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Abstract

We study a dynamic and infinite–dimensional model with Knightian
uncertainty modeled by incomplete multiple prior preferences. In in-
terior efficient allocations, agents share a common risk–adjusted prior
and use the same subjective interest rate. Interior efficient alloca-
tions and equilibria coincide with those of economies with subjective
expected utility and priors from the agents’ multiple prior sets. We
show that the set of equilibria with inertia contains the equilibria
of the economy with variational preferences anchored at the initial
endowments. A case study in an economy without aggregate uncer-
tainty shows that risk is fully insured, while uncertainty can remain
fully uninsured. Pessimistic agents with Gilboa–Schmeidler’s max-min
preferences would fully insure risk and uncertainty.
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1 Introduction

Individuals have to deal with different sorts of risky or uncertain events. For
some of them, mortality risk, health care costs, car accidents among others,
the probabilities are relatively stable and we have robust and safe ways to
estimate them. For others — the event that a firm ranked “B” goes bankrupt
in the next year, to give a current example — the probabilities are unknown or
at least difficult to estimate. The economic literature distinguishes between
risk – where the outcomes are unknown, but the probabilities are known —
and uncertainty — where not even the distribution of outcomes is known
exactly. Many models of decision under uncertainty have been proposed
within the past ten years, most assume complete preferences (see Rigotti,
Shannon, and Strzalecki (2008) for an overview and the references therein).
Models with incomplete preferences are scarcer but have raised recent interest
(see, e.g., Bewley (2002), Rigotti and Shannon (2005), Ok, Ortoleva, and
Riella (2008), Nehring (2009), Faro (2010), Nascimento and Riella (2010)).

Gilboa, Maccheroni, Marinacci, and Schmeidler (2010) show that one can
justify Bewley’s model as “objective” rationality whereas the maxmin–model
by Gilboa and Schmeidler corresponds to “subjective” rationality. Under
objective rationality, an agent prefers to be silent if she does not have enough
information. This leads to incomplete preferences. In market situations,
however, an agent has to decide what to buy even if she cannot compare
between all consumption plans. In particular, she might move away from her
endowment to a plan that she cannot compare to it. Bewley (2002) suggests
to exclude such unmotivated betting by an inertia principle: agents never
trade to a plan whose expected utility is not strictly higher under every prior
than their status quo. The market implications of the Bewley approach in
the static setting have been worked out in Rigotti and Shannon (2005).

In this paper, we extend the analysis of Bewley’s preferences to a dynamic
and infinite–dimensional setting. The first contribution of the paper is the
characterization of efficient allocations and equilibria without the restriction
of inertia. In dynamic models, the marginal rate of substitution between
date 0 and some future date and state of the world determines both the
risk–adjusted prior and the subjective interest rate of an agent. In efficient
allocations, agents have to agree on both objects. In the multiple prior
model with incomplete preferences, it is enough that agents share at least
one common model.

We also show that an interior allocation is efficient if and only if for some
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selection of priors, the allocation is efficient in the corresponding S–economy
(where the S(avage)–economy has complete preferences and every agent has
one single subjective prior). These results imply that the Pareto set is much
thicker than for complete preferences and that there are a plethora of equi-
libria: every interior equilibrium of some S-economy is a Bewley equilibrium,
and vice versa. This implies that we have indeterminacy.

We then go on to add the restriction of inertia which as noted already
by Rigotti and Shannon (2005) plays the role of a natural equilibrium re-
finement. Although we do not obtain a characterization of equilibria with
inertia, except in the case of no-trade, we nonetheless provide a new, shorter
proof for the existence of equilibria with inertia by using a utility in the class
of variational preferences that have been axiomatized by Maccheroni, Mari-
nacci, and Rustichini (2006a). If P i denotes an agent’s set of priors and ωi

her endowment and U i the utility index, we introduce what one might call
variational preferences anchored1 at ωi

min
P∈Pi

EP
(
U i(x)− U i(ωi)

)
.

It is easy to show that an equilibrium in the economy with the above varia-
tional preferences is an equilibrium with inertia in the Bewley economy. We
establish the existence of such equilibria by standard arguments, Mackey–
continuity of the utilities and Bewley’s existence theorem for L∞, see Bewley
(1972). In the case of no trade, we are able to establish uniqueness.

Rigotti and Shannon (2005) have examined the implications of Bewley’s
in general equilibrium. In Section 3, we present here a new and, as we believe,
particularly interesting case study. It shows that albeit inertia and pessimism
are both plausible reactions to uncertainty on the individual level, they have
completely different implications on the market level.

We consider an economy whose individual endowments are subject to
both a risky and an uncertain source. To focus on the insurance aspect, we
assume that there is no aggregate uncertainty. As is well known, with ex-
pected utility and homogenous priors, all risk and uncertainty is fully insured.
The same holds true for Gilboa–Schmeidler pessimistic multiple prior prefer-
ences if agents share at least one prior (the argument of Billot, Chateauneuf,
Gilboa, and Tallon (2000) extends easily to a dynamic setting).

In contrast, with incomplete preferences and inertia, risk and uncertainty
get a very different treatment. While risk is completely insured in every

1Following in spirit Sagi (2006)
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equilibrium, the full insurance allocation — where also uncertainty is fully
hedged — is not an equilibrium with inertia if ambiguity is sufficiently large.
The reason for this is that each agent has some very optimistic prior in his
belief set; under this prior, the agent prefers the uncertain endowment over
the full insurance allocation because the expected payoff from the uncertain
source is quite higher compared to the full insurance plan. The inertia con-
straint – which requires that the agent trades only if the new consumption
plan is preferred to endowment for all priors — then inhibits trade.

As a consequence, in equilibria with inertia, risk is insured and (at least)
uncertainty remains. We present a particular type of equilibrium where the
market for uncertain contingent claims breaks down completely. Agents re-
main fully uninsured against any uncertainty.

The paper is organized as follows. The next section sets up the model.
Section 2 discusses the dynamic market with incomplete preferences and
inertia in general. Section 3 contains our case study. Proofs for Section 2
are collected in the first of two appendices; the other one studies Mackey–
continuity of variational preferences anchored at endowment.

2 Allocations and Equilibria in Dynamic

Multiple Prior Economies with Incomplete

Preferences

This section contains our analysis of dynamic multiple prior economies with
incomplete expected utility preferences. After setting up the model, we first
characterize efficient allocations before we move on to equilibria with and
without inertia. As we explain most of our results in words, we have post-
poned all proofs to Section A.1.

2.1 Model

We consider a pure exchange economy that consists of I agents that live from
time 0 to time T and face uncertainty. For simplicity, there is one good in each
state of the world. Agents make contingent consumption plans. Information
is described by a filtration (Ft)t=0,...,T on a probability space (Ω,F , P0). The
commodity space is given by the set of essentially bounded, adapted pro-
cesses X = L∞ (Ω× {0, . . . , T},A, P0 ⊗ ζ) and consumption plans are its
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nonnegative elements in X+ = L∞+ (Ω× {0, . . . , T},A, P0 ⊗ ζ). Here, A is
the σ–field on Ω×{0, . . . , T} generated by all adapted processes and ζ is the
uniform probability measure on {0, . . . , T}. Each agent comes with an en-
dowment ωi = (ωit)t=0,...,T ∈ X+ that is bounded away from 0. ω :=

∑I
i=1 ω

i

is aggregate endowment.
Agents have incomplete expected utility preferences that are induced by

a set of priors P i on (Ω,F , P0). Agent i prefers consumption plan c to
consumption plan d, or c �i d, if and only if for all priors Q ∈ P i

EQU i(c) ≥ EQU i(d) ,

where the intertemporal preferences of agents are described by an additively
separable utility function of the form

U i(c) =
T∑
t=0

ui(t, ct)

for some continuous function ui : {0, . . . , T} ×R+ that is strictly increasing,
strictly concave and continuously differentiable in its second variable.
The derived strict preference relation �i satisfies c �i d if and only if c �i d
and for some prior Q ∈ P i, we have

EQU i(c) > EQU i(d) .

In order to have a short name, we call these preferences B-preferences (B
for Bewley) and the corresponding economy a B-economy. We frequently
compare this economy with incomplete preferences to some economy with
heterogeneous priors Qi ∈ P i, but complete preferences. We call that econ-
omy the S -economy with priors2 Q = (Q1, . . . , QI).

As the priors P i are defined on the probability space (Ω,F , P0), all priors
Q ∈ P i are absolutely continuous to the reference probability3 P0. We assume
throughout that they are even equivalent to P0 and satisfy the following
property :

2We prefer the name S-economy (for Savage economy) to the name risk economy that
has been used elsewhere because we interpret the economy with priors Q = (Q1, . . . , QI)
as an economy under uncertainty where agents’ preferences conform to Savage’s axioms
that allow to derive a unique prior Qi. In a risk economy, the probabilities would be
objectively given, and all agents should use the same prior.

3The assumption of absolute continuity is discussed in Epstein and Marinacci (2006).
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Assumption 2.1 The family of densities

D =

{
dP

dP0

∣∣∣∣
FT
|P ∈ Q

}

is convex and σ(L1 (Ω,F , P0) , L∞ (Ω,F , P0))–compact.

From the Dunford-Pettis theorem, this assumption is satisfied for closed
convex sets for example if the densities in D are bounded by a P0–integrable
random variable. In particular, the assumption is satisfied whenever the state
space Ω is finite and the set of priors is closed and convex.

2.2 Efficient Allocations

We come now to efficient allocations in B–economies. Let us start by fixing
the concepts.

An allocation x ∈ (X+)I is a family of I contingent consumption pro-
cesses. A full insurance allocation x ∈ (X+)I is a family of I deterministic
consumption processes (that may depend on time, but not on states of the
world). The allocation x = (xi)i=1,...,I is feasible if

∑
xi = ω. It is B-efficient

if it is feasible and there is no other feasible allocation y = (yi)i=1,...,I such
that yi �i xi for all agents i = 1, . . . , I and yi �i xi for some i. It is often
more convenient to work with the weak notion of B-efficiency. An allocation
x = (xi)i=1,...,I is weakly B-efficient if it is feasible and there is no other fea-
sible allocation y = (yi)i=1,...,I such that yi �i xi for all agents i = 1, . . . , I.
The following technical result will turn out to be useful. Our concept of strict
preference y �i x allows for the possibility that the expected utility of y is
the same than that of x under some priors. With our assumptions on utility
functions, it is enough to check for strict inequalities here.

Lemma 2.2 An allocation x = (xi)i=1,...,I is weakly B-efficient if it is
feasible and there is no other feasible allocation y = (yi)i=1,...,I such that
EQU i(yi) > EQU i(xi) for all priors Q ∈ P i for all agents i = 1, . . . , I.

With a compact set of priors and strictly concave Bernoulli utility func-
tions U i, interior weakly B-efficient allocations are also B-efficient. The
argument follows the usual lines, with some technical twinkles as we are in
an infinite–dimensional context.
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Lemma 2.3 B-efficient allocations are weakly B-efficient. Interior, weakly
B-efficient allocations are B-efficient.

We recall that in our context, an allocation is interior if it is uniformly
bounded away from zero. Our main theorem will show that interior alloca-
tions are B-efficient if and only if they are S-efficient in some S-economy.

To this end, we start with a general observation which holds true for
all sorts of incomplete preferences that are defined by a family of complete
preferences. If an allocation is efficient in some economy with complete pref-
erences in the family, then it is efficient in the economy with incomplete
preferences.

Lemma 2.4 If there exist priors Qi ∈ P i such that x∗ is efficient in the
S-economy with priors Q = (Q1, . . . , QI), then x∗ is B-efficient .

We discuss now the marginal rates of substitution and related probability
measures (risk–adjusted priors, or, in a finance context, equivalent martingale
measures) that support efficient allocations. Fix a prior Qi ∈ P i for every
agent i. We denote by (qit) the density process of Q with respect to P0. We
can rewrite the utility with prior Qi as a state–dependent expected utility
function with respect to P0:

EQiU i(ci) = EQi
T∑
t=0

ui(t, ct) = EP0

T∑
t=0

ui(t, ct)q
i
t .

The marginal rate of substitution between date 0 and date t is given by

MRSit(c
i, Qi) = uic(t, c

i
t)q

i
t/u

i
c(0, c

i
0) .

We denote the set of all (processes of) marginal rates of substitution at some
consumption plan ci by

Ψi(ci) =
{
MRSi(ci, Qi)|Q ∈ P i

}
. (1)

As is well known, marginal rates of substitution coincide at interior S-
efficient allocations.

Lemma 2.5 An interior allocation c is efficient in the Savage economy with
priors Q = (Q1, . . . , QI) if and only if the marginal rates of substitution
coincide for all agents,

MRSit(c
i, Qi) = MRSjt (c

j, Qj), (t = 0, . . . , T, i, j = 1, . . . , I) .
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An immediate corollary of the previous two lemmata is the following.
When marginal rates coincide for some priors, we have efficiency in the S–
economy. But by Lemma 2.4, we then also have B–efficiency.

Corollary 2.6 Let c be a feasible, interior allocation. If

I⋂
i=1

Ψi(ci) 6= ∅,

then c is B-efficient.

We begin now a deeper study of the structure of efficient allocations.
One can use the marginal rates of substitution to define a pricing probability
Qi(ci) — the so–called risk–adjusted probability — for agent i and an interest
rate process rit that defines a price functional supporting efficient allocations.
They are defined in such a way that we have

EQi
∑

MRSit(c
i, Qi)xt = EQi(ci)

∑
exp(−

t∑
u=1

ris)xt (2)

for all x ∈ X .

Lemma 2.7 Let (cit) be a feasible, interior allocation. Then there exist pre-
dictable individual interest rate processes (rit)t=1,...,T,i=1,...,I and strictly posi-
tive P0–martingales (M i

t ) with expectation 1 such that

MRSit(c
i, Qi) = M i

t exp

(
−

t∑
s=1

ris

)
.

ri and M i are uniquely determined.

Note that the interest rates ri and martingales M i depend both on Qi

and ci, so we write ri(Qi, ci) or M i(Qi, ci) to emphasize this dependence
when necessary. The martingales M i identified in the previous lemma define
a probability measure Qi(ci) that is equivalent to P0 and satisfies (2). In
the financial tradition, we call these probabilities risk–adjusted priors, and
denote agent i’s set of risk–adjusted priors at consumption ci by Πi(ci).
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We have now collected the relevant tools to state our main theorem on
interior B-efficient allocations. At a B-efficient allocation, agents share a risk–
adjusted prior. In contrast to the static framework of Rigotti and Shannon
(2005), this condition is only necessary, but not sufficient for B-efficiency.
Only if the agents also agree on the interest rate used to discount future
consumption, the allocation is B-efficient. We also show that B-efficiency
with incomplete preferences is equivalent to having efficiency in some S-
economy for some choice of priors Qi ∈ P i.

Theorem 2.8 The following assertions are equivalent for an interior allo-
cation x:

1. x is B-efficient,

2. the agents’ sets of marginal rates of substitution intersect,

I⋂
i=1

Ψi(xi) 6= ∅

3. the agents share a risk–adjusted prior

I⋂
i=1

Πi(xi) 6= ∅

and for a common risk–adjusted prior Q ∈
⋂I
i=1 Πi(xi) all individual

interest rates are equal, i.e.

ri(Q, xi)t = rj(Q, xj)t

for all i, j = 1, . . . , I and t = 0, . . . , T ,

4. for some selection of priors Qi ∈ Qi, i = 1, . . . , I, x is S-efficient in the
economy with priors Q = (Q1, . . . , QI).

Remark 2.9 Suppose that instead of considering Bewley’s unanimity rule,
we consider the Gilboa Schmeidler’s max-min rule with utility representation
for agent i

Ṽ i(x) = min
P∈Pi

EP
(
U i(x)

)
9



We claim that any efficient allocation x = (xi)i=1,...,I of the economy with
preferences (Ṽ i) is B-efficient. If not, there would exists another feasible
allocation y = (yi)i=1,...,I such that EQU i(yi) > EQU i(xi) for all priors Q ∈
P i and all agents i = 1, . . . , I implying Ṽ i(yi) > Ṽ i(xi) for every i = 1, . . . , I,
contradicting the Ṽ –efficiency of x.

As in Rigotti and Shannon (2005), we obtain as a corollary of theorem
2.8.

Corollary 2.10 Assume that there exists no aggregate uncertainty and that

I⋂
i=1

P i 6= ∅

then any full insurance feasible allocation is efficient.

Remark 2.11 In the case of no aggregate uncertainty and common prior,
any efficient allocation for Gilboa–Schmeidler’s max-min rule must be a full
insurance allocation. This follows from an easy dynamic extension of Billot,
Chateauneuf, Gilboa, and Tallon (2000) or Dana (2002). For Bewley’s una-
nimity rule, full insurance allocations are efficient, but there are lots of other
efficient allocations since the equilibria of an expected utility economy with
heterogeneous beliefs and no aggregate risk are not full insurance allocations.

2.3 Equilibria with and without Inertia

We study now equilibrium allocations and prices for B-economies. We show
that without further restriction, there are usually infinitely many equilibria
as any S-economy equilibrium leads to an equilibrium in the B-economy. We
then go on to study equilibria that satisfy Bewley’s inertia criterion.

A price for our economy is given by an adapted, integrable, positive pro-
cess (pt) ∈ L1 (Ω× {0, . . . , T},A, P0 ⊗ ζ). Let P be the set of price processes.
We denote by

p.c := EP0

T∑
t=0

ptct

the linear functional associated with the price (pt).
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A feasible allocation x∗ ∈ (X )I and a price p∗ ∈ P form a B-equilibrium if,
for every i, p∗.x∗i = p∗.ωi and if xi � x∗i implies p∗.xi > p∗.ωi (there is no
budget feasible consumption plan that strictly dominates x∗i ). A feasible
allocation x∗ ∈ (X )I and a price p∗ ∈ P is a B-equilibrium with transfer
payments if xi � x∗i implies p∗.xi > p∗.x∗i for all i.

Before we start our analysis, let us remark that the first welfare theorem
trivially holds true for a B-economy. Indeed let (x∗, p∗) be a B-equilibrium.
If x∗ is not B-efficient, then from lemma 2.3, there exist y feasible such
that yi �i x∗i for all i. But then we must have p∗.yi > p∗.x∗i for all i,
contradicting Walras law. A weak form of the second welfare theorem (weak
since it requires interior allocations) follows from the next proposition. This
proposition also gives also an easy proof of existence of B-equilibria. No
abstract general result on existence of equilibria in infinite dimension is used.

Proposition 2.12 1. Let (x∗, p∗) be an equilibrium for an S-economy
with priors Qi ∈ P i, i = 1, . . . , I. Then (x∗, p∗) is a B-equilibrium.
Similarly, any B-equilibrium with transfer payments for an S-economy
with priors Qi ∈ P i, i = 1, . . . , I is a B-equilibrium with transfer pay-
ments.

2. Any interior B-efficient allocation (x∗) is the allocation of a B-
equilibrium with transfer payments.

3. Any interior B-equilibrium (x∗, p∗) is an interior equilibrium for a S-
economy with priors Qi ∈ P i, i = 1, . . . , I.

Let us apply the above result to economies without aggregate uncertainty
(where the aggregate endowment is a deterministic process). It is well known
that in economies with homogenous priors, agents fully insure in equilibrium.
This yields an existence4 result for full insurance equilibria in our case. If
agents have one common prior, full insurance is an equilibrium allocation.

Corollary 2.13 Assume that there exists no aggregate uncertainty and that
agents share at least one prior,

I⋂
i=1

P i 6= ∅.

Then there exists an equilibrium allocation with full insurance.

4not a uniqueness result, though, compare Remark 2.11.
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It also follows from proposition 2.12 that the set of B-equilibria is
monotone with respect to the set of priors: the larger the set of priors, the
larger is the set of B-equilibria.

The preceding theorem shows that one usually has a plethora of B-
equilibria as every equilibrium of some S-economy is a B-equilibrium. It
is plausible hat this leads typically to a continuum of equilibria when the
sets of priors are not singletons. Therefore, indeterminacy of equilibrium
allocations and prices is the rule, not the exception for B-economies5.

On the other hand, many of these equilibria lead to consumption plans
that the agents cannot compare with their endowment because they have
incomplete preferences. In this case, one might well ask why these agents
should decide to take these plans in the first place. We are thus led to
impose the additional condition of inertia: agents trade only if their new
consumption can be compared to their original endowment and is better.
An equilibrium (x∗, p∗) satisfies the inertia condition if for all agents i with
x∗i 6= ωi, we have x∗i �i ωi.

We provide here a simple proof for existence of equilibria with inertia
based on an auxiliary economy with complete static variational preferences as
axiomatized in Maccheroni, Marinacci, and Rustichini (2006b). We construct
uncertainty–averse preferences such that any equilibrium of the auxiliary
economy with those preferences is a B-equilibrium with inertia. The utility
function that we use appears here for the first time in the literature. We thus
devote a definition to it.

Definition 2.14 We call a utility function of the form

V i(x) = min
Q∈Pi

EQ
(
(U i(x)− U i(ωi))

)
variational utility anchored at ωi.

An agent of the above type compares the expected gain from moving away
from her endowment ωi to the new consumption plan xi; her concern is thus
more of a relative nature, as documented in many empirical and psychological

5A detailed analysis of indeterminacy in the static setting is in Rigotti and Shannon
(2005). Their arguments are valid here, too.
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findings. She is pessimistic and computes the worst case outcome. Varia-
tional utility functions anchored at ωi belong to the class of variational pref-
erences that generalize the Gilboa–Schmeidler preferences; they have been
axiomatized in Maccheroni, Marinacci, and Rustichini (2006a).

In our case, these (complete) preferences are useful because equilibria in
economies with such agents are also equilibria with inertia in our B–economy.

Theorem 2.15 Any equilibrium of an economy with variational utilities
anchored at endowments V i(x) = minQ∈Pi E

Q ((U i(x)− U i(ωi))) is a B-
equilibrium with inertia. In particular, B-equilibria with inertia exist.

We call V–equilibrium an equilibrium of the economy with complete pref-
erences (V i). Inertia is a very strict requirement, and can lead to market
breakdown in the sense that the initial endowment is the unique equilibrium
allocation. Our above argument leads easily to a characterization of such no
trade situations.

Corollary 2.16 (ωi) is the unique B-equilibrium allocation with inertia if
and only if (ωi) is a no trade V-equilibrium allocation.

3 Pessimism versus Inertia: A Case Study

Model uncertainty or ambiguity about subjective probabilities naturally lead
to multiple prior models. An individual can react to such multiplicity in sev-
eral plausible ways. The more cautious approach would be to use incomplete
preferences as in the present paper; in this case, the agent might use the
inertia rule when she is faced with alternatives that she cannot compare. A
plausible alternative that has been studied in detail is to perform a worst case
analysis leading to the pessimistic multiple prior preferences axiomatized by
Gilboa and Schmeidler (1989) in the static, and Epstein and Schneider (2003)
in the dynamic context.

While both inertia and pessimism are plausible on the individual level,
they lead to quite different outcomes on the market level, as we show now by a
case study. Pessimistic agents insure themselves against risk and uncertainty,
whereas inertia may leave individuals uninsured against uncertainty.

We consider an economy whose individual endowments are subject to
both a risky and an uncertain source. To focus on the insurance aspect, we

13



assume that there is no aggregate uncertainty. As is well known, with ex-
pected utility and homogenous priors, all risk and uncertainty is fully insured.
The same holds true for Gilboa–Schmeidler pessimistic multiple prior pref-
erences if agents share at least one prior (Billot, Chateauneuf, Gilboa, and
Tallon (2000)). In contrast, we show that in the B–economy with sufficiently
large ambiguity

• risk is completely insured,

• the full insurance allocation (where also the uncertain part of the en-
dowment is fully insured) is not an equilibrium with inertia,

• and there is an equilibrium with inertia where subjective uncertainty
is not insured at all.

We now introduce the formal model of our case study. The basic building
block is a probability space (Ω,F , P0). Whenever we write the expectation
operator E below, we mean the expectation under our reference measure P0.

On (Ω,F , P0), there are two independent random walks

Rt =
t∑

s=1

ρs and Ut =
t∑

s=1

νs (3)

for t ≥ 1 and R0 = U0 = 0. Under our reference measure P0, the (ρt) and
(νt) are independent and identically distributed with common distribution
F = N(0, 1), the standard normal distribution.

The information filtration is the natural filtration generated by the two
processes R and U , i.e.

Ft = σ (R1, . . . , Rt, U1, . . . , Ut) .

We also introduce the information generated by U alone,

FUt = σ (U1, . . . , Ut) .

Let us assume that there are two agents who use the same class of priors
P . The priors Q ∈ P are such that all agents agree that the (ρt) are standard
normal and independent of U .

In contrast, agents are uncertain about the distribution of the νt that
generate the random walk U . For the sources of uncertainty νt, we model
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the idea that they come from identical experiments, but we use multiple
priors. One way to do this in such a way that we can later compare the
results with ambiguity–averse decision makers is to use the following model
of “independent experiments with identical ambiguity”6.

The family of priors is defined by their density processes with respect to
P0; they are of the form

qt = exp

(
t∑

s=1

(
αsνs −

1

2
α2
s

))
for some FU–predictable process (αt) with values in the interval [−κ, κ] for
some κ > 07. Note that αt depends only on the values of U1, . . . , Ut−1 as it is
FU–predictable. Note also that (ρt) are standard normal under all priors with
such density processes (as the density depends only on U) and independent
of U . It is also worthwhile to remark that the set of densities that we use
here is not convex. This is not needed for our current results.

We assume that the two agents have period utilities

ui(t, c) := exp(−ρt)vi(c) := − exp(−ρt− c)

for some subjective discount rate8ρ. Agents thus have constant absolute risk
aversion 1.

Let endowments be

ω1
t = Rt + Ut and ω2

t = −ω1
t .

Aggregate endowment is thus zero9.

6This model is discussed at length in Epstein and Schneider (2003) where it is called ”in-
dependent and indistinguishably distributed”. We use the name coined by Riedel (2009).
For Gilboa–Schmeidler preferences, time–consistency is an issue. Indeed, not every convex
set of priors leads to time–consistent preferences. Epstein and Schenider have identified
the property of rectangularity, or as it has been called elsewhere, stability under pasting,
as necessary and sufficient for time–consistency. Our set of priors is rectangular.

7Readers familiar with the continuous–time literature recognize here the usual Girsanov
transform for a change of measure; our model is thus the direct discrete–time counterpart
of κ–ambiguity as in Chen and Epstein (2002).

8The case of different discount rates leads to the same results. Here, a (deterministic)
trade pattern appears to the different degrees of time preferences. As we are interested in
the insurance aspect, we take homogenous discount rates.

9We allow here for negative consumption and take the commodity space to be the space
of all square–integrable adapted processes. Even though this does not fit into our general
framework of the previous subsection, the basic results carry over. We give details below
when needed.
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Initially, both agents are affected by risk and uncertainty. As there is
no aggregate risk (nor uncertainty), one might expect rational agents to
insure perfectly in equilibrium. This is indeed the case for Gilboa–Schmeidler
preferences; we recall here the result of Billot, Chateauneuf, Gilboa, and
Tallon (2000) (see also Chateauneuf, Dana, and Tallon (2000) and Dana
(2002)) that translates easily to the dynamic setting.

Lemma 3.1 In every equilibrium of the Gilboa–Schmeidler economy, there
is full insurance.

Let us now come to the B–economy. We know from our above analysis
that every equilibrium of an S–economy for some selection of priors is also
an equilibrium of the B–economy. In particular, if we choose the same prior
for both agents, we get that the full insurance allocation x1 = x2 = 0 is an
equilibrium of the B–economy. However, it is not an equilibrium with inertia
if ambiguity is sufficiently large.

Lemma 3.2 If ambiguity is sufficiently large, κ > 1, the full insurance allo-
cation x1 = x2 = 0 is not an equilibrium allocation with inertia.

Proof: We verify that the inertia condition is not satisfied. Recall that for
a standard normally distributed random variable X, the Laplace transform
is EemX = e

1
2
m2

for m ∈ R. Consider the prior with density

qt = exp

(
κUt −

κ2

2
t

)
.

Expected utility under this prior for agent 1 is then

−
T∑
t=0

E exp

(
−Rt − Ut + κUt −

κ2

2
t− ρt

)

= −
T∑
t=0

E exp(−Rt)E exp((κ− 1)Ut) exp(−(
κ2

2
+ ρ)t)

= −
T∑
t=0

exp

(
1

2
t+

1

2
(κ− 1)2t− (

κ2

2
+ ρ)t

)

= −
T∑
t=0

exp ((1− κ− ρ) t) > −
T∑
t=0

exp (−ρt) .
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Hence, agent 1’s expected utility under this prior is higher than for the plan
x1 = 0. 2

In order to understand this result, think about the inertia condition.
Agents move away from their endowment only if they prefer the full insurance
allocation under all priors. With large ambiguity, they have a very optimistic
prior for the uncertain part U in their belief set. Under this prior, the average
value of Ut is so high that they would like to keep it; this can be even so high
that it offsets their sufferings from keeping the risky part Rt (which they
would want to trade in all cases).

Having said this, let us record a fact about insurance of the risky part.

Lemma 3.3 In every equilibrium (x, p) of the B–economy, risk is fully in-
sured in the sense that the equilibrium allocation x depends only on U not on
R.

Proof: See the following text. 2

The fact that risk is completely insured is due to the fact that agents share
a common prior for the distribution of the risky random walk R. Whenever
there is a feasible allocation x = (x1, x2) that contains R in a nontrivial
way, agents can pass to the corresponding (conditional) expectation y1

t =
E[x1

t |U1, . . . , Ut], y
2
t = E[x2

t |U1, . . . , Ut] . Note that we do not use different
priors here because the distribution of R is the same under every prior. As
there is no aggregate uncertainty, the allocation y = (y1, y2) is still feasible,
and by risk aversion, both agents are better off.

Theorem 3.4 If ambiguity is sufficiently large, κ ≥ 1, the B–economy has
an equilibrium with inertia (x, p) with allocation

x1
t = Ut = −x2

t

and equilibrium price
pt = exp (−(ρ+ 1/2)t) .

Proof: We first show that the inertia condition is satisfied. For every
prior Q ∈ P we have by the usual risk aversion (concavity) argument that
EQvi(Ut +Rt) = −EQ

[
exp(−Ut)EQ [exp(−Rt)]

]
< −EQ [exp(−Ut)] because

Rt is independent of U under all priors and normally distributed with mean
0 under all priors Q ∈ P .
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We show next that (x, p) is an equilibrium. As in the previous section,
it is enough to show that (x, p) is an equilibrium in some S–economy with
priors Q1 and Q2.

By definition of x, markets clear. The budget constraint is also satisfied
as we have

E

T∑
s=1

pt
(
ω1
t − x1

t

)
=

T∑
s=1

exp(−(ρ+ 1/2)s)ERt = 0 .

By Walras’ law, the budget constraint also holds for agent 2.
Now we take the densities q1

t = exp(Ut − 1
2
t) and q2

t = exp(−Ut − 1
2
t).

Then the marginal rate of substitution between time 0 and time t for agent
1 is

exp(−ρt− Ut)q1
t = exp(−ρt− 1

2
t) = pt .

The marginal rate of substitution of agent 2 at x2 is

exp(−ρt+ Ut)q
2
t = exp(−ρt− 1

2
t) = pt .

Hence, the first order conditions of utility maximization in the S–economy
with priors Q1 and Q2 are satisfied. We thus have an equilibrium in that
S–economy. 2

We conclude that the market for insurance of uncertainty can break down
if agent use the inertia criterion in combination with incomplete expected
utility preferences10.

4 Conclusion

The two prevalent ways to interpret Knightian uncertainty, Bewley’s in-
complete expected utility combined with an inertia principle and Gilboa–
Schmeidler’s pessimistic, worst–case approach, have quite different implica-
tions for market equilibria. Inertia combined with a unanimity rule easily
leads to no–trade situations. This may partly explain the liquidity crisis that
financial markets recently experienced11.

10The equilibrium allocation is not unique, by the way, as one can find other equilibria
with inertia where the equilibrium allocation depends in a more complicated way on U .
We do not expand on this here.

11This point is also made, in a simple static model, in Easley and O’Hara (2010).
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From a different, but equally important perspective, our analysis sheds
some light on possible regulatory approaches to financial markets. Our anal-
ysis supports the claim that the worst–case approach as used for coherent
monetary risk measures12 leads to a better regulation than an approach based
on stress–testing — where we interpret a regulation based on stress testing
as incomplete preferences plus inertia: a bank is allowed to perform a trade
only if it leads to a better outcome under all stress tests. Our case study in-
dicates that such a regulation might easily dry up markets. Of course, more
research in this direction is needed.

A Appendix

A.1 Proofs for Section 2

Proof of lemma 2.2
Proof: Clearly if x is weakly B-efficient, there is no other feasible allocation
y = (yi)i=1,...,I such that EQU i(yi) > EQU i(xi) for all priors Q ∈ P i for
all agents i = 1, . . . , I. Conversely, assume that there is no other feasible
allocation y = (yi)i=1,...,I such that EQU i(yi) > EQU i(xi) for all priors Q ∈
P i for all agents i = 1, . . . , I and there exists another feasible allocation y =
(yi)i=1,...,I such that yi � xi for all agents i = 1, . . . , I. Since yi 6= xi and U i is

strictly concave and priors are equivalent to P0, E
QU i(y

i+xi

2
) > EQU i(xi) for

all priors Q ∈ P i and agents i = 1, . . . , I. As the allocation x+y
2

is feasible,
we obtain a contradiction to the weak efficiency of x. 2

Proof of lemma 2.3
Proof: Clearly if x is efficient, it is weakly efficient. Conversely, assume
that x is an interior weakly efficient allocation and w.l.o.g. assume that there
exists a feasible allocation y such that y1 � x1 and yi � xi, i 6= 1. As x1 is

interior, it is uniformly bounded below. By considering (y1+x1)
2

instead of y1,
we may also assume that y1 is uniformly bounded below.

For each Q ∈ P , there exists εQ such that EQU1(y1 − εQ) > EQU1(x1)

12Artzner, Delbaen, Eber, and Heath (1999) have introduced coherent risk measures.
From a technical point of view, they are equivalent to Gilboa–Schmeidler preferences with
linear Bernoulli utility. They were later generalized to convex risk measures by Föllmer
and Schied (2002); convex risk measures are a precursor of variational preferences.
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as the map x→ EQU1(x) is norm-L∞–continuous. For a given ε > 0, let

Vε =
{
Q ∈ P | EQU1(y1 − ε) > EQU1(x1)

}
As Q → EQU1(y1 − ε) − EQU1(x1) is linear and L1–continuous, Vε is
σ(L1, L∞) (relatively) open and from the previous argument ∪εVε = P . Since
P is compact, there exists a finite subcovering of P by (Vεi). Let ε = mini εi
and ε′ = ε

I−1
. We then have

y1 − ε � x1 and yi + ε′ � xi

contradicting the weak efficiency of x. 2

Proof of lemma 2.4
Proof: Suppose that x∗ is efficient in the S-economy with priors Q =
(Q1, . . . , QI). From lemmas 2.3 and 2.2, to show that x∗ is efficient, it suffices
to show that there exists no allocation y such that

EQiU i(yi) > EQiU i(xi) for all i and all Qi ∈ P i (4)

This is obvious since 4 contradicts x being efficient in the S-economy with
priors Q. 2

Proof of corollary 2.6
Proof: If

I⋂
i=1

Ψi(ci) 6= ∅,

then agents’ marginal rates of substitution coincide for some priors Qi ∈ P i.
By Lemma 2.5, c is efficient in the Savage economy with priors (Qi). Lemma
2.4 yields that c is efficient. 2

Proof of Lemma 2.7
Proof: This lemma is a version of the multiplicative Doob decompo-
sition. Let (ci) be a feasible, interior allocation, take some ci and write
Zt = MRSit(c

i, Qi). Note that Z is strictly positive, and bounded, because
ci is bounded away from zero. Moreover, Z0 = 1.

If we have a decomposition Zt = Mt exp
(
−
∑t

s=1 rs
)

with a strictly pos-
itive martingale M and a predictable process r, then we must have for
t = 0, . . . , T − 1

1 = EP0

[
Mt+1

Mt

∣∣∣∣Ft] = EP0

[
Zt+1

Zt

∣∣∣∣Ft] exp(rt+1) ,
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because rt+1 is Ft–measurable. So the only possible choice is

rt+1 = − logEP0

[
Zt+1

Zt

∣∣∣∣Ft]
and

Mt = Zt exp

(
t∑

s=1

rs

)
.

A straightforward calculation shows that M is a martingale with M0 = Z0 =
1. 2

Proof of theorem 2.8
Proof: 3. is equivalent to 2. Let us first show that 3 implies 2. Let
Q ∈

⋂I
i=1 Πi(ci) and denote by (qt) the corresponding density process with

respect to P0. Let rt = ri(Q, ci)t be the common interest rate. Then we have
for all i

Q = Qi(ci)

for some Qi ∈ P i and hence

MRSit(c
i, Qi) = MRSjt (c

j, Qj)

or
I⋂
i=1

Ψi(xi) 6= ∅ .

Conversely if
⋂I
i=1 Ψi(xi) 6= ∅ or equivalently if MRSit(c

i, Qi) =
MRSjt (c

j, Qj) for all i, j = 1, . . . , I and t = 0, . . . , T from lemma 2.7, the
martingales and interest rates ri coincide. Hence the agents share a risk–
adjusted prior

⋂I
i=1 Πi(xi) 6= ∅ and ri(Q, ci)t = rj(Q, cj)t for all i, j = 1, . . . , I

and t = 0, . . . , T
2. implies 4. follows from Lemma 2.5.
4. implies 1. follows from Lemma 2.4.
Let us now show that 1. implies 2.
We will work on the product probability space (S,S, ν) given by

S = Ω× {0, . . . , T},S = A, ν = P0 ⊗ ζ ,

where we recall that A is the σ–field generated by all adapted processes and
ζ the uniform probability measure on {0, . . . , T}.
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Take an interior efficient allocation (ci) and form the sets

H i := Φi(ci) :=

{(
MRSit(c

i, Qi)∫
S
MRSi(ci, Qi)dν

)
t=0,...,T

|Qi ∈ P i
}
.

If we treat the product space S as our basic state space, these sets are the
risk–adjusted priors as in Rigotti and Shannon (2005). Note that the ratios
are well–defined because (ci) is an interior allocation. The same argument as
in Rigotti and Shannon (2005), Lemma 3, Appendix shows that H i is convex.

H i is σ(L1 (S,S, ν) , L∞ (S,S, ν))–compact because the marginal utili-
ties are bounded above and below and P i is σ(L1 (S,S, ν) , L∞ (S,S, ν))–
compact.

Now suppose
⋂
iH

i = ∅. Samet’s Separation Theorem (see Lemma A.1
below for our infinite–dimensional context) then implies that there exist
(gi)ni=1 ∈ (L∞ (S,S, ν))n with

∑
i g

i = 0 such that
∫
S
higi dν > 0 for all

hi ∈ H i and all i. Let di = ci + λgi wth λ > 0. For λ small enough, the
allocation (di) is feasible and Pareto–dominates (ci). Indeed, for any Qi ∈ P i,

EQi(Ui(d
i)− Ui(ci)) ≥ λ

∫
S

MRSiu(d
i, Qi)ν(du)

∫
S
MRSiu(d

i, Qi)giν(du)∫
S
MRSiu(d

i, Qi)ν(du)
> 0

for λ small enough. This is a contradiction to c being efficient. Therefore,
we have

⋂
iH

i 6= ∅, and we can find priors Qi ∈ P i such that

MRSit(c
i, Qi)∫

S
MRSiu(c

i, Qi)ν(du)
=

MRSjt (c
j, Qj)∫

S
MRSju(cj, Qj)ν(du)

for all i, j = 1, . . . , I and all t = 0, . . . , T a.s. For t = 0, the marginal rates
of substitution are 1, so we get∫

S

MRSiu(c
i, Qi)ν(du) =

∫
S

MRSju(c
j, Qj)ν(du)

for all agents i, j. This implies

MRSit(c
i, Qi) = MRSjt (c

j, Qj)

and hence
I⋂
i=1

Ψi(xi) 6= ∅ .
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2

Let us prove here the version of Samet’s Theorem for infinite–dimensional
spaces that we used above 13.

Lemma A.1 (Samet’s Separation Theorem for L∞) Let (S,S, ν)
be a probability space and (H i)ni=1 be nonempty, convex, and
σ(L1 (S,S, ν) , L∞ (S,S, ν))–compact subsets of densities in L1

+ (S,S, ν).
Then

⋂n
i=1 H

i = ∅ if and only if there exists (gi)ni=1 ∈ (L∞ (S,S, ν))n with∑
i g

i = 0 such that
∫
S
higi dν > 0 for all hi ∈ H i and all i.

Proof: We write L∞ for L∞ (S,S, ν) and L1 for L1 (S,S, ν) and Eg
for

∫
S
gdν. Assume that

⋂n
i=1H

i = ∅ and let H = H1 × H2 . . . × Hn

and L = {(h, h, . . . , h), h ∈ L1}. H is σ(L1 ((S,S, ν)n) , L∞ ((S,S, ν)n))–
compact and convex as a product of σ(L1, L∞)–compact and convex sets and
L is a norm–closed vector subspace, hence σ(L1 ((S,S, ν)n) , L∞ ((S,S, ν)n))–
closed. From the separation theorem for convex sets, there exists c ∈
R, (f i)ni=1 ∈ (L∞)n such that∑

i

E(f ihi) > c ≥ E(h
∑
i

f i) for all h ∈ L1 hi ∈ H i, i = 1, . . . , n

From the right hand side of the inequality, we obtain since L is a subspace
that c ≥ 0 = E(h

∑
i f

i) for all h ∈ L1. Hence
∑

i f
i = 0 a.e. From the left

hand side, one obtains that
∑

iE(f ihi) > 0 for all hi ∈ H i, i = 1, . . . , n.
Since h → E(f ih) is σ(L1, L∞)–continuous and H i is σ(L1, L∞) –compact,
there exists h̄i minimizing E(f ihi) on H i. Since

∑
iE(f ih̄i) > 0 for all i,

there exists (mi)ni=1 ∈ Rn such that
∑

im
i = 0 and E(f ih̄i) + mi > 0 for all

i. Let gi = f i +mi. We then have E(gih̄i) = E(f ih̄i) +mi > 0 and therefore
for all hi ∈ H i

E(gihi) = E(f ihi) +mi ≥ E(f ih̄i) +mi > 0

and
∑

i g
i =

∑
i g

i +
∑

im
i = 0 proving one direction of the lemma. The

reverse direction is trivially true. 2

Proof of Proposition 2.12 Proof: Let (x∗, p∗) be an equilibrium for
a S-economy with priors Qi ∈ P i, i = 1, . . . , I. Suppose that yi �i x∗i and

13 This version of Samet’s theorem may also be obtained as a corollary of theorem 2 in
Billot, Chateauneuf, Gilboa, and Tallon (2000), but the proof given here is more direct
and much simpler
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p.yi ≤ p.ωi. As already proven, w.l.o.g. we may assume that EQiU i(yi) >
EQiU i(x∗i) for any Qi ∈ P i. Hence p.yi > p.ωi contradicting the hypothe-
sis that (x∗, p∗) is an equilibrium for the S-economy with priors (Qi). The
proof for equilibria with transfer payments is similar. To prove the second
claim, from theorem 2.8, any interior efficient B-allocation (x∗) is an efficient
allocation, hence an equilibrium with transfer payments for some S-economy
with priors Qi ∈ P i, i = 1, . . . , I. From assertion one, (x∗) is a B-equilibrium
with transfer payments. To prove the third claim, let (x∗, p∗) be an interior
B-equilibrium. By the first welfare theorem, x∗ is efficient. Assume that
λp∗ 6∈ H i for any λ ≥ 0 where H i is defined in the proof of 4 implies 1 of
theorem 2.8. Since H i is σ(L1 ((S,S, ν)) , L∞((S,S, ν))–compact and convex
and p∗λ for λ ≥ 0 is a σ(L1((S,S, ν) , L∞ (S,S, ν))–closed convex cone, from
the separation theorem for a convex cloed cone and a convex compact set,
there exists f i ∈ L∞ such that

p∗ḟ i ≤ 0 < min
Hi

f iḣi

Using again the proof of theorem 2.8, di = x∗i+µf i with µ > 0 small enough
is such that di � x∗i while p∗ḋi ≤ p∗ẋ∗i contradicting the hypothesis that
p∗ is a B-equilibrium price. Hence p∗∫

S p
∗dν
∈ H i. Since this is true for each

agent, ∩H i 6= ∅ and p∗∫
S p

∗dν
∈ ∩H i. From the proof of theorem 2.8, we can

find priors Qi ∈ P i such that

p∗t = aMRSit(c
i, Qi), a > 0

for all i = 1, . . . , I and all t = 0, . . . , T a.s. which implies that (x∗, p∗) is an
equilibrium for the S-economy with priors (Qi). 2

Proof of corollary 2.13
Proof: Let Q ∈

⋂I
i=1P i. Then the S-economy with common prior Q and

no aggregate risk has a full insurance equilibria. Corollary 2.13 then follows
from assertion 3 of Proposition 2.12 2

Proof of theorem 2.15
Proof: In order to prove existence of an equilibrium with inertia, let

V i(x) = min
P∈Pi

EP
(
U i(x)− U i(ωi)

)
.

Bn Lemma A.3 in next section, these preferences are Mackey–continuous.
Hence, the existence theorem of Bewley (1972) may be applied to get an
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equilibrium with strictly positive price (p̄, x̄) for the economy with complete
preferences (V i) which will be refered to as the V-economy. Let us show that
(p̄, x̄) is a B-equilibrium. Budget constraints are trivially fulfilled. Let xi �
x̄i. W.l.o.g, as we already argued, we may assume that EQU i(xi) > EQU i(x̄i)
for any Q ∈ P i. Hence V i(xi) > V i(x̄i) and therefore p̄.xi > p̄.x̄i proving
that (p̄, x̄) is a B-equilibrium. Let us now show that any V-equilibrium is
a B-equilibrium with inertia. We claim that any V-equilibrium allocation x̄
verifies V i(x̄i) > V (ωi) = 0 for any i such that x̄i 6= ωi. If not, V i being
strictly concave V i((x̄i + ωi)/2) > V (ωi) = 0 while p̄.(x̄i + ωi)/2 = p̄.x̄i a
contradiction to (p̄, x̄) being an equilibrium of the V-economy. Therefore
EQU i(x̄i) > EQU i(ωi) for any i such that x̄i 6= ωi and any Q ∈ P i. Thus
x̄i �i ωi. Hence any equilibrium in the economy with preferences (V i) is an
equilibrium with inertia. 2

Proof of corollary 2.16
Proof: If (ωi) is an equilibrium allocation of the V-economy, then from
theorem 2.15, it is a B-equilibrium allocation and there is no trade. Con-
versely (ωi) is a B-equilibrium allocation, then it is B-efficient and since (ωi)
is an interior allocation,

⋂
i Φ

i(ωi) 6= ∅ (where Φi is defined in the proof of
theorem 2.8), hence V- efficient since any Q ∈ P i is a minimizing probability
for V at ωi. Since (ωi) is a B-equilibrium allocation, there exists a price
process p ∈ P such that EQ(U i(x)) > EQ(U i(ωi)) for all Q ∈ P i implies
p.xi > p.ωi. Hence V i(x) > V i(ωi) = 0 implies p.x > p.ωi and therefore
(ωi) is a no-trade V-equilibrium allocation. (ωi) is the unique B-equilibrium
allocation with inertia. Let (x) be another equilibrium with inertia and i be
such that xi � ωi. Let p support (ωi). Then p.xi > p.ωi contradicting (x)
being another equilibrium. 2

A.2 Mackey–Continuity of Variational Preferences
Anchored at Endowments

Lemma A2 which shows Mackey–continuity of a special variational preference
introduced in the paper, extends a proof in Dana (2002). The reader may
verify that this proof does not extend to general variational preferences with
a lower semi-continuous penalty function. The following estimates for utility
increments will be useful for lemma A2.

Lemma A.2 Let u : R+ → R be strictly convave increasing, C1 and verify
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u(0) = 0. Then for any η > 0, x, y ∈ R+, we have

|u(x)− u(y)| ≤ u(η)

η
|x− y|+ 2u(η) (5)

Proof: Let η > 0 be given. If x < η and y > η,

|u(y)− u(x)|
|y − x|

=
u(y)− u(x)

y − x
≤ u(y)

y
≤ u(η)

η

If x < η and y < η, |u(x)− u(y)| ≤ 2u(η). Hence if x < η, we have

|u(x)− u(y)| ≤ u(η)

η
|x− y|+ 2u(η)

If x > η and y < η, we similarly have |u(x) − u(y)| ≤ u(η)
η
|x − y| while if

x > η and y > η, |u(x)− u(y)| ≤ u′(θ)|x− y| for some θ ∈]x, y[. Hence

|u(x)− u(y)| ≤ u(η)

η
|x− y|

proving (5) 2

Let τ(L∞, L1) denote the Mackey topology on L∞(Ω×{0, . . . , T},A, P0⊗ζ).

Lemma A.3 Let U : R+
{0,...,T} → R be defined by U(c) =

∑T
t=0 ρ

tu(ct) with
u strictly increasing, strictly concave and C1 and verify u(0) = 0. Let P
fulfill assumption 2.1. Let y ∈ L∞(Ω× {0, . . . , T},A, P0 ⊗ ζ) be fixed. Then
the utility function V : X → R defined by

V (x) = min
Q∈P

EQ (U(x)− U(y))

is τ(L∞, L1)–continuous, strictly concave and monotone.

Proof: For Q ∈ P , let q = dQ
dP0
|FT denote the time-T density with respect

to P0 and let D be the set of densities. Let xα
τ→ x (or equivalently, let

xtα
τ→ xt for all t) and qα be such that

V (xα) = EP0 [qα(U(xα)− U(y))].
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Such an qα exists since D is σ(L1, L∞) compact and (U(xα) − U(y)) ∈ L∞.
Since D is σ(L1, L∞) compact, we may assume w.l.o.g. that qα

σ→ q. Let
us show that the restriction to L∞+ (Ω × {0, . . . , T},A, P0 ⊗ ζ) × D endowed
with τ(L∞, L1)×σ(L1, L∞) of the map (x, q)→ E(q(U(x)−U(y))) is jointly
continuous. Let xα

τ→ x and qα
σ→ q. Let us prove that EP0(qα(U(xtα) −

U(x) + (qα − q)(U(xt) − U(y)) → 0. Since qα
σ→ q, the second term goes to

zero. To study the first term, since xtα
τ→ xt and the Mackey topology is

locally solid, |xtα − xt|
τ→ 0. From lemma A1, we have for any η

EP0|U(xtα − U(xt)|qα ≤ U(η)[2 +
1

η
EP0(|xtα − xt|qα)]

For any ε > 0, choose η > 0 such that U(η) ≤ ε and α such that
supq∈D E

P0 [|xtα − xt|q] < η, then the above integral is smaller then 3ε which
proves the claimed joint continuity.
Hence

V (xα) = EP0 [qα(U(xα)− U(y))]→ EP0 [q(U(x)− U(y))]

By definition of qα

EP0 [qα(U(xα)− U(y))] ≤ EP0 [q(U(xα)− U(y))] for all q ∈ D

In the limit, we obtain

EP0 [q(U(x)− U(y))] ≤ min
q∈D

EP0 [q(U(x)− U(y))] = V (x)

hence

EP0 [q(U(x)− U(y))] = min
q∈D

EP0 [q(U(x)− U(y))] = V (x)

proving the continuity of V with respect to the Mackey topology.
Let us prove that V is strictly monotone. From assumption 2.1., any q ∈ D
is strictly positive. As U is strictly concave, for any z ∈ L∞+ , we have

V (x+ z)− V (x) ≥ EP0 [qx+z(U(x+ z)− U(x))] > EP0 [qx+zU
′(x+ z)z] > 0

where qx+z is a minimizing density for V (x + z). Therefore V is strictly
monotone.
Finally, let us show the strict concavity of V . Let λ ∈]0, 1[ be given.

V (λx+(1−λ)z) ≥ EP0 [qλx+(1−λ)zU(λx+(1−λ)z) > λEP0(qxU(x)+(1−λ)qzU(z))

since U is strictly concave and qx is a minimizing probability for V at x. 2
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Föllmer, H., and A. Schied (2002): “Convex Measures of Risk and
Trading Constraints,” Finance and Stochastics, 6, 429–447.

Gilboa, I., F. Maccheroni, M. Marinacci, and D. Schmeidler
(2010): “Objective and Subjective Rationality in a Multiple Prior Model,”
Econometrica, 78, 755–770.

28



Gilboa, I., and D. Schmeidler (1989): “Maxmin Expected Utility with
Non–Unique Prior,” Journal of Mathematical Economics, 18, 141–153.

Maccheroni, F., M. Marinacci, and A. Rustichini (2006a): “Ambi-
guity Aversion, Robustness, and the Variational Representation of Prefer-
ences,” Econometrica, 74, 1447–1498.

(2006b): “Dynamic Variational Preferences,” Journal of Economic
Theory, 128, 4–44.

Nascimento, L., and G. Riella (2010): “A Class of Incomplete and
Ambiguity Averse Preferences,” Working Paper.

Nehring, K. (2009): “Imprecise Probabilistic Beliefs as a Context for
Decision–Making under Ambiguity,” Journal of Economic Theory, 144,
1054–1091.

Ok, E., P. Ortoleva, and G. Riella (2008): “Incomplete Preferences
under Uncertainty: Indecisiveness in Beliefs vs. Tastes,” Working Paper.

Riedel, F. (2009): “Optimal Stopping with Multiple Priors,” Econometrica,
77, 857–908.

Rigotti, L., and C. Shannon (2005): “Uncertainty and Risk in Financial
Markets,” Econometrica, 73(1), 203–243.

Rigotti, L., C. Shannon, and T. Strzalecki (2008): “Subjective Be-
liefs and ex-ante Trade,” Econometrica, 76, 1167–1190.

Sagi, J. (2006): “Anchored Preference Relations,” Journal of Economic
Theory, 130, 283–295.

29


	Deckblatt440.pdf
	DynamicMultiplePriorsDanaRiedel.pdf
	Introduction
	Allocations and Equilibria in Dynamic Multiple Prior Economies with Incomplete Preferences
	Model
	Efficient Allocations
	Equilibria with and without Inertia

	Pessimism versus Inertia: A Case Study
	Conclusion
	Appendix
	Proofs for Section 2
	Mackey–Continuity of Variational Preferences Anchored at Endowments



