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Abstract

We analyze a consumption-saving problem with unveri�able savings in which time-inconsistent
preferences generate demand for commitment, but uncertainty about future consumption needs
generates demand for �exibility. We characterize in a standard contracting framework the cir-
cumstances under which this combination is possible, in the sense that a commitment contract
exists that implements the desired state-contingent consumption plan, thus o¤ering both com-
mitment and �exibility. Although we do not impose any restrictions on the set of possible
contracts, we show that commitment contracts� when they exist� take the familiar form of a
long-term savings account that permits some early withdrawals without a penalty, but imposes
a penalty on any further withdrawals. With such an account, an individual is deterred from
making premature withdrawals by the prospect of future selves withdrawing even more at the
penalty rate. The key insight is that time-inconsistent preferences turn a single individual into
a collection of selves with di¤erent preferences but the same information, e¤ectively turning a
single-agent contracting problem into a multi-agent mechanism design problem.
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1 Introduction

Preferences with hyperbolic time discounting, introduced by Strotz (1956),1 are increasingly used

to model individual behavior in a wide variety of settings such as consumer �nance (e.g., Laibson

1996 on savings behavior in general; Laibson, Repetto, and Tobacman 1998 on retirement planning;

DellaVigna and Malmendier 2004 and Shui and Ausubel 2004 on credit card usage; Skiba and To-

bacman 2008 on payday lending; and Jackson 1986 on bankruptcy law), asset pricing (e.g., Luttmer

and Mariotti 2003), and procrastination (e.g., O�Donoghue and Rabin 1999a, 1999b, 2001). In his

original article, Strotz observed that hyperbolic discounting generates demand for commitment.2

While some subsequent papers have analyzed the e¤ectiveness of particular commitment devices

(e.g., Laibson 1997 on illiquid assets such as housing wealth), very few papers have analyzed the

extent to which commitment is possible without imposing exogenous restrictions on the particular

form of commitment device.3

In this paper, we derive a necessary and su¢ cient condition under which commitment is possible

in a consumption-saving problem with hyperbolic discounting, uncertainty about future consump-

tion needs, and unveri�able savings. In our setting, an individual would like to commit at date 0

to a consumption plan that may depend on an unveri�able shock that is realized at date 1. To this

end, the individual can enter into a commitment contract with a counterparty such as a bank that

implements self 0�s4 desired consumption plan. The key contracting di¢ culty is that the shock is

realized only at date 1, after the contract is signed, and since it is unveri�able, the contract cannot

directly condition the individual�s consumption on its realization. Rather, a commitment contract

must provide the individual both with �exibility to respond to the shock, and with incentives to

adhere to self 0�s desired consumption plan.

Our results establish that commitment is often possible. Although we do not impose any

restrictions on the set of possible contracts, our results also establish that commitment contracts

take the familiar form of a long-term savings account that permits some early withdrawals without

a penalty, but imposes a penalty on any further withdrawals. With such an account, an individual

is deterred from making premature withdrawals by the prospect of future selves withdrawing even

1See Frederick, Loewenstein and O�Donoghue (2002) for a review of models of time discounting.
2See Ariely and Wertenbroch (2002) for direct evidence of demand for commitment.
3See O�Donoghue and Rabin (1999b), Della Vigna and Malmendier (2004), and Amador, Werning, and Angeletos

(2006) for models of contracting with a hyperbolic individual. We discuss our relation to these papers in detail below.
4We follow the literature and refer to the individual at date t as self t.
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more at the penalty rate.

The key insight of our paper is that time-inconsistent preferences are not only the source of the

individual�s commitment problem, but also crucial to its possible solution. With time-inconsistent

preferences, the individual�s di¤erent selves have di¤erent preferences but still share knowledge

of the shock�s realization. This opens up the possibility of later selves punishing prior selves for

deviating from self 0�s desired consumption plan, which would be impossible if their preferences

were the same. In essence, time-inconsistent preferences turn a single-agent contracting problem

into a multi-agent mechanism design problem. As is well known from the implementation theory

literature,5 this can dramatically expand the set of outcomes that are attainable in equilibrium.

1.1 An illustrative example

At date 0, a retired individual with wealth of 312 knows that he has three periods to live. He also

knows that his child will get married either at date 1 or at date 2, at which time he will incur

an expense of 12 . The individual has log preferences over consumption at each date and his time

preferences are quasi-hyperbolic, with a hyperbolic discount factor of � = 1
2 and no regular time

discounting.6 He would like to commit to self 0�s most preferred consumption plan: consume exactly

1 at each future date, which requires that 112 be available to him at date 1, in case the wedding is

then. The problem, of course, is that if 112 is available at date 1, then hyperbolic discounting will

lead self 1 to consume 112 , even if the wedding is not at date 1.
7

Suppose, however, that the individual arranges his �nancial a¤airs as follows. At date 0 he

deposits 1 each in one- and two-period savings accounts and 112 in a three-period savings account.

Early withdrawals from the one- and two-period savings accounts are not permitted, but 12 can be

withdrawn without penalty from the three-period account at either date 1 or date 2. Furthermore,

an additional 14 can be withdrawn at date 2, but this second withdrawal carries a penalty of
1
4 .

This arrangement allows the individual to commit to self 0�s desired consumption plan of con-

suming 1 at each date and also paying for the wedding. To see why, �rst consider self 2�s incentives.

If self 1 withdraws early, then the penalty ensures that self 2 will withdraw early if and only if he

needs the money, i.e., if the wedding is in fact at date 2.8 As a result, selves 2 and 3 consume

5See Maskin and Sjöström (2002), Palfrey (2002), and Serrano (2004) for surveys of implementation theory.
6Formally, his utility at date 0 is ln (c1) + ln (c2) + ln (c3), at date 1 it is ln (c1) + � ln (c2) + � ln (c3), and at date

2 it is ln (c2) + � ln (c3), where � = 1
2
.
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1 each if self 1 withdraws early to �nance the wedding, but 3
4 and

1
2 if self 1 withdraws early to

overconsume. If instead self 1 does not withdraw early, it is easy to verify that self 2 will, regardless

of when the wedding actually occurs.9

Next consider self 1�s incentives. If the wedding is not at date 1, then self 1 understands that if

he were to withdraw early, then self 2 would also withdraw early� this time at a penalty� to �nance

the wedding at date 2, leaving self 3 with very little consumption. This outcome is unattractive

enough to deter self 1 from withdrawing early if the wedding is not at date 1.10 If, however, the

wedding is in fact at date 1, then self 1 will withdraw early the 12 he needs, secure in the knowledge

that self 2 does not need to �nance the wedding and that the penalty deters self 2 from withdrawing

early for extra consumption.11

1.2 Costly excess �exibility and preference reversal

The example illustrates a commitment contract�s most important features. First, the contract gives

the individual excess �exibility to consume early, in the form of the second withdrawal option. In

a world with full commitment, this �exibility would not be needed, as the �rst withdrawal option

gives the individual su¢ cient �exibility to respond to the shock. In our setting, however, the

second withdrawal option enables self 2 to �punish� self 1 for overconsuming. Loosely speaking,

the contract puts the individual in a position where he realizes that if he �slips� at date 1 and

overconsumes, then he will �fall o¤ the wagon�at date 2 and overconsume even more.

Second, the excess �exibility is costly, in the sense that the second withdrawal option carries a

penalty. We elaborate on this point in the next subsection.

The example also illustrates how the possibility of commitment is determined by the nature of

the shock. To ensure that self 2 withdraws early (thereby punishing self 1) if and only if self 1�s

early withdrawal is a deviation, self 2�s preferences cannot be the same in both states. Speci�cally,

self 2�s desire to impose the punishment must be greater when the wedding actually is at date 2

(and therefore self 1�s early withdrawal is a deviation) than when it is at date 1. This is indeed

the case in our example: because of the wedding expense, self 2�s marginal utility of withdrawing
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early is strictly greater when the wedding is at date 2 than when it is at date 1. More generally,

commitment is possible only under the following preference reversal condition: the state in which

the individual�s desire for date-1 withdrawals is higher must also be the state in which his desire

for date-2 withdrawals is lower.

For an example in which our preference reversal condition is not satis�ed, suppose instead

that the wedding either takes place at date 1 or not at all. Moreover, suppose that the wedding

is a lavish a¤air, requiring an expense of 1=2 at date 1 (for the ceremony) and another 1=2 at

date 2 (for the banquet). Here, the individual would like to withdraw an additional 1=2 both at

date 1 and at date 2 if the wedding takes place. Since the individual�s desire for higher date-1

withdrawals coincides with his desire for higher date-2 withdrawals� both occur when the wedding

takes place� our preference reversal condition is not satis�ed and so commitment is not possible.

1.3 Unveri�able savings

In the examples above, the individual could not save from one date to the next. Most of our

analysis, however, allows for the important possibility of unveri�able savings.12 As we will show,

a hyperbolic individual�s ability to save actually makes it more di¢ cult for him to commit, even

though present-bias generally leads individuals to save too little.13

At the most basic level, self 2�s ability to save restricts signi�cantly the range of punishments

that can be imposed on self 1 for deviating. Speci�cally, self 2 cannot be induced to impose a

punishment that entails very high date-2 consumption relative to date-3 consumption, as he would

always prefer to partially smooth his consumption across the two dates by saving. As a result,

self 1 cannot be punished by imposing on him a combination of extremely low date-3 consumption

and commensurately high date-2 consumption. One consequence of this restriction, and a key

implication of our analysis, is that self 1 must instead be punished with a reduction in his total

consumption. Consequently, the property of the commitment contract in the example that excess

�exibility is costly is in fact a key property of all commitment contracts.

The individual�s ability to commit is further limited by self 1�s ability to save. Since the

punishment must increase self 2�s current consumption at the expense of his future consumption,

he grows less willing to impose it as he inherits a higher level of savings from self 1. In essence,

12See the growing literature on contracting with hidden savings, e.g., Kocherlakota (2004), Doepke and Townsend
(2006), and He (2009).
13See references on page 1.
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self 1�s ability to save undercuts commitment because it enables him to overconsume and then

�bribe�self 2 to not impose the punishment. Consequently, a stronger form of preference reversal

is required. Speci�cally, self 2�s preference for imposing the punishment when self 1 deviates must

be su¢ ciently strong to ensure that self 2 imposes it even when he inherits savings from self 1.

At the same time, self 2 must refrain from imposing the punishment when self 1 does not deviate.

We give a formal de�nition of this condition� strong preference reversal� in the text below. In

the important special case of commitment to self 0�s most preferred consumption plan, strong

preference reversal is satis�ed as long as the tempting deviation at date 1 does not increase total

consumption over dates 1 and 2.14 Finally, strong preference reversal is often su¢ cient as well as

necessary for commitment.

1.4 Discussion

Our results show that in some settings, an individual can contract to completely overcome his

commitment problem, even in the face of uncertainty about his future consumption needs. In these

cases, hyperbolic discounting ceases to a¤ect the individual�s behavior. Moreover, the contracts that

enable an individual to commit are often easy to interpret, as the �rst example above suggests: at

date 0 the individual arranges access to a savings account with limited penalty-free early withdrawal

rights, coupled with additional withdrawal rights that carry a penalty.15 However, since there also

exist important cases in which commitment is not attainable, our results should not be interpreted

as an argument against the importance of hyperbolic discounting in general.

In this paper, we focus on one particular form of time-inconsistent preferences, namely the

present-bias generated by hyperbolic discounting. However, our key insight� that time-inconsistent

preferences turn a single-agent contracting problem into a multi-agent mechanism design problem�

is more widely applicable. In particular, consider any source of time-inconsistent preferences that

an individual is self-aware enough to anticipate. For example, an individual may understand today

that, in the future, he will misinterpret the relevance of a small number of data points. Just as in

the current setting, he can potentially commit to a course of action that avoids this bias, while at

the same time maintaining �exibility to respond to shocks.

14See Section 6.
15See Section 7 for a detailed discussion.
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2 Related literature

The closest antecedent to our paper is Amador, Werning, and Angeletos (2006). Like us, they

study a hyperbolic individual who is hit by unveri�able taste shocks, but consider only a two-period

version of the problem. This restriction immediately rules out the possibility of self 2 imposing a

state-contingent punishment on self 1 for deviating� a key feature of our setting� because with two

periods self 1 is e¤ectively the only strategic agent.16 Consequently, the only way to deter self 1

from deviating is to distort consumption in at least some states; the authors characterize the least

costly way to do so.

Like Amador, Werning, and Angeletos, DellaVigna and Malmendier (2004) restrict attention

to two periods, again ruling out the possibility of self 2 punishing self 1. Moreover, in their setting

self 1 faces a binary choice (e.g., whether or not to go to the gym) and consequently a contract

exists under which self 1 acts exactly as self 0 desires. The authors characterize the contract that

maximizes the pro�ts of a monopolist counterparty facing a partially naïve agent (see Section 8

for a discussion of partial naïveté). In particular, they characterize the combination of �at upfront

fees and per-usage fees in the pro�t-maximizing contract.17

O�Donoghue and Rabin (1999b) analyze optimal contracts for procrastinators in a multi-period

environment, where the socially e¢ cient date at which a task should be performed is random. They

explicitly rule out the use of contracts that induce an agent to reveal his type, which are the focus

of our paper. As they observe, this restriction is without loss of generality in the main case they

study, that of agents who are completely naïve about their future preferences. By contrast, we

study sophisticated agents (again, see Section 8 for a discussion of partial naïveté).

While we examine the use of external commitment devices, such as contracts, other research

considers what might be termed internal commitment devices. Bernheim, Ray, and Yeltekin (1999)

and Krusell and Smith (2003) consider deterministic models in which an individual is in�nitely

lived, and show that Markov-perfect equilibria exist in which he gains some commitment ability

from the fact that deviations will cause future selves to punish him. Carrillo and Mariotti (2000)

and Benabou and Tirole (e.g., 2002, 2004) consider models in which an individual can commit his

16Amador, Werning, and Angeletos (2003) extend the analysis to three or more periods. They assume that shocks
are independent across dates and a¤ect only contemporaneous utility. Together, these assumptions rule out the
possibility of a later self imposing a state-contingent punishment on a prior self for deviating.
17Similarly, Eliaz and Spiegler (2006) analyze pro�t maximization by a monopolist who deals with a population of

time-inconsistent individuals who di¤er in their degree of sophistication (see Section 8 below).
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future selves to some action by manipulating their beliefs, respectively, through the extent of his

own information acquisition, through direct distortion of beliefs, or through self-signalling.

3 Model

A single agent consumes at three dates t = 1; 2; 3. His preferences are time-inconsistent, with self

t�s preferences represented by the quasi-hyperbolic separable utility function

U t (~c;�) = ut (~ct;�) + �
3X

s=t+1

us (~cs;�)

for t = 0; 1; 2; 3 where ~c = (~c1; ~c2; ~c3) 2 R3 is the agent�s consumption (u0 � 0 so date-0 consumption

does not matter to the agent); � 2 � �
�
�; �0

	
is one of two18 states that determine the agent�s

preferences; ut is strictly increasing and strictly concave in ~ct for every t and every �; and � 2 (0; 1)

is the hyperbolic discount factor. There is no regular time discounting and the risk-free rate in the

economy is zero. Finally, the agent is self-aware (i.e., sophisticated), in the sense that at each date,

he correctly anticipates his preferences at future dates. In Section 8 we discuss how our analysis is

a¤ected if this assumption is relaxed.

At the center of our analysis is an arbitrary consumption plan fc (�)g�, to which the agent would

like to commit at date 0. In Section 6 we analyze further the special case where fc (�)g� is self 0�s

most preferred consumption plan. Since our main focus is on the e¤ect of hyperbolic discounting

on intertemporal e¢ ciency, not its e¤ect on insurance across states, we rule out transfers across

states, so that
P
t ct (�) �W for � = �; �0, whereW is the sum of the agent�s initial endowment and

veri�able future income. This assumption also facilitates comparison with the existing literature,

which like us focuses on intertemporal e¢ ciency.19 Moreover, it would be hard� and sometimes

impossible� to insure the agent if self 0 had private information about the relative probability of

the two states.20

The state is revealed to the agent at date 1 and is unveri�able in the sense that no contract

between the agent and a counterparty can be made directly contingent on the state. By contrast,

18Section 9 extends our model to three or more states.
19Amador, Werning, and Angeletos (2006) rule out transfers across states. O�Donoghue and Rabin (1999b) and

DellaVigna and Malmendier (2004) study risk-neutral agents, and so insurance across states is not a concern.
20Note that private information about the relative probability of the two states would not a¤ect our analysis, which

characterizes when intertemporal e¢ ciency is possible.
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if instead the state were either revealed at date 0 or veri�able, then commitment could be easily

attained by entering into a contract under which the agent gives a counterparty his entire endow-

ment with instructions to return the endowment over time according to self 0�s desired consumption

plan.

A further constraint on the contracting environment is that the agent can privately save from

one date to the next and his saving decisions are unveri�able. We also analyze the simpler case of

veri�able saving decisions in Section 4.

Throughout, we assume that self 2�s preferences satisfy the following standard single crossing

property (see Milgrom and Shannon 1994).

Assumption (Single crossing) Fix �, �0 6= �, ~c, ~ca, and ~cb such that ~c2 < ~ca2 � ~cb2, U2 (~ca;�) �

U2 (~c;�) � U2
�
~cb;�

�
, and U2

�
~c;�0

�
� U2

�
~ca;�0

�
. Then U2(~c;�0) � U2(~cb;�0).

In words, single crossing says that self 2�s indi¤erence curves in the two states can cross at most

once. Two examples of functional forms for utility that satisfy single crossing are multiplicative

shocks� � 2 R3+ and ut (~ct;�) = �tut (~ct)� and additive shocks� � 2 R3 and ut (~ct;�) = ut (~ct + �t),

as long as �3 = �03. In addition, we make the mild assumption that if, at any point, self 2�s

indi¤erence curves have the same slope in both states, then they coincide everywhere.21 While

both the multiplicative and additive parameterizations can be interpreted in a large number of

ways, several interpretations deserve particular discussion:

1. Under the widely used parameterization of utility functions in which consumption and leisure

enter multiplicatively, multiplicative shocks can be interpreted (among other ways) as shocks

to time endowments. For example, if date t is a vacation day for the agent in state �, then

his marginal utility of consumption is high.

2. Additive shocks where �t � 0 can be interpreted as essential expenditures. For example, if

at date t an individual is sick in state � but not in state �0, and must pay $100 for treatment

in state �, then his utility from spending a total of ~ct in state � is the same as from spending

~ct � 100 in state �0. The wedding example of the introduction entails shocks of this type.

3. Symmetrically, additive shocks where �t � 0 can be interpreted as (unveri�able) increases

21We use this assumption only to establish equivalence of the two conditions stated in Proposition 1. It is satis�ed
for the two classes of preferences mentioned above.
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in income. With slight abuse of language, we continue to refer to ~ct as consumption, even

though the agent�s true consumption in this case is ~ct + �t.

Finally, we assume throughout that the period utility functions satisfy an Inada condition in

all states and at all dates. To re�ect the two interpretations of additive shocks above, we allow the

Inada condition to depend on the state: there exists ~ct (�) such that u
0
t (~ct;�)!1 as ~ct ! ~ct (�),

22

and u0t (~ct;�)! 0 as ~ct !1.

Our model can be interpreted more broadly than a consumption-saving problem. In one ex-

ample, the individual faces a procrastination problem, where W is his total endowment of leisure

(e.g., the time he has left after completing a referee report) and ~ct is his leisure at date t. Shocks

may be either multiplicative (in a favorite O�Donoghue and Rabin example, a Johnny Depp �lm is

showing) or additive (the individual must take his child to the doctor). In another example, the

individual is a myopic manager, where ~ct is investment at date t and u is a production function.

In this case, hyperbolic discounting captures the manager�s present-bias.

Our model has one shock realization and three periods. Adding more periods would only make

it easier to commit to self 0�s desired consumption plan: as the opening example demonstrates, self

2 must be induced to punish self 1 for deviating, and this is easier to arrange with more periods

since then self 2 can in turn be punished for not punishing. In this sense, the assumption of just

three periods biases our results against commitment being possible.

If instead the number of shock realizations increases with the number of periods, then the en-

vironment becomes considerably harder to analyze. Nonetheless, we believe that our basic insights

and techniques remain valid. Moreover, in some circumstances a general T -period model can be

analyzed by simply iterating our three-period model. In particular, consider the case where T is an

odd number and an independent shock is realized at each of dates 1, 3, 5, . . . , T �2, with the date-t

shock a¤ecting utility only at dates t and t+1. This environment can be analyzed recursively using

results of our basic three-period model, by replacing u3 (~c3;�) with the expected utility promised

from date t+ 2 onwards.
22So in the two additive shock interpretations discussed, ~ct (�) = ��t.
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4 Commitment with veri�able savings

To build intuition, we analyze in this section the special case in which saving decisions are veri�able.

We say that fc (�)g� generates a commitment problem in state � if self 1, in state �, prefers the

consumption prescribed for state �0 6= �; formally, U1 (c (�) ;�) < U1
�
c
�
�0
�
;�
�
. Without loss we

restrict attention to consumption plans with the property that, in each state, self 0 prefers the

consumption prescribed for that state to the consumption prescribed for the other state. Formally,

fc (�)g� must satisfy U0 (c (�) ;�) � U0
�
c
�
�0
�
;�
�
for all �; �0 2 �. If fc (�)g� fails this condition,

then it is dominated by a non-contingent consumption plan in which the individual gets c
�
�0
�
in

both states.

As the following result shows, a commitment problem in state � rules out a commitment problem

in state �0 6= � and can only arise when c(�0) o¤ers strictly more date-1 consumption than c (�).

Lemma 1 If fc (�)g� generates a commitment problem in state �, then c1(�0) > c1 (�) for �0 6= �

and so, in particular, fc (�)g� does not generate a commitment problem in state �0. Conversely,

fc (�)g� generates a commitment problem in state � if c1(�0) > c1 (�) and � is su¢ ciently small.

We assume, without loss of generality, that c1
�
�0
�
� c1 (�); Lemma 1 then implies that if there

is a commitment problem, it is in state �. To simplify notation, we will often refer to c (�) and c(�0)

as c and c0, respectively.

When does a contract exist that commits the agent to a consumption plan (c; c0)? By standard

revelation principle arguments (see Myerson 1981), we can restrict attention to a direct revelation

mechanism that gives each of selves 1, 2, and 3 a menu of two consumption choices (corresponding

to the two states), where each self�s menu possibly depends on previous selves�choices. By a similar

argument (see, e.g., Cole and Kocherlakota 2001), we can restrict attention to contracts that do

not allow the agent to save. Finally, since date 3 is the �nal consumption date, self 3 will always

choose the highest consumption level on his menu, regardless of the true state. As a result, we can

restrict attention to contracts in which self 2�s consumption choice dictates self 3�s consumption.

Both c and c0 must be among the consumption choices o¤ered. Therefore, self 1�s menu must

include c1 and c01, and self 2�s menu after self 1 chooses c1 (respectively, c
0
1) must include (c2; c3)

(respectively, (c02; c
0
3)). As a result, self 1�s menu must be the set fc1; c01g and self 2�s menu must be

the set f(c2; c3) ; (ĉ02; ĉ03)g (if self 1 chooses c1) or f(ĉ2; ĉ3) ; (c02; c03)g (if self 1 chooses c01), where (ĉ02; ĉ03)

10



and (ĉ2; ĉ3) are �punishments�chosen by self 2 if self 1 deviates from the desired consumption plan

by choosing c1 in state �0 or c01 in state �, respectively.

What are the incentive compatibility conditions? First, self 1 must be better o¤ choosing c1 in

state �, i.e., U1 (c; �) � U1 (ĉ; �), and c01 in state �0, i.e., U1(c0; �0) � U1(ĉ0; �0), where ĉ = (c01; ĉ2; ĉ3)

and ĉ0 = (c1; ĉ02; ĉ
0
3) are the punishments he anticipates if he deviates in each respective case.

Second, self 2 must be better o¤ choosing the punishment in each state if and only if self 1

deviates. For the punishment ĉ, intended for a deviation in state �, this is the case if and only

if U2 (ĉ; �) � U2 (c0; �) and U2(c0; �0) � U2(ĉ; �0). Similarly, for the punishment ĉ0, intended for a

deviation in state �0, this is the case if and only if U2 (c; �) � U2 (ĉ0; �) and U2(ĉ0; �0) � U2(c; �0).

Unsurprisingly, when (c; c0) does not generate a commitment problem in either state, the entire

consumption decision can be delegated to self 1: ĉ = c0 and ĉ0 = c satisfy all the above constraints.

Further note that even when (c; c0) generates a commitment problem in state �, there is no need

for self 2 to punish self 1 for choosing c1� the smaller of the two consumption choices� in state �0:

ĉ0 = c satis�es all the above constraints in which ĉ0 appears. As a result, the interesting part of the

contracting problem is the choice of ĉ, the punishment for choosing c01 in state �.

As the constraints above indicate, ĉ must satisfy three somewhat con�icting criteria. The �rst

two relate to preferences in state �. First, ĉ must be su¢ ciently unattractive to self 1, relative to

c0, to deter him from deviating. Second, ĉ must be su¢ ciently attractive to self 2, relative to c0, to

induce him to punish. These two criteria are satis�ed only if ĉ2 > c02 and ĉ3 < c
0
3, i.e., if ĉ is strictly

front-loaded relative to c0. This follows from hyperbolic discounting: relative to consumption at

date 3, self 2 values consumption at date 2 more than self 1 does. Therefore, if c0 were instead

front-loaded relative to ĉ and self 1 preferred c0 to ĉ, then self 2 would also prefer c0 to ĉ and would

therefore not punish. We use this property, summarized in the following result, throughout the

paper.

Lemma 2 Fix �, ~ca, and ~cb such that ~ca1 = ~cb1, U
1(~ca;�) � U1(~cb;�), and U2(~ca;�) � U2(~cb;�).

Then ~ca2 � ~cb2 and ~ca3 � ~cb3, both with strict inequality if either U1(~ca;�) > U1(~cb;�) or U2(~ca;�) <

U2(~cb;�).

The third criterion that ĉ must satisfy relates to preferences in state �0. Here, ĉ must be

su¢ ciently unattractive relative to c0 to deter self 2 from punishing. Given that ĉ must be strictly

front-loaded relative to c0 and self 2 must prefer ĉ to c0 in state �, we have established that a

11



particular form of preference reversal is a necessary condition for commitment.

Condition PR (Preference reversal) There exists ~c such that ~c2 > c02, U
2 (~c; �) � U2 (c0; �),

and U2(c0; �0) � U2(~c; �0).

A commitment problem arises because, relative to consumption at future dates, self 1 values

current consumption more in state �0 than in state � (and so c01 > c1). Preference reversal (PR),

however, says that relative to consumption at future dates, self 2 values current consumption less

in state �0 than in state �.23 As the following result illustrates, PR is easily checked by comparing

the slopes of self 2�s indi¤erence curves through c0 in states � and �0.

Proposition 1 When savings are veri�able, commitment to (c; c0) is possible only if c0 satis�es PR

or, equivalently, U22 (c
0; �) =U23 (c

0; �) � U22 (c0; �0)=U23 (c0; �0).24

Finally, although PR is in general only a necessary condition for commitment to (c; c0), it is

straightforward to show that if the period utility functions u2 and u3 are unbounded above and

below, then PR is both su¢ cient and necessary.

5 Commitment with unveri�able savings

In the following sections we analyze the main case, in which the agent�s saving decisions are un-

veri�able. The possibility of unveri�able savings is important because it signi�cantly limits the

set of consumption plans to which an individual can commit. Moreover, it is hard to imagine a

contracting device that would render savings veri�able, as the individual can always just hold cash

from one period to the next. We denote savings carried over from date t to date t + 1 by st � 0

and, since consumption and withdrawals need not coincide when the agent can save, we denote

withdrawals by x to prevent confusion between the two. With slight abuse of notation, we denote

the consumption (�s1; s1; 0)+x+(0;�s2; s2) by s1+x� s2. The reader may �nd it useful to note

that savings in this expression are written with respect to self 2, who is the key strategic actor.
23Condition PR may remind readers of Maskin�s (1999) monotonicity condition. However, while PR may fail in

our setting, monotonicity is trivially satis�ed as long as some self�s preferences di¤er across the two states. In our
setting, the social choice rule of interest is F (�) = c (�), where the domain of consumption choices is R3. This social
choice rule is monotonic if and only if for all � and �0 6= �, U t (c (�) ;�) � U t (x;�) and U t (c (�) ;�0) < U t (x;�0) for
some self t 2 f1; 2; 3g (self 0 is non-strategic) and some x 2 R3. As long as some self�s preferences di¤er across the
two states, this condition is satis�ed.
24The discussion above establishes that PR is necessary for commitment. The equivalence of PR and the inequality

is immediate from single crossing and our mild assumption that if, at any point, self 2�s indi¤erence curves have the
same slope in both states, then they coincide everywhere.
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As de�ned, single crossing only applies when the savings inherited from date 1 are the same

across states. In the analysis that follows, however, we must repeatedly compare self 2�s indi¤erence

curves when the savings inherited from date 1 di¤er across states. To this end, we extend single

crossing:

Assumption SCB (Single crossing from below) Fix s1 � 0, �, �0 6= �, x, xa, and xb such

that x2 < xa2 � xb2, U
2(s1 + x

a;�) � U2(s1 + x;�) � U2(s1 + x
b;�), and U2(x;�0) � U2(xa;�0).

Then U2(x;�0) � U2(xb;�0).

In words, single crossing from below (SCB) says that once self 2�s indi¤erence curve in one

state with no savings crosses his indi¤erence curve in the other state with positive savings from

below, they cannot cross again at higher levels of x2. Whereas standard single crossing requires

that indi¤erence curves with the same savings cross only once, SCB allows indi¤erence curves with

di¤erent savings levels to cross twice. In the special case of s1 = 0, the two assumptions are

equivalent; therefore, SCB implies standard single crossing.

Assumption SCB is mild and is satis�ed by a wide class of preferences. In particular, in the case

of additive shocks, it is satis�ed whenever standard single crossing is. In the case of multiplicative

shocks, it is satis�ed under the standard assumption that date-2 utility exhibits either constant or

decreasing absolute risk aversion (i.e., �u002=u02 either constant or decreasing).

5.1 The formal contracting problem

Just as in the case of veri�able saving decisions, we can restrict attention to direct revelation

mechanisms in which self 2 dictates self 3�s consumption. Therefore, under a contract in our

setting, self 1 �rst reports a state ~�
1 2 �, followed by self 2, who reports a state ~�2 2 � and a

saving decision ~s1 � 0 made by self 1.

Denote by X(~�
2
; ~s1; ~�

1
) 2 R3+ the withdrawals speci�ed by a contract X for a given set of

reports and assume, without loss of generality, that no savings occur on the equilibrium path of

any subgame. The incentive compatibility constraints (which also cover the general n-state case in

Section 9) are then as follows: First, self 1 must truthfully report the state and not save; this is an

equilibrium action if and only if

U1 (X(�; 0;�);�) � U1(s1 +X(�; s1; ~�
1
);�) for all �; ~�

1 2 � and s1 � 0. (IC1)
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Second, given self 1�s actions, self 2 must truthfully report the state and self 1�s saving decision, in

addition to not saving himself; this is an equilibrium action if and only if

U2(s1 +X(�; s1; ~�
1
);�) � U2(s1 +X(~�

2
; ~s1; ~�

1
)� s2;�) for all �; ~�

1
; ~�
2 2 � and s1; ~s1; s2 � 0.

(IC2)

In addition, the contract must satisfy X(�; 0;�) = c (�) for all � 2 �, i.e., fc (�)g� is implemented

in equilibrium, and X1(~�
2
; ~s1; ~�

1
) = c1

�
~�
1
�
for all ~�

1
; ~�
2 2 � and ~s1 � 0, i.e., self 2 cannot

retroactively change self 1�s consumption. Finally, we adopt the mild regularity condition that, for

all ~�
1
; ~�
2 2 �, X(~�2; �; ~�1) is a �nite function (of ~s1), in the sense of having at most �nitely many

points of discontinuity.25 When a contract X exists that satis�es all the above constraints, we say

that commitment to fc (�)g is possible and call such a contract a commitment contract.

The agent�s ability to privately save restricts him to consumption plans that his future selves do

not want to distort by saving. We therefore require fc (�)g� to satisfy U2 (c (�) ;�) � maxs2�0 U2 (c (�)� s2;�)

and U1 (c (�) ;�) � maxs1�0 U1 (s1 + c (�)� ŝ2 (s1) ;�), where ŝ2 (s1) = argmaxs2�0 U2 (s1 + c (�)� s2;�),

for all � 2 �. Lemma A-3 in the appendix formally establishes these as necessary conditions for

commitment to fc (�)g�.

Just as in the case of veri�able savings, we restrict, without loss, attention to consumption

plans with the property that, in each state, self 0 prefers the consumption prescribed for that state

to the consumption prescribed for the other state. With unveri�able savings, the only di¤erence

is that self 0 takes into account future selves� saving decisions. Formally, we require fc (�)g�
to satisfy U0 (c (�) ;�) � U0

�
ŝ1 + c

�
�0
�
� ŝ2 (ŝ1) ;�

�
for all �; �0 2 � such that � 6= �0, where

ŝ1 � argmaxs1�0 U1
�
s1 + c

�
�0
�
� ŝ2 (s1) ;�

�
and ŝ2 (s1) = argmaxs2�0 U

2
�
s1 + c

�
�0
�
� s2;�

�
. If

fc (�)g� fails this condition, then it is dominated by a non-contingent consumption plan that gives

the individual c
�
�0
�
in both states. Given this restriction, the de�nition of a commitment problem

changes in the obvious way: we say that fc (�)g� generates a commitment problem in state � if

U1(c (�) ;�) < U1(ŝ1+c
�
�0
�
� ŝ2 (ŝ1) ;�), where ŝ1 and ŝ2 are as de�ned immediately above. Under

this de�nition of a commitment problem, Lemma 1 holds unchanged for the case of unveri�able

savings.

As in the case of veri�able savings we assume, without loss of generality, that c1
�
�0
�
� c1 (�).

We also assume throughout this section that fc (�)g� generates a commitment problem. It then
25This regularity condition is used only in proving Theorem 1, necessity half. It can be relaxed, though only at the

cost of introducing economically uninteresting mathematical complexity.
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follows from Lemma 1 that there is a commitment problem in state � but not in state �0, and that

c1
�
�0
�
> c1 (�). Just as in the previous section, we will often refer to c (�) and c(�0) as c and c0,

respectively.

Since we will ususally speak of the agent deciding how much to withdraw rather than which state

to report, it is useful to instead describe the contract as follows: At date 1 the agent (self 1) chooses

date-1 withdrawals from the set fc1; c01g (and decides how much to save). At date 2 the agent (self

2) chooses date-2 and date-3 withdrawals from one of two withdrawal schedules (and decides how

much to save): if he chose c1 at date 1, then he chooses from fX(�; s1; �)gs1�0 and fX(�
0; s1; �)gs1�0;

if he chose c01 at date 1, then he chooses from
�
X(�; s1; �

0)
	
s1�0 and fX(�

0; s1; �
0)gs1�0.

The contracting problem can be simpli�ed signi�cantly. Just as in the case of veri�able savings,

we can restrict attention to contracts that give self 2 (c2; c3), and let him save whatever he likes,

after self 1 chooses c1. Under this restriction, all incentive compatibility constraints in which

the resulting schedules fX(�; s1; �)gs1�0 and fX(�
0; s1; �)gs1�0 appear are automatically satis�ed.

Intuitively, this is simply because self 1 is not tempted by less date-1 consumption in either state;

therefore he does not need to be punished for such deviations.

Lemma 3 Any contract that gives self 2 (c2; c3) after self 1 chooses c1 satis�es (IC1) and (IC2)

for ~�
1
= �.

Similarly, we can restrict attention to contracts in which self 2 gets (c02; c
0
3) (and saves whatever

he likes) after self 1 either i) correctly chooses c01 in state �
0, and possibly saves, or ii) incorrectly

chooses c01 in state � and saves more than s
�
1, de�ned by

s�1 � sup
�
s1 : U

1 (c; �) < U1(s1 + c
0 � ŝ2 (s1) ; �) where ŝ2 (s1) = argmax

s2�0
U2(s1 + c

0 � s2; �)
�
.

Formally, we will show that if commitment to (c; c0) is possible, then it is possible with a contract

that satis�es this restriction. The intuition is much the same as that behind Lemma 3: in case i)

above, self 1 is not tempted by less date-1 consumption and in case ii), as the de�nition of s�1 makes

clear, he is not tempted by the higher date-1 consumption c01 � s1 in state � when s1 � s�1.26

Given the above simpli�cations, it only remains to determine
�
X(�; s1; �

0)
	
s12[0;s�1]

� the pun-

ishment chosen by self 2 when self 1 incorrectly chooses c01 in state � and saves s
�
1 or less. To

26We note these simpli�cations at this point only for expositional ease, and to highlight the simplicity of the
contract we eventually derive; all our results prior to Theorem 1 hold independent of them.
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simplify notation we write X̂ (s1) � X
�
�; s1; �

0� and refer to X̂ as a contract in what follows. We

next turn to characterizing X̂ (s1) for s1 2 [0; s�1].

5.2 General properties of commitment contracts

The agent�s ability to save makes the analysis of the contracting problem much more complicated.

In particular, self 1 can now choose from a continuum of possible deviations� choose c01 in state

� and save any positive amount s1. Each possible deviation must be met with an appropriate

penalty chosen by self 2, whose own preferences in turn depend on the savings he inherits from

self 1. Consequently, we have a continuum of interlinked contracting problems, indexed by s1, that

cannot be solved independently of each other. Rather, X̂ (s1)� the punishment intended for the

savings level s1� must be such that self 2 with inherited savings s1 prefers it to the punishment

intended for any other savings level ~s1 (formally, this condition is just a particular instance of

(IC2)). Speci�cally, the contracting problems are tied together by the self-selection property

U2(s1 + X̂ (s1) ; �) � U2(s1 + X̂ (~s1) ; �) for all s1; ~s1 � 0. (1)

To analyze the problem, we �rst derive a number of properties, discussed below and formally

established in the result that follows, that any commitment contract must satisfy.

First, X̂ (s1) must be front-loaded relative to c0 and must also impose a penalty, in the sense

of o¤ering less total consumption than c0. Consequently, the feature of our earlier example that a

commitment contract o¤ers costly excess �exibility is a general one.27 Of course, any commitment

contract must also o¤er costless �exibility, i.e., the ability to choose either c or c0 without penalty.28

Front-loading, just as in the case of veri�able saving decisions, follows from Lemma 2 and the

fact that there is a commitment problem. The penalty, however, follows from self 2�s ability to save.

If X̂ (s1)� which must be front-loaded relative to c0� o¤ered strictly more consumption than c0,

then self 2 would never choose c0 in state �0, as he should. Rather, he would be better o¤ choosing

X̂ (s1) and saving some of the added date-2 consumption.

Second, as s1 increases, X̂ (s1) must become less front-loaded and impose a smaller penalty.

This follows from the e¤ect of self 1�s savings on self 2�s preferences� as self 2 inherits a higher

27By contrast, the punishment (ĉ2; ĉ3) in the veri�able savings case may increase total consumption relative to
(c02; c

0
3), with the punishment stemming solely from forcing the agent to consume very little at date 3.

28Formally, this is simply the requirement that X(�; 0;�) = c (�) for all � 2 �.
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level of savings s1, he becomes less willing to choose a front-loaded punishment. If instead X̂ (s1)

became more front-loaded as s1 increases, then self 2 with high inherited savings would never choose

the point on the X̂-schedule intended for him; after all, even self 2 with low inherited savings did

not choose that point. Given that X̂ (s1) must become less front-loaded, the penalty must then

become smaller. If instead the penalty became larger as s1 increases, then total consumption

X̂2 (s1) + X̂3 (s1) and date-2 consumption X̂2 (s1) would move in the same direction and X̂ (s1)

would be dominated by X̂ (~s1) for ~s1 < s1.

Finally, X̂3 is, up to a boundary condition, completely determined by X̂2, e¤ectively reducing the

contracting problem to the choice of a function X̂2. This simpli�cation follows from the requirement,

discussed above and formalized by (1), that self 2 always choose the punishment intended for the

particular level of savings he inherits. Moreover, when X̂ is continuous, the relationship between

X̂2 and X̂3 takes the particularly simple form

dX̂3 (s1) = �
U22 (s1 + X̂ (s1) ; �)

U23 (s1 + X̂ (s1) ; �)
dX̂2 (s1) . (2)

Proposition 2 For any commitment contract X̂, (i) X̂2 (s1) > c02 and X̂2 (s1) + X̂3 (s1) � c02 + c03
for all s1 2 [0; s�1), (ii) X̂2 (s1) is weakly decreasing in s1 and X̂2 (s1)+ X̂3 (s1) is weakly increasing

in s1,29 and (iii) if X̂ is continuous at s1, then it satis�es (2).

5.3 Strong preference reversal

In the case of veri�able saving decisions, preference reversal is necessary for commitment: in order

to ensure that self 1 is punished for choosing c01 in state � but not punished for doing so in state

�0, there must exist a front-loaded punishment that self 2 will choose in state � but not in state

�0. In the case of unveri�able saving decisions, self 1�s ability to save leads to a stronger version of

this condition. Recall that as self 2 inherits a higher level of savings s1, he grows less willing to

choose a front-loaded punishment. Therefore, self 2 with inherited savings s�1 is the least willing

to choose a front-loaded punishment and self 2 with no inherited savings is the most willing to

choose a front-loaded punishment. So, to e¤ectively deter self 1 from deviating, there must exist a

front-loaded punishment that self 2 with savings s�1 is willing to choose in state � but self 2 with no

savings will not choose in state �0. Such a punishment exists only if the following condition� strong

29As an aside, note that properties (ii) and (iii) in fact hold for all components of the contract X
�
~�
2
; �; ~�1

�
.
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preference reversal� is satis�ed.

Condition SPR (Strong preference reversal) There exists ~x such that ~x2 > c02,

U2(s�1 + ~x; �) � U2(s�1 + c
0; �), (SPRa)

U2(c0; �0) � U2(~x� s2; �0) for all s2 � 0. (SPRb)

Condition SPR extends PR� the preference reversal condition from before� to the case where

savings levels di¤er. As the following result shows, SPR is necessary for commitment.

Proposition 3 Commitment to (c; c0) is possible only if SPR is satis�ed.

Although Proposition 3 is simple to state, its proof is not trivial: while Proposition 2 implies

that commitment is possible only if for any s1 < s�1 there exists some punishment ~x that satis�es

~x2 > c
0
2, (SPRb), and (SPRa) with s1 in place of s

�
1, it is not immediate that there exists ~x that

satis�es ~x2 > c02, (SPRb), and (SPRa) at s
�
1 itself.

As its name suggests, however, the basic economic content of SPR is still the same as that of

PR� a form of preference reversal. While self 1 values current consumption more in state �0 than

in state �, self 2 must value current consumption less in state �0 than in state �. Further, just as

with PR, SPR can be checked by comparing the slopes of two indi¤erence curves through c0. This

amounts to checking whether SPR holds in the neighborhood of c0.

Lemma 4 SPR is satis�ed if U22 (s
�
1 + c

0; �) =U23 (s
�
1 + c

0; �) � U22 (c0; �0)=U23 (c0; �0) and

U22 (s
�
1 + c

0; �) =U23 (s
�
1 + c

0; �) > 1. Moreover, for additive shocks, the two conditions are equivalent.

In general, Lemma 4 provides only a su¢ cient condition for SPR. The reason is that, as the

earlier discussion of SCB illustrates, indi¤erence curves may cross more than once when savings

levels di¤er. Therefore, even if the indi¤erence curves cross the wrong way at c0, they may cross

again at some ~x such that ~x2 > c02. Allowing for this possibility, SPR can be checked as follows.

De�ne x̂0 as the solution to

min
~x
f~x2 + ~x3g s.t. ~x1 = c01, ~x2 � c02, and U2 (s�1 + ~x; �) � U2

�
s�1 + c

0; �
�
.

In words, x̂0 is the most severe (in the sense of minimizing total consumption) front-loaded pun-

ishment that self 2 with inherited savings s�1 would ever choose in state �. As the following result
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shows, it is then both necessary and su¢ cient for SPR that self 2 with no inherited savings does

not choose x̂0 in state �0, even if he can save, and self 2 with inherited savings s�1 strictly prefers to

borrow at c0 in state �.

Lemma 5 SPR is satis�ed if and only if U2(c0; �0) � U2(x̂0 � s2; �0) for all s2 � 0 and

U22 (s
�
1 + c

0; �) =U23 (s
�
1 + c

0; �) > 1.

5.4 Main result: necessary and su¢ cient conditions for commitment

In the previous subsection we showed how self 1�s ability to save leads to a stronger necessary

condition for commitment (i.e., SPR instead of PR). Self 2�s ability to save can limit commitment

even further. Speci�cally, the punishment must not be too front-loaded, or else self 2 would be

tempted to make it less front-loaded by saving. Formally, a commitment contract X̂ must satisfy

the no-saving condition

U22 (s1 + X̂ (s1) ; �) � U23 (s1 + X̂ (s1) ; �) for all s1 2 [0; s�1] . (NS)

This constraint, which is just a particular instance of (IC2), signi�cantly limits the severity of

punishments that can be imposed on self 1 for deviating.

In order to characterize when commitment is possible, we assume that SPR is satis�ed (this is

necessary for commitment by Proposition 3) and next construct the least front-loaded commitment

contract X̂�. The key feature of X̂� is that it is the commitment contract under which self 2 is

least tempted to save. Therefore, if X̂� does not satisfy NS, then no commitment contract will.

Accordingly, we �rst de�ne the boundary value X̂� (s�1) as the least front-loaded punishment

that is mild enough to induce self 2 with inherited savings s�1 to choose it in state � but also severe

enough to deter self 2 with no inherited savings from choosing it in state �0. Formally,

X̂�
2 (s

�
1) � inf

�
~x2 : ~x2 > c

0
2 and for some ~x3, (~x2; ~x3) satis�es (SPRa) and (SPRb)

	
,

while X̂�
3 (s

�
1) is de�ned by setting (SPRa) to equality.

30

As the following result con�rms, X̂� (s�1) is indeed the least front-loaded punishment prescribed

by any commitment contract. (The formal proof is harder than one might suspect, because of

30Equivalently, one could de�ne X̂�
3 (s

�
1) by setting (SPRb) to equality. For a formal argument, see the proof of

Theorem 1, su¢ ciency half, Claim 1.
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complications similar to those encountered when proving Proposition 3.)

Proposition 4 For any commitment contract X̂, X̂2 (s1) � X̂�
2 (s

�
1) for all s1 2 [0; s�1).

Thus de�ned, X̂� (s�1) ensures that self 1 will not deviate to c
0
1 and save s

�
1 in state �. To see

why, �rst note that, by the de�nition of s�1, self 1 will not deviate in this way if the deviation is

followed by c0 at dates 2 and 3. Then, since self 2 is indi¤erent between c0 and the front-loaded

punishment X̂� (s�1), it follows that self 1 will dislike the deviation even more if it is followed by

X̂� (s�1).

We next de�ne the remainder of the contract for s1 < s�1, working downwards from its boundary

value X̂� (s�1). There are two cases to consider. First, suppose that for some s1, self 1 strictly prefers

not to deviate and save s1, i.e., U1 (c; �) > U1(s1+ X̂� (s1) ; �). In this case, we can simply keep the

contract �xed for ~s1 immediately below s1, i.e., dX̂�=ds1 = 0, without violating self 1�s incentive

compatibility constraint. In fact, keeping X̂� constant is the best we can do, since a commitment

contract cannot become less front-loaded as s1 decreases (see Proposition 2).

Second, suppose that for some s1, self 1 is instead indi¤erent towards deviating and saving s1,

i.e., U1 (c; �) = U1(s1+ X̂� (s1) ; �). In this case, unlike the previous one, it may not be possible to

keep the contract �xed without violating self 1�s incentive compatibility constraint. If it is possible,

then the contract stays �xed as in the previous case. If not, then X̂� must become more front-

loaded as s1 decreases. Here it is helpful to note that the least front-loaded commitment contract

is also the one that punishes self 1 as mildly as possible. This follows from Lemma 2: the more

severe the punishment imposed by a commitment contract is, the more front-loaded it must be to

ensure that self 2 is willing to impose it. Consequently, as s1 decreases, the contract should keep

the punishment as mild as possible by holding self 1�s deviation utility �xed, i.e.,

d

ds1
U1(s1 + X̂ (s1) ; �) = 0, (3)

thereby keeping him indi¤erent towards deviating for ~s1 immediately below s1. Finally, we set X̂�

to also satisfy (2), as every continuous commitment contract must (see Proposition 2).

More formally, X̂� is de�ned as follows. De�ne s��1 as the boundary between the two cases

described above, i.e.,

s��1 � inf
n
s1 2 [0; s�1] : U1 (c; �) � U1(~s1 + X̂� (s�1) ; �) for all ~s1 2 [s1; s�1]

o
.
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Then for s1 2 [s��1 ; s�1), X̂� (s1) = X̂� (s�1). For s1 2 [0; s��1 ), the contract is de�ned by the boundary

condition X̂� (s��1 ) = X̂
� (s�1) and the pair of di¤erential equations (2) and

dX̂2
ds1

= min

(
�u

0
1(c

0
1 � s1; �)� �u02(s1 + X̂2 (s1) ; �)
(1� �)u02(s1 + X̂2 (s1) ; �)

; 0

)
, (4)

where (4) is simply (3) with a minimization operator to ensure that, in the second case described

above, the contract is kept constant whenever possible.

Theorem 1 Commitment to (c; c0) is possible if and only if SPR and NS are satis�ed, in which

case X̂� is a commitment contract.

In the case of additive shocks� or, more generally, when the simple su¢ cient condition for SPR

of Lemma 4 is satis�ed� the de�nition of X̂� (s�1) is particularly simple:
31

Lemma 6 If U22 (s
�
1 + c

0; �) =U23 (s
�
1 + c

0; �) � U22 (c0; �0)=U23 (c0; �0) and U22 (s�1 + c0; �) =U23 (s�1 + c0; �) >

1, then X̂� (s�1) = c
0 and s��1 = s�1.

5.5 Sketch proof of Theorem 1

We illustrate two key steps. First� and related to necessity� we show that X̂� is pointwise the

least front-loaded commitment contract, in the sense that no commitment contract exists that is

less front-loaded at any point. In other words, we show that one cannot make the contract less

front-loaded at one point by making it more front-loaded at another point. This is a detail we

brushed over in our construction of X̂� above.

Consider a particular level of date-1 savings s1, and suppose that a contract X̂ has been de�ned

for all savings levels from s�1 down to s1+ ", where " is small and positive. Recall that (2) places a

strong restriction on how the date-2 and date-3 elements of the contract vary as s1 changes. This

condition in turn determines how self 2�s utility varies with s1, namely

dU2(s1 + X̂ (s1) ; �) = U
2
2ds1 + U

2
2dX̂2 + U

2
3dX̂3 = U

2
2 (s1 + X̂ (s1) ; �)ds1. (5)

The contract speci�cation at s1+ " and (5) together determine how much utility the contract must

give self 2 at savings level s1. However, they do not determine whether self 2 should be given this

utility through consumption at date 2 or at date 3.
31 In this special case, Proposition 4 is an immediate corollary of Proposition 2.
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The important implication of (5) is that there is no con�ict between making the contract less

front-loaded at s1 and making it less front-loaded below s1. In fact, making the contract less front-

loaded at s1 actually helps make the contract less front-loaded below s1, say at s1 � ". The reason

is that the less front-loaded the contract is at s1, the lower self 2�s utility must be at s1�" (see (5)),

and hence date-2 consumption can be decreased, making the contract less front-loaded at s1 � ".

In conclusion, X̂� is pointwise the least front-loaded commitment contract.

Second� and related to su¢ ciency� we show that, given SPR, X̂� satis�es all the incentive com-

patibility constraints except NS. By construction, (4) ensures that (IC1) is satis�ed; therefore, self

1 does not want to deviate. Moreover, it turns out that for continuous commitment contracts, (2)

is not only necessary, but also su¢ cient for self-selection (1);32 therefore, conditional on punishing,

self 2 will always choose the particular punishment intended for the savings level he inherits.

It remains to show that self 2 will punish if and only if self 1 deviates. By construction, the

punishment X̂� (s�1) satis�es (SPRa), i.e., self 2 with inherited savings s
�
1 prefers it to c

0 in state

�. Moreover, since punishments are front-loaded, this preference is preserved at lower levels of

inherited savings. More precisely, self 2 with inherited savings s1 prefers the intended punishment

X̂� (s1) to c0 in state �, i.e.,

U2(s1 + X̂
� (s1) ; �) � max

s2�0
U2
�
s1 + c

0 � s2; �
�
, (6)

as follows. By construction, (6) is satis�ed for s1 = s�1. It is also satis�ed for s1 < s
�
1 since

U2(s1 + X̂
� (s1) ; �) � U2(s1 + X̂� (s�1) ; �) � max

s2�0
U2
�
s1 + c

0 � s2; �
�
,

where the �rst inequality follows from self-selection (1) and the second from the fact that X̂� is

front-loaded relative to c0.

Similarly, X̂� (s�1) satis�es (SPRb) by construction, i.e., self 2 with no inherited savings prefers

c0 to the punishment X̂� (s�1) in state �
0. Since punishments are front-loaded, this preference is

preserved at higher levels of inherited savings. More precisely, self 2 with inherited savings s1

prefers c0 to any punishment X̂� (~s1) in state �0, i.e.,

max
s2�0

U2(s1 + c
0 � s2; �0) � max

s2�0
U2(s1 + X̂

� (~s1)� s2; �0), (7)

32For details, see the proof of Theorem 1, su¢ ciency half, Claim 4, Step A.
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as follows. By construction, (7) is satis�ed for s1 = 0 and ~s1 = s�1. By self-selection (1), X̂
� (~s1)

lies below self 2�s indi¤erence curve in state �, with inherited savings s�1, through X̂
� (s�1). By SCB,

it then follows that X̂� (~s1) also lies below self 2�s indi¤erence curve in state �0, with no inherited

savings, through X̂� (s�1). Consequently, (7) is satis�ed for s1 = 0 and all ~s1. Moreover, since X̂
� is

front-loaded relative to c0, self 2�s preference for c0 can only strengthen as s1 increases. As a result,

(7) holds for all s1 and ~s1.

6 When is commitment possible?

Together, SPR and NS are both necessary and su¢ cient for commitment. Although their roles in

ensuring the possibility of commitment are intuitively straightforward, it is not immediately clear

how to relate them to the primitives of our economic setting. In particular, it is not obvious what

conditions on the states � and �0, or on the consumption plans c and c0, would correspond to SPR

and NS. In this section we address precisely this question in the context of commitment to self 0�s

most preferred consumption plan fc� (�)g�, de�ned by

c� (�) � argmax
~c
U0 (~c;�) s.t.

X
t

~ct �W

for � 2
�
�; �0

	
. Our �rst result is that, in this important special case, SPR is easily related to c�

and c0�:

Proposition 5 If c0�3 � c�3 then SPR is satis�ed. Moreover, for additive shocks, the two conditions

are equivalent.

In words, the condition c0�3 � c�3 says that the increase in date-1 consumption a¤orded by c
0�

comes solely at the expense of date-2 consumption (relative to c�), without negatively impacting

date-3 consumption.

Our next result establishes conditions under which the consumption comparison c0�3 > c
�
3 guar-

antees not only SPR, but also NS� and hence the possibility of fully overcoming the agent�s com-

mitment problem.

Proposition 6 Suppose that c0�3 > c�3 and let �
� be the supremum value of � for which (c�; c0�)

generates a commitment problem. Then commitment to (c�; c0�) is possible for all � su¢ ciently

close to ��.
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Moreover, numerical simulations (available on authors�webpages) indicate that the only cases

in which c0�3 > c
�
3 but NS fails are those with very low values of �, e.g., � � 0:1.

A leading class of shocks in which the condition c0�3 > c
�
3 is satis�ed is that of one-period-ahead

shocks in which the agent learns about a change in his utility one period in advance, i.e., the

shock only a¤ects date-2 utility. For example, the agent might learn at date 1 whether, at date

2, he will receive vacation, su¤er a temporary decline in income,33 receive a bonus, or, in the

procrastination interpretation of our setting, whether his favorite �lm is showing. In each of these

examples, the shock a¤ects only date-2 marginal utility and therefore pushes self 0�s most preferred

consumption at dates 1 and 3 in the same direction; therefore, whenever c0�1 > c
�
1 then c

0�
3 > c

�
3 also.

By Proposition 6, commitment to (c�; c0�) is often possible in these cases.

The opposite of a one-period-ahead shock is a contemporaneous shock, in which the agent learns

about a change in his utility only contemporaneously, i.e., the shock only a¤ects date-1 utility.

In contrast to the case of one-period ahead shocks, commitment is never possible in the case of

contemporaneous shocks. This is especially easy to see when shocks are additive: contemporaneous

shocks push self 0�s most preferred consumption at dates 2 and 3 in the same direction, and so

whenever c0�1 > c
�
1 then c

0�
3 < c

�
3, and Proposition 6 implies that SPR fails.

34

One-period ahead shocks and contemporaneous shocks are associated with c0�3 > c
�
3 and c

0�
3 < c

�
3

respectively. The boundary case of c0�3 = c
�
3 is a timing shock, since there (c

0�
1 ; c

0�
2 ) = (c

�
2; c

�
1). The

wedding example of the introduction is one such case; other good examples include the replacement

of an old car when it breaks down and the need to make a down payment on a house purchase. By

Proposition 5, SPR is satis�ed in these cases, and numerical simulations suggest that NS is often

satis�ed also and so commitment to (c�; c0�) is possible.

Our discussion above relates entirely to the important question of whether the agent can fully

overcome his commitment problem, i.e., commit to self 0�s most-preferred consumption plan (c�; c0�).

When this is not possible, what can we say about the optimal contract?

33For example, at date 1 the agent learns he will lose his job at date 2, but anticipates �nding a new job by date 3.
34 In general, SPR fails for contemporaneous shocks as follows. Note that (A) the key savings level s�1 is strictly

positive whenever (c�; c0�) generates a commitment problem and (B) for contemporaneous shocks, self 2�s preferences
are the same in both states. Consider any ~x that is strictly front-loaded relative to c0�, i.e., ~x2 > c0�2 , and such that
self 2 with no savings prefers c0� to ~x in state �0, i.e., u2 (~x2; �0)� u2 (c0�2 ; �0) + � (u3 (~x3; �0)� u3 (c0�3 ; �0)) � 0. Facts
(A) and (B) above, together with strict concavity of u2, imply that self 2 must then strictly prefer c0� to ~x in state
� when he has savings s�1, i.e., u2 (s

�
1 + ~x2; �

0)� u2 (s�1 + c0�2 ; �0) + � (u3 (~x3; �0)� u3 (c0�3 ; �0)) < 0. In words, there is
no punishment ~x that self 2 would choose in state � but not in state �0. Hence SPR fails.
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For concreteness, we focus on the case of additive shocks. Here, the preference reversal condition

PR depends only on the shocks and not on the consumption plan (c; c0). At the same time, SPR� a

more demanding condition� depends on the consumption plan (c; c0) only through the key savings

level s�1. Given these observations, it is immediate that if PR fails, then the agent cannot overcome

any commitment problem, even one in which (c; c0) has been distorted away from (c�; c0�) to make

c0 less tempting for self 1 in state �. Rather, (c; c0) must be chosen so that there is no commitment

problem in the �rst place. Formally, this no-temptation consumption plan solves

max
fc(�)g�

X
�2f�;�0g

Pr (�)U0 (c (�) ;�)

subject to the no-temptation constraint U1 (c (�) ;�) � maxs1�0 U1
�
s1 + c

�
�0
�
� ŝ2 (s1) ;�

�
, where

ŝ2 (s1) = argmaxs2�0 U
2
�
s1 + c

�
�0
�
� ŝ2 (s1) ;�

�
, and the previously noted resource constraint and

no-savings constraints for selves 1 and 2.

If instead PR is satis�ed, but either SPR or NS fails at (c�; c0�), then the agent may be able to

to commit to a consumption plan that self 0 prefers to the no-temptation consumption plan, but

not to (c�; c0�). In particular, if SPR fails, then at least one of c and c0 can be distorted away from

(c�; c0�) to make c0 less tempting for self 1 in state �. Doing so reduces the key savings level s�1; and

once s�1 is reduced enough, SPR is satis�ed.

In summary, there are three distinct types of shocks: those for which self 0 can fully overcome

his commitment problem; those for which he must settle for a no-temptation consumption plan;

and an intermediate class for which self 0 can do better than a no-temptation consumption plan

but cannot commit to (c�; c0�).

7 Implementation using simple �nancial instruments

As we stress in the introduction, commitment contracts have characteristics that are widely ob-

served in real-world contractual arrangements. In particular, any commitment contract must o¤er

a combination of costless �exibility and costly excess �exibility (see discussion prior to Proposition

2). This two-tiered structure is widely observed. For example, many savings accounts allow limited

penalty-free withdrawals, followed by withdrawals carrying a penalty rate, and many borrowing

arrangements specify interest rates that increase as the agent borrows more. In particular, retire-

25



ment accounts often have this characteristic. In the U.S., for example, an individual can withdraw a

limited amount without penalty (via a 401(k) loan), while larger withdrawals carry a 10% penalty.

In the procrastination interpretation of our model, where the consumption good is leisure, the com-

bination of costless and costly �exibility corresponds to the widespread workplace norm that the

penalty for missing one deadline is small, but that missing subsequent deadlines carries a penalty,

often in the form of more work (for example, the further one is past a referee report deadline, the

more one feels the need to produce an especially thorough report).

We next show that in most cases in which commitment to self 0�s most preferred consumption

plan35 (c�; c0�) is possible, a commitment contract can be constructed by combining simple �nancial

instruments� speci�cally, savings accounts and lines of credit.36 The key step in this construction is

that the two features of costless �exibility and costly excess �exibility need not be made contingent

on one another, but can instead be provided by two separate contracts. Speci�cally, we show that

costly excess �exibility can be o¤ered to self 2 regardless of self 1�s consumption choice.

Proposition 7 Suppose that c0�3 � c�3 (and hence SPR is satis�ed).37 Costly excess �exibility can

be o¤ered to self 2 unconditionally without a¤ecting commitment. Formally, self 2 can be given

the option to increase his date-2 consumption by X̂2 (s1) � c0�2 at the cost of decreasing his date-3

consumption by c0�3 � X̂3 (s1), regardless of self 1�s choice between c0�1 and c�1.

The intuition for Proposition 7 is that, if self 1 correctly chooses the lower consumption c�1 in

state �, he leaves self 2 with ample consumption, and hence self 2 �nds it relatively unattractive to

pay a penalty to further increase date-2 consumption.

Costly �exibility is readily interpretable as either a savings withdrawal at a penalty rate� just

as in the example from the introduction� or as a high-interest loan. By Proposition 7, two separate

contracts can be used to provide the agent with i) the costless �exibility he needs to respond to

the shock and ii) the incentives to not abuse that �exibility. We next detail how this can be done

using simple �nancial instruments.

At date 0, the agent invests in the following certi�cates of deposit (CDs): a one-period CD

35The focus on self 0�s most preferred consumption plan simpli�es the proof of Proposition 7, along with the
conditions required for it to hold. However, we emphasize that the conclusion holds much more generally: for many
consumption plans fc (�)g for which commitment is possible, this commitment is achievable using only simple �nancial
instruments.
36We thank Andrew Postlewaite for this suggestion.
37See Proposition 5. Moreover, by the same result c0�3 � c�3 is necessary for commitment in the case of additive

shocks.
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with face value A1 = c�1, a two-period CD with face value A2 = c�1 + c
�
2 � c0�1 , and a three-period

CD with face value A3 = c�3 + c
0�
1 � c�1. At the same time, the agent arranges for a penalty-free

line of credit of L = c0�1 � c�1. If the line is drawn at date 2, the date-3 repayment is simply L. If

instead the line is drawn at date 1, the date-2 and date-3 repayments are P2 = c�1 + c
�
2 � c0�1 � c0�2

and P3 = L� P2 = c�3 � c0�3 + c0�1 � c�1, respectively. Hence if the credit line is drawn at date 1 his

consumption is (A1 + L;A2 � P2; A3 � P3) = c0�, while if it is drawn at date 2 his consumption is

(A1; A2 + L;A3 � L) = c�.

We close this section with a couple of �nal observations. First, the exact form of a commitment

contract depends on the parameters of the problem, such as the degree of impatience (�) and the

shocks (� and �0). A notable feature of our setting relative to much of the contracting literature

is that the agent is happy to truthfully report these details at date 0. Concretely, and in terms of

the discussion above, the agent has the right incentives to choose �nancial contracts with suitable

interest rates and penalties for early withdrawals; and in the procrastination setting, he has the

right incentives to set his own deadlines. In essence, self 0 is the principal. In this sense, a nice

feature of our contracting problem is that it is considerably less informationally demanding than

those between a distinct principal and agent(s).

Second, in common with much of the contracting literature, we have conducted our analysis

under an assumption of exclusivity : after writing the original contract at date 0, the agent cannot

enter into additional contracts with other counterparties at dates 1 or 2. In general, assuming

exclusivity of savings arrangements is much less plausible than assuming exclusivity of borrowing

arrangements. Institutions such as credit registries and collateral registries make it hard to borrow

from multiple lenders without their knowledge. Indeed, the presence of such institutions seems

important for the very existence of a well-functioning credit market. Regarding exclusivity of

savings arrangements, our analysis already allows for the possibility of entering additional one-

period savings contracts. Consequently, the only remaining issue is that self 1 might wish to enter

a new two-period savings contract. Fortunately, it is straightforward to adapt the original date-0

contract to rule out this possibility, by specifying that the agent should be able to borrow, interest-

free, against any savings contract entered by self 1. This e¤ectively transforms a two-period savings

contract back into a one-period savings contract.
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8 Naïveté

Thus far, we have assumed that the agent is fully self-aware (sophisticated), in the sense that

at any date, he correctly anticipates his future selves�preferences. In this section we show that

commitment contracts of the kind we analyze above often enable an agent who is partially (but

not completely) naïve about his future selves�preferences to commit. We follow the literature and

use the speci�cation introduced by O�Donoghue and Rabin (2001): at each date, the agent�s true

hyperbolic discount rate is �, but he incorrectly believes that his future selves�rate is ~� > �. We

continue to write U t for self t�s true preferences, and use ~U t to denote the preferences incorrectly

attributed to self t by prior selves.

For transparency, we focus on the case of veri�able savings (parallel considerations apply to the

case of unveri�able savings) and, as before, we assume that (c; c0) generates a commitment problem

in state �. A necessary condition for commitment to (c; c0) is then that there exists a punishment ĉ

such that ĉ1 = c01 that satis�es the following three conditions, which overlap with those established

in Section 4: First, ĉ must give self 1 less utility than c in state �; formally, U1 (c; �) � U1 (ĉ; �).

Second, self 1 must believe that self 2 will choose ĉ in state �; formally, ~U2 (ĉ; �) � ~U2 (c0; �). Note

that this condition relates to self 1�s incorrect perception of self 2�s preferences, not to self 2�s true

preferences. Finally, for c0 to be the equilibrium outcome in state �0, self 2 must prefer c0 to ĉ in

state �0; formally, U2(c0; �0) � U2(ĉ; �0).

These necessary conditions are, in fact, also su¢ cient since commitment to (c; c0) is possible

using a contract in which self 2 is given the choice between ĉ and c0 whenever self 1 chooses c01.

To see this, it remains only to show that self 1 chooses c01 over c1 in state �
0. Just as in Section

4, it follows from the conditions ~U2 (ĉ; �) � ~U2 (c0; �) and U1 (c; �) � U1 (ĉ; �) that ĉ is strictly

front-loaded relative to c0. Given this, U2(c0; �0) � U2(ĉ; �0) implies that ~U2(c0; �0) � ~U2(ĉ; �0), i.e.,

self 1 believes that self 2 will choose c0 in state �0, even given self 1�s incorrect beliefs about self 2�s

preferences. Finally, by Lemma 1 and our assumption that (c; c0) generates a commitment problem

in state �, U1
�
c0; �0

�
� U1

�
c; �0

�
and so self 1 indeed chooses c01 over c1 in state �

0.

From these three conditions, one can readily see that partial naïveté generates a tighter set

of necessary conditions for commitment. As such, and as one might expect, commitment becomes

more di¢ cult as the agent�s naïveté increases. We stress, however, that by continuity slight naïveté
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has only a small impact on the range of circumstances under which commitment is possible.38

While commitment is often possible when the agent is partially naïve, naïveté does have a

signi�cant impact on how the contract should be interpreted. Under full sophistication, self 0

has every incentive to sign up for a commitment contract. However, under partial naïveté self 0

may incorrectly believe that he does not have a commitment problem. In these circumstances,

there is scope for a benevolent government to improve welfare (at least for self 0) by imposing

a commitment contract. Rules governing withdrawals from 401(k) accounts� which, as discussed

above, qualitatively resemble commitment contracts� are arguably such a case.

However, it also important to note that while a government-mandated commitment contract

can improve the welfare of a partially naïve agent, it can actually hurt a very naïve agent, relative

to the alternative of simply allowing self 1 to choose freely between c and c0. For simplicity, we

illustrate this point for the case of veri�able savings. First, note that in any commitment contract,

the punishment ĉ must satisfy

u2 (ĉ2; �) + u3 (ĉ3; �) < u2(c
0
2; �) + u3(c

0
3; �), (8)

since otherwise the punishment would not deter self 1 from overconsuming in state �.39 Conse-

quently, at date 1 a completely naïve agent (i.e., ~� = 1) will choose c01 in state �, believing that self

2 will choose c02. However, after self 1 chooses c
0
1 self 2 in fact chooses the punishment (ĉ2; ĉ3). Self

0�s equilibrium utility in state � is hence U0 ((c01; ĉ2; ĉ3) ; �). But by (8), this is strictly less than the

utility self 0 would get from a contract allowing self 1 to choose freely between c and c0, namely

U0 (c0; �). Consequently, although there is scope for government paternalism to improve welfare

if the government has a reasonably precise estimate of the degree of naïveté, such paternalism is

dangerous if agents are instead much more naïve than the government believes.40

38At the extreme of complete naïveté (i.e., ~� = 1), commitment is clearly impossible: self 1 must strictly prefer c0

to ĉ but he must also believe that self 2 prefers ĉ to c0; this is not possible since self 1 believes that self 2�s preferences
over consumption at dates 2 and 3 are the same as his own.
39Formally, if u2 (ĉ2; �) + u3 (ĉ3; �) � u2 (c02; �) + u3 (c03; �) then U1 ((c01; ĉ2; ĉ3) ; �) � U1 (c0; �) > U1 (c; �).
40Eliaz and Spiegler (2006) analyze pro�t maximization by a monopolist who deals with a population of time-

inconsistent individuals who di¤er in their degree of sophistication. The problem noted in the main text suggests
that the parallel question of welfare maximization for a population of di¤erentially sophisticated time-inconsistent
individuals would also be interesting. We leave this topic for future research.
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9 Extension to three or more states

In this section we show how our analysis can be extended to cover the case of more than two shock

realizations, i.e., when the state � is drawn from a set � with three or more members. In general,

increasing the size of the state space adds considerable analytical complexity to the problem. Our

main observation in this section, however, is that in the leading special case of additive shocks�

� � R3, ut (ct;�) � ut (ct + �t)� with �3 constant across states in �, this adds relatively little

complexity beyond that already introduced by unveri�able savings.

The formal problem de�ned in Section 5 covers arbitrary state spaces �. Note �rst that the

problem separates into j�j independent subproblems indexed by self 1�s consumption choice c1(~�
1
).

For the remainder of the section, �x ~�
1
and consider a representative subproblem.

A key observation when shocks are additive is that the date-2 component of the shock, �2,

and self 1�s saving decision, s1, a¤ect self 2�s preferences only through their sum s1 + �2; formally,

U2 (s1 + x;�) = u2 (s1 + �2 + x2) + �u3 (�3 + x3). Consequently, if � is the state in which �2 is

minimal, it follows that for all s1 � 0 and � 2 �, X (�; s1; �) � X(�; s1+�2��2; �).
41 By the same

argument, the condition X (�; 0;�) = c (�) becomes X(�; �2 � �2;�) = c (�).

Let �s1 = s1 + �2 � �2; self 2�s incentive constraints in the ~�
1
-subproblem then simplify to

U2(�s1 +X(�; �s1; ~�
1
);�) � U2(�s1 +X(�; ~s1; ~�

1
)� s2;�) for all �s1; ~s1; s2 � 0.

In words, just as in the two-state problem we only need to ensure that self 2 chooses the menu item

intended for a given level of self 1�s �savings��s1� now a composite of the state � and true savings

s1� and does not himself save.

Self 1�s incentive constraints for the ~�
1
-subproblem can be written as

min
s1�0 and �2� s.t. s1+�2=�s1+�2

fU1 (c (�) ;�)� U1(s1 +X(�; �s1; ~�
1
);�)g � 0 for all �s1 � 0.

In words, for every composite savings level �s1 + �2, there is an actual savings level s1 � 0 and

a state � 2 � at which self 1�s incentive compatibility condition is tightest. Expanding, self 1�s

41We are implicitly ruling out contracts that require self 2 to break indi¤erence in di¤erent ways in di¤erent states.

30



constraint can be written more explicitly as

u2(�s1 + �2 +X2(�; �s1;
~�1)) + u3(�3 +X3(�; �s1;

~�1))

� min
s1�0 and �2� s.t. s1+�2=�s1+�2

fU1 (c (�) ;�)� u1(�s1 + �1 + c1(~�
1
))g, (9)

which makes clear the one-dimensional character of the constraint: for each composite savings level

�s1 + �2, there is a single inequality that X(�; �s1;
~�1) must satisfy.

To summarize, the general contracting problem separates into j�j subproblems. In the impor-

tant special case of additive shocks, each of these subproblems is just as tractable as our basic

two-state problem, since the state enters self 2�s preferences in exactly the same way as date-1

savings. Consequently, each of these subproblems can be analyzed in the same way as the basic

two-state problem; speci�cally, a straightforward analogue of Theorem 1 can be used to characterize

when each subproblem can solved.

10 Concluding remarks

Our analysis characterizes the circumstances under which an individual can use a contract to com-

pletely overcome his commitment problem, even in the face of uncertainty about future consumption

needs. In these situations, hyperbolic discounting ceases to a¤ect the individual�s behavior. At the

same time, there also exist important cases in which such commitment is not possible, even though

we have placed absolutely no restrictions on the class of possible commitment devices.

Moreover, although we focus on one particular form of time-inconsistent preferences� namely

the present-bias generated by hyperbolic discounting� we believe that our general arguments are

widely applicable to other sources of time-inconsistent preferences. For example, an individual may

understand today that, in the future, he will misinterpret the relevance of a small number of data

points. We leave the extension of our arguments to other settings for future research.
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Appendix: Proofs

Results omitted from main text

Lemma A-1 (The e¤ect of savings on self 2�s preferences) Fix s1, �, xa, and xb such that

xa2 � xb2, xa2 + xa3 � xb2 + xb3, and maxs2�0 U2 (s1 + xa � s2;�) � (�)maxs2�0 U2
�
s1 + x

b � s2;�
�
.

Then the same is true for all ~s1 � (�) s1.

Proof. De�ne

f (s1) = max
s2�0

U2 (s1 + x
a � s2;�)�max

s2�0
U2
�
s1 + x

b � s2;�
�
.

If xa = xb, then f (s1) = 0 for all s1; the result is immediate. If xa2 = x
b
2 and x

a
2 + x

a
3 > x

b
2 + x

b
3,

then f (s1) > 0 for all s1; the result is immediate. If xa2 < x
b
2 and x

a
2 + x

a
3 = x

b
2 + x

b
3, then there

exists ŝ1 such that for all s1 � ŝ1, f (s1) = 0 and for all s1 < ŝ1, f (s1) < 0; the result is immediate.

Finally, consider the case where xa2 < x
b
2 and x

a
2 + x

a
3 > x

b
2 + x

b
3. By standard arguments f is

di¤erentiable, with derivative

f 0 (s1) = U
2
2 (s1 + x

a � sa2;�)� U22
�
s1 + x

b � sb2;�
�
,

where sa2 = argmaxs2�0 U
2 (s1 + x

a � s2;�) and sb2 = argmaxs2�0 U
2
�
s1 + x

b � s2;�
�
. To estab-

lish the result, we show that f 0 (s1) > 0 whenever f (s1) = 0. Fix s1 such that f (s1) = 0.

If xa2 � sa2 < xb2 � sb2 the result is immediate; the remainder of the proof deals with the case

xa2 � sa2 � xb2 � sb2. Note that in this case xa2 < xb2 implies sb2 > 0. Suppose that, contrary to the
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claimed result, f 0 (s1) � 0. Then

U23 (s1 + x
a � sa2;�) � U22 (s1 + xa � sa2;�) � U22

�
s1 + x

b � sb2;�
�
= U23

�
s1 + x

b � sb2;�
�
,

where the �nal equality follows from the fact that sb2 is an interior solution; hence x
a
3+s

a
2 � xb3+sb2.

As a result, s1 + xb � sb2 o¤ers at least as much consumption as s1 + xa � sa2 at each date and,

since xa2 + x
a
3 > x

b
2 + x

b
3, strictly more at at least one date. But then f (s1) < 0, contradicting our

supposition that f (s1) = 0.

Lemma A-2 (Contract Monotonicity) Suppose that X is a commitment contract. Then, for

any �; ~�, X2
�
�; s1; ~�

�
is weakly decreasing in s1 and X2

�
�; s1; ~�

�
+ X3

�
�; s1; ~�

�
is weakly in-

creasing in s1.

Proof. Fix s1 and ~s1 > s1. From self 2�s incentive constraints, U2(s1 + X
�
�; s1; ~�

�
;�) �

U2(s1 +X
�
�; ~s1; ~�

�
;�) and U2(~s1 +X

�
�; ~s1; ~�

�
;�) � U2(~s1 +X

�
�; s1; ~�

�
;�), implying

U2(~s1+X
�
�; ~s1; ~�

�
;�)�U2(s1+X

�
�; ~s1; ~�

�
;�) � U2(~s1+X

�
�; s1; ~�

�
;�)�U2(s1+X

�
�; s1; ~�

�
;�).

Since date-3 consumption is the same under ~s1 + X
�
�; ~s1; ~�

�
and s1 + X

�
�; ~s1; ~�

�
on the one

hand, and under ~s1 + X
�
�; s1; ~�

�
and s1 + X

�
�; s1; ~�

�
on the other, it follows from concavity

of preferences that X2
�
�; ~s1; ~�

�
� X2

�
�; s1; ~�

�
. Second, self 2�s incentive constraints also imply

U2(~s1 + X
�
�; ~s1; ~�

�
;�) � U2(~s1 + X

�
�; s1; ~�

�
� s2;�) for s2 = X2

�
�; s1; ~�

�
� X2

�
�; ~s1; ~�

�
�

0. Since date-2 consumption is the same under ~s1 + X
�
�; ~s1; ~�

�
and ~s1 + X2

�
�; s1; ~�

�
� s2, it

follows that date-3 consumption is greater under the former, i.e., X3
�
�; ~s1; ~�

�
� X3

�
�; s1; ~�

�
+

s2. Substituting in for s2 implies X2
�
�; ~s1; ~�

�
+ X3

�
�; ~s1; ~�

�
� X2

�
�; s1; ~�

�
+ X3

�
�; s1; ~�

�
,

completing the proof.

Lemma A-3 (No saving from equilibrium consumption) If commitment to fc (�)g� is pos-

sible then i) U1 (c (�) ;�) � maxs1�0 U1 (s1 + c (�)� ŝ2;�), where ŝ2 = argmaxs2�0 U2 (s1 + c (�)� s2;�),

and ii) U2 (c (�) ;�) � maxs2�0 U2 (c (�)� s2;�).

Proof. Let X be a commitment contract. ii) is immediate from self 2�s IC constraint with

~�
1
= ~�

2
= � and ~s1 = s1 = 0. For i), note �rst that, again from self 2�s IC constraint, for any s1 � 0,

U2 (s1 +X (�; s1;�) ;�) � U2 (s1 +X (�; 0;�)� ŝ2;�), where ŝ2 = argmaxs2�0 U2 (s1 +X (�; 0;�)� s2;�).
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Provided either X2 (�; s1;�) � X2 (�; 0;�) � ŝ2 or X3 (�; s1;�) � X3 (�; 0;�) + ŝ2, Lemma 2 im-

plies that U1 (s1 +X (�; s1;�) ;�) � U1 (s1 +X (�; 0;�)� ŝ2;�). From self 1�s IC constraint with

~�
1
= ~�

2
= �, U1 (X (�; 0;�) ;�) � U1 (s1 +X (�; s1;�) ;�). Substituting in X (�; 0;�) = c (�) then

implies i).

Consequently, it remains only to show that the case X2 (�; s1;�) > X2 (�; 0;�) � ŝ2 and

X3 (�; s1;�) < X3 (�; 0;�) + ŝ2 cannot arise. Suppose to the contrary that both these inequali-

ties hold. From Lemma A-2, X2 (�; s1;�) � X2 (�; 0;�), implying ŝ2 > 0. But then self 2 would

want to save given the consumption plan s1 + X (�; s1;�), which violates self 2�s IC constraint.

The contradiction completes the proof.

Lemma A-4 (Necessary conditions for commitment) If commitment to fc (�)g� is possible

then U22 (s
�
1 + c

0; �) � U23 (s�1 + c0; �) :
Proof. Let X̂ be a commitment contract. First suppose, to the contrary, that U22 (s

�
1 + c

0; �) <

U23 (s
�
1 + c

0; �). Note that, by continuity of preferences and the de�nition of s�1, there then exists

s1 < s�1 such that U
2
2 (s1 + c

0; �) < U23 (s1 + c
0; �) and U1 (s1 + c0 � ŝ2; �) > U1 (s1 + c; �) where,

just as in the de�nition of s�1, ŝ2 = argmaxs2�0 U
2 (s1 + c

0 � s2; �). From (IC1), U1 (s1 + c; �) �

U1(s1 + X̂ (s1) ; �) and therefore U1 (s1 + c0 � ŝ2; �) > U1(s1 + X̂ (s1) ; �); from (IC2) and the fact

that X (0) = c0, U2(s1 + X̂ (s1) ; �) � U2 (s1 + c
0 � ŝ2; �); it then follows from Lemma 2 that

X̂2 (s1) > c
0
2� ŝ2 and X̂3 (s1) < ŝ2+c03. From the de�nition of ŝ2 and the fact that U22 (s1 + c0; �) <

U23 (s1 + c
0; �), we have U22 (s1 + c

0 � ŝ2; �) = U23 (s1 + c
0 � ŝ2; �). But then U22 (s1 + X̂ (s1) ; �) <

U23 (s1 + X̂ (s1) ; �), violating (IC2) and contradicting our supposition that X̂ is a commitment

contract.

Lemma A-5 (Extension of SCB to self 2�s indirect utility function with saving) Fix s1

and x such that x2 > c02, U
2 (s1 + x; �) � U2 (s1 + c

0; �), and U2
�
c0; �0

�
� U2

�
x� s2; �0

�
for all

s2 � 0. Fix ~x such that ~x2 � x2, U2 (s1 + ~x; �) = U2 (s1 + c0; �), and U22 (s1 + ~x; �) � U23 (s1 + ~x; �).

Then U2
�
c0; �0

�
� U2

�
~x� s2; �0

�
for all s2 � 0.

Proof. We �rst show that U2
�
c0; �0

�
� U2

�
~x� s2; �0

�
for all s2 2 [0; ~x2 � x2]. Note that

U2 (s1 + ~x; �) = U2 (s1 + c
0; �) and U22 (s1 + ~x; �) � U23 (s1 + ~x; �) imply that U

2 (s1 + c
0; �) �

U2 (s1 + ~x� s2; �) for all s2 � 0, in particular for all s2 2 [0; ~x2 � x2]. Therefore, since ~x2�s2 � x2

for all s2 2 [0; ~x2 � x2], it follows from SCB that U2
�
c0; �0

�
� U2

�
~x� s2; �0

�
for all s2 2 [0; ~x2 � x2].

We next show that U2
�
c0; �0

�
� U2

�
~x� s2; �0

�
for all s2 � ~x2 � x2. Note that ~x2 � x2,

U2 (s1 + x; �) � U2 (s1 + c
0; �) = U2 (s1 + ~x; �), and U22 (s1 + ~x; �) � U23 (s1 + ~x; �) imply that
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x2 + x3 � ~x2 + ~x3. Therefore it follows from U2
�
c0; �0

�
� U2

�
x� s2; �0

�
for all s2 � 0 that

U2
�
c0; �0

�
� U2

�
~x� s2; �0

�
for all s2 � ~x2 � x2.

Lemma A-6 (s�1 under self 0�s most preferred consumption plan) Under self 0�s most pre-

ferred consumption plan fc� (�)g�, s�1 � c0�1 � c�1.

Proof. It is su¢ cient to show that for all s1 > c0�1 �c�1 and s2 � 0, U1 (c�; �) � U1 (s1 + c0� � s2) or,

equivalently, u (c�1; �)�u (c0�1 � s1; �) � �u (s1 + c0�2 � s2; �)��u (c�2; �)+�u (s2 + c0�3 ; �)��u (c�3; �).

By the de�nition of c�, this inequality holds for � = 1; since c�1 > c
0�
1 �s1 it follows immediately that

it must also hold for all � < 1.

Proofs of results stated in main text

Proof of Lemma 1. We prove the result for the case of unveri�able savings (see page 14). For

the case of veri�able savings, simply restrict s1 and s2 to zero below.

If fc (�)g� generates a commitment problem in state �, then U1 (c (�) ;�) < U1
�
ŝ1 + c

�
�0
�
� ŝ2 (ŝ1) ;�

�
,

where �0 6= �, ŝ1 � argmaxs1�0 U1
�
s1 + c

�
�0
�
� ŝ2 (s1) ;�

�
, and ŝ2 (s1) = argmaxs2�0 U

2
�
s1 + c

�
�0
�
� s2;�

�
.

By assumption, U0 (c (�) ;�) � U0
�
ŝ1 + c

�
�0
�
� ŝ2 (ŝ1) ;�

�
. Then, since U0

�
ŝ1 + c

�
�0
�
� ŝ2 (ŝ1) ;�

�
�

U0 (c (�) ;�) = U1
�
ŝ1 + c

�
�0
�
� ŝ2 (ŝ1) ;�

�
�U1 (c (�) ;�)�(1� �)

�
u1
�
c1
�
�0
�
� ŝ1

�
� u1 (c1 (�))

�
,

it follows immediately that c1
�
�0
�
� ŝ1 > c1 (�) and so, in particular, that fc (�)g� cannot generate

a commitment problem in state �0.

We �nally show that if c1
�
�0
�
> c1 (�) and � is small enough, then fc (�)g� generates a

commitment problem in state � or, equivalently, u
�
c1
�
�0
�
� ŝ1;�

�
�u (c1 (�) ;�) > �u (c2 (�) ;�)+

�u (c3 (�) ;�)��u
�
ŝ1 + c2

�
�0
�
� ŝ2 (ŝ1) ;�

�
��u

�
ŝ2 + c3

�
�0
�
;�
�
. As � approaches zero, the right

hand side approaches zero while the left hand side approaches u1
�
c1
�
�0
��
� u1 (c1 (�)) > 0, where

the latter follows from the fact that ŝ1 = 0 for � small enough.

Proof of Lemma 2. The proof is immediate from the fact that U1 (~ca;�) � U1
�
~cb;�

�
=

U2 (~ca;�)� U2
�
~cb;�

�
� (1� �)

�
u2 (~c

a
2;�)� u2

�
~cb2;�

��
.

Proof of Lemma 3. By the construction of X (�; s1; �), (IC2) is satis�ed for ~�
1
= �. (IC1) for

~�
1
= � is simply U1 (c (�) ;�) � maxs1�0 U1 (s1 + c� ŝ2 (s1) ;�), where ŝ2 (s1) = argmaxs2�0 U2 (s1 + c� s2;�).

37



For � = � this inequality is satis�ed by Lemma A-3. For � = �0 it is satis�ed because we know

(c; c0) does not generate a commitment problem in state �0.

Proof of Proposition 2. Claim 1 For all s1 2 [0; s�1), X̂2 (s1) > c02.

Proof of Claim 1. Note that by Lemma A-4 and concavity of preferences, s2 = 0 solves

maxs2�0 U
2 (s1 + c

0 � s2; �) for all s1 2 [0; s�1]. It then follows from continuity of preferences and the

de�nition of s�1 that U
1 (s�1 + c

0; �) = U1 (c; �). Together with the fact that there is a commitment

problem and the concavity of U1 (s1 + c0; �) in s1, this implies that there exists ŝ1 2 [0; s�1) such

that for all s1 2 [ŝ1; s�1), U1 (s1 + c0; �) > U1 (c; �).

Fix any s1 2 [ŝ1; s
�
1). From (IC1) for

�
�; ~�

1
�
=
�
�; �0

�
, U1 (c; �) � U1(s1 + X̂ (s1) ; �) and

therefore U1 (s1 + c0; �) > U1(s1 + X̂ (s1) ; �); from (IC2) for
�
�; ~�

1
; ~�
2
�
=
�
�; �0; �0

�
and the fact

that X(�0; 0; �0) = c0, U2(s1 + X̂ (s1) ; �) � U2 (s1 + c
0; �); it then follows from Lemma 2 that

X̂2 (s1) > c
0
2.

From Lemma A-2, it follows that X̂2 (s1) > c02 for all s1 2 [0; s�1):

Claim 2 For all s1 2 [0; s�1), X̂2 (s1) + X̂3 (s1) � c02 + c03.

Proof of Claim 2. Fix s1 2 [0; s�1) and suppose, contrary to the claimed result, that X̂2 (s1) +

X̂3 (s1) > c
0
2+c

0
3. By Claim 1, X̂2 (s1) > c

0
2. It then follows that U

2(X̂ (s1)�s2; �0) > U2
�
c0; �0

�
for

s2 = X̂2 (s1)� c02 > 0, violating (IC2) for
�
�; ~�

1
; ~�
2
�
=
�
�0; �0; �

�
and contradicting our supposition

that X̂ is a commitment contract.

Claim 3 If X̂ is continuous at s1, then it satis�es (2).

Proof of Claim 3. It follows immediately from (1) that for all s1; ~s1 � 0,

U2(~s1 + X̂ (~s1) ; �)� U2(s1 + X̂ (~s1) ; �) (A-1)

� U2(~s1 + X̂ (~s1) ; �)� U2(s1 + X̂ (s1) ; �) � U2(~s1 + X̂ (s1) ; �)� U2(s1 + X̂ (s1) ; �):

Suppose that ~s1 > s1 and divide (A-1) everywhere by ~s1 � s1, yielding

U2
�
~s1 + X̂ (~s1) ; �

�
� U2

�
s1 + X̂ (~s1) ; �

�
~s1 � s1

� U2(~s1 + X̂ (~s1) ; �)� U2(s1 + X̂ (s1) ; �)
~s1 � s1

�
U2
�
~s1 + X̂ (s1) ; �

�
� U2

�
s1 + X̂ (s1) ; �

�
~s1 � s1

:

If X̂ is continuous at s1, then the upper bound and the lower bound both converge to U22 (s1 +
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X̂ (s1) ; �) as ~s1 ! s1; it follows that dU2(s1 + X̂ (s1) ; �) = U22 (s1 + X̂ (s1) ; �)ds1. Equation (2)

then follows from the identity dU2(s1 + X̂ (s1) ; �) = U22ds1 + U
2
2dX̂2 + U

2
3dX̂3.

Proof of Proposition 3. Suppose that commitment is possible and de�ne, for all s1 2 [0; s�1),

Y (s1) = f~x : ~x1 = c01; ~x2 > c02, U22 (s1 + ~x; �) � U23 (s1 + ~x; �) ,

U2 (s1 + ~x; �) � U2 (s1 + c0; �) ,

U2
�
c0; �0

�
� U2

�
~x� s2; �0

�
for all s2 � 0g.

SPR is satis�ed provided that the intersection
\

s12[0;s�1)
Y (s1) is nonempty. To establish nonempti-

ness, let B" (c0) be the open set consisting of all points lying within " of c0. As we show in Claims

1 and 2 below, there exists " > 0 such that for all s1 2 [0; s�1), Y (s1) nB" (c0) is compact and

nonempty. It follows that the intersection
\

s12[0;s�1)
Y (s1) nB" (c0) is nonempty (see, e.g., Theorem

2.36 in Rudin 1976).

To see why a nonempty intersection
\

s12[0;s�1)
Y (s1) implies that SPR is satis�ed, let x be a

member of this intersection, so for all s1 2 [0; s�1), x 2 Y (s1) and so, in particular, U2 (s1 + x; �) �

U2 (s1 + c
0; �). Hence, by continuity of preferences, U2 (s�1 + x; �) � U2 (s�1 + c0; �). Moreover, since

for some s1, x 2 Y (s1), we also have x2 > c02 and U2
�
c0; �0

�
� U2

�
x� s2; �0

�
for all s2 � 0. Hence

SPR is satis�ed.

Claim 1 For all s1 2 [0; s�1), Y (s1) is nonempty and bounded, and the collection fY (s1)gs12[0;s�1)
is nested (i.e., Y (s1) � Y (~s1) for ~s1 < s1).

Proof of Claim 1. The set Y (s1) is nonempty since commitment is possible (see Proposition 2(i)).

To see that the sets are nested, rewrite the two conditions involving s1 in the de�nition of Y (s1) as

u02 (s1 + ~x2; �) � �u03 (~x3; �) and u2 (s1 + ~x2; �) � u2 (s1 + c02; �) � �u3 (c03; �) � �u3 (~x3; �). If each

of these conditions is satis�ed for some s1 then, by concavity of preferences, the same is true for

all lower values of s1. Finally, boundedness also follows from u02 (s1 + ~x2; �) � �u03 (~x3; �): for any

~x 2 Y (s1), ~x2 > c02 and ~x3 < c03, and so u02 (s1 + ~x2; �) > �u03 (c03; �) and u03 (~x3; �) < �u02 (s1 + c02; �).

Given the Inada conditions, these inequalities establish an upper bound for ~x2 and a lower bound

for ~x3.

Claim 2 There exists " > 0 such that for all s1 2 [0; s�1), Y (s1) nB" (c0) is nonempty.

Proof of Claim 2. We show that Y (s1) nB" (c0) is nonempty for all s1 su¢ ciently close to s�1; the
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claim then follows from nestedness.

First, consider the case U22 (s
�
1 + c

0; �) =U23 (s
�
1 + c

0; �) < U22
�
c0; �0

�
=U23

�
c0; �0

�
. Let ŝ1 2 [0; s�1)

be such that U22 (ŝ1 + c
0; �) =U23 (ŝ1 + c

0; �) < U22
�
c0; �0

�
=U23

�
c0; �0

�
. Consequently, there exists " > 0

such that no element of Y (ŝ1) lies in B" (c0). By the nestedness of the sets Y (s1), the same is true

for all s1 2 [ŝ1; s�1). Hence , Y (s1) nB" (c0) = Y (s1) 6= ? for all s1 2 [ŝ1; s�1).

Second, consider the case U22 (s
�
1 + c

0; �) =U23 (s
�
1 + c

0; �) � U22
�
c0; �0

�
=U23

�
c0; �0

�
. Since, by sup-

position, commitment is possible, it follows from (IC2) for
�
�; ~�

1
; ~�
2
; s1

�
=
�
�0; �0; �0; 0

�
and the

fact that X
�
�0; 0; �0

�
= c0 that U22

�
c0; �0

�
=U23

�
c0; �0

�
� 1 and so there exists ŝ1 2 [0; s�1) such

that U22 (ŝ1 + c
0; �) =U23 (ŝ1 + c

0; �) > 1. Choose � > 1 such that (for any " > 0) the point�
c01; c

0
2 +

3
2"; c

0
3 � (U22 (ŝ1 + c0; �) =U23 (ŝ1 + c0; �))32"

�
lies within �" of c0. Finally, choose " > 0 such

that for all s1 2 [ŝ1; s�1) and all x 2 B�" (c0), U22 (s1 + x; �) =U23 (s1 + x; �) > 1.

Now, consider any s1 2 [ŝ1; s�1). If no member of Y (s1) lies within " of c0, it is immediate

that Y (s1) nB" (c0) is nonempty. Suppose instead that there exists x 2 Y (s1) that lies within "

of c0. De�ne ~x by ~x1 = c01, ~x2 = c02 +
3
2", and U

2 (s1 + ~x; �) = U2 (s1 + c
0; �); thus de�ned, ~x

lies within �" of c0, and so U22 (s1 + ~x; �) =U
2
3 (s1 + ~x; �) > 1. From Lemma A-5, it follows that

U2
�
c0; �0

�
� U2

�
~x� s2; �0

�
for all s2 � 0 and hence ~x 2 Y (s1) nB" (c0), completing the proof of the

claim.

Proof of Lemma 4. Suppose that U22 (s
�
1 + c

0; �) =U23 (s
�
1 + c

0; �) > 1 and U22 (s
�
1 + c

0; �) =U23 (s
�
1 + c

0; �) �

U22
�
c0; �0

�
=U23

�
c0; �0

�
but, to the contrary, SPR is violated. Recall that, by assumption, U22

�
c0; �0

�
=U23

�
c0; �0

�
�

1. There are two cases to consider.

First suppose that U22
�
c0; �0

�
=U23

�
c0; �0

�
> 1; then there exists ~x such that ~x2 > c02 and

U2
�
c0; �0

�
= U2

�
~x; �0

�
� U2

�
~x� s2; �0

�
for all s2 � 0. Since, by supposition, SPR is vio-

lated, U2 (s�1 + c
0; �) > U2 (s�1 + ~x; �) and so there exists s1 2 [0; s�1) such that U2 (s1 + c0; �) >

U2 (s1 + ~x; �) (note that s�1 > 0 whenever there is a commitment problem). By adding date-

3 consumption to ~x, one obtains ~x0 such that ~x02 > c02, U
2 (s1 + c

0; �) = U2 (s1 + ~x
0; �), and

U2
�
c0; �0

�
< U2

�
~x0; �0

�
. Since U22 (s

�
1 + c

0; �) =U23 (s
�
1 + c

0; �) � U22
�
c0; �0

�
=U23

�
c0; �0

�
and s1 < s�1,

then U22 (s1 + c
0; �) =U23 (s1 + c

0; �) > U22
�
c0; �0

�
=U23

�
c0; �0

�
. But then U2 (s1 + c0; �) = U2 (s1 + ~x0; �)

and SCB imply that U2
�
c0; �0

�
� U2

�
~x0; �0

�
, a contradiction.

Next suppose that U22
�
c0; �0

�
=U23

�
c0; �0

�
= 1. Since, by supposition, U22 (s

�
1 + c

0; �) =U23 (s
�
1 + c

0; �) >

1 there exists ~x such that ~x2 > c02, U
2 (s�1 + c

0; �) = U2 (s�1 + ~x; �), and ~x2 + ~x3 < c02 + c
0
3. Since
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U22
�
c0; �0

�
=U23

�
c0; �0

�
= 1 and ~x2 + ~x3 < c02 + c

0
3 we know U2

�
c0; �0

�
> U2

�
~x� s2; �0

�
for all s2,

contradicting our supposition that SPR is violated.

To show the converse in the case of additive shocks, note that, in this case, s1 and �2 enter

self 2�s utility function u2 (s1 + x2 + �2) + �u3 (x3 + �3) only through their sum s1+ �2. Hence, by

standard single crossing, self 2�s state-� indi¤erence curve through any point x with inherited savings

s1 crosses at most once with self 2�s state-�0 indi¤erence curve through x with no savings. It follows

immediately that U22 (s
�
1 + c

0; �) =U23 (s
�
1 + c

0; �) � U22 (c
0; �0)=U23 (c

0; �0) is a necessary condition for

SPR.

Finally, we show that U22 (s
�
1 + c

0; �) =U23 (s
�
1 + c

0; �) > 1 is a necessary condition for SPR. To

establish the contrapositive, suppose that 1 � U22 (s�1 + c0; �) =U23 (s�1 + c0; �). Hence any ~x such that

~x2 > c
0
2 and U

2 (s�1 + ~x; �) � U2 (s�1 + c0; �)must satisfy ~x2+~x3 > c02+c03. But then U2
�
~x� s2; �0

�
>

U2
�
c0; �0

�
for s2 = ~x2 � c02 > 0, implying that SPR is not satis�ed.

Proof of Lemma 5. Note that U22 (s
�
1 + c

0; �) =U23 (s
�
1 + c

0; �) > 1 if and only if x̂02 > c
0
2. Given

this, su¢ ciency is immediate. For necessity, �rst suppose that U22 (s
�
1 + c

0; �) =U23 (s
�
1 + c

0; �) � 1 and

so x̂02 � c02. By the de�nition of x̂0, this implies that for all ~x such that ~x2 > c02 and U2 (s�1 + ~x; �) �

U2 (s�1 + c
0; �), ~x2 + ~x3 > c02 + c

0
3. As a result, for every such ~x, U

2
�
c0; �0

�
< U2

�
~x� s2; �0

�
for

s2 = ~x2 � c02, a violation of SPR.

Second, suppose that U22 (s
�
1 + c

0; �) =U23 (s
�
1 + c

0; �) > 1 (and so x̂02 > c
0
2) but that U

2
�
c0; �0

�
<

U2
�
x̂0 � s+2 ; �0

�
for some s+2 � 0. Note that by the de�nition of x̂0, ~x2+ ~x3 � x̂02+ x̂03 for all ~x such

that U2 (s�1 + ~x; �) � U2 (s�1 + c
0; �) and ~x2 � c02. We show that SPR is violated by showing that

no such ~x satis�es (SPRb) and ~x2 > c02.

On the one hand, if ~x2 � x̂02 � s+2 , then (SPRb) is violated since U2
�
c0; �0

�
< U2

�
~x� s2; �0

�
when s2 � 0 is set such that ~x2� s2 = x̂02� s+2 . On the other hand, if ~x2 < x̂02� s

+
2 , then (SPRb) is

violated since, as we next show, U2
�
c0; �0

�
< U2

�
~x; �0

�
. Suppose to the contrary that U2

�
c0; �0

�
�

U2
�
~x; �0

�
. By the de�nition of x̂0, U2

�
s�1 + x̂

0 � s+2 ; �
�
� U2 (s�1 + c

0; �). So SCB implies that

U2
�
c0; �0

�
� U2

�
x̂0 � s+2 ; �0

�
, contradicting our supposition that U2

�
c0; �0

�
< U2

�
x̂0 � s+2 ; �0

�
.

Proof of Proposition 4. Claim If X̂�
2 (s

�
1) > c

0
2 then U

2
2 (s

�
1+ X̂

� (s�1) ; �) � U23 (s�1+ X̂� (s�1) ; �).

Proof of Claim. Suppose to the contrary that U22 (s
�
1+X̂

� (s�1) ; �) < U
2
3 (s

�
1+X̂

� (s�1) ; �) and de�ne

~x (~x2) by ~x1 (~x2) = c01, ~x2 (~x2) = ~x2, and U2(s�1 + ~x (~x2) ; �) = U
2(s�1 + X̂

� (s�1) ; �) = U
2(s�1 + c

0; �).

There then exists " > 0 such that X̂�
2 (s

�
1) � " > c02 and ~x2(X̂

�
2 (s

�
1) � ") + ~x3(X̂

�
2 (s

�
1) � ") <
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X̂�
2 (s

�
1) + X̂

�
3 (s

�
1). As a result, U

2
�
c0; �0

�
> U2(~x(X̂�

2 (s
�
1)� ")� s2; �0) for all s2 � 0, contradicting

the de�nition of X̂� (s�1).

Main step of proof. Suppose to the contrary that for some s+1 < s�1, X̂2
�
s+1
�
< X̂�

2 (s
�
1) and

so X̂�
2 (s

�
1) > c02 by Proposition 2. For any ~s1 de�ne ~x (~s1) by ~x1 = c01, ~x2 (~s1) = X̂2

�
s+1
�
, and

U2 (~s1 + ~x (~s1)) = U
2 (~s1 + c

0; �). By the de�nition of X̂� (s�1), U
2
�
c0; �0

�
< U2

�
~x (s�1)� s2; �0

�
for

some s2 � 0. By continuity of preferences, there thus exist s1 2
�
s+1 ; s

�
1

�
and s2 � 0 such that

U2
�
c0; �0

�
< U2

�
~x (s1)� s2; �0

�
.

Since s1 > s+1 , Proposition 2 implies that c
0
2 < X̂2 (s1) � X̂2

�
s+1
�
= ~x2 (s1). By (IC2)

for
�
�; ~�

1
; ~�
2
�
=
�
�; �0; �0

�
, U2(s1 + X̂ (s1) ; �) � U2 (s1 + c

0; �), and by (IC2) for
�
�; ~�

1
; ~�
2
�
=�

�0; �0; �
�
, U2

�
c0; �0

�
� U2(X̂ (s1)� s2; �0) for all s2 � 0. By the above claim, U22 (s�1+ X̂� (s�1) ; �) �

U23 (s
�
1+X̂

� (s�1) ; �). Together with ~x2 (s
�
1) = X̂2

�
s+1
�
< X̂�

2 (s
�
1) and U

2 (s�1 + ~x (s
�
1)) = U

2 (s�1 + c
0; �) =

U2(s�1+X̂
� (s�1) ; �), this implies U

2
2 (s

�
1+~x (s

�
1) ; �) � U23 (s�1+~x (s�1) ; �). Finally note that since for any

~s1, U2 (~s1 + ~x (~s1)) = U2 (~s1 + c0; �) and ~x2 (~s1) = ~x2 (s
�
1) > c

0
2, we must have U

2
2 (s1 + ~x (s1) ; �) �

U23 (s1 + ~x (s1) ; �) for s1 < s�1. (This is due to the clockwise rotation of the indi¤erence curve

through c0 as ~s1 decreases.) Since ~x (s1) satis�es all the conditions of Lemma A-5 with x = X̂ (s1),

it follows that U2
�
c0; �0

�
� U2

�
~x (s1)� s2; �0

�
for all s2 � 0, contradicting the prior paragraph.

Proof of Lemma 6. We show that for all " > 0, there exists ~x such that c02 < ~x2 < c
0
2 + " and

both (SPRa) and (SPRb) are satis�ed. Suppose to the contrary that there exists " > 0 such that

this is not the case. An easy adaptation of the proof of Lemma 4 gives a contradiction.

Proof of Theorem 1 (su¢ ciency) Lemma 3 establishes that (IC1) and (IC2) are satis�ed for

~�
1
= � by any contract in which self 2 gets (c2; c3) after self 1 chooses c1.

In Claims 1-5 we show that if c0 satis�es SPR and X̂� satis�es NS, then (IC1) and (IC2) are

satis�ed for ~�
1
= �0 by any contract in which, after self 1 chooses c01 and saves s1, self 2 gets X̂

� (s1)

in state � and X� (s1) in state �0, where X� (s1) solves

max
~c
U2 (s1 + ~c;�) s.t. ~c1 = c01, ~c2 � c02, and ~c2 + ~c3 = c02 + c03 (A-2)

for � = �0 and X̂� (s1) is as de�ned in the main text for s1 � s�1, while for s1 > s�1 it solves (A-2)

for � = �. In words, X� is the schedule that results from giving self 2 (c02; c
0
3) and letting him save

whatever he likes. Since we will repeatedly refer to (IC1) and (IC2) in the claims below, recall that
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X̂� (s1) � X
�
�; s1; �

0� and X� (s1) � X
�
�0; s1; �

0�.
Claim 1 X̂� (s�1) satis�es (SPRb) with equality, i.e., U

2
�
c0; �0

�
= maxs2�0 U

2(X̂� (s�1)� s2; �0).

Proof of Claim 1. First suppose that X̂�
2 (s

�
1) = c

0
2; then X̂

�
3 (s

�
1) = c

0
3. Since, by assumption,

U22
�
c0; �0

�
� U23

�
c0; �0

�
, it follows that (SPRb) holds with equality.

Next suppose that X̂�
2 (s

�
1) > c

0
2. If, to the contrary, (SPRb) were satis�ed strictly, then there

would exist ~x such that ~x2 < X̂�
2 (s

�
1) and both (SPRa) and (SPRb) are satis�ed, contradicting the

de�nition of X̂�
2 (s

�
1).

Claim 2 X̂�
2 (s1) + X̂

�
3 (s1) is weakly increasing in s1.

Proof of Claim 2. For s1 > s�1, X̂
�
2 (s1) + X̂

�
3 (s1) = c02 + c

0
3 by de�nition. For s1 = s�1,

X̂�
2 (s1)+X̂

�
3 (s1) � c02+c03 since by Claim 1, X̂� (s�1) satis�es (SPRb) with equality. For s1 2 [0; s�1],

X̂� is continuous and satis�es (2); by NS, it follows that dX̂�
2 (s1) + dX̂

�
3 (s1) � 0.

Claim 3 (IC1) is satis�ed for ~�
1
= �0.

Proof of Claim 3. For ~�
1
= �0 and � = �, (IC1) reduces to U1 (c; �) � U1

�
s1 + X̂

� (s1) ; �
�
.

For s1 > s�1, recall that X̂
� (s1) solves (A-2) for � = �; therefore it follows immediately from the

de�nition of s�1 that (IC1) is satis�ed.

For s1 = s�1, recall that by the de�nition of X̂
� (s�1), X̂

�
2 (s

�
1) � c02 and U

2 (s�1 + c
0; �) =

U2
�
s�1 + X̂

� (s�1) ; �
�
; therefore it follows immediately from Lemma 2 that U1 (s�1 + c

0; �) � U1
�
s�1 + X̂

� (s�1) ; �
�
.

Further, since by Lemma 5, U22 (s
�
1 + c

0; �) > U23 (s
�
1 + c

0; �), it follows from the de�nition of s�1 that

U1 (c; �) = U1 (s�1 + c
0; �) and so (IC1) is satis�ed.

For s1 2 [s��1 ; s�1), it follows from the de�nition of s��1 that (IC1) is satis�ed.

Finally, for s1 2 [0; s��1 ], U1(s1 + X̂� (s1) ; �) is weakly increasing in s1: either d
ds1
X̂�
2 (s1) < 0,

in which case U1(s1 + X̂� (s1) ; �) is constant by construction, or d
ds1
X̂�
2 (s1) = 0, in which case

d
ds1
U1(s1 + X̂

� (s1) ; �) = �u01(c01 � s1; �) + �u02(s1 + X̂2 (s1) ; �) � 0.

For ~�
1
= �0 and � = �0, (IC1) reduces to U1

�
c0; �0

�
� U1

�
s1 +X

� (s1) ; �
0�. Recall that X� (s1)

solves (A-2) for � = �0; therefore it follows immediately from our assumption that U1 (c (�) ;�) �

maxs1�0 U
1 (s1 + c (�)� ŝ2;�), where ŝ2 = argmaxs2�0 U

2 (s1 + c (�)� s2;�), that (IC1) is satis-

�ed.

Claim 4 (IC2) is satis�ed for ~�
1
= �0 and � = �.

Proof of Claim 4. Case 1. For ~�
1
= �0, � = �, and ~�

2
= �, (IC2) reduces to U2(s1+X̂� (s1) ; �) �

U2(s1 + X̂
� (~s1)� s2; �).
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Step 1A. We show that for all s1; ~s1 2 [0; s�1] and s2 � 0, U2(s1 + X̂� (s1) ; �) � U2(s1 +

X̂� (~s1)� s2; �). Consider the function f (~s1) � maxs2�0 U2(s1 + X̂� (~s1)� s2; �) and note that by

NS, f (~s1 = s1) = U2(s1 + X̂� (s1) ; �); we will therefore show that f (~s1) has a global maximum at

~s1 = s1. By standard envelope arguments,

df (~s1)

d~s1
= U22 (s1 + X̂

� (~s1)� ŝ2; �)
dX̂�

2 (~s1)

d~s1
+ U23 (s1 + X̂

� (~s1)� ŝ2; �)
dX̂�

3 (~s1)

d~s1
,

where ŝ2 = argmaxs2�0 U
2(s1 + X̂

� (~s1)� s2; �). By the de�nition of X̂�,

df (~s1)

d~s1
= U23 (s1 + X̂

� (~s1)� ŝ2; �)
 
U22 (s1 + X̂

� (~s1)� ŝ2; �)
U23 (s1 + X̂

� (~s1)� ŝ2; �)
� U

2
2 (~s1 + X̂

� (~s1) ; �)

U23 (~s1 + X̂
� (~s1) ; �)

!
dX̂�

2 (~s1)

d~s1
.

Observe that d
d~s1
f (~s1)

���
~s1=s1

= 0. Given that d
d~s1
X̂�
2 (~s1) � 0, it su¢ ces to show that

U22 (s1 + X̂
� (~s1)� ŝ2; �)

U23 (s1 + X̂
� (~s1)� ŝ2; �)

� (�) U
2
2 (~s1 + X̂

� (~s1) ; �)

U23 (~s1 + X̂
� (~s1) ; �)

if ~s1 > (<) s1,

since doing so establishes global concavity of f .

Consider the case of ~s1 > s1. If U22 (~s1 + X̂
� (~s1) ; �) = U23 (~s1 + X̂

� (~s1) ; �), then the re-

quired inequality is immediate. If instead U22 (~s1 + X̂
� (~s1) ; �) > U23 (~s1 + X̂

� (~s1) ; �), then U22 (s1 +

X̂� (~s1) ; �) > U23 (s1 + X̂
� (~s1) ; �), implying ŝ2 = 0; the required inequality follows. Finally, con-

sider the case of ~s1 < s1. If U22 (s1 + X̂
� (~s1)� ŝ2; �) = U23 (s1 + X̂� (~s1)� ŝ2; �), then the required

inequality is immediate. If instead U22 (s1+ X̂
� (~s1)� ŝ2; �) > U23 (s1+ X̂� (~s1)� ŝ2; �), then ŝ2 = 0;

the required inequality follows as before.

Step 1B. We show that for all s1 > s�1, ~s1 2 [0; s�1], and s2 � 0, U2(s1 + X̂� (s1) ; �) � U2(s1 +

X̂� (~s1) � s2; �). By the de�nition of X̂�, U2(s1 + X̂� (s1) ; �) = maxs2�0 U
2 (s1 + c

0 � s2; �) for

all s1 > s�1; we therefore show that for all s1 > s�1 and ~s1 2 [0; s�1], maxs2�0 U2 (s1 + c0 � s2; �) �

maxs2�0 U
2(s1 + X̂

� (~s1) � s2; �). By NS, U2(s�1 + X̂� (s�1) ; �) = maxs2�0 U
2(s�1 + X̂

� (s�1) � s2; �);

by the de�nition of X̂� (s�1), U
2 (s�1 + c

0; �) = U2(s�1 + X̂
� (s�1) ; �); it then follows from X̂�

2 (s
�
1) �

c02 that U
2 (s�1 + c

0; �) = maxs2�0 U
2 (s�1 + c

0 � s2; �) which, together with Step A, implies that

for all ~s1 2 [0; s�1], maxs2�0 U2 (s�1 + c0 � s2; �) � maxs2�0 U
2(s�1 + X̂

� (~s1) � s2; �). Since for all

~s1 2 [0; s�1], X̂�
2 (~s1) � c02, it then follows from Lemma A-1 that for all s1 > s�1 and ~s1 2 [0; s�1],

maxs2�0 U
2 (s1 + c

0 � s2; �) � maxs2�0 U2(s1 + X̂� (~s1)� s2; �).
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Step 1C. We show that for all s1 2 [0; s�1], ~s1 > s�1, and s2 � 0, U2(s1 + X̂� (s1) ; �) � U2(s1 +

X̂� (~s1)�s2; �). By the de�nition of X̂�,max~s1>s�1;s2�0 U
2(s1+X̂

� (~s1)�s2; �) = maxs2�0 U2 (s1 + c0 � s2; �)

for all s1 > s�1; as before, U
2(s1 + X̂

� (s1) ; �) = maxs2�0 U
2(s1 + X̂

� (s1)� s2; �); we will therefore

show that for all s1 2 [0; s�1], maxs2�0 U2(s1 + X̂� (s1) � s2; �) � maxs2�0 U
2 (s1 + c

0 � s2; �). As

before, maxs2�0 U
2(s�1+ X̂

� (s�1)� s2; �) = maxs2�0 U2 (s�1 + c0 � s2; �); since X̂�
2 (s

�
1) � c02 it follows

from Lemma A-1 that for all s1 2 [0; s�1],maxs2�0 U2(s1+X̂� (s�1)�s2; �) � maxs2�0 U2 (s1 + c0 � s2; �)

which, together with the �rst step of the proof establishes that for all s1 > s�1 and ~s1 2 [0; s�1],

maxs2�0 U
2 (s1 + c

0 � s2; �) � maxs2�0 U2(s1 + X̂� (~s1)� s2; �).

Step 1D. It follows directly from the de�nition of X̂� that for all s1; ~s1 > s�1 and s2 � 0,

U2(s1 + X̂
� (s1) ; �) � U2(s1 + X̂� (~s1)� s2; �).

Case 2. For ~�
1
= �0, � = �, and ~�

2
= �0, (IC2) reduces to U2(s1 + X̂� (s1) ; �) � U2(s1 +

X� (~s1)� s2; �). By the de�nition of X�, Step 1C above establishes that for all s1 2 [0; s�1], ~s1 � 0,

and s2 � 0, U2(s1 + X̂� (s1) ; �) � U2 (s1 +X
� (~s1)� s2; �) and Step 1D establishes that for all

s1 > s
�
1, ~s1 � 0, and s2 � 0, U2(s1 + X̂� (s1) ; �) � U2 (s1 +X� (~s1)� s2; �).

Claim 5 (IC2) is satis�ed for ~�
1
= �0 and � = �0.

Proof of Claim 5. For ~�
1
= �0, � = �0, and ~�

2
= �, (IC2) reduces to U2(s1+X� (s1) ; �

0) � U2(s1+

X̂� (~s1)� s2; �0). We �rst show that for all s1 � 0, ~s1 2 [0; s�1], and s2 � 0, U2
�
s1 +X

� (s1) ; �
0� �

U2(s1+X̂
� (~s1)�s2; �0). By the de�nition ofX�, U2

�
s1 +X

� (s1) ; �
0� = maxs2�0 U2 �s1 + c0 � s2; �0�;

we will therefore show that for all s1 � 0 and ~s1 2 [0; s�1],maxs2�0 U2
�
s1 + c

0 � s2; �0
�
� maxs2�0 U2(s1+

X̂� (~s1) � s2; �0). Consider the case of s1 = 0: since c0 is self 0�s desired allocation in state �0,

maxs2�0 U
2
�
c0 � s2; �0

�
= U2

�
c0; �0

�
; by Claim 1, U2

�
c0; �0

�
= maxs2�0 U

2(X̂� (s�1) � s2; �0). By

Claim 4, U2(s�1+X̂
� (s�1) ; �) � U2(s�1+X̂� (~s1)�s2; �) for all ~s1 2 [0; s�1] and s2 � 0. If X̂�

2 (~s1)�s2 >

X̂�
2 (s

�
1), then it follows from the de�nition of X̂� (s�1) and SCB that maxs2�0 U

2(X̂� (s�1)� s2; �0) �

U2(X̂� (~s1)�s2; �). If X̂�
2 (~s1)�s2 � X̂�

2 (s
�
1) then, by Claim 2, X̂

�
2 (~s1)+X̂

�
3 (~s1) � X̂�

2 (s
�
1)+X̂

�
3 (s

�
1),

and somaxs2�0 U
2(X̂� (s�1)�s2; �0) � U2(X̂� (~s1)�s2; �). As a result,maxs2�0 U2

�
s1 + c

0 � s2; �0
�
�

maxs2�0 U
2(s1 + X̂

� (~s1) � s2; �0) for s1 = 0 and all ~s1 2 [0; s�1]; it then follows from Lemma A-1

that the same is true for all s1 � 0 and ~s1 2 [0; s�1].

Finally, it follows directly from the de�nitions of X̂� and X� that for all s1 � 0 and ~s1 > s�1,

U2
�
s1 +X

� (s1) ; �
0� � U2(s1 + X̂� (~s1)� s2; �0).

For ~�
1
= �0, � = �0, and ~�

2
= �0, (IC2) reduces to U2(s1+X� (s1) ; �

0) � U2(s1+X� (~s1)�s2; �0);

it follows directly from the de�nition of X� that it is satis�ed.
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Proof of Theorem 1 (necessity) Suppose that SPR is satis�ed and X̂� violates NS but, to the

contrary, commitment is possible. Let X̂ be a commitment contract.

Claim 1 X̂� satis�es NS at s�1.

Proof of Claim 1. If X̂� (s�1) = c
0, this is immediate from Lemma A-4. If instead X̂� (s�1) 6= c0,

suppose to the contrary that U22
�
s�1 + X̂

� (s�1) ; �
�
< U23

�
s�1 + X̂

� (s�1) ; �
�
. But then for " > 0

su¢ ciently small, X̂� (s�1)+(0;�"; ") satis�es both (SPRa) and (SPRb), contradicting the de�nition

of X̂� (s�1).

Claim 2 There exists s1 < s�1 at which X̂
� violates NS and satis�es (IC1) with equality for�

�; ~�
1
�
=
�
�; �0

�
.

Proof of Claim 2. If (IC1) holds with equality at s1, the proof is complete. Otherwise, X̂� must

be locally constant at s1. Suppose for now that the set
n
~s1 2 (s1; s�1] : X̂� is not locally constant at ~s1

o
is nonempty and let s1 be its in�mum. Since X̂

� is constant on [s1; s1] and NS is violated at s1 < s1,

NS must also be violated at s1. Moreover, since X̂
� is not locally constant at s1, (IC1) holds with

equality at s1. Finally, note that the above set is indeed nonempty: if it were empty, then the

argument just made would imply that NS is violated at s�1, contradicting Claim 1.

Claim 3 There exists s1 < s�1 such that U
2(s1 + X̂ (s1) ; �) < U

2(s1 + X̂
� (s1) ; �).

Proof of Claim 3. Following Claim 2, let s1 < s�1 be such that, at s1, X̂
� violates NS and

satis�es (IC1) with equality for
�
�; ~�

1
�
=
�
�; �0

�
. Since by supposition X̂ is a commitment contract,

U1(s1 + X̂ (s1) ; �) � U1(s1 + X̂� (s1) ; �). We show that U2(s1 + X̂ (s1) ; �) < U2(s1 + X̂� (s1) ; �).

Suppose to the contrary that U2(s1 + X̂ (s1) ; �) � U2(s1 + X̂� (s1) ; �). Together with Lemma 2,

these inequalities imply that X̂2 (s1) � X̂�
2 (s1) and X̂3 (s1) � X̂�

3 (s1). Since X̂
� violates NS at s1,

this implies that X̂ also violates NS at s1, contradicting our supposition that X̂ is a commitment

contract.

Final step of proof. We start by de�ning ~X�� a perturbation of X̂�� as follows. De�ne its

boundary ~X� (s�1) such that ~X
�
2 (s

�
1) < X̂

�
2 (s

�
1) and U

1
�
s�1 +

~X� (s�1) ; �
�
= U1

�
s�1 + X̂

� (s�1) ; �
�
; it

follows from Lemma 2 that U2
�
s�1 +

~X� (s�1) ; �
�
< U2

�
s�1 + X̂

� (s�1) ; �
�
. Given the boundary, de-

�ne ~X� in a parallel way to X̂�. That is, let ~s��1 � sup
n
s1 2 [0; s�1] : U1

�
s1 + ~X� (s�1) ; �

�
> U1 (c; �)

o
,

with ~s��1 = s�1 if the set is empty. Then, for every s1 2 [~s��1 ; s�1], let ~X� (s1) = ~X� (s�1), and for every

s1 2 [0; ~s��1 ], de�ne ~X� (s1) by the di¤erential equations (2) and (3).

Following Claim 3, �x s+1 < s�1 such that U
2(s+1 + X̂

�
s+1
�
; �) < U2(s+1 + X̂

� �s+1 � ; �). As
long as the boundary ~X� (s�1) is chosen to be close enough to X̂

� (s�1), U
2(s+1 + X̂

�
s+1
�
; �) <
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U2
�
s+1 +

~X� �s+1 � ; ��. Moreover, U2(s�1 + ~X� (s�1) ; �) < U2(s�1 + X̂ (s�1) ; �): as noted above,

U2
�
s�1 +

~X� (s�1) ; �
�
< U2

�
s�1 + X̂

� (s�1) ; �
�
and, from the de�nition of X̂� (s�1) and the suppo-

sition that X̂ is a commitment contract, U2(s�1+ X̂
� (s�1) ; �) = U

2 (s�1 + c
0; �) � U2(s�1+ X̂ (s�1) ; �).

From the proof of Proposition 2, Claim 4, it is straightforward to see that U2(s1 + X̂ (s1) ; �)

is continuous in s1 and di¤erentiable at any s1 at which X̂ is continuous. Since X̂ is continu-

ous at all but at most a �nite number of points, it then follows that there exists s++1 2
�
s+1 ; s

�
1

�
such that U2(s++1 + X̂

�
s++1

�
; �) > U2

�
s++1 + ~X� �s++1 �

; �
�
and d

ds1
U2(s1 + X̂ (s1) ; �)

���
s1=s

++
1

�

d
ds1

U2
�
s1 + ~X� (s1) ; �

����
s1=s

++
1

. Equation (2) implies d
ds1

U2(s1 + X̂ (s1) ; �)
���
s1=s

++
1

= U22 (s
++
1 +

X̂
�
s++1

�
; �) and d

ds1
U2
�
s1 + ~X� (s1) ; �

����
s1=s

++
1

= U22

�
s++1 + ~X� �s++1 �

; �
�
; therefore X̂2

�
s++1

�
�

~X�
2

�
s++1

�
and X̂3

�
s++1

�
> ~X�

3

�
s++1

�
. Lemma 2 then implies that U1(s++1 + X̂

�
s++1

�
; �) >

U1
�
s++1 + ~X� �s++1 �

; �
�
.

If U1
�
s++1 + ~X� �s++1 �

; �
�
= U1 (c; �), then U1(s++1 + X̂

�
s++1

�
; �) > U1 (c; �), contradicting

our supposition that X̂ is a commitment contract. If instead U1
�
s++1 + ~X� �s++1 �

; �
�
< U1 (c; �)

(the opposite inequality is ruled out by the de�nition of ~X�), then, by the de�nition of ~X�,

~X� �s++1 �
= ~X� (s�1) and so X̂2

�
s++1

�
� ~X�

2

�
s++1

�
= ~X�

2 (s
�
1) < X̂�

2 (s
�
1), contradicting Proposi-

tion 4 and thus also our supposition that X̂ is a commitment contract.

Proof of Proposition 5. We show that c0�3 � c�3 is equivalent to U22 (s�1 + c0�; �) =U23 (s�1 + c0�; �) �

U22
�
c0�; �0

�
=U23

�
c0�; �0

�
, the simple su¢ cient condition for SPR introduced in Lemma 4. Note that

this condition is itself equivalent to u02 (s
�
1 + c

0�
2 ; �) � u03 (c

0�
3 ; �) since, by the de�nitions of c

� and

c0�, u02 (c
�
2; �) =u

0
3 (c

�
3; �) = u02

�
c0�2 ; �

0� =u03 �c0�3 ; �0� = 1. Hence we show that c0�3 � c�3 if and only if

u02 (s
�
1 + c

0�
2 ; �) � u03 (c0�3 ; �).

Suppose that c0�3 � c�3; then c0�1 � c�1 � c�2 � c0�2 . From Lemma A-6 we know that s�1 � c0�1 � c�1;

therefore s�1 � c�2 � c0�2 . As a result, u02 (s�1 + c0�2 ; �) � u02 (c�2; �) = u03 (c�3; �) � u03 (c0�3 ; �).

Note that (since � � 1) if u02 (s�1 + c0�2 ; �) � u03 (c0�3 ; �), then s2 = 0 solvesmaxs2�0 U2 (s1 + c0� � s2; �)

for s1 � s�1 and so s�1 is simply the largest solution to U1 (s1 + c0�; �) = U1 (c�; �); moreover, because

there is a commitment problem, u01 (c
0�
1 � s�1; �) > �u02 (s�1 + c0�2 ; �).

It follows from the above two steps that if c0�3 � c�3, then u02 (s�1 + c0�2 ; �) � u03 (c0�3 ; �), which in

turn implies U1 (s�1 + c
0�; �) = U1 (c�; �). It follows from concavity of preferences and the de�nition

of c� that if c0�3 = c
�
3, then s

�
1 = c

0�
1 � c�1 = c�2 � c0�2 (so that s�1 + c0� = c�) and so u02 (s�1 + c0�2 ; �) =

u02 (c
�
2; �) = u

0
3 (c

�
3; �) = u

0
3 (c

0�
3 ; �).
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To complete the proof, suppose that c0�3 < c
�
3 but, contrary to the claimed result, u

0
2 (s

�
1 + c

0�
2 ; �) �

u03 (c
0�
3 ; �). Just as above, U

1 (s�1 + c
0�; �) = U1 (c�; �) and u01 (c

0�
1 � s�1; �) > �u02 (s�1 + c0�2 ; �). To see

how s�1 + c
0�
2 evolves as c

0�
3 increases, di¤erentiate U

1 (s�1 + c
0�; �) = U1 (c�; �) to obtain

d (s�1 + c
0�
2 )

dc0�3
= � u01 (c

0�
1 � s�1; �)� �u03 (c0�3 ; �)

u01 (c
0�
1 � s�1; �)� �u02 (s�1 + c0�2 ; �)

.

The denominator is strictly positive and by our supposition that u02 (s
�
1 + c

0�
2 ; �) � u03 (c

0�
3 ; �), the

numerator is weakly greater than the denominator; it follows that the derivative is strictly nega-

tive. As a result, u02 (s
�
1 + c

0�
2 ; �) strictly increases as c

0�
3 increases, leading to a contradiction as c

0�
3

approaches c�3.

Proof of Proposition 6. By Proposition 5, SPR is satis�ed, so by Theorem 1, it su¢ ces to show

that X̂� satis�es NS for all � su¢ ciently close to ��. Throughout the proof we regularly add a �

argument to s�1, X̂
�, and U t to aid exposition.

As a preliminary, note that �� < 1, as follows. By assumption, s2 + c0�3 > c�3 for all s2 � 0.

Therefore, by the de�nition of c�, U1 (s1 + c0� � s2; �; � = 1) < U1 (c�; �; � = 1) for all s1; s2 � 0.

For � � �� such that there is a commitment problem, the proof of Proposition 5 implies (since

c0�3 > c
�
3 )

u02 (s
�
1 (�) + c

0�
2 ; �)

�u03 (c
0�
3 ; �)

�
u02
�
c0�2 ; �

0�
�u03

�
c0�3 ; �

0� = 1

�
� 1

��
> 1. (A-3)

The result then follows if we can show that maxs12[0;s�1(�)]

���X̂�
2 (s1;�)� c0�2

��� ! 0 as � ! ��. For

use below, note that the �rst inequality in (A-3) and Lemma 6 imply X̂� (s�1 (�) ;�) = c
0�.

Using the simpli�cations noted for the c0�3 � c�3 case in the proof of Proposition 5,maxs1�0 U1 (s1 + c0�; �; ��) =

U1 (c�; �). De�ne s�1 (�
�) = lim�!�� s

�
1 (�), and note that s

�
1 (�

�) = argmaxs1�0 U
1 (s1 + c

0�; �; ��).

The important implication of these observations is that, if s�1 (�
�) > 0,

u01
�
c0�1 � s�1 (�) ; �

�
� �u02

�
s�1 (�) + c

0�
2 ; �

�
! 0 as � ! ��. (A-4)

Recall that X̂� satis�es (4) (see page 21). We claim, and show below, that X̂�
2 (�;�) is concave for �

su¢ ciently close to ��. Given this, we know that for any s1 2 [0; s�1 (�)], X̂�
2 (s1;�) lies between c

0�
2

and c0�2 � (s�1 (�)� s1) d
ds1
X̂�
2 (s1;�)

���
s1=s�1(�)

. If s�1 (�
�) > 0, the result then follows since (by �� < 1
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and (A-4))
dX̂�

2 (s1;�)

ds1

�����
s1=s�1(�)

! 0 as � ! ��:

If instead s�1 (�
�) = 0, the result follows simply from the fact that

dX̂�
2 (s1;�)

ds1

�����
s1=s�1(�)

! �u
0
1(c

0�
1 ; �)� ��u02 (c0�2 ; �)
(1� ��)u02 (c0�2 ; �)

as � ! ��; (A-5)

i.e., the derivative does not explode as � approaches ��. (Note that the limit is negative, since in

this case s1 = 0 maximizes U1 (s1 + c0�; �; ��).)

It remains only to establish that X̂�
2 (�;�) is concave. For this, it is su¢ cient to establish that

s1 + X̂
�
2 (s1;�) is weakly increasing in s1 on [0; s

�
1 (�)]. From (A-4), if s�1 (�

�) > 0, then for all �

su¢ ciently close to ��,

d
�
s1 + X̂

�
2 (s1;�)

�
ds1

� 0 (A-6)

is satis�ed strictly at s1 = s�1 (�). If instead s
�
1 (�

�) = 0, then note that c0�1 > c
�
1 and c

0�
2 < c

�
2 (since

c0�3 > c
�
3) imply u

0
2 (c

0�
2 ; �)� u01 (c0�1 ; �) > u02 (c�2; �)� u01 (c�1; �) = 0; substituting in (A-5) then implies

that (A-6) is again satis�ed strictly for � su¢ ciently close to ��.

Fix any such � close enough to �� such that (A-6) indeed holds strictly at s1 = s�1 (�). Suppose

there exists s1 2 [0; s�1 (�)] such that (A-6) holds at equality. At any such s1,

d2
�
s1 + X̂

�
2 (s1;�)

�
ds21

=
1

1� �
u001(c

0�
1 � s1; �)

u02

�
s1 + X̂�

2 (s1;�) ; �
� < 0:

Consequently, if any such s1 exists, it follows from continuity that d
ds1

�
s1 + X̂

�
2 (s1;�)

�
� 0 for all

higher values of s1, contradicting the fact that (A-6) holds strictly at s�1 (�). It follows that (A-6)

holds strictly for all s1 2 [0; s�1 (�)], completing the proof.

Proof of Proposition 7. The main step is to show that self 2 will not use the costly �exibility

in state � after self 1 chooses c�1, i.e., that for all s1,

max
s2�0

U2 (s1 + c
� � s2; �) � max

~s1;s2�0
U2
�
s1 + c

� + X̂� (~s1)� c0� � s2; �
�
. (A-7)

Note that even if self 2 chooses the costly �exibility in state �0 after self 1 chooses c�1, self 1 would
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still not deviate and choose c�1 in state �
0. The proof parallels that of Lemma A-6.

To establish (A-7), suppose to the contrary that there exist s1, ~s1, s2 � 0 such that

U2
�
s1 + c

� + X̂� (~s1)� c0� � s2; �
�
> max

~s2�0
U2 (s1 + c

� � ~s2; �) . (A-8)

Note �rst that since X̂�
2 (~s1)+X̂

�
3 (~s1) � c0�2 +c0�3 , it must be that X̂�

2 (~s1)�c0�2 �s2 > 0. In turn, this

implies c0�3 �X̂�
3 (~s1)�s2 > 0. Moreover, inequality (A-8) implies that U2

�
s1 + c

� + X̂� (~s1)� c0� � s2; �
�
>

U2 (s1 + c
�; �) or, equivalently,

u2

�
s1 + c

�
2 +

�
X̂�
2 (~s1)� c0�2 � s2

�
; �
�
� u2 (s1 + c�2; �)

> �u3 (c
�
3; �)� �u3

�
c�3 �

�
c0�3 � X̂�

3 (~s1)� s2
�
; �
�
. (A-9)

Since c0�3 � c�3 is equivalent to c0�1 � c�1 � c�2 � c0�2 and, by Lemma A-6, s�1 � c0�1 � c�1, we know that

s�1 + c
0�
2 � c�2. As a result, (A-9) and concavity of preferences imply

u2

�
s�1 + c

0�
2 +

�
X̂�
2 (~s1)� c0�2 � s2

�
; �
�
�u2

�
s�1 + c

0�
2 ; �

�
> �u3

�
c0�3 ; �

�
��u3

�
c0�3 �

�
c0�3 � X̂�

3 (~s1)� s2
�
; �
�

or, equivalently, U2
�
s�1 + X̂

� (~s1)� s2; �
�
> U2 (s�1 + c

0�; �). But since U2 (s�1 + c
0�; �) = U2

�
s�1 + X̂

� (s�1) ; �
�

by construction, this last inequality violates (IC2) for
�
�; ~�

1
; ~�
2
�
=
�
�; �0; �

�
, contradicting Theo-

rem 1 and completing the proof.
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