-
degeneracy condition that roughly states that the interval [rmin, rmax] cannot be
decreased, the authors show that for every ν ∈ R there exists a Wiener-Hopf fac-
torization

(z − ν)∆L(z) = ∆L−(z)∆L+
(z), (1.19)

in which ∆L− and ∆L+ are the characteristic functions associated to a retarded
respectively advanced functional differential equation, i.e. ∆L±(z) = z−L± exp(z·)
for some pair of operators L− ∈ L(C([rmin, 0],C),C) and L+ ∈ L(C([0, rmax],C),C).
For any η 6= ν ∈ R for which ∆L(z) = 0 admits no roots with Re z = η, one

may compute an integer n]L(η) by counting the number of roots of the equations
∆L±(z) = 0 that lie on the ’wrong’ side of the line Re z = η. It turns out that

this integer n]L(η) is independent of the specific factorization (1.19). In addition,
all information concerning the well-posedness of (1.11) with respect to BC⊕η can be
determined from this invariant.

In practice however, it is often intractable to actually find a factorization of the

form (1.19) for the symbol ∆L. In this paper, we show how n]L(η) can still be
computed in such situations by constructing a homotopy from a suitable reference
system that can actually be factorized. This computation requires one to count
the number of roots of the characteristic equation ∆L(z) = 0 that cross the line
Re z = η as the MFDE is transformed from the reference system to the system
under consideration. We will give examples in which this number can be computed
analytically, but remark that this counting can very easily be performed numerically.

As can be expected, the well-posedness of the MFAE (1.12) depends heavily on
properties of the related MFDE (1.11), since any solution to the first line of (1.12)
will automatically satisfy (1.11). The converse however is not true and care has to
be taken to isolate the superfluous solutions to (1.11). We will address this issue
by using spectral projections and Laplace transform techniques.

Our main results are stated in §2 and proved in §4-§5. In §3.1 we discuss the
well-posedness of the overlapping generations model (1.10) and in §3.2 we consider
an additional overlapping generations model that leads to an algebraic initial value
problem of the form (1.12).

2. Main results. In this section we state our main results, which will be proved
in §4-§5. We first discuss systems that are governed by a differential equation and
subsequently show how these results can be used to study the class of algebraic
problems that we are interested in.

2.1. Initial Value Problems for MFDEs. To set the stage, let us consider the
autonomous linear homogeneous MFDE

x′(ξ) = L evξx, (2.1)

in which L is a bounded linear operator from C([rmin, rmax],Cn) into Cn. We
require rmin < 0 and rmax > 0 and recall the notation [evξx](θ) = x(ξ + θ) for
rmin ≤ θ ≤ rmax. Later on we will restrict ourselves to the scalar case n = 1, but
for now we allow n ≥ 1. We write

∆L(z) = z − Lez·I (2.2)

for the characteristic matrix that is associated to (2.1), in which I is the n × n
identity matrix.
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Since we wish to consider (2.1) on the half-lines R±, let us introduce the expo-
nentially weighted function spaces

BC	η := {x ∈ C
(
(−∞, rmax],Cn

)
| supξ≤rmax

e−ηξ |x(ξ)| <∞},

BC⊕η := {x ∈ C
(
[rmin,∞),Cn

)
| supξ≥rmin

e−ηξ |x(ξ)| <∞}
(2.3)

and write ‖x‖η for the corresponding norms. We can now introduce the following

solution sets for (2.1),

PL(η) =
{
v ∈ BC	η | v′(ξ) = L evξv for all ξ ≤ 0

}
,

QL(η) =
{
v ∈ BC⊕η | v′(ξ) = L evξv for all ξ ≥ 0

}
.

(2.4)

As in [22], it is convenient to introduce the spaces

PL(η) =
{
φ ∈ C([rmin, rmax],Cn) | φ = ev0v for some v ∈ PL(η)

}
,

QL(η) =
{
φ ∈ C([rmin, rmax],Cn) | φ = ev0v for some v ∈ QL(η)

}
,

(2.5)

which describe the initial segments of the solution sets PL and QL in the natural
state space C([rmin, rmax]). Let us also introduce the associated restriction operators

π+
PL(η) : PL(η)→ C

(
[0, rmax],Cn

)
φ 7→ φ|[0,rmax],

π−QL(η) : QL(η)→ C
(
[rmin, 0],Cn

)
φ 7→ φ|[rmin,0].

(2.6)

The well-posedness properties of the initial value problem (1.11) that we wish
to understand are entirely encoded in the family of restriction operators π−QL(η).

Indeed, if Range
(
π−QL(η)

)
= C

(
[rmin, 0],C) for some η ∈ R, then for any φ ∈

C
(
[rmin, 0],C) the initial value problem (1.11) has a solution x ∈ BC⊕η . On the

other hand, if Ker
(
π−QL(η)

)
= {0}, then such solutions are unique. We will say

that (1.11) is well-posed with respect to the space BC⊕η if and only if π−QL(η) is an

isomorphism from QL(η) onto C([rmin, 0],C).
The following proposition shows that for appropriate values of η, the state space

C([rmin, rmax],Cn) is decomposed by PL(η) and QL(η). In addition, the restriction
operators (2.6) are Fredholm, which means that their kernels are finite dimensional,
while their ranges are closed and of finite codimension. We recall that the index of
a Fredholm operator F is determined by the formula

ind(F ) = dim Ker(F )− codim Range(F ). (2.7)

We remark that these results can be easily obtained by applying exponential shifts
to the theory developed in [22, §3].

Proposition 2.1 (see [22, §3]). Consider the linear system (2.1) and choose η ∈ R
in such a way that the characteristic equation det ∆L(z) = 0 admits no roots with
Re z = η. Then the spaces PL(η) and QL(η) are closed and satisfy

C([rmin, rmax],Cn) = PL(η)⊕QL(η). (2.8)

In addition, there exist constants K > 0 and ϑ > 0 such that

‖evξv‖ ≤ Ke(η+ϑ)ξ ‖ev0v‖ (2.9)

for any v ∈ PL(η) and ξ ≤ 0, while also

‖evξw‖ ≤ Ke(η−ϑ)ξ ‖ev0w‖ (2.10)
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for any w ∈ QL(η) and ξ ≥ 0. Finally, the operators π+
PL(η) and π−QL(η) defined in

(2.6) are Fredholm, with

ind(π+
PL(η)) + ind(π−QL(η)) = −n. (2.11)

To obtain more detailed information on the restriction operators π+
PL(η) and

π−QL(η), we need to impose the following additional restriction on the linear operator

L.

(HL) There exist quantities s± ≥ 0 and non-singular matrices J± such that the
following asymptotic expansions hold,

∆L(z) = z−s+ezrmax(J+ + o(1)) as z →∞,
∆L(z) = z−s−ezrmin(J− + o(1)) as z → −∞. (2.12)

We remark that (HL) is significantly weaker than the atomicity condition used in
[22, Eq. (2.3)], which requires s± = 0 to hold in (HL). Such a condition is violated by
the economic models studied in this paper. Nevertheless, the techniques developed
in [22, §5] can still be used to obtain the following result, which lies at the basis for
a further understanding of π+

PL(η) and π−QL(η).

Proposition 2.2 (see [22, Thm 5.2]). Consider the linear system (2.1) and suppose
that (HL) is satisfied. Then for any monic1 polynomial p of degree n, there exist
linear operators

L− ∈ L(C([rmin, 0],Cn),Cn), L+ ∈ L(C([0, rmax],Cn),Cn), (2.13)

with associated characteristic matrices

∆L±(z) = zI − L±ez· I (2.14)

for which the splitting

p(z) det ∆L(z) = det ∆L−(z) det ∆L+
(z) (2.15)

holds.

Proof. It suffices to show that the proof of [22, Thm. 5.2] still holds for the weaker
condition (HL). The atomicity condition [22, Eq. (2.3)] is only used to verify the
conditions associated with a Phragmén-Lindelöf theorem [19, Thm. I.21] that as-
serts that entire functions that grow at most exponentially on C and polynomially
on the real and imaginary axes, are in fact polynomials. Allowing s± > 0 in (2.12)
does not destroy these required growth estimates.

The splitting (2.15) is referred to as a Wiener-Hopf factorization for the symbol
∆L and we will call any such triplet (p, L−, L+) a Wiener-Hopf triplet for L. In
general, such triplets need not be unique. Indeed, in [22] a mechanism is given
by which pairs of roots of the characteristic equations det ∆L±(z) = 0 may be
interchanged. Nevertheless, it turns out to be possible to extract a quantity that
does not depend on the chosen splitting (2.15). To this end, let us consider any
Wiener-Hopf triplet (p, L−, L+) for L and pick an η ∈ R for which the equation
p(z) = 0 admits no roots with Re z = η. We now introduce the quantity

n]L(η) = n+
L+

(η)− n−L−(η) + n0
p(η) (2.16)

1 A polynomial p(z) is called monic if the coefficient associated to the highest power of z is
one, e.g. p(z) = z + 2.
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that is defined by

n−L−(η) = #{z ∈ C | det ∆L−(z) = 0 and Re z > η},

n+
L+

(η) = #{z ∈ C | det ∆L+
(z) = 0 and Re z < η},

n0
p(η) = #{z ∈ C | p(z) = 0 and Re z > η}.

(2.17)

This quantity n]L(η) is invariant in the following sense.

Proposition 2.3 (see [22, Thm. 5.2]). Consider the linear system (2.1) and sup-
pose that (HL) is satisfied. Fix any η ∈ R for which the characteristic equation

det ∆L(z) = 0 admits no roots with Re z = η. Then the quantity n]L(η) is invariant
across all Wiener-Hopf triplets (p, L−, L+) for L that have p(η + iϑ) 6= 0 for all
ϑ ∈ R.

Proof. The remarks made in the proof of Proposition 2.2 also apply here, ensuring
that the proof of [22, Thm. 5.2] remains valid.

In the special case that (2.1) is scalar, the quantities n]L(η) can be used to

characterize the kernels and ranges of the Fredholm operators π−QL(η) and π+
PL(η).

This dimension restriction is related to the fact that the splitting (2.15) only features
the determinant of ∆L.

Proposition 2.4 (see [22, Thms. 6.1-2]). Consider a scalar version of the linear
system (2.1) and suppose that (HL) is satisfied. Fix any η ∈ R for which the
characteristic equation ∆L(z) = 0 admits no roots with Re z = η. Then the following
identities hold,

dim Kerπ+
PL(η) = max{−n]L(η), 0},

codim Rangeπ+
PL(η) = max{n]L(η), 0},

dim Kerπ−QL(η) = max{n]L(η)− 1, 0},
codim Rangeπ−QL(η) = max{1− n]L(η), 0}.

(2.18)

Proof. To see that the proofs of [22, Thms. 6.1-2] still work with the weaker con-
dition (HL), we note that the stronger atomicity condition is only used once in
a setting that is not related to the application of a Phragmén-Lindelöf theorem.
This occurs in the proof of [22, Lem. 5.9], where it is needed to establish the
non-degeneracy of the Hale inner product for delay equations. Careful inspection
however shows that [22, Lem. 5.9] is only needed in the special case m = 0. It there-
fore suffices to show that the sets of generalized eigenfunctions associated to L± are
complete. This can be done by noting that the factorization (2.15) ensures that the
asymptotic growth rates (2.12) are shared by ∆L± and subsequently applying [12,
Cor. 7.8.1].

In principle, we now have sufficient information to answer the well-posedness
question for the scalar initial value problem (1.11). Indeed, for any η for which
∆L(z) = 0 has no roots with Re z = η, the problem (1.11) is well-posed with

respect to the space BC⊕η if and only if n]L(η) = 1. However, as discussed in the
introduction, it is often intractable to find Wiener-Hopf triplets for a prescribed

operator L. This often prevents us from computing n]L(η) directly from (2.16).

Our first main result addresses this difficulty and allows n]L(η) to be calculated
in settings where a Wiener-Hopf triplet is not readily available for the system (2.1)
under consideration. The only requirement is that a Wiener-Hopf triplet is available
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for some reference system that can be continuously transformed into the original
system without violating (HL). Please note however that the exponents s± appear-
ing in this condition (HL) need not remain constant during this transformation.

Theorem 2.5 (see §4). Consider a continuous path

Γ : [0, 1]→ L
(
C([rmin, rmax],Cn),Cn

)
(2.19)

and suppose that the operators Γ(µ) satisfy (HL) for all 0 ≤ µ ≤ 1. Fix any η ∈ R
and suppose that the characteristic equation det ∆Γ(µ)(z) = 0 admits roots with
Re z = η for only finitely many values of µ ∈ [0, 1] and that µ ∈ (0, 1) for all such
µ. Then we have the identity

n]Γ(1)(η)− n]Γ(0)(η) = −cross(Γ, η), (2.20)

in which the crossing number cross(Γ, η) denotes the net number of roots of the
characteristic equation det ∆Γ(µ)(z) = 0, counted with multiplicity, that cross the
line Re z = η from left to right as µ increases from 0 to 1.

We note that the formula [22, Eq. (6.7)] can be seen as a special case of this
theorem, that applies only to operators L : C([rmin, rmax],C) → C that can be
written as

Lφ =

N∑
j=0

Ajφ(rj) (2.21)

for some integer N , constants Aj ∈ C and shifts rmin ≤ rj ≤ rmax. This formula
was obtained by embedding Γ(0) and Γ(1) into a non-autonomous MFDE

x′(ξ) = L(ξ) evξx (2.22)

that has L(−∞) = Γ(0) and L(∞) = Γ(1) and subsequently invoking a spectral flow
result [21, Thm. C]. This latter result requires (2.21) to hold, while the restriction
to scalar equations comes from the fact that the identities (2.18) are used.

Our result is obtained using more direct techniques that also work when n > 1
and do not suffer from the point-shift restriction (2.21). We remark that many
examples, including the economic models studied in this paper, violate this restric-

tion. Of course, we have to admit that the ability to calculate the invariant n]L(η) if
n > 1 is of limited value at present, since no analogue of Proposition 2.4 is currently
available. In future work we plan to remedy this situation. In particular, we are
hopeful that in situations where the characteristic equation det ∆L(z) = 0 does not
admit high-multiplicity eigenvalues, information on π−QL(η) and π+

PL(η) can still be

obtained from n]L(η).

2.2. Initial Value Problems for MFAEs. We will now turn our attention to
algebraic equations of the form

0 = M evξx, (2.23)

in which M is a bounded linear operator from C([rmin, rmax],Cn) into Cn that can
be closely related to a differential system of the form (2.1). In order to clarify this
relationship, we introduce the characteristic matrix

δM (z) = −Mez·I (2.24)

that is associated to (2.23). The restriction on M that we need in this paper can
now be captured by the following condition on the characteristic matrices.
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(HM) There exist an integer ` ≥ 1 and an operator L ∈ L
(
C([rmin, rmax],Cn),Cn

)
such that

κ(z − ν)`δM (z) = ∆L(z) (2.25)

for some κ, ν ∈ C with κ 6= 0.

This condition is related to the fact that we require any solution to the MFAE (2.23)
to also satisfy the MFDE (2.1). The reader may wish to keep in mind the example
MFAE

x(ξ) =

∫ 1

−1

x(ξ + σ)dσ, (2.26)

for which we have

Mφ = −φ(0) +
∫ 1

−1
φ(σ)dσ,

δM (z) = 1−
∫ 1

−1
ezσdσ = 1

z [z + e−z − ez],
(2.27)

which implies that (HM) is satisfied with ` = 1, ν = 0, κ = 1 and

Lφ = φ(1)− φ(−1). (2.28)

Indeed, a single differentiation of (2.26) easily yields that x′(ξ) = L evξx for this
choice of L.

We will be interested in the solution spaces

pM (η) =
{
v ∈ BC	η | 0 = M evξv for all ξ ≤ 0

}
,

qM (η) =
{
v ∈ BC⊕η | 0 = M evξv for all ξ ≥ 0

}
.

(2.29)

Our second main result relates these spaces pM (η) and qM (η) to their counterparts
PL(η) and QL(η) that were defined for the differential equation (2.1). The result
exploits the explicit constructions in the proof of [15, Prp. 4.2], which show that if
(2.25) holds for a single ν ∈ C, it will in fact hold2 for any ν ∈ C. In particular,
the operator L′ appearing in the result below can be computed explicitly from the
operator L appearing in (HM).

Theorem 2.6 (see §5). Consider the algebraic equation (2.23) and suppose that
(HM) is satisfied. Choose any η ∈ R for which the characteristic equation det δM (z) =
0 admits no roots with Re z = η. Then there exists a bounded linear operator
L′ : C([rmin, rmax],Cn)→ Cn such that

κ(z − η)`δM (z) = ∆L′(z), (2.30)

in which ` and κ are the constants appearing in (HM). In addition, for every suffi-
ciently small ε > 0 we have

pM (η) = PL′(η + ε), qM (η) = QL′(η − ε). (2.31)

With this result in hand, the theory developed above to describe the spaces PL

and QL associated to the MFDE (2.1) can also be utilized for the algebraic system
(2.23).

2After suitably modifying L, but keeping ` and κ fixed.
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3. Examples. In this section, we consider two example initial value problems that
arise from economic overlapping generations models. The first example will be an
MFDE problem of the form (1.11), the second example will be an MFAE problem
of the form (1.12). For both examples, we will find suitable reference systems that
admit an explicit Wiener-Hopf factorization. It will be possible to analytically track
the roots of the characteristic equations that cross the imaginary axis, as we move
from the reference systems to the original systems.

3.1. Well-posedness of an MFDE. As our first example, we consider the MFDE
(1.10), which describes the dynamics of the capital market for the overlapping gen-
erations model discussed in the introduction. For ease of notation, we introduce the
parameter β = (1−α)A and consider the new variable x(ξ) = k(ξ)e−αAξ. In terms
of this new variable, (1.10) reduces to the linear autonomous MFDE

x′(ξ) = L evξx := βx(ξ)− β
∫ 0

−1

(1 + σ)x(ξ + σ)dσ− β
∫ 1

0

(1− σ)x(ξ + σ)dσ. (3.1)

We will impose the following condition on the model parameters, which basically
states that in the economy under consideration, the reward for labour is high relative
to the return rate on capital.

(HP) We have 0 < αA < 1 and β > 1.

The characteristic matrix ∆L associated to (3.1) can be written as

∆L(z) = z − β + β

∫ 0

−1

∫ σ+1

σ

ezτdτdσ. (3.2)

Lemma 3.1. Assume that (HP) holds. Then the characteristic equation ∆L(z) = 0
admits precisely two real roots, namely z = z− < 0 and z = 0. These two roots are
the only solutions to ∆L(z) = 0 in the vertical strip z− ≤ Re z ≤ 0.

Proof. It is easy to verify the limits limp→±∞∆L(p) =∞ and check that ∆L(0) = 0
and ∆′L(0) = 1. Using

∆′′L(z) = β

∫ 0

−1

∫ σ+1

σ

τ2ezτdτdσ (3.3)

we see that ∆′′L(p) > 0 for p ∈ R, which completes the proof of the statements
concerning the real roots of the characteristic equation.

Suppose now that ∆L(p+ iq) = 0 for some q ∈ R and z− ≤ p ≤ 0. Isolating the
real part of this equation, we find

β

∫ 0

−1

∫ σ+1

σ

epτ cos(qτ)dτdσ = β − p. (3.4)

However, properties of the cosine together with the observation ∆L(p) ≤ 0 yield
the inequalities

β

∫ 0

−1

∫ σ+1

σ

epτ cos(qτ)dτdσ ≤ β
∫ 0

−1

∫ σ+1

σ

epτdτdσ ≤ β − p. (3.5)

Observing that equality can hold only when p ∈ {z−, 0} and q = 0 completes the
proof.
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Since a Wiener-Hopf triplet is not readily available for L, let us incorporate the
system (3.1) into the family of MFDEs

x′(ξ) = Γ(µ)evξx := βx(ξ)− β
∫ 0

−1
(1 + σ)x(ξ + σ)dσ − β

∫ 1

0
(1− σ)x(ξ + σ)dσ

−(1− µ)
[
βx(ξ + 1)− 1

βx(ξ − 1)
]

= L evξx− (1− µ)
[
βx(ξ + 1)− 1

βx(ξ − 1)
]
,

(3.6)
parametrized by µ ∈ [0, 1]. We easily find

∆Γ(µ)(z) = ∆L(z) + (1− µ)
[
βez − 1

β
e−z
]
. (3.7)

Notice that Γ(1) = L, while Γ(0) admits the Wiener-Hopf factorization

z∆Γ(0)(z) = ∆L−(z)∆L+(z), (3.8)

in which the characteristic matrices

∆L−(z) = z +
∫ 0

−1
ezσdσ − 1

β e
−z,

∆L+
(z) = z − β + βez,

(3.9)

correspond, respectively, to the delayed equation

w′(ξ) = L− evξw := −
∫ 0

−1

w(ξ + σ)dσ +
1

β
w(ξ − 1) (3.10)

and the advanced equation

v′(ξ) = L+ evξv := βv(ξ)− βv(ξ + 1). (3.11)

We now set out to compute n]Γ(0)(η) for sufficiently small |η|. We will need to

use the following two results.

Lemma 3.2. Assume that (HP) holds and that ∆L+(z) = 0 for some z ∈ C. Then
either z = 0 or z /∈ R with Re z > 0.

Proof. It is easy to check that ∆L+(0) = 0. Since ∆′L+
(p) = 1 + βep > 0 for all

p ∈ R, this is the only real root. Now suppose that ∆L+
(p+ iq) = 0 for some pair

p ≤ 0 and q ∈ R. Isolating the real part of the characteristic equation, we find

βep cos q = β − p. (3.12)

On the other hand, using ∆L+(p) ≤ 0, we find

βep cos q ≤ βep ≤ β − p, (3.13)

with equality only when p = 0 and q ∈ 2πN. Noticing that Im ∆L+
(2πi`) = 2π` for

any integer ` completes the proof.

Lemma 3.3. Assume that (HP) holds and that ∆L−(z) = 0 for some z ∈ C. Then
we have Re z < 0.

Proof. Notice first that ∆L−(0) = 1− 1
β > 0. Second, observe that

∆′L−(z) = 1 +
1

β
e−z +

∫ 0

−1

σezσdσ. (3.14)

An easy computation shows that for p ≥ 0 we have

− 1

2
≤
∫ 0

−1

σepσdσ < 0, (3.15)
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which means that ∆′L−(p) > 0 and also ∆L−(p) > 0 for all p ≥ 0. In addition, for

any q 6= 0 we have

q−1 Im ∆L−(p+ iq) = 1 + 1
β e
−p sin q

q +
∫ 0

−1
epσ sin qσ

q dσ. (3.16)

For the remainder of the proof, let us fix p ≥ 0. This allows us to obtain the
estimate

q−1 Im ∆L−(p+ iq) ≥ 1 + 1
β e
−p sin q

q −
∣∣∣∫ 0

−1
epσ sin qσ

q dσ
∣∣∣

≥ 1 + 1
β e
−p sin q

q −
∣∣∣∫ 0

−1
σepσdσ

∣∣∣
≥ 1

2 + 1
β e
−p sin q

q .

(3.17)

For 0 < q < π we have sin q > 0 and hence also q−1 Im ∆L−(p+ iq) > 0. For q ≥ π
we find

q−1∆L−(p+ iq) ≥ 1

2
− 1

πβ
e−p >

1

2
− 1

π
> 0, (3.18)

which in view of the symmetry q 7→ −q completes the proof.

The formula (2.16) can now be used to conclude that n]Γ(0)(η) = 1 for all suf-

ficiently small |η|. Before Theorem 2.5 can be applied to calculate n]L(η), we will
need to check whether ∆Γ(µ)(z) = 0 admits roots in the vicinity of the imaginary
axis as the parameter µ is varied.

Lemma 3.4. Assume that (HP) holds. For every µ ∈ [0, 1), the characteristic
equation ∆Γ(µ)(z) = 0 has no roots with Re z = 0.

Proof. For convenience, let us write µ = 1−µ. Note that ∆Γ(µ)(0) = µ(β−β−1) > 0
for all µ > 0. It therefore suffices to show that ∆Γ(µ)(iq) 6= 0 for all q > 0 and
µ ∈ [0, 1). Assuming the contrary, we obtain the system

βq2 = 2β − 2β cos q + µq2(β − β−1) cos q,
q = −µ(β + β−1) sin q.

(3.19)

In view of β > 1 and q > 0, the second line implies that we must have sin q < 0 and

hence q > π. Using sin q = −
√

1− cos2 q, this implies

µ2β−2(β2 + 1)2[1− cos2 q] > π2. (3.20)

Furthermore, substituting the second line of (3.19) into the first line and using the
fact that sin q 6= 0, we find the second order equation

0 = µ3(β2 − 1)(β2 + 1)2 cos2 q + (β2 + 1)2µ2(µ(β2 − 1)− β2) cos q
+2β4 − β2µ2(β2 + 1)2.

(3.21)

This implies that

1− cos2 q = 1 + 2β4−β2µ2(β2+1)2

µ3(β2−1)(β2+1)2
+ µ(β2−1)−β2

µ(β2−1) cos q

= (µ3(β2−1)−µ2β2)(β2+1)2+2β4

µ3(β2−1)(β2+1)2
+ µ(β2−1)−β2

µ(β2−1) cos q

= µ(β2−1)−β2

µ(β2−1) (1 + cos q) + 2β4

µ3(β2−1)(β2+1)2

(3.22)

and leads to the inequality

µ(µ(β2 − 1)− β2)(β2 + 1)2

β2(β2 − 1)
(1 + cos q) +

2β2

µ(β2 − 1)
> π2. (3.23)
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Solving the quadratic equation (3.21) yields

1 + cos q = β2+µ(β2−1)
2µ(β2−1)

[
1±

√
1− 8 β4

(β2+1)2(β2+µ(β2−1))2
β2−1
µ

]
> 2β4

µ2(β2+1)2(β2+µ(β2−1))
.

(3.24)

Here we have used the inequality

1 +
√

1− x ≥ 1−
√

1− x > 1

2
x, (3.25)

which holds for any 0 < x ≤ 1. Since µ(β2 − 1) < β2, the inequality (3.23) now
leads to

π2 <
2β2

µ(β2 − 1)

[µ(β2 − 1)− β2

β2 + µ(β2 − 1)
+ 1

]
=

4β2

β2 + µ(β2 − 1)
< 4, (3.26)

which clearly is a contradiction.

Corollary 3.5. Assume that (HP) holds. Then for any sufficiently small ε > 0,
we have the identities

n]L(−ε) = 0, n]L(+ε) = 1. (3.27)

Proof. Lemma 3.4 guarantees that we only have to consider the trajectory of the
simple root z = 0 of the characteristic equation ∆Γ(µ)(z) = 0 at µ = 1 as this
parameter is varied. Writing this root as z∗(µ), we may use the implicit function
theorem to compute

dz∗
dµ
|µ=1= −[∆′Γ(1)(0)]−1[

d

dµ
∆Γ(µ)(0)]|µ=1 = β − β−1 > 0. (3.28)

Thus as µ increases to one, the root z∗(µ) crosses the line Re z = −ε from left to
right for all sufficiently small ε > 0, but it does not cross the line Re z = +ε. In the
terminology of Theorem 2.5, this means that cross(Γ,−ε) = 1 and cross(Γ,+ε) = 0,
which concludes the proof.

We conclude from Proposition 2.4 that the initial value problem (1.11) with L as
in (3.1) is well-posed with respect to the space BC⊕+ε for every small ε > 0. Notice
that the equation ∆L(z) = 0 admits only the simple root z = 0 on the imaginary
axis, which contributes a constant eigenfunction. This allows us to use Lemma 5.4
to strengthen our result slightly and state that (1.11) is also well-posed with respect
to BC⊕0 .

3.2. Well-posedness of an MFAE. Our second example features the algebraic
equation

0 = M evξ x := −A(ρ)x(ξ) +

∫ 0

−1

x(ξ+ σ)(1 + σ)dσ+

∫ 1

0

x(ξ+ σ)(1− σ)dσ (3.29)

with ρ > 0, in which the constant A(ρ) is given by

A(ρ) =

∫ 1

0

e−ρσdσ

∫ 1

0

eρσdσ = 2ρ−2(cosh ρ− 1) > 1. (3.30)

This equation is encountered [4, 8] when one studies an overlapping generations
model that is similar to the one described in the introduction, but now with a
discounted welfare function

W (s) =

∫ s+1

s

e−ρτ ln c(s, τ)dτ, (3.31)
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fixed wages w(t) = 1 and a population that grows at the rate eρt. Nonlinear versions
of this model are discussed in [8], but we restrict ourselves to the linear case here.
The function p appearing in (3.29) is related to the interest rate by means of

x(ξ) = exp[−
∫ ξ

0

r(τ)dτ ]. (3.32)

The characteristic equation associated to (3.29) is given by

δM (z) = A(ρ)−
∫ 0

−1

(1 + σ)ezσdσ −
∫ 1

0

(1− σ)ezσdσ. (3.33)

Lemma 3.6. There exists η∗ > 0 such that the characteristic equation δM (z) = 0
has precisely two real roots z = ±η∗ and no other complex roots in the strip −η∗ ≤
Re z ≤ η∗.

Proof. Notice first that δM (−z) = δM (z) and δM (0) = A(ρ)− 1 > 0. For z 6= 0, we
will use the representation

δM (z) = A(ρ)− z−2
[
ez + e−z − 2

]
. (3.34)

Differentiation yields

− z3e−zδ′M (z) = ℘(z) := z − 2 + 4e−z − (2 + z)e−2z. (3.35)

Since ℘(0) = ℘′(0) = 0 and

℘′′(p) = 4e−2p(ep − p− 1) > 0 (3.36)

for all p > 0, Taylor’s formula implies that δ′M (p) < 0 for p > 0, which establishes
that δM (z) = 0 has precisely two real roots z = ±η∗, for some η∗ > 0.

Let us now write δ̃M (z) = z2δM (z) and compute

Re δ̃M (p+ iq) = A(ρ)(p2 − q2) + 2− (ep + e−p) cos q,

Im δ̃M (p+ iq) = 2A(ρ)pq − (ep − e−p) sin q.
(3.37)

It is not hard to verify that δ̃M (iq) 6= 0 for all q 6= 0. Let us assume therefore that

δ̃M (p+ iq) = 0 for some 0 < p ≤ η∗. The second line of (3.37) can be used to isolate
an expression for q. Substituting this into the q2 term in the first line of (3.37) and
using sin2 q + cos2 q = 1, we see that

0 = (ep − e−p)2 cos2 q − 4A(ρ)p2(ep + e−p) cos q
+
[
4p4A(ρ)2 + 8A(ρ)p2 − (ep − e−p)2

]
,

(3.38)

which can be solved to yield the solutions cos q = c∗±, with

c∗± = ±1 + 2p2A(ρ)
(e

1
2p ∓ e− 1

2p)2

(ep − e−p)2
. (3.39)

Since c∗+ > 1, we need only consider c∗−. Our assumption on p implies δ̃M (p) ≥ 0,
which means

p2A(ρ) ≥ (e
1
2p − e− 1

2p)2. (3.40)

We thus find c∗− ≥ 1 with equality if and only if p = η∗, in which case the second
line of (3.37) immediately yields q = 0.
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An easy integration by parts yields

zδM (z) = A(ρ)∆L(z) = A(ρ)z −
∫ −1

0

ezσdσ −
∫ 1

0

ezσdσ, (3.41)

which shows that (3.30) is closely related to the MFDE

x′(ξ) = L evξx := A(ρ)−1

∫ −1

0

x(ξ + σ)dσ +A(ρ)−1

∫ 1

0

x(ξ + σ)dσ. (3.42)

In view of Theorem 2.6, we now set out to compute n]L(−ε) for sufficiently small ε >
0. Noting the symmetry δM (−z) = δM (z), let us consider the retarded differential
equation

v′(ξ) = L−evξv := iA(ρ)−
1
2 [v(ξ − 1)− v(ξ)], (3.43)

together with the advanced differential equation

v′(ξ) = L+evξv := iA(ρ)−
1
2 [v(ξ)− v(ξ + 1)]. (3.44)

The associated characteristic functions satisfy

∆L−(z) = z − iA(ρ)−
1
2 (e−z − 1),

∆L+(z) = z + iA(ρ)−
1
2 (ez − 1)

(3.45)

and obviously ∆L−(−z) = −∆L+
(z). A simple computation yields

∆L−(z)∆L+
(z) = z2 − izA(ρ)−

1
2

(
e−z − ez

)
+A(ρ)−1

[
2− ez − e−z

]
= z2 − izA(ρ)−

1
2

(
e−z − ez

)
−zA(ρ)−1[

∫ −1

0
ezσdσ +

∫ 1

0
ezσdσ]

= z
[
∆L(z)− iA(ρ)−

1
2

(
e−z − ez

)]
.

(3.46)

Let us therefore embed (3.42) into the family of MFDEs

p′(ξ) = Γ(µ)evξp := A(ρ)−1
∫ −1

0
p(ξ + σ)dσ +A(ρ)−1

∫ 1

0
p(ξ + σ)dσ

+i(1− µ)A(ρ)−
1
2 p(ξ − 1)

−i(1− µ)A(ρ)−
1
2 p(ξ + 1).

(3.47)

Notice that Γ(1) = L, while

∆Γ(µ) = ∆L(z)− i(1− µ)A(ρ)−
1
2

(
e−z − ez

)
(3.48)

and Γ(0) admits the Wiener-Hopf factorization

z∆Γ(0) = ∆L−(z)∆L+
(z). (3.49)

Lemma 3.7. Suppose that ∆L−(z) = 0 for some z ∈ C. Then either z = 0 or
Re z < 0. The root at z = 0 is a simple root, i.e., ∆′L−(0) 6= 0.

Proof. The identities ∆L−(0) = 0 and ∆′L−(0) = 1 + iA(ρ)−
1
2 6= 0 can be verified

directly. Observe furthermore that

Re ∆L−(p+ iq) = p−A(ρ)−
1
2 e−p sin q,

Im ∆L−(p+ iq) = q +A(ρ)−
1
2

[
1− e−p cos q

]
.

(3.50)

Looking for solutions to ∆L−(z) = 0, we may use the identity sin2 q+ cos2 q = 1 to
find

e2p
(
A(ρ)q2 + 2A(ρ)

1
2 q +A(ρ)p2 + 1− e−2p

)
= 0, (3.51)

which can be solved to yield

q = q±(p) = −A(ρ)−
1
2

[
1±

√
e−2p −A(ρ)p2

]
. (3.52)
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Let us now suppose that p ≥ 0 and that q±(p) ∈ R. Recalling that A(ρ) > 1, we
may estimate

0 ≥ q±(p) = −A(ρ)−
1
2

∣∣∣1±√e−2p −A(ρ)p2
∣∣∣ ≥ −2A(ρ)−

1
2 > −2 > −π, (3.53)

which in view of the requirement

sin q = pepA(ρ)
1
2 ≥ 0 (3.54)

implies that q = 0 and hence also p = 0.

In view of the symmetry ∆L−(z) = −∆L+
(−z), we may now conclude that

n]Γ(0)(−ε) = n+
L+

(−ε)− n−L−(−ε) + n0
z(−ε) = 0− 1 + 1 = 0 (3.55)

for any sufficiently small ε > 0. The transition from Γ(0) to Γ(1) is studied in the
following result.

Lemma 3.8. Besides the simple root at z = 0, the characteristic equation ∆Γ(µ)(z) =
0 has no roots on the imaginary axis for any µ ∈ [0, 1].

Proof. The statement concerning the simple root at z = 0 can be verified directly.
Let us therefore suppose that ∆Γ(µ)(iq) = 0 for some µ ∈ [0, 1] and q ∈ R \ {0}, i.e.,

A(ρ)∆Γ(µ)(iq) = −2(1− µ)A(ρ)
1
2 sin q + iq−1

[
q2A(ρ)− 2 + 2 cos q] = 0. (3.56)

Using a Taylor expansion, we find that for any q > 0 there exists 0 < q′ < q such
that

q2A(ρ)− 2 + 2 cos q =
1

2
q2[2A(ρ)− 2 cos q′] > 0. (3.57)

A similar argument works for q < 0.

Using Theorem 2.5 we hence conclude that n]L(−ε) = 0 for all sufficiently small
ε > 0. In view of Theorem 2.6, this means that the initial value problem (1.12) with
M as in (3.29) is not well-posed with respect to the space BC⊕0 .

To repair this, let us recall the constant η∗ that appears in Lemma 3.6. We
consider any η > η∗ that is sufficiently close to η∗ to ensure that δM (z) = 0 only
has the simple root z = η∗ in the strip 0 ≤ Re z ≤ η. Writing L′ for the operator
L′φ = Lφ− ηA(ρ)−1Mφ, we find

(z − η)δM (z) = A(ρ)∆L(z)− ηδM (z) = A(ρ)∆L′(z). (3.58)

Notice that there is a bijective correspondence between the roots of the equation
∆L′(z) = 0 and those of ∆L(z) = 0. The simple root at z = 0 of the latter equation
is moved to z = η, but the rest of the roots remain fixed. An application of Theorem
2.5 hence yields

n]L′(η − ε) = 1 + n]L(−ε) = 1 (3.59)

for all sufficiently small ε > 0. We hence see that the initial value problem (1.12)
with M as in (3.29) is well-posed with respect to the space BC⊕η . Since z = η∗ is
a simple root of ∆L′(z) = 0, we can argue as for the previous example that this
well-posedness also holds with respect to the space BC⊕η∗ .
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4. Continuity of n]. In this section we prove Theorem 2.5. We will proceed much
along the lines of [22, §5] and show how the Wiener-Hopf splitting (2.15) can be
obtained in a fashion that is robust under small perturbations of L. Let us start by
considering the equation

x′(ξ) = L evξx (4.1)

for some bounded linear operator L : C([rmin, rmax],Cn) → Cn. Our first result

implies that once n]L(η) is known for a specific value of η, one only needs to study

the characteristic equation det ∆L(z) = 0 to obtain n]L(η) for all other appropriate
values of η. In particular, one does not need to have a Wiener-Hopf triplet for L.

Lemma 4.1. Consider the system (4.1) and suppose that (HL) is satisfied. Pick any
two real numbers η1 < η2 and suppose that the characteristic equation det ∆L(z) = 0
has m roots in the vertical strip η1 ≤ Re z ≤ η2, in which each root is counted
according to its multiplicity. Suppose furthermore that each of these roots has η1 <
Re z < η2. Then we have the identity

n]L(η2) = n]L(η1) +m. (4.2)

Proof. Choose a monic polynomial p that has degree n and has p(z) 6= 0 for all
Re z ≥ η1. Proposition 2.2 guarantees that there exist linear operators L− ∈
L(C([rmin, 0],Cn),Cn) and L+ ∈ L(C([0, rmax],Cn),Cn) such that

p(z) det ∆L(z) = det ∆L−(z) det ∆L+(z). (4.3)

Using n0
p(η1) = n0

p(η2) = 0, this allows us to compute

n]L(ηi) = n+
L+

(ηi)− n−L−(ηi) (4.4)

for i = 1, 2. Let us write m+ for the number of roots of the characteristic equation
det ∆L+(z) = 0 that have η1 < Re z < η2 and m− for the analogous quantity
associated to the equation det ∆L− = 0. As usual, each root should be counted
according to its multiplicity. In view of (4.3), we must have m = m+ + m−. It
is easy to see that n+

L+
(η2) = n+

L+
(η1) + m+ and n−L−(η2) = n−L−(η1) −m−. The

identity (4.2) now follows immediately from (4.4).

We now move on to study parameter-dependent versions of (4.1). To set the
stage, let us pick any µ0 ∈ R and consider a C0-smooth map

L : U → L
(
C([rmin, rmax],Cn),Cn

)
, (4.5)

in which U is an open interval containing µ0. We will assume that L(µ) satisfies
(HL) for every µ ∈ U .

The next result states that for sufficiently negative η, solutions in QL(µ)(η) au-
tomatically satisfy a retarded differential equation that depends continuously on
the parameter µ. Of course an analogous result holds for the space PL(η) if η is
sufficiently large. We remark that we will use the notation

π− : C
(
[rmin, rmax],Cn

)
→ C

(
[rmin, 0],Cn

)
, φ 7→ φ|[rmin,0]. (4.6)

Lemma 4.2. Pick any sufficiently negative η ∈ R. Then there exists an open set
U ′ ⊂ U with µ0 ∈ U ′, together with a C0-smooth map

L− : U ′ → L
(
C([rmin, 0],Cn),Cn

)
(4.7)

such that the differential equation

v′(ξ) = L−(µ)π−evξv, ξ ≥ 0, (4.8)
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holds for any µ ∈ U ′ and v ∈ QL(µ)(η).

Proof. For convenience, let us use the shorthand L0 = L(µ0). As established in [22,
Lem. 5.5], we can ensure that the map

π−QL0
(η) : QL0

(η)→ C([rmin, 0],Cn) (4.9)

is injective by choosing η to be sufficiently close to −∞. Without loss of generality,
we may assume that det ∆L0(z) = 0 has no roots with Re z = η. Using techniques
very similar to those developed in [17, §5], we can construct a C0-smooth operator

u∗ : U ′ → L
(
QL0

(η), C([rmin, rmax],Cn)
)
, (4.10)

with u∗(µ0) = I, in such a way that QL(µ)(η) = u∗(µ)
(
QL0

(η)).

Write R = Range
(
π−QL0

(η)

)
⊂ C([rmin, 0],Cn) and observe that the Fredholm

properties in Proposition 2.1 imply that this space is closed and of finite codi-
mension. This allows us to fix a finite dimensional complement R⊥ such that
R ⊕ R⊥ = C([rmin, 0],Cn). We will write πR and πR⊥ for the accompanying pro-
jections.

We now introduce, for any µ ∈ U ′, the linear map Ψ(µ) : R ⊕ R⊥ → R ⊕ R⊥
that acts as

Ψ(µ)
(
ψ,ψ⊥

)
=
(
πRπ

−u∗(µ)[π−QL0
(η)]
−1ψ,ψ⊥ + πR⊥π

−u∗(µ)[π−QL0
(η)]
−1ψ

)
. (4.11)

Note that Ψ depends C0-smoothly on µ when viewed as a map from U ′ into
L
(
C([rmin, 0],Cn)

)
, with Ψ(µ0) = I. This means that Ψ(µ) is invertible for all

µ ∈ U ′, possibly after decreasing the size of U ′.
As in [22, §5], we define L−(µ0) by writing L−(µ0)φ = L0[π−QL0

(η)]
−1φ for φ ∈ R

and arbitrarily extending L−(µ0) to a bounded linear map on C([rmin, 0],Cn). We
are now in a position to define

L−(µ)φ = L−(µ0)πR⊥ [Ψ(µ)]−1φ+ L(µ)u∗(µ)[π−QL0
(η)]
−1πR[Ψ(µ)]−1φ. (4.12)

Recall that for any ϕ ∈ QL(µ)(η), there exists ρ ∈ QL0
(η) such that ϕ = u∗(µ)ρ.

Writing ψ = π−ρ ∈ R, we obviously have ρ = [π−QL0
(η)]
−1ψ and hence ϕ =

u∗(µ)[π−QL0
(η)]
−1ψ. This means π−ϕ = Ψ(µ)(ψ, 0) and hence L−(µ)π−ϕ = L(µ)ϕ,

as desired.

We are now ready to study the characteristic equations

∆L(µ)(z) = zI − L(µ)ez·I,
∆L±(µ)(z) = zI − L±(µ)ez·I,

(4.13)

in which the operators L±(µ) are those that are defined by Lemma 4.2 and its
analogue for PL(η). As a consequence of this result, the functions (z, µ) 7→ ∆L(µ)(z)
and (z, µ) 7→ ∆′L(µ)(z) are continuous, as are (z, µ) 7→ ∆L±(µ)(z) and (z, µ) 7→
∆′L±(µ)(z). Notice in addition that

∆L(µ)(z) = zI +O(1), Im z → ±∞, (4.14)

uniformly for z in vertical strips of the complex plane and µ in compact subsets of
U ′. Such estimates also hold for the characteristic matrices ∆L±(µ).

Let us pick η− sufficiently close to −∞ and η+ sufficiently close to +∞ in such
a way that η− < η+ holds, that π−QL(µ0)(η−) and π+

PL(µ0)(η+) are both injective and
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that det ∆L±(µ0)(z) 6= 0 and det ∆L(µ0)(z) 6= 0 for all z with Re z ∈ {η−, η+}. This
choice enables us to define the sets

Σµ = {z ∈ C | det ∆L(µ)(z) = 0 and η− ≤ Re z ≤ η+},
Σ±µ = {z ∈ C | det ∆L±(µ)(z) = 0 and η− ≤ Re z ≤ η+},

(4.15)

for µ ∈ U ′, in which each root is included according to its multiplicity, together
with the associated polynomials

℘µ(z) =
∏
λ∈Σµ

(z − λ),

℘±µ (z) =
∏
λ∈Σ±µ

(z − λ).
(4.16)

We also write

%µ(z) = [det ∆L(µ)(z)]
−1 det ∆L+(µ)(z) det ∆L−(µ)(z)

℘µ(z)

℘+
µ (z)℘−µ (z)

. (4.17)

Lemma 4.3. There exists an open subset U ′ ⊂ U , with µ0 ∈ U ′, such that the
elements of Σµ and Σ±µ depend continuously on µ ∈ U ′, with

#Σµ = #Σµ0
, #Σ±µ = #Σ±µ0

. (4.18)

In addition, for every µ ∈ U ′, the function %µ is a polynomial of degree

deg %µ = n+ #Σµ0 −#Σ+
µ0
−#Σ−µ0

. (4.19)

The roots of this polynomial vary continuously with µ.

Proof. The estimate (4.14) ensures that the elements in the sets Σ±µ and Σµ can be
a-priori bounded. The identities (4.18) now follow immediately from the argument
principle.

To see that %µ is an entire function, it suffices to check that this function has no
poles λ with Reλ < η− or Reλ > η+. Supposing to the contrary that such a pole
does exist, we have that z = λ is a root of order ` ≥ 1 for the characteristic equation
det ∆L(µ)(λ) = 0. Without loss of generality, we will assume that Reλ < η−. Let

us now consider any polynomial p for which the function x(ξ) = eλξp(ξ) satisfies
x ∈ QL(µ)(η−). Lemma 4.2 implies that x also satisfies the delay equation x′(ξ) =

L−(µ)π−evξx, which implies that z = λ is a root of the characteristic equation
det ∆L−(µ)(z) = 0 of order ` or greater. This yields a contradiction.

Proceeding similarly as in the proof of [22, Thm 5.1], a theorem of Phragmén-
Lindelöf type ensures that for each µ ∈ U ′, the function

z 7→ rµ(z) := z−n%µ(z)
℘+
µ (z)℘−µ (z)

℘µ(z)
(4.20)

is a rational function with rµ(∞) = 1. Combining (4.20) with (4.18) now shows
that %µ must be a polynomial of the degree specified by (4.19). An additional
application of the argument principle shows that the roots of this polynomial depend
continuously on µ.

Notice that the identity (4.17) resembles the Wiener-Hopf factorization (2.15).
Using the root-swapping techniques developed in [22, §5], the superfluous polyno-
mial factors in (4.17) can be systematically eliminated. We describe this process

in the proof of the next result, which essentially tells us how n]L(µ)(η) can be de-

termined directly from (4.17). The continuity of the elements of Σµ and Σ±µ can

subsequently be used to show that n]L(µ)(η) is invariant under small changes of µ,

as long as the line Re z = η avoids the eigenvalues associated to L(µ) and L±(µ).
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Lemma 4.4. Consider any η ∈ R for which the characteristic equations

det ∆L(µ0)(z) = 0, det ∆L±(µ0)(z) = 0 (4.21)

have no roots with Re z = η. Then there exists an open set U ′ ⊂ U , with µ0 ∈ U ,
such that

n]L(µ)(η) = n]L(µ0)(η) (4.22)

for all µ ∈ U ′.

Proof. Pick any monic polynomial p of degree n such that p(z) = 0 admits no roots
with Re z ≥ η. For the moment, we fix a µ ∈ U that is sufficiently close to µ0.
Our goal is to define, for some integer `∗ > 1, a sequence of monic polynomials
q`in and q`out together with a sequence of operators L`− ∈ L(C([rmin, 0],Cn),Cn)

and L`+ ∈ L(C([0, rmax],Cn),Cn), that are indexed by 1 ≤ ` ≤ `∗ and satisfy the
following properties.

(i) For every 1 ≤ ` < `∗ we have

deg q`+1
in = deg q`+1

out < deg p`in = deg p`out. (4.23)

(ii) For every 1 ≤ ` ≤ `∗, the equations q`in(z) = 0 and q`out(z) = 0 do not admit
roots with Re z = η.

(iii) We have deg q`∗in = deg q`∗out = 0.
(iv) For every 1 ≤ ` ≤ `∗, the following factorization holds,

p(z) det ∆L(µ)(z) =
det ∆L`−

(z) det ∆L`+
(z)q`in(z)

q`out(z)
. (4.24)

Notice that once we have found such a sequence, items (iii) and (iv) imply that

the set (p, L`∗− , L
`∗
+ ) is a Wiener-Hopf triplet for L, which will allow us to compute

n]L(µ)(η).

Let us introduce the quantities

ñ`+ = #{z ∈ C | det ∆L`+
(z) = 0 and Re z < η},

ñ`− = #{z ∈ C | det ∆L`−
(z) = 0 and Re z > η}, (4.25)

together with

m̃`
+,in = #{z ∈ C | q`in(z) = 0 and Re z > η},

m̃`
−,in = #{z ∈ C | q`in(z) = 0 and Re z < η},

m̃`
+,out = #{z ∈ C | q`out(z) = 0 and Re z > η},

m̃`
−,out = #{z ∈ C | q`out(z) = 0 and Re z < η}.

(4.26)

We claim that we can define the sequences mentioned above in such a way that the
following identity holds for all 1 ≤ ` ≤ `∗,

n]L(µ)(η) = ñ`+ − ñ`− −
1

2

[
m̃`

+,in − m̃`
−,in + m̃`

−,out − m̃`
+,out

]
. (4.27)

The definition of n]L(µ)(η) given in (2.16) implies that (4.27) certainly holds for

` = `∗, so we will only need to prove that the right hand side of (4.27) is invariant.
To establish our claims, we start by remarking that (iv) is satisfied for ` = 1 if

we write L1
± = L±(µ) and

q1
in(z) = ℘µ(z)p(z),
q1
out(z) = ℘+

µ (z)℘−µ (z)%µ(z).
(4.28)
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Lemma 4.3 implies that q1
in and q1

out have the same degree and that (ii) holds for
` = 1.

We now iteratively define q`+1
in , q`+1

out and L`+1
± by arbitrarily choosing a root

z = λout of the equation q`out(z) = 0 and writing

q`+1
out (z) = q`out(z)/(z − λout). (4.29)

Since the left hand side of (4.24) is analytic in z, at least one of the following three
recipes can be followed.

(A) Suppose that q`in(λout) = 0. Write q`+1
in (z) = q`in(z)/(z − λout) and keep

L`+1
± = L`± fixed. If λ > η, both m̃+,in and m̃+,out will decrease by one,

which ensures that the right hand side of (4.27) does not change. A similar
argument works if λ < η.

(B) Suppose that det ∆`
L`−

(λout) = 0. In view of (i), there exists λin ∈ C for which

q`in(λin) = 0. We may now use [22, Lem. 5.8] to construct L`+1
− in such a way

that

det ∆L`+1
−

(z) =
z − λin

z − λout
det ∆L`−

(z). (4.30)

Furthermore, we keep L`+1
+ = L`+ fixed and write

q`+1
in (z) = q`in(z)/(z − λin). (4.31)

If λout and λin lie on the same side of η, none of the quantities in (4.25) and
(4.26) change. If λin < η < λout, then ñ− will decrease by one. However, both
m̃−,in and m̃+,out will decrease by one, ensuring that the right hand side of
(4.27) remains invariant. The remaining case λout < η < λin can be treated
similarly.

(C) Suppose that det ∆`
L`+

(λ) = 0. One can proceed similarly as in (B), now

applying [22, Lem. 5.8] to construct L`+1
+ .

To complete the proof, it now suffices to observe that our choice (4.28) allows
Lemma 4.3 to be invoked. This allows us to establish that the quantities ñ1

±, m̃1
±,in

and m̃1
±,out will not depend on µ ∈ U ′ as long as U ′ is chosen to be sufficiently

small.

Proof of Theorem 2.5. For every µ ∈ [0, 1], one may choose a suitable ηµ ∈ R and
use Lemma 4.4 to find an open neighbourhood U ′µ ⊂ [0, 1], with µ ∈ U ′, for which
the identity

n]Γ(µ′)(ηµ) = n]Γ(µ)(ηµ) (4.32)

holds for all µ′ ∈ U ′µ. The intervals U ′µ ⊂ [0, 1] clearly form an open covering of
[0, 1], allowing us to extract a finite set µ1 < µ2 < . . . < µN with the property that
[0, 1] = U ′µ1

∪ . . . ∪ U ′µN . In view of Lemma 4.1, we will assume that µ1 = 0 and
µN = 1, with ηµ1

= ηµN = η. Since the interval [0, 1] is connected, we may choose
µj+ 1

2
for j = 1, . . . , N − 1 that satisfy µj+ 1

2
∈ U ′µj ∩ U

′
µj+1

. Using Lemma 4.1 we
may compute

n]Γ(1)(η)− n]Γ(0)(η) =
∑N−1
j=1 #{z ∈ C | det ∆Γ(µ

j+1
2

)(z) = 0

and ηµj < Re z < ηµj+1
}

−
∑N−1
j=1 #{z ∈ C | det ∆Γ(µ

j+1
2

)(z) = 0

and ηµj+1
< Re z < ηµj},

(4.33)
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in which each root is counted according to its multiplicity. The formula (2.20) can
now be easily verified.

5. Functional algebraic equations of mixed type. In this section, we set out
to prove Theorem 2.6. To this end, we will study the algebraic equation

0 = M evξx (5.1)

for some bounded linear operator M : C([rmin, rmax],Cn)→ Cn. Let us first intro-
duce the exponentially weighted space

BC+
η := {x ∈ C

(
[0,∞),Cn

)
| supξ≥0 e

−ηξ |x(ξ)| <∞}. (5.2)

In addition, let us recall the space NBV([rmin, rmax],Cn×n) that contains all Cn×n-
valued functions µ that are defined on the interval [rmin, rmax], are right-continuous
on the interval (rmin, rmax), have bounded total variation and have µ(rmin) = 0.

As a consequence of the Riesz representation theorem, there exists a unique

µ ∈ NBV([rmin, rmax],Cn×n) (5.3)

for which the representation

Mφ =

∫ rmax

rmin

dµ(σ)φ(σ) (5.4)

holds for all φ ∈ C([rmin, rmax],Cn).
Throughout this section, we will assume that for some integer ` ≥ 1, the function

µ appearing in (5.4) can be embedded into a sequence

µi ∈ NBV([rmin, rmax],Cn×n), i = 1, . . . , `, (5.5)

that has µ` = µ and satisfies the following properties.

(hµ1) For any integer 1 ≤ i ≤ `− 1 and σ ∈ [rmin, rmax], we have

µi(σ) = −Dµi+1(σ). (5.6)

(hµ2) For any integer 1 ≤ i ≤ `− 1, we have µi(rmax) = 0.
(hµ3) There exists ζ ∈ NBV([rmin, rmax],Cn×n) for which

µ1(σ) = −H(σ) +
∫ σ
rmin

ζ(τ)dτ, (5.7)

with H(σ) = 1 for all σ ≥ 0 and H(σ) = 0 for all σ < 0.

We remark that [15, Prop. 3.1] shows that, up to a multiplicative constant, the
linear operator M satisfies these criteria if and only if M satisfies the condition
(HM) appearing in §2.

Using the function ζ appearing in (hµ3), we introduce the function

µ∗ ∈ NBV([rmin, rmax],Cn×n) (5.8)

that is given by

µ∗(σ) = −ζ(σ) + ζ(rmax)H(σ − rmax) (5.9)

and consider the associated MFDE

x′(ξ) = L evξx :=
∫ rmax

rmin
dµ∗(σ)x(ξ + σ)

= ζ(rmax)x(ξ + rmax)−
∫ rmax

rmin
dζ(σ)x(ξ + σ).

(5.10)

Introducing the characteristic matrices

δi(z) = −
∫ rmax

rmin

dµi(σ)ezσ (5.11)
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together with

∆L(z) = z −
∫ rmax

rmin

dµ∗(σ)ezσ = z − ermaxzζ(rmax) +

∫ rmax

rmin

dζ(σ)ezσ, (5.12)

we can clarify the relationship between the different measures that we have intro-
duced.

Lemma 5.1. For any integer 1 ≤ i ≤ `, we have the identity

ziδi(z) = ∆L(z). (5.13)

Proof. Using (Hµ3), we see that

δ1(z) = 1−
∫ rmax

rmin

ζ(σ)ezσdσ. (5.14)

Integrating by parts, we compute∫ rmax

rmin

ezσdζ(σ) = ζ(rmax)ermaxz − z
∫ rmax

rmin

ezσζ(σ)dσ, (5.15)

which in combination with (5.12) establishes the claim for i = 1. If 1 < i ≤ `, a
further integration by parts using (hµ1) and (hµ2) yields

δi−1(z) = −
∫ rmax

rmin
dµi−1(σ)ezσ

= z
∫ rmax

rmin
µi−1(σ)ezσdσ

= −z
∫ rmax

rmin
dµi(σ)ezσ

= zδi(z),

(5.16)

which completes the proof.

Lemma 5.2. Consider any φ ∈ C([rmin, rmax],Cn). We have the identity

z
∫ rmax

rmin
dµ1(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτ =

∫ rmax

rmin
dµ∗(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτ

+φ(0) +
∫ rmax

rmin
dµ1(σ)φ(σ).

(5.17)

In addition, for any integer 1 < i ≤ ` we have

z
∫ rmax

rmin
dµi(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτ =

∫ rmax

rmin
dµi−1(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτ

+
∫ rmax

rmin
dµi(σ)φ(σ).

(5.18)

Proof. Setting out to establish (5.17), we observe that∫ rmax

rmin
dµ1(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτ =

∫ rmax

rmin
ζ(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτdσ. (5.19)

An integration by parts shows that∫ rmax

rmin
dµ∗(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτ = z

∫ rmax

rmin
ζ(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτdσ

−
∫ rmax

rmin
ζ(σ)φ(σ)dσ.

(5.20)

Noticing that ∫ rmax

rmin

dµ1(σ)φ(σ) =

∫ rmax

rmin

ζ(σ)φ(σ)dσ − φ(0) (5.21)

completes the proof of (5.17).
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For 1 < i ≤ `, we may use the boundary condition µi−1(rmax) = 0 to compute∫ rmax

rmin
dµi−1(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτ = −z

∫ rmax

rmin
µi−1(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτdσ

+
∫ rmax

rmin
µi−1(σ)φ(σ)dσ

= z
∫ rmax

rmin
dµi(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτ

−
∫ rmax

rmin
dµi(σ)φ(σ),

(5.22)
which establishes (5.18).

We remark that repeated application of Lemma 5.2 yields the identity

φ(0) +
∫ rmax

rmin
dµ∗(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτ = z`

∫ rmax

rmin
dµ`(σ)ezσ

∫ 0

σ
e−zτφ(τ)dτ

−
∑`−1
i=0 z

i
∫ rmax

rmin
dµi+1(σ)φ(σ).

(5.23)
This identity can be used to study the relation between the algebraic equation (5.1)
and the differential equation (5.10).

Lemma 5.3. Consider any η ∈ R and a function x ∈ BC⊕η . Then x solves the
algebraic equation (5.1) for all ξ ≥ 0 if and only if x solves the differential equation
(5.10) for ξ ≥ 0 and in addition satisfies the identities∫ rmax

rmin

dµi(σ)x(σ) = 0 (5.24)

for all integers 1 ≤ i ≤ `.

Proof. Let us consider any x ∈ BC⊕η and define the function v ∈ BC+
η via

v(ξ) = −
∫ rmax

rmin

dµ`(σ)x(ξ + σ). (5.25)

For any z with Re z > η, the Laplace transform ṽ(z) is well-defined and given by

ṽ(z) =
∫∞

0
e−zξv(ξ)dξ = −

∫ rmax

rmin

∫∞
0
dµ`(σ)x(ξ + σ)dξ

= −
∫ rmax

rmin
dµ`(σ)ezσ

(
x̃(z) +

∫ 0

σ
e−zτx(τ)dτ

)
= δ`(z)x̃(z)−

∫ rmax

rmin
dµ`(σ)ezσ

∫ 0

σ
e−zτx(τ)dτ,

(5.26)

in which we have used Fubini’s theorem to change the order of integration. Similarly,
if x ∈ BC⊕η and x′ ∈ BC+

η , then we may write

w(ξ) = x′(ξ)−
∫ rmax

rmin

dµ∗(σ)x(ξ + σ) (5.27)

and compute the Laplace transform w̃(z) for any z with Re z > η. A similar
computation as above and an application of (5.23) yields

w̃(z) = ∆L(z)x̃(z)− x(0)−
∫ rmax

rmin
dµ∗(σ)ezσ

∫ 0

σ
e−zτx(τ)dτ

= ∆L(z)x̃(z)− z`
∫ rmax

rmin
dµ`(σ)ezσ

∫ 0

σ
e−zτx(τ)dτ

+
∑`−1
i=0 z

i
∫ rmax

rmin
dµi+1(σ)x(σ).

(5.28)

Now, suppose that x ∈ BC⊕η satisfies the algebraic equation (5.1). The identities
(5.24) can be easily verified by differentiating (5.1) and subsequently using integra-
tion by parts together with the boundary condition (hµ3). Using [15, Prop 4.2(iii)],
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we may conclude that x′ ∈ BC+
η . This means that the Laplace transform w̃(z) is

well-defined for Re z > η. Comparing (5.26) and (5.28), noting that ṽ(z) = 0 and
using (5.24), we see that also w̃(z) = 0, which implies that x satisfies the differential
equation (5.10). The converse statement can be easily established by inspection of
(5.24), (5.26) and (5.28).

In order to establish Theorem 2.6, we will need to improve our understand-
ing of the criteria (5.24). To do this, we will use the spectral projection Πsp ∈
L
(
C([rmin, rmax],Cn)

)
that is associated to the root z = 0 of the characteristic

equation det ∆L(z) = 0. We recall from [16, §4] that this spectral projection is
given by

[Πspφ](θ) = Resz=0 e
zθ∆L(z)−1

[
φ(0) +

∫ rmax

rmin

dµ∗(σ)ezσ
∫ 0

σ

e−zτφ(τ)dτ
]
. (5.29)

This projection can be used to characterize the difference between the two spaces
QL(±ε).

Lemma 5.4. Suppose that the characteristic equation det ∆L(z) = 0 admits no
roots on the imaginary axis besides z = 0. Then for any sufficiently small ε > 0,
we have the characterization

QL(−ε) = {φ ∈ QL(ε) | Πspφ = 0}, (5.30)

together with the direct sum decomposition

QL(ε) = QL(−ε)⊕ Range(Πsp). (5.31)

Proof. Since QL(−ε) is closed and Range(Πsp) is a finite dimensional subspace of
QL(ε) that intersects trivially with QL(−ε), it suffices to show that (5.30) holds.
Let us therefore consider any x ∈ QL(ε). Using (5.28) and applying the inverse
Laplace transform, we find that x satisfies

x(ξ) = 1
2πi

∫ 2ε+i∞
2ε−i∞ ezξ∆L(z)−1

[
x(0) +

∫ rmax

rmin
dµ∗(σ)ezσ

∫ 0

σ
e−zτx(τ)dτ

]
.

(5.32)
Let us suppose that Πspev0x = 0. Comparing (5.32) with (5.29), we see that the
residue at zero vanishes, allowing the integration contour in (5.32) to be shifted to
the line −2ε+ iR. Arguing similarly as in the proof of [7, Lem. I.5.3.], we may now
conclude that x decays exponentially, which implies x ∈ QL(−ε).

On the other hand, suppose that φ ∈ QL(−ε) satisfies Πspφ = ψ 6= 0. Since ψ is a
polynomial, we see that φ−ψ ∈ QL(ε)\QL(−ε) and by construction Πsp(φ−ψ) = 0.
This contradicts our conclusion above.

Comparing the characterization (5.30) with the identity (2.31) that we wish to
establish, we see that it now suffices to relate the spectral projection Πsp to the
integral criteria (5.24). This is clarified in the following result.

Lemma 5.5. Suppose that det δM (0) 6= 0. Then any φ ∈ C([rmin, rmax],Cn) satis-
fies Πspφ = 0 if and only if ∫ rmax

rmin

dµi(σ)φ(σ) = 0 (5.33)

holds for all integers 1 ≤ i ≤ `.
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Proof. Since ∆L(z) = z`δM (z), we find that ∆L(z)−1 can be written as

∆L(z)−1 = z−`(A0 +A1z + . . .+A`−1z
`−1) +O(1) (5.34)

as z → 0, with detA0 6= 0. Inspecting the representation (5.29) for the spectral
projection Πsp and applying the identity (5.23), we find

−[Πspφ](θ) = Resz=0 z
−`[
∑`−1
j=0

1
j!z

jθj ][
∑`−1
k=0Akz

k]

[
∑`−1
m=0 z

m
∫ rmax

rmin
dµm+1(σ)φ(σ)]

=
∑`−1
j=0 bjθ

j

(5.35)

for some set {b0, . . . , b`−1} ⊂ Cn. Matching powers shows that for any integer
0 ≤ i ≤ `− 1, we have

bi =

`−1−i∑
k=0

Ak

∫ rmax

rmin

dµ`−i−k(σ)φ(σ). (5.36)

In view of the fact that A0 is invertible, the condition b0 = . . . = b`−1 = 0 is
equivalent to the requirement that (5.33) holds for all integers 1 ≤ i ≤ `, which
completes the proof.

Proof of Theorem 2.6. For η = 0, the statement follows by combining Lemma’s 5.3,
5.4 and 5.5. The case η 6= 0 can be treated by applying exponential shifts to the
system (2.23).
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