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David Martimort, Enrico Minelli, Gwenaël Piaser, Larry Samuelson, David Webb, and Robert Wilson for
very valuable feedback. We also thank seminar audiences at European University Institute, London School
of Economics and Political Science, Ludwig-Maximilians-Universität München, New York University, and
Universitat Pompeu Fabra for many useful discussions. Financial support from the Chaire Marchés des
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1 Introduction

The recent financial crisis has spectacularly recalled that the liquidity of financial markets

cannot be taken for granted, even for markets that attract many traders and on which

exchanged volumes are usually very high. For instance, the issuance of asset-backed securities

declined from over 300 billion dollars in 2007 to only a few billion in 2009.1 Indeed, structured

financial products such as mortgage-backed securities, collateralized debt obligations, and

credit default swaps, often involve many different underlying assets, and their designers

clearly have more information about their quality; this may create an adverse selection

problem and reduce liquidity provision.2 Similarly, the interbank market experienced a

severe liquidity dry-up over the 2007–2009 period, with many banks choosing to keep their

liquidity idle instead of lending it even at short maturities.3 One interpretation of this

behavior is that banks became increasingly uncertain about their counterparties’ exposure to

risky securities.4 There is also evidence that lending standards and the intensity of screening

have been progressively deteriorating with the expansion of the securitization industry in the

pre–2007 years.5 Overall, many attempts at interpreting the recent crisis put at the center

stage the difficulties raised by a lack of information on the quality of securities, or on the

net position of counterparties. Notice also that most of these securities were traded outside

of organized exchanges on over-the-counter markets, with poor information on the trading

volume or on the net position of traders. Hence agents were able to interact secretly with

multiple partners, at the expense of information release.6

What economic theory tells us about the impact of adverse selection on competitive

outcomes has mainly been developed in the context of two alternative paradigms. Akerlof

(1970) studies an economy where privately informed sellers and uninformed buyers act as

price-takers. All trades are assumed to take place at the same price. Competitive equilibria

typically exist, and feature a form of market failure: because the market clearing price must

be equal to the average quality of the goods that are offered by sellers, the highest qualities

are generally not traded in equilibrium. It seems therefore natural to investigate whether

such a drastic outcome can be avoided by allowing buyers to screen the different qualities of

1See Adrian and Shin (2010).
2See Gorton (2009) and Krishnamurthy (2009).
3Brunnermeier (2009) provides some evidence for the liquidity squeeze in the interbank market. In the

case of the sterling money markets, Acharya and Merrouche (2009) document an almost permanent 30
percent upward shift in banks’ liquidity buffers starting from August 2007.

4See Heider, Hoerova, and Holthausen (2009), Philippon and Skreta (2010), and Taylor and Williams
(2009).

5See Demyanyk and van Hemert (2009), and Keys, Mukherjee, Seru, and Vig (2010).
6See Acharya and Bisin (2010).
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the goods. In this spirit, Rothschild and Stiglitz (1976) consider a strategic model in which

buyers offer to trade different quantities at different unit prices, thereby allowing sellers to

credibly communicate their private information. They show that high quality sellers end

up trading a suboptimal, but nonzero quantity, while low quality sellers trade efficiently:

for instance, in the context of insurance markets, high-risk agents are fully insured, while

low-risk agents only obtain partial coverage. An equilibrium does not exist, however, if the

proportion of high quality sellers is too high.

The present paper revisits these classical approaches by relaxing the assumption of

exclusive competition, which states that each seller is allowed to trade with at most one

buyer. This assumption plays a central role in Rothschild and Stiglitz’s (1976) model,

and it is also satisfied in the simplest versions of Akerlof’s (1970) model, since sellers can

only trade zero or one unit of an indivisible good. However, situations where sellers can

simultaneously and secretly trade with several buyers naturally arise on many markets—one

may even say that non-exclusivity is the rule rather than the exception. In addition to

the contexts we have already mentioned, standard examples include the European banking

industry, the US credit card market, and the life insurance and annuity markets of several

OECD countries.7 The structure of annuity markets is of particular interest since some

legislations explicitly rule out the possibility to design exclusive contracts: for instance, on

September 1, 2002, the UK Financial Services Authority ruled in favor of the consumers’

right to purchase annuities from suppliers other than their current pension provider (Open

Market Option).

Our aim is to study the impact of adverse selection in markets with such non-exclusive

trading relationships. To do so, we allow for non-exclusive trading in a generalized version of

Rothschild and Stiglitz’s (1976) model. This exercise is interesting per se: as we shall see, the

reasonings that lead to the characterization of equilibria are quite different from those put

forward by these authors. The results are also different: the equilibria we construct typically

involve linear pricing, possibly with a bid-ask spread, and trading is efficient whenever it

occurs. On the other hand, equilibria may fail to exist, as in Rothschild and Stiglitz (1976),

and some types may be excluded from trade, as in Akerlof (1970). It might even be that

the only equilibrium is a no-trade equilibrium. The variety of these outcomes may help to

better understand how financial markets react to informational asymmetries.

7Ongena and Smith (2000) and Detragiache, Garella and Guiso (2000) document that multiple banking
relationships have become very widespread in Europe. Rysman (2007) provides recent evidence of multi-
homing in the US credit card industry, while Cawley and Philipson (1999) and Finkelstein and Poterba
(2004) report similar findings for the US life insurance market and the UK annuity market, respectively.
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Our analysis builds on the following simple model of trade. There is a finite number of

buyers, who compete for a divisible good offered by a single seller. The seller is privately

informed of the quality of the good, which can be either low or high. The seller’s preferences

are strictly convex, but otherwise arbitrary, provided they satisfy a single-crossing property.

Buyers compete by simultaneously posting menus of contracts, where a contract specifies

both a quantity and a transfer. After observing the menus offered, and taking into account

her private information, or type, the seller chooses which contracts to trade. Our model

encompasses pure trade and insurance environments as special cases.8

In this context, we provide a full characterization of the seller’s aggregate trades in any

pure strategy equilibrium. First, we provide a necessary and sufficient condition for such an

equilibrium to exist. This condition can be stated as follows: let v be the average quality of

the good. Then, a pure strategy equilibrium exists if and only if, at the no-trade point, the

low quality type would be willing to sell a small quantity of the good at price v, while the

high quality type would be willing to buy a small quantity of the good at price v. Second,

we show that the aggregate equilibrium allocations are unique. Any contract traded in

equilibrium yields zero profit, so that there are no cross-subsidies across types. In addition,

if the willingness to trade at the no trade-point varies enough across types, equilibria are

first-best efficient: the low quality type sells the efficient quantity, while the high quality

type buys the efficient quantity. By contrast, if the two type have similar willingness to trade

at the no-trade point, any equilibrium involves no trade. Finally, in intermediate cases, one

type of the seller trades efficiently, while the other type does not trade at all.

These results suggest that, under non-exclusivity, the seller may only signal her type

through the sign of the quantity she proposes to trade with a buyer. This is however a

very rough signalling device, and it is only effective when one type acts as a seller, while

the other one acts as a buyer. In particular, there is no equilibrium in which both types of

the seller trade non-trivial quantities on the same side of the market. Finally, equilibrium

allocations can be supported by simple menu offers. For instance, if only the low quality

seller is actively trading in equilibrium, the corresponding allocation can be supported by

having all buyers offering to purchase any nonnegative quantity at a unit price equal to the

low quality. Overall, these findings suggest that non-exclusive competition exacerbates the

adverse selection problem: if the first best cannot be achieved, a nonzero level of trades for

8The labels seller and buyers are only used for expositional purposes. Since offered contracts may well
involve negative quantities, both the buyers and the seller can end up trading on any side of the market. In
financial markets, a buyer trades a negative quantity when he is selling assets short. Similarly, one can think
of insurance companies as buying risk from risk-averse agents who sell their risk for insurance purposes.
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one type of the seller can be sustained in equilibrium only if the other type of the seller is left

out of the market. That is, the market breakdown originally conjectured by Akerlof (1970)

also arises when buyers compete in arbitrary non-exclusive menu offers. In financial markets,

the buyers’ fear that a seller’s willingness to trade essentially reflects her need of getting rid

of low quality assets leads to a low provision of liquidity. In the annuity market, consumers

with a higher life expectancy will typically not annuitize their retirement savings.9

From a methodological standpoint, the analysis of non-exclusive competition under

adverse selection gives rise to interesting strategic insights. On the one hand, each buyer

can build on his competitors’ offers by proposing additional trades that are attractive to

the seller. Thus new deviations become available to the buyers compared to the exclusive

competition case. On the other hand, the fact that competition is non-exclusive also implies

that each buyer gets access to a rich set of devices to block such deviations and discipline

his competitors. In particular, he can issue latent contracts, that is, contracts that are not

traded by the seller on the equilibrium path, but which she finds it profitable to trade in case

a buyer deviates from equilibrium play, so as to punish this deviating buyer. Such latent

contracts are in particular useful to deter cream-skimming deviations designed to attract

one specific type of the seller.

Formally, the best response of any single buyer could in principle be determined by looking

at a situation where he would act as a monopsonist, facing a seller whose preferences would

be represented by an indirect utility function depending on the profile of menus offered by

his competitors. However, because we impose very little structure on the menus that can be

offered by the buyers, we cannot assume from the outset that this indirect utility function

satisfies useful properties such as, for instance, a single-crossing condition. Moreover, we

do not assume that, if the seller has multiple best responses in the continuation game, she

necessarily chooses one that is best from the deviator’s viewpoint. This rules out using

standard mechanism design techniques to characterize each buyer’s best response, as Biais,

Martimort, and Rochet (2000) do.

To develop our characterization, we consider instead a series of deviations by a single

buyer who designs his own menu offer in such a way that a specific type of the seller will

select a particular contract from this menu, along with some other contracts offered by the

other buyers. We refer to this technique as pivoting, as the deviating buyer makes strategic

9Several recent attempts have been made at solving the puzzle of why only a small fraction of individuals
purchase life annuities, despite their welfare enhancing role underlined in much of the economic literature
(see Brown (2007) for an extensive discussion). To the best of our knowledge, the non-exclusive feature of
competition in the annuity market has never been emphasized as a potential source of its breakdown.
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use of his competitor’s offer to propose attractive trades to the seller. Consider, as an

example, the equilibrium allocation characterized by Rothschild and Stiglitz (1976), where

the low-risk agent purchases less than full coverage to signal her quality, while the high-risk

agent obtains full coverage. Our analysis shows that this allocation cannot be supported in

equilibrium when competition is non-exclusive. The intuition for this result can be provided

in the context of a free-entry equilibrium. Indeed, an entrant can earn a positive profit by

offering the high-risk agent to purchase an additional quantity of insurance on top of what

the low-risk type is trading in equilibrium; the corresponding transfer can be chosen in such

a way that the high-risk agent will accept the deviating contract. While this intuition has

already been suggested by Jaynes (1978), our paper generalizes this pivoting technique to

get a full characterization of the set of equilibrium aggregate trades.

Related Literature The implications of non-exclusive competition have been extensively

studied in moral hazard contexts. Following the seminal contributions of Hellwig (1983)

and Arnott and Stiglitz (1993), many recent works emphasize that, in financial markets

where agents can take some non contractible effort, the impossibility of enforcing exclusive

contracts can induce positive profits for financial intermediaries and a reduction in trades.

Positive profits arise at equilibrium since none of the intermediaries can profitably deviate

without inducing the agents to trade several contracts and select inefficient levels of effort.10

The present paper rules out moral hazard effects and argues that non-exclusive competition

under adverse selection drives intermediaries’ profits to zero.

The analysis of adverse selection has been initiated by Pauly (1974), Jaynes (1978) and

Hellwig (1988). Pauly (1974) suggests that Akerlof outcomes can be supported at equilibrium

in a situation where buyers are restricted to offer linear price schedules. As recalled above,

Jaynes (1978) points out that the separating equilibrium characterized by Rothschild and

Stiglitz (1976) is vulnerable to entry by an insurance company proposing additional trades

that could be concealed from the other companies. He further argues that the non-existence

problem identified by Rothschild and Stiglitz (1976) can be overcome if insurance companies

can share the information they have about the agents’ trades. Hellwig (1988) discusses the

relevant extensive form for the inter-firm communication game.

Biais et al. (2000) study a model of non-exclusive competition among uninformed market-

makers who supply liquidity to an informed insider whose preferences are quasilinear, and

quadratic in the quantities she trades. Although our model encompasses their specification

10See for instance Parlour and Rajan (2001), Bisin and Guaitoli (2004), and Attar and Chassagnon (2009)
for applications to loan and insurance markets.
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of preferences, we develop our analysis in the two-type case, while Biais et al. (2000) consider

a continuum of types. Despite the similarities between the two setups, however, the results

of Biais et al. (2000) stand in sharp contrast with ours. Indeed, restricting attention to

equilibria where market-makers post convex price schedules, they argue that non-exclusivity

may lead to a Cournot-like equilibrium outcome, in which each market-maker earns a positive

profit. This is very different from our Bertrand-like equilibrium outcomes, in which each

traded contract yields zero profit for each buyer.

Attar, Mariotti, and Salanié (2009) consider a situation where a seller is endowed with

one unit of a good whose quality she privately knows. This good is divisible, so that the

seller may trade any quantity of it with any of the buyers, as long as she does not trade

more than her endowment in the aggregate. Both the buyers’ and the seller’s preferences are

linear in quantities and transfers. In this setting, Attar et al. (2009) show that pure strategy

equilibria always exist, and that the corresponding aggregate allocations are generically

unique. Depending on whether quality is low or high, and on the probability with which

quality is high, the seller may either trade her whole endowment, or abstain from trading

altogether. Buyers earn zero profit in any equilibrium. These results therefore offer a fully

strategic foundation for Akerlof’s (1970) classic study of the market for lemons, based on

non-exclusive competition. Besides equilibrium existence, a key difference with our setting

is that equilibria in Attar et al. (2009) may exhibit pooling and hence cross-subsidies across

types. This reflects that, unlike in the present paper, trades are subject to an aggregate

capacity constraint.

Ales and Maziero (2009) study non-exclusive competition in an insurance context similar

to the one studied by Rothschild and Stiglitz (1976). Relying on free-entry arguments, they

show that only the high-risk agent can obtain a positive coverage in equilibrium. This result

is in line with those derived in the present paper, where free entry is not assumed from the

outset. Our model is also more general than theirs in that we do not rely on a particular

parametric representation of the seller’s preferences, which allows us to uncover the common

logical structure of a large class of potential applications. Finally, a distinctive feature of our

analysis is that we fully characterize the set of aggregate allocations that can be supported

in a pure strategy equilibrium, and that we provide necessary and sufficient conditions for

the existence of such an equilibrium.

The paper is organized as follows. Section 2 describes the model. Section 3 characterizes

pure strategy equilibria. Section 4 derives necessary and sufficient conditions under which

such equilibria exist. Section 5 concludes.
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2 The Model

Our model features a seller, who can simultaneously trade with several identical buyers. We

put restrictions neither on the sign of the quantities of the good traded by the seller, nor on

the sign of the transfers she receives in return. The labels seller and buyers, while useful,

are therefore conventional.

2.1 The Seller

The seller is privately informed of her preferences. She may be of two types, L or H, with

positive probabilities mL and mH such that mL + mH = 1. Subscripts i and j are used to

index these types, with the convention that i 6= j. When type i trades an aggregate quantity

Q, for which she receives in exchange an aggregate transfer T , her utility is ui(Q, T ), where

the function ui is strictly increasing in its second argument. The following regularity and

convexity assumption will be useful at some point of the analysis.

Assumption C For each i, the function ui is continuously differentiable and strictly quasi-

concave in (Q, T ).

Under Assumption C, each type’s indifference curves are strictly convex. Moreover, for

each i, the marginal rate of substitution

τi(Q, T ) ≡ −
∂ui

∂Q

∂ui

∂T

(Q, T )

is well defined and strictly increasing along type i’s indifference curves. Note that τi(Q, T )

can be interpreted as the seller’s marginal cost of supplying a higher quantity, given that she

already trades (Q, T ). The following assumption is key to our results.

Assumption SC For each (Q, T ), τH(Q, T ) > τL(Q, T ).

Assumption SC expresses a standard single-crossing condition: type H is less eager to

sell a higher quantity than type L is. As a result, in the (Q, T ) plane, a type H indifference

curve crosses a type L indifference curve only once, from below.

2.2 The Buyers

There are n ≥ 2 identical buyers. If a buyer receives from type i a quantity q and makes a

transfer t in return, he obtains a profit viq− t. The following assumption will be maintained

throughout the analysis.
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Assumption CV vH > vL.

We let v = mLvL + mHvH be the average quality of the good, so that vH > v > vL.

Assumption CV reflects common values: the seller’s type has a direct impact on the buyers’

profits. Together with Assumption SC, Assumption CV captures a fundamental tradeoff

of our model: type H provides a more valuable good to the buyers than type L, but at a

higher marginal cost. These assumptions are natural if we interpret the seller’s type as the

quality of the good she offers. Together, they create a tension that will be exploited later

on: Assumption SC leads type H to offer less of the good, but Assumption CV would induce

buyers to demand more of the good offered by type H, if only they could observe quality.

2.3 The Non-Exclusive Trading Game

As in Biais et al. (2000), and Attar et al. (2009), trading is non-exclusive in that no buyer

can control, and a fortiori contract on, the trades that the seller makes with his competitors.

Buyers compete in menus for the good offered by the seller.11 The timing of our trading

game is thus as follows:

1. Each buyer k proposes a menu of contracts, that is, a set Ck ⊂ R2 of quantity-transfer

pairs that contains at least the no-trade contract (0, 0).12

2. After privately learning her type, the seller selects one contract from each of the menus

Ck’s offered by the buyers.

A pure strategy for type i is a function that maps each menu profile (C1, . . . , Cn) into a

vector of contracts ((q1, t1), . . . , (qn, tn)) ∈ C1 × . . .× Cn. To ensure that type i’s problem

max

{
ui

(∑

k

qk,
∑

k

tk

)
: (qk, tk) ∈ Ck for all k

}

has a solution for any menu profile (C1, . . . , Cn), we suppose hereafter that the buyers’ menus

are compact sets. This allows us to use perfect Bayesian equilibrium as our equilibrium

concept. Throughout the paper, we focus on pure strategy equilibria.

2.4 Applications

The following examples illustrate the range of our model.

11As shown by Peters (2001), and Martimort and Stole (2002), there is no need to consider more general
mechanisms in this multiple-principal single-agent setting.

12The assumption that each menu must contain the no-trade contract allows one to deal with participation
in a simple way: the seller cannot be forced to trade with any particular buyer.
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2.4.1 Pure Trade

In the pure trade model, the seller’s utility is quasilinear:

ui(Q, T ) = T − ci(Q).

Assumption C is satisfied if the cost ci(Q) of delivering quantity Q is strictly convex in

Q. Assumption SC requires that c′H(Q) > c′L(Q) for all Q. For instance, Biais et al.

(2000) consider a parametric version of the pure trade model in which the cost function ci is

quadratic, ci(Q) = θiQ + γ
2
Q2, for some positive constant γ.13 Assumption SC then reduces

to θH > θL. Coupled with the assumption vH > vL, this implies that a good of higher

quality is more valuable, but has a higher marginal cost. Biais et al. (2000) also assume that

vH−θH < vL−θL, which implies that the first-best quantities are implementable, a situation

sometimes called responsiveness in the literature.14 Our analysis does not rely on such an

assumption. Finally, it should be noted that Attar et al. (2009) study a version of the pure

trade model in which the seller’s utility is linear in transfers and quantities, and a capacity

constraint is imposed, in the form of an upper bound on aggregate quantities traded. As we

shall see, the existence of this capacity constraint is the key difference between their model

and the present one.

2.4.2 Insurance

In the insurance model, an agent can sell a risk to several insurance companies. As in

Rothschild and Stiglitz (1976), the agent faces a binomial risk on her wealth, that can take

two values (WG,WB), with probabilities (πi, 1 − πi) that define her type. Here WG − WB

is the positive monetary loss that the agent incurs in the bad state. A contract specifies a

reimbursement r to be paid in the bad state, and an insurance premium p. Let R be the

sum of the reimbursements, and let P be the sum of the insurance premia. We assume that

the agent’s preferences have an expected utility representation

πiu(WG − P ) + (1− πi)u(WB − P + R),

where u is a strictly concave von Neumann and Morgenstern utility function. The profit of

an insurance company from selling the contract (r, p) to type i is p − (1 − πi)r, which can

be written as viq − t if we set

vi ≡ −(1− πi), q ≡ r, t ≡ −p,

13In Biais et al. (2000), the informed party is a buyer, but this difference with our model is just a matter
of convention.

14See, in a different context, Caillaud, Guesnerie, Rey, and Tirole (1988).
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so that Q = R and T = −P . Hence the agent purchases for a transfer −T a reimbursement

Q in the bad state, and her expected utility now writes as

ui(Q, T ) = πiu(WG + T ) + (1− πi)u(WB + Q + T ).

Assumption C holds when the function u is strictly concave and differentiable. In that case

τi(Q, T ) = − 1

1 + πi

1−πi

u′(WG+T )
u′(WB+T+Q)

,

so that Assumption SC requires that type H has a lower probability of incurring a loss,

πH > πL. Finally, we indeed have vH > vL, so that Assumption CV holds. Therefore our

model encompasses the non-exclusive version of the Rothschild and Stiglitz’s (1976) model

considered by Ales and Maziero (2009); note that we could also allow for non-expected utility

in the modeling of the agent’s preferences.

3 Equilibrium Characterization

3.1 Preliminaries and Notation

An equilibrium specifies aggregate trades (Qi, Ti) =
(∑

k qk
i ,

∑
k tki

)
for each type of the

seller. It follows from Assumption SC that QH ≤ QL and TH ≤ TL. We denote type by type

individual and aggregate buyers’ profits by

bk
i = viq

k
i − tki , Bi =

∑

k

bk
i ,

respectively, and type averaged individual and aggregate buyers’ profits by

bk = mLbk
L + mHbk

H , B =
∑

k

bk,

respectively. Observe that we can also write

bk = (vqk
j − tkj ) + mi[vi(q

k
i − qk

j )− (tki − tkj )].

The first term on the right-hand side of this expression is the profit from trading (qk
j , t

k
j )

with both types, while the second term is the profit from further trading (qk
i − qk

j , t
k
i − tkj )

with type i only, or, equivalently, the loss in buyer k’s profit from trading (qk
j , t

k
j ) instead of

(qk
i , t

k
i ) with type i. For subsequent use, let us denote this quantity by

sk
i = vi(q

k
i − qk

j )− (tki − tkj ), Si ≡
∑

k

sk
i ,
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so that

bk = vqk
j − tkj + mis

k
i , B = vQj − Tj + miSi. (1)

Therefore one can compute aggregate profits as if both types were trading (Qj, Tj), yielding

aggregate profit vQj − Tj, while type i were trading on top of this (Qi − Qj, Ti − Tj),

yielding with probability mi additional aggregate profit Si. Finally, define the indirect utility

functions

z−k
i (q, t) = max

{
ui

(
q +

∑

l 6=k

ql, t +
∑

l 6=k

tl

)
: (ql, tl) ∈ C l for all l 6= k

}
,

so that, in equilibrium, one has, for each i and k,

Ui ≡ ui(Qi, Ti) = z−k
i (qk

i , t
k
i ).

Observe that the functions z−k
i are continuous by Berge’s maximum theorem.15

3.2 Pivoting

In the remainder of this section, we assume that an equilibrium exists, and we characterize

it. In line with Rothschild and Stiglitz (1976), we examine well-chosen deviations by a buyer,

and we use the fact that in equilibrium deviations cannot be profitable. A key difference,

however, is that in Rothschild and Stiglitz (1976) competition is exclusive, while in our

setting competition is non-exclusive.

Under exclusive competition, what matters from the viewpoint of any given buyer k is

simply the maximum utility levels U−k
L and U−k

H that each type of the seller can get by

trading with some other buyer. A deviation targeted at type i by buyer k is then a contract

(qk
i , t

k
i ) that gives type i a strictly higher utility, ui(q

k
i , t

k
i ) > U−k

i . Type j may be attracted

or not by this contract; in any case, one can compute the deviating buyer’s profit.

By contrast, under non-exclusive competition, all the contracts offered by the other

buyers matter from the viewpoint of buyer k. Suppose indeed that the seller can trade some

pair (Q−k, T−k) with the buyers other than k. Then buyer k can use this as an opportunity

to build more attractive deviations. For instance, to attract type i, buyer k can propose the

contract (Qi−Q−k, Ti−T−k+ε), for some positive number ε: combined with (Q−k, T−k), this

contract gives type i a strictly higher utility than her equilibrium aggregate trade (Qi, Ti).

In that case, we say that buyer k pivots on (Q−k, T−k) to attract type i. Type j may be

15This distinguishes our model from Attar et al. (2009), where the presence of a capacity constraint may
induce discontinuities in the seller’s indirect utility functions.
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attracted or not by this contract; in any case, one can provide a condition on profits that

ensures that the deviation is not profitable.

Formally, the key difference between exclusive and non-exclusive competition is thus

that, in the latter case, each buyer k faces at the deviation stage a single seller whose type is

unknown, but whose preferences are defined by the indirect utility function z−k
i , rather than

by the primitive utility function ui as in the exclusive case. The difficulty stems from the fact

that the functions z−k
i are endogenous, since they depend on the menus offered by the buyers

other than k, on which we impose no restrictions besides compactness. As a result, there

is no a priori guarantee that the functions z−k
i are well behaved: for instance, they could

fail to satisfy a single-crossing condition, unlike the seller’s utility function over aggregate

trades. This prevents us from using standard mechanism techniques to characterize each

buyer’s best response.16 Instead, we rely only on pivoting arguments to fully characterize

candidate aggregate equilibrium allocations, as in Attar et al. (2009).

The following lemma encapsulates our pivoting technique.

Lemma 1 Choose k, i, q, and t such that the quantity Qi − q can be traded with the buyers

other than k, in exchange for a transfer Ti − t. Then

viq − t > bk
i only if vq − t ≤ bk.

The intuition for this result is as follows. If the pair (Qi − q, Ti − t) can be traded with

the buyers other than k, then buyer k can pivot on it to attract type i, while still offering the

contract (qk
j , t

k
j ). If the contract (q, t) allows buyer k to increase the profits he makes with

type i, it must be that type j also selects it instead of (qk
j , t

k
j ) following buyer k’s deviation;

moreover, this contract cannot increase buyer k’s average profit if traded by both types i

and j, for otherwise we would have constructed a profitable deviation.

Now recall from (1) that one can compute aggregate profits as if both types were trading

(Qj, Tj) in the aggregate, with type i trading in addition (Qi−Qj, Ti−Tj). A key implication

of Lemma 1 is that, in the aggregate, buyers cannot earn positive profits from making this

additional trade with type i. Let us first give an intuition for this result in the free-entry

case. Notice that, under free entry, the seller can trade (Qj, Tj) with the existing buyers,

so that an entrant can pivot on (Qj, Tj) to attract type i. That is, an entrant could simply

propose to buy a quantity Qi − Qj in exchange for a transfer slightly above Ti − Tj. This

16Unless one moreover assumes that the menus offered by the buyers are convex sets, as Biais et al. (2000)
do. See Martimort and Stole (2009) for a recent exposition of the standard methodology for the analysis of
common agency games with incomplete information.
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contract would certainly attract type i; besides, if it also attracted type j, this would also

be good news for the entrant, since vj(Qi−Qj) ≥ vi(Qi−Qj) as vH > vL and QL ≥ QH . In

a free-entry equilibrium, it must therefore be that vi(Qi − Qj) ≤ Ti − Tj. The same result

holds when the number of buyers is fixed, although the argument is a bit more involved.

Proposition 1 In any equilibrium, vi(Qi −Qj) ≤ Ti − Tj, that is, Si ≤ 0.

As simple as it is, this result is powerful enough to rule out standard equilibrium outcomes

that have been emphasized in the literature. Consider for instance the separating equilibrium

of Rothschild and Stiglitz’s (1976) exclusive competition model of insurance provision under

adverse selection. In this equilibrium, insurance companies earn zero profit, and no cross-

subsidization takes place. Using the parametrization of Section 2.4.2, this means that the

equilibrium contract (Qi, Ti) of each type i lies on the line with negative slope vi = −(1−πi)

going through the origin. Moreover, the high-risk agent, that is, in our parametrization,

type L, is indifferent between the contracts (QL, TL) and (QH , TH). Since QL > QH > 0, it

follows that the line connecting these two contracts has a negative slope strictly lower than

vL, that is, TL−TH < vL(QL−QH), in contradiction with the result in Proposition 1. Thus

the Rothschild and Stiglitz’s (1976) equilibrium is not robust to non-exclusive competition.

3.3 The Zero-Profit Result

In any Bertrand-like setting, the standard argument consists in making buyers compete for

any profits that may result from serving the whole demand. This logic also applies to our

setting. Indeed, suppose for instance that the aggregate profit from trading with type j

is positive, Bj > 0. Suppose also for simplicity that there is free entry. Then an entrant

could propose to buy Qj in exchange for a transfer slightly above Tj. This contract would

certainly attract type j, which benefits the entrant; in equilibrium, it must therefore be that

this trade also attracts type i, and that vQj − Tj ≤ 0.17 Now recall that aggregate profits

may be written as

B = vQj − Tj + miSi.

Our first result in Proposition 1 was that Si ≤ 0, and we just have shown that vQj − Tj ≤ 0

when Bj > 0. Hence aggregate profits must be zero. This result can be extended to the case

where the number of buyers is fixed.

Proposition 2 In any equilibrium, bk = 0 for all k.

17This reasoning is once more an application of our pivoting technique. Here the entrant pivots on the
no-trade contract (0, 0) to attract type j.
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Remark An inspection of the proofs reveal that Propositions 1 and 2 only require weak

assumptions on feasible trades, namely that if the quantities q and q′ are tradable, then so

are the quantities q + q′ and q − q′. Hence, we allow for negative and positive trades, but

we may for instance have integer constraints on quantities. Finally, we did use in Lemma

1 the fact that the functions ui, and thus the functions zk
i , are continuous with respect to

transfers, but, for instance, we did not use the fact that the seller’s preferences are convex.

3.4 Pooling versus Separating Equilibria

We say that an equilibrium is pooling if both types of the seller make the same aggregate

trade, that is, QL = QH , and that it is separating if they make different aggregate trades,

that is, QL > QH . We now investigate the basic price structure of these two kinds of

candidate equilibria.

Proposition 3 The following holds:

• In any pooling equilibrium, TL = vQL = TH = vQH .

• In any separating equilibrium,

(i) If QL > 0 > QH , then TL = vLQL and TH = vHQH .

(ii) If QL > QH ≥ 0, then TH = vQH and TL − TH = vL(QL −QH).

(iii) If 0 ≥ QL > QH , then TL = vQL and TH − TL = vH(QH −QL).

The first statement of Proposition 3 is a direct consequence of the zero-profit result.

Otherwise, the equilibrium is separating, and three possible cases may arise. In case (i),

type L sells a positive quantity QL, while type H buys a positive quantity |QH |. No cross-

subsidization takes place in equilibrium, so that BL = BH = 0. In case (ii), everything

happens as if both types were selling an aggregate quantity QH at unit price v, with type L

selling an additional quantity QL−QH at unit price vL. Thus, if QH > 0, cross-subsidization

takes place in equilibrium, with BL < 0 < BH . Case (iii) is the mirror image of case (ii), with

both types buying |QL| at unit price v, and type H buying an additional quantity |QH−QL|
at unit price vH . If QL < 0, the cross-subsidization pattern is reversed, with BL > 0 > BH .

Notice that, when both types trade nonzero quantities in the aggregate, the equilibrium price

structure in cases (ii)–(iii) is similar to that described by Jaynes (1978) and Hellwig (1988)

in a version of Rothschild and Stiglitz’s (1976) model with non-exclusive competition where

insurance companies can share information about their clients. By contrast, when only one
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type trades a nonzero quantity in the aggregate, the equilibrium price structure is similar to

that which prevails in Akerlof (1970), or, in a model of non-exclusive competition, in Attar

et al. (2009).

3.5 The No Cross-Subsidization Result

In this section, we prove that our non-exclusive competition game has no equilibria with

cross-subsidies, that is, BL = BH in any equilibrium. This drastically reduces the set

of candidate equilibria. Indeed, by Proposition 3, this cross-subsidization result rules out

pooling equilibria where QL = QH 6= 0, and separating equilibria where either QL > QH > 0

or 0 > QL > QH .

The first step of the analysis consists in showing that, if buyers make positive aggregate

profits when trading with type j, then type j trades inefficiently in equilibrium. Specifically,

her marginal rate of substitution at her equilibrium aggregate trade is not equal to the

quality of the good she sells, but rather to the average quality of the good.

Lemma 2 If Bj > 0 for some j, then τj(Qj, Tj) = v.

The intuition for Lemma 2 is as follows. If τj(Qj, Tj) were different from v, then any

buyer could attempt to reap the aggregate profit on type j, while making limited additional

losses on his trades with type i. For this deviation not to be profitable, it must therefore

be that, in equilibrium, the profit that each buyer k makes with type j is no less than

the aggregate profit Bj on type j. This, however, is impossible if the latter is positive, as

assumed in Lemma 2.

The second step of the analysis consists in showing that, if buyers make positive aggregate

profits when trading with type j, then the aggregate trade made by type j in equilibrium

must remain available if any buyer withdraws his menu offer. This would clearly be true

under free entry. In our oligopsony model, this rules out Cournot-like outcomes in which

the buyers share the market in such a way that each of them is needed to provide type j

with her equilibrium aggregate trade, as is the case in the equilibrium described in Biais et

al. (2000). This makes our setting closer to Bertrand competition, and cross-subsidies are

harder to sustain.

Lemma 3 If Bj > 0 for some j, then, for each k, the quantity Qj can be traded with the

buyers other than k, in exchange for a transfer Tj.

The proof of Lemma 3 proceeds as follows. First, we show that if Bj > 0, then the

equilibrium utility of type j must remain available following any buyer’s deviation; the
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reason for this is that, otherwise, a buyer could deviate and reap the aggregate profits on

type j. As a result, for any buyer k, there exists an aggregate trade (Q−k, T−k) with the

buyers other than k that allows buyer j to achieve the same level of utility as in equilibrium,

uj(Q
−k, T−k) = Uj. From Assumption C and Lemma 2, we get that if Q−k 6= Qj, then

T−k > vQ−k. We finally show that this would allow buyer k to profitably deviate by

pivoting around (Q−k, T−k).

We are now ready to state and prove the main result of this section.

Proposition 4 In any equilibrium, BL = BH = 0.

As mentioned above, the impossibility of cross-subsidization rules out many equilibrium

candidates. To illustrate the main steps of the proof, consider for instance a candidate

separating equilibrium with positive quantities QL > QH > 0, as illustrated on Figure 1.

—Insert Figure 1 Here—

According to Proposition 3(ii), we have TH = vQH < vHQH , so that there exists a

buyer k who earns a positive profit when he trades with type H. Because of the zero-

profit result, this buyer must make a loss when he trades with type L. The key for this

buyer is first to secure his profit on type H, which can be done by offering the contract

ck
H = (qk

H , tkH + εH), for εH positive and small enough. Simultaneously, buyer k would like to

attract type L on another contract that would make a negligible loss. Consider the contract

ck
L = (QL − QH , TL − TH + εL). From Lemma 3, we know that type L can trade (QH , TH)

with the buyers other than k. By also trading ck
L with buyer k, type L would increase

her utility, as long as εL is positive. If moreover εL is high enough compared to εH , then

type L is indeed attracted by ck
L. Finally, provided εL is small enough, the loss for buyer

k from trading ck
L with type L is small, since Proposition 3(ii) indicates that the slope of

the segment between (QH , TH) and (QL, TL) is exactly vL, as shown on Figure 2. Thus

buyer k can deviate by offering the two contracts ck
L and ck

H . Now, we know that type L is

attracted by ck
L. If type H trades ck

H , then the deviation is profitable because ck
H yields a

positive profit when traded by type H, while the loss on type L is reduced to a negligible

amount. If type H decides instead to trade ck
L, then the deviation is profitable because ck

L

yields a positive profit when sold to both types, since its unit price is close to vL. This shows

that there exists no separating equilibrium with positive quantities. The reasoning with a

pooling equilibrium is slightly more involved, but reaches the same conclusion. Intuitively,

equilibrium cross-subsidies are not sustainable because it is possible to neutralize the bad
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type, on which a buyer makes losses, by proposing her to mimic the behavior of the good

type when facing the other buyers.

In the absence of cross-subsidies, Proposition 3 leads to the conclusion that one must

have QH ≤ 0 ≤ QL in any equilibrium. Thus two types of equilibrium outcomes that have

been emphasized in the literature cannot occur in our model: first, pooling outcomes such as

the one described in Attar et al. (2009), in which both types would trade the same nonzero

quantity at a price equal to the average quality of the good; second, separating outcomes

such as the one described by Jaynes (1978) and Hellwig (1988), and illustrated on Figure

1. If one leaves aside the case in which both types trade nonzero quantities on opposite

sides of the market, the remaining possibilities for equilibrium outcomes have a structure

reminiscent of Akerlof (1970): either there is no trade in the aggregate, or only one type

actively trades in the aggregate, at a unit price equal to the quality of the good she offers.

3.6 Equilibrium Aggregate Trades

In this section, we fully characterize the candidate equilibrium aggregate trades, and we

provide necessary conditions for the existence of an equilibrium. Given the price structure

of equilibria delineated in Section 3.4, all that remains to be done is to give restrictions on

each type’s equilibrium marginal rate of substitution. Two cases need to be distinguished,

according to whether a type’s aggregate trade is zero or not in equilibrium.

Our first result is that, if type j does not trade in the aggregate, then her equilibrium

marginal rate of substitution must lie between v and vj.

Lemma 4 If Qj = 0, then vj − τj(0, 0) and τj(0, 0)− v have the same sign.

The intuition for Lemma 4 is as follows. Suppose that j = H. If vH > τH(0, 0), then any

buyer could attract type H by proposing a contract offering to buy a small positive quantity

at a unit price lower than vH . For this deviation not to be profitable, type L must also trade

this contract, and one should have τH(0, 0) ≥ v, so that the deviator makes losses when both

types trade this contract. The same reasoning applies when vH < τH(0, 0), if one considers

a contract offering to sell a small positive quantity at a unit price higher than vH . The case

j = L can be handled in a symmetric way.

Our second result is that, if type i trades a nonzero quantity in the aggregate, then she

must trade efficiently in equilibrium.

Lemma 5 If Qi 6= 0, then τi(Qi, Ti) = vi.
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The intuition for Lemma 5 is as follows. Suppose that i = L. Since cross-subsidization

cannot occur in equilibrium, TL = vLQL > 0 if QL 6= 0. If type L were trading inefficiently

in equilibrium, that is, if τL(QL, TL) 6= vL, then there would exist a contract offering to buy

a positive quantity at a unit price lower than vL, and that would give type L a strictly higher

utility than (QL, TL). Any of the buyers could profitably attract type L by proposing this

contract, which would be even more profitable for the deviating buyer if traded by type H.

Hence type L must trade efficiently in equilibrium. The case i = H can be handled in a

symmetric way.18

To state our characterization result, it is necessary to define first-best quantities. The

following assumption ensures that these quantities are well defined.

Assumption FB For each i, there exists Q∗
i such that τi(Q

∗
i , viQ

∗
i ) = vi.

Assumption FB states that Q∗
i is the efficient quantity for type i to trade at a unit price

vi that gives an aggregate zero profit for the buyers. In the pure trade model, Q∗
i is defined

by c′i(Q
∗
i ) = vi. In the insurance model, because or the seller’s risk aversion, efficiency

requires full insurance for all types, so that Q∗
i = WG −WB.19 An important consequence

of Assumption C is that Q∗
i ≥ 0 if and only if τi(0, 0) ≤ vi, and that Q∗

i = 0 if and only if

τi(0, 0) = vi. We can now state our main characterization result.

Theorem 1 If an equilibrium exists, then τL(0, 0) ≤ v ≤ τH(0, 0). Moreover,

• If vL ≤ τL(0, 0) ≤ v ≤ τH(0, 0) ≤ vH , all equilibria are pooling, with QL = QH = 0.

• Otherwise, all equilibria are separating, and

(i) If τL(0, 0) < vL < v < vH < τH(0, 0), then QL = Q∗
L > 0 and QH = Q∗

H < 0.

(ii) If τL(0, 0) < vL < v ≤ τH(0, 0) ≤ vH , then QL = Q∗
L > 0 and QH = 0.

(iii) If vL ≤ τL(0, 0) ≤ v < vH < τH(0, 0), then QL = 0 and QH = Q∗
H < 0.

The first message of Theorem 1 is a negative one: the non-exclusive competition game

need not have an equilibrium. In the pure trade model, no equilibrium exists if the cost

function of type L is such that c′L(0) > v, or if the cost function of type H is such that

c′H(0) < v; for instance, this is the case in the Biais et al. (2000) setting if θL > v, or if

18It should be noted that the proofs of Lemmas 4 and 5 involve no pivoting arguments—or, what amounts
to the same thing, pivoting on the no-trade contract—and would therefore also go through in an exclusive
competition context.

19A special feature of these two examples is that efficient quantities depend on the type of the seller, but
not on the buyers’ aggregate profit.
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θH < v, that is, if the low-cost type L is not eager enough to sell, or if the high-cost type H

is too eager to sell. In the insurance model, no equilibrium exists if πH

1−πH

u′(WG)
u′(WB)

< π
1−π

, where

π = mLπL + mHπH , that is, if the low-risk type H is too eager to buy insurance.20 Overall,

Theorem 1 reinforces the insight of the no cross-subsidization result: an equilibrium exists

only if the adverse selection problem is severe enough, so that both types’ incentives to trade

are not too closely aligned. On a more positive note, as we will later show in Theorem 2, the

necessary condition τL(0, 0) ≤ v ≤ τH(0, 0) for the existence of an equilibrium also turns out

to be sufficient. Thus Theorem 1 gives a complete description of the structure of aggregate

equilibrium outcomes, which is summarized on Figure 2.

—Insert Figure 2 Here—

Second, Theorem 1 shows that pooling requires vL ≤ τL(0, 0) and vH ≥ τH(0, 0); by

the no cross-subsidization result, we already know that a pooling equilibrium involves zero

aggregate trade for both types. The conditions vL ≤ τL(0, 0) and vH ≥ τH(0, 0) together

imply that Q∗
L ≤ 0 ≤ Q∗

H ; when one of these inequalities is strict, the first-best quantities

are not implementable. Thus pooling requires a strong form of nonresponsiveness: in the

first-best scenario, type L would like to buy, and type H to sell. This cannot arise in the

insurance model, for in this case Q∗
L = Q∗

H = WG−WB. Thus the insurance model admits no

pooling equilibrium. In the pure trade model, a pooling equilibrium exists only if c′L(0) ≥ vL

and c′H(0) ≤ vH ; for instance, this is the case in the Biais et al. (2000) setting if θL ≥ vL

and θH ≤ vH .21

Third, Theorem 1 states that in a separating equilibrium, at least one of the types trades

efficiently. In case (i), types L and H’s preferences are sufficiently far apart from each other,

in the sense that Q∗
L > 0 > Q∗

H : in the first-best scenario, type L would like to sell, and type

H to buy. In that case, both types end up trading their first-best quantities in equilibrium.

Observe that the insurance model admits no equilibrium of this kind. In the pure trade

model, a first-best equilibrium may exist if c′L(0) < vL and c′H(0) > vH ; for instance, this is

the case in the Biais et al. (2000) setting if θL < vL and θH > vH . In case (ii), both Q∗
L and

Q∗
H are nonnegative: in the first-best scenario, both types would like to sell. The unique

candidate equilibrium outcome is then similar to the one which prevails in Akerlof (1970):

type L trades efficiently, while type H does not trade at all. This is the situation that prevails

20This was noted by Ales and Maziero (2009), assuming free entry. The condition τL(0, 0) ≤ v, or,
equivalently, πL

1−πL

u′(WG)
u′(WB) ≤ π

1−π , is automatically satisfied since π > πL and u′(WB) > u′(WG).
21Notice, however, that, in their paper, Biais et al. (2000) explicitly rule out this parameter configuration

for technical reasons.
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in the insurance model, when an equilibrium exists at all, that is, if πH

1−πH

u′(WG)
u′(WB)

≥ π
1−π

: in

that case, the high-risk type L obtains full insurance at an actuarially fair price, while the

low-risk type H purchases no insurance. In the pure trade model, this type of equilibrium

may exist if c′L(0) < vL and c′H(0) ≤ vH ; for instance, this is the case in the Biais et al. (2000)

setting if θL < vL and θH ≤ vH . Finally, case (iii) is symmetric to case (ii), exchanging the

roles of type L and H. Observe that in any separating equilibrium, each type strictly prefers

her equilibrium aggregate trade to that of the other type. This contrasts with the predictions

of models of exclusive competition under adverse selection, such as Rothschild and Stiglitz’s

(1976), in which type L is indifferent between her equilibrium contract and that of type H.

Remark It is interesting to compare the conclusions of Theorem 1 with those reached by

Attar et al. (2009). As explained in Section 2.4.1, the two distinctive features of their model

is that the seller has linear preferences, ui(Q, T ) = T − θiQ, and makes choices under an

aggregate capacity constraint, Q ≤ 1. Observe that, in this context, type i’s marginal rate

of substitution is constant and equal to θi. In a two-type version of their model in which

there are potential gains from trade for each type, that is, vL > θL and vH > θH , Attar et

al. (2009) show that the non-exclusive competition game always admits an equilibrium, that

the buyers receive zero profits, and that the aggregate equilibrium allocation is generically

unique. If θH > v, the equilibrium is similar to the separating equilibrium found in case

(ii) of Theorem 1: type L trades efficiently, that is, QL = 1 and TL = vL, while type H

does not trade at all, that is, QH = TH = 0.22 By contrast, if θH < v, the situation is

markedly different from that described in Theorem 1. First, an equilibrium exists, while, in

the analogous situation where τH(0, 0) < v, no equilibrium exists in our model. Second, any

equilibrium is pooling and efficient, that is, QL = QH = 1 and TL = TH = v, while cross-

subsidies, and therefore non-trivial pooling equilibria, are ruled out in our model. The key

difference between the two setups that explains these discrepancies is that, unlike Attar et al.

(2009), we do not require the seller’s choices to satisfy an aggregate capacity constraint. This

implies that some deviations that are crucial for our characterization result are not available

in Attar et al. (2009). A case in point is the no cross-subsidization result: key to the proof

of Proposition 4 is the possibility, for a deviator that makes profit when trading with type j,

to pivot on (Qj, Tj) to attract type i, while preserving the profit he makes by trading with

type j. However, for the argument to go through, there must be no restrictions on the signs

of the quantities traded in such deviations; in particular, it is crucial that the deviator be

22In the non-generic case where θH = v, there also exist separating equilibria in which 0 < QH ≤ 1.
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able to induce type i to consume more than Qi in the aggregate.23 This, however, is precisely

what is impossible to do in the presence of a capacity constraint, when both types trade up

to capacity in the candidate equilibrium, as in the pooling equilibrium described in Attar et

al. (2009). Thus it is the capacity constraint, and not the linearity of the preferences per se,

that constitutes the key difference between their model and the one studied in this paper.

3.7 Equilibrium Individual Trades

So far, we have focused on the aggregate equilibrium implications of our model. In this

section, we briefly sketch a few implications for individual equilibrium trades. First, we

show that our no cross-subsidization result also holds at the level of individual buyers.

Proposition 5 In any equilibrium, bk
j = 0 for all j and k.

Our second result states that aggregate and individual equilibrium trades have the same

sign. This reinforces the basic insight of our model that, in equilibrium, the seller can signal

her type only through the sign of the quantities she trades.

Proposition 6 In any equilibrium, qk
L ≥ 0 ≥ qk

H for all k.

It follows from Proposition 6 that if a type does not trade in the aggregate, then she

does not trade at all, so that the pooling equilibrium, when it exists, is actually a no-trade

equilibrium. Observe also that, when a type trades a nonzero quantity in the aggregate, there

need not be more than one active buyer, as will be clear from considering the equilibria we

now construct.

4 Equilibrium Existence

To establish the existence of an equilibrium, we impose the following technical assumption

on preferences.

Assumption T There exist QL and QH such that

τL(Q, T ) > vL if Q > QL, and τH(Q, T ) < vH if Q < QH ,

uniformly in T .

23Formally, it follows from the proof of Proposition 4 that, if BH > 0 in a pooling equilibrium where each
type trades a positive aggregate quantity Q, then, for any small enough additional trade (δL, εL) such that
τL(Q, T )δL < εL, and that would thus attract type L, one must have vδL ≤ εL. If there are no restrictions
on the sign of δL, this implies that τL(Q, T ) = v, from which a contradiction can be derived using Lemma 2.
But if, for some reason, only nonpositive δL’s are admissible, say, because the seller cannot trade more than
Q in the aggregate, then one can only conclude that τL(Q, T ) ≤ v, from which no contradiction follows.
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Assumption T ensures that equilibrium menus can be constructed as compact sets of

contracts. It should be emphasized that the restrictions it imposes on preferences are rather

mild. In the pure trade model, because of the quasilinearity of preferences, Assumption T

follows from Assumption FB, and one can take QL = Q∗
L and QH = Q∗

H . In the insurance

model, Assumption T follows from the seller’s risk aversion, and one can take QL = QH =

WG −WB = Q∗
L = Q∗

H .

Theorem 2 An equilibrium exists if and only if τL(0, 0) ≤ v ≤ τH(0, 0).

Theorem 2 shows that the necessary conditions for the existence of an equilibrium given

in Theorem 1 are also sufficient: indeed, in any of the scenarios identified in Theorem 1,

one can construct menus of contracts for the buyers that support the candidate equilibrium

allocation. While we make no general attempt at minimizing the size of equilibrium menus,

the proof of Theorem 2 shows that different types of menus can be used depending on the

scenario considered.

Whenever the equilibrium is separating, two situations can arise. If both types trade

efficiently in equilibrium, as in case (i) of Theorem 1, the equilibrium can be supported

by simple menu offers in which at least two buyers offer the aggregate equilibrium trades

(Q∗
L, vLQ∗

L) and (Q∗
H , vHQ∗

H). This reflects that the standard Bertrand logic applies, because,

in this case, the two types’ preferences are sufficiently far apart from each other. If, by

contrast, only one of the types, say type i, trades efficiently in equilibrium, as in cases (ii)

and (iii) of Theorem 1, then the equilibrium can be supported by linear menus offers in which

at least two buyers offer to trade any positive (in case (ii)) or negative (in case (iii)) quantities

at a unit price vi, up to some limit. These menus are similar to those derived by Attar et

al. (2009) in a non-exclusive version of Akerlof’s (1970) model. In particular, unlike in the

first-best case (i), they contain latent contracts, that is, contracts that are not traded on

the equilibrium path, but which the seller finds it profitable to trade at the deviation stage.

As in Attar et al. (2009), the role of such contracts is to deter cream-skimming deviations.

Consider for instance case (ii), and suppose that a buyer attempts to deviate and purchase

from type H only. To be successful, this cream-skimming deviation must involve trading

a relatively small quantity at a relatively high price. However, this contract becomes also

attractive to type L if, along with it, she can make enough further trades at the equilibrium

price vL, so as to obtain a higher utility than in equilibrium. This implies that the deviating

buyer can obtain at most the profit from a pooling deviation, which is easily shown to be

nonpositive.
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Whenever the equilibrium is pooling, two situations can arise. If the bounds QL and QH

in Assumption T can be chosen in such a way that QL ≤ 0 ≤ QH , it is straightforward to

show that even a monopsonist would be unable to improve over the no-trade outcome, and

extract rents from the seller.24 The equilibrium menus can then be reduced to the no-trade

contract. Things are more complex when QL and QH cannot be chosen in such a way that

QL ≤ 0 ≤ QH , for, in this case, there are situations where a monopsonist could make profits

by offering each type to trade a specific contract, distinct from the trivial one. To block the

corresponding deviations, latent contracts must be available in equilibrium. We construct

the equilibrium menus in such a way that buyers offer to trade any positive quantity at a

unit price vL, and any negative quantity at a unit price vH , up to some limits. Since vH > vL,

this can intuitively be interpreted as a bid-ask spread.

A noticeable feature of our construction is that, in any scenario, no contract issued in

equilibrium could potentially make losses. This reflects an extreme fear of adverse selection,

and should be contrasted with the equilibrium of an exclusive competition game such as

Rothschild and Stiglitz’s (1976), in which the contract designed for the low-risk agent would

make losses if traded by the high-risk agent.

5 Conclusion

In this paper, we analyzed the impact of adverse selection on markets where competition is

non-exclusive. We fully characterized aggregate equilibrium allocations, which are uniquely

determined, and we gave a necessary and sufficient condition for the existence of a pure

strategy equilibrium. Our results show that, under non-exclusivity, market breakdown may

arise in a competitive environment where buyers can compete through arbitrary menu offers:

specifically, whenever first-best allocations cannot be achieved, equilibria when they exist

involve no trade for at least one type of the seller.

These predictions contrast with those of standard competitive screening models, which

typically focus on exclusive competition. In those settings, one type of the seller signals the

24This situation arises in the pure trade model, because in that case one can take QL = Q∗
L and QH = Q∗H ,

and Q∗
L ≤ 0 ≤ Q∗H by nonresponsiveness. The idea of the proof is as follows. By standard arguments, one

can show that at least one type’s participation constraint must be binding at the optimum. Suppose it is
type H’s. Then, if QH > 0, type L’s incentive compatibility constraint must also be binding at the optimum.
Since τH(0, 0) ≥ v and QH > 0 ≥ QL, it follows that vQH − TH < 0 and TL − TH > vL(QL −QH). Thus,
the monopsonist’s profit, which can be rewritten as vQH − TH − [TL − TH − vL(QL − QH)], is negative if
QH > 0. If QH < 0, then type L’s participation contraint and type H’s incentive compatibility constraint
together imply that QL ≥ 0. Since τL(0, 0) ≥ vL and τH(0, 0) ≤ vH , one obtains that vHQH − TH < 0 and
vLQL − TL ≤ 0, so that the the monopsonist’s profit is negative if QH < 0. The argument when type L’s
participation constraint is binding is symmetrical.

23



quality of the good she offers by trading an inefficient, but nonzero quantity of this good.

When competition is non-exclusive, each buyer’s inability to control the seller’s trades with

his opponents creates additional deviation opportunities. This makes screening more costly,

and implies that the seller either trades efficiently, or does not trade at all.

There has been so far little investigation of the welfare implications of adverse selection

in markets where competition is non-exclusive. A natural development of our analysis would

be to study the decision problem faced by a planner who wants to implement an efficient

allocation, subject to informational constraints, but also to the constraint that exclusivity

be non-enforceable. It is unclear that such a planner can improve on the market allocations

characterized in this paper. If he could, this would provide new theoretical insights in favor

of welfare-based regulatory interventions, in particular in the context of financial markets.
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Appendix

Proof of Lemma 1. Let k, i, q, and t satisfy the assumption of the lemma, and suppose that

viq − t > bk
i . Buyer k can deviate by proposing a menu consisting of the no-trade contract

and of the contracts ck
i = (q, t + εi) and ck

j = (qk
j , t

k
j + εj), for εi and εj positive. Given the

assumption in the lemma, by trading ck
i with buyer k and (Qi − q, Ti − t) with the buyers

other than k, type i gets a utility ui(Qi, Ti+εi) > Ui. In equilibrium one has Ui ≥ z−k
i (qk

j , t
k
j ),

and the function z−k
i is continuous. Therefore ui(Qi, Ti + εi) > z−k

i (qk
j , t

k
j + εj) for all small

enough εj. Hence, for any such εj, type i must select ck
i following buyer k’s deviation. By

accepting ck
j , type j can get a utility uj(Qj, Tj + εj) > Uj. Hence type j selects either ck

i or

ck
j following buyer k’s deviation. If type j selects ck

j , then by deviating buyer k obtains a

profit

mi(viq − t− εi) + mj(vjq
k
j − tkj − εj) = mi(viq − t) + mjb

k
j − (miεi + mjεj).

However, from the assumption viq− t > bk
i , this is strictly higher than bk when εi and εj are

small enough, a contradiction. Therefore it must be that type j selects ck
i following buyer

k’s deviation. In equilibrium the deviation cannot be profitable, so that vq − t − εi ≤ bk.

Letting εi go to 0, the result follows. ¥

Proof of Proposition 1. Choose i and k and set q = qk
j + Qi − Qj and t = tkj + Ti − Tj.

Then the quantity Qi−q =
∑

l 6=k ql
j can be traded with the buyers other than k, in exchange

for a transfer Ti − t =
∑

l 6=k tlj. We can thus apply Lemma 1. One has

viq − t− bk
i = vi(q

k
j + Qi −Qj)− (tkj + Ti − Tj)− bk

i

= vi(Qi −Qj)− (Ti − Tj)− [vi(q
k
i − qk

j )− (tki − tkj )]

= Si − sk
i

and

vjq − t− bk
j = vj(q

k
j + Qi −Qj)− (tkj + Ti − Tj)− bk

j

= −[vj(Qj −Qi)− (Tj − Ti)]

= −Sj,

so that we get

Si > sk
i only if mi(Si − sk

i ) ≤ mjSj. (2)
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by Lemma 1. We now show that Si ≤ sk
i for all i and k, which implies the result by summing

over k. Suppose by way of contradiction that there exists i and k such that Si > sk
i . Then,

from (2), Sj > 0. Therefore there exists l such that Sj > sl
j. Now, (2) remains valid if

one exchanges i and j, so that Si > 0. Since Si + Sj = (vi − vj)(Qi − Qj), one finally gets

QL < QH , in contradiction with Assumption SC. Hence the result. ¥

Proof of Proposition 2. We first prove that for each j and k, one has

Bj > bk
j only if B − bk ≤ miSi. (3)

Indeed, if Bj > bk
j , buyer k can deviate by proposing a menu consisting of the no-trade

contract and of the contracts ck
i = (qk

i , t
k
i + εi) and ck

j = (Qj, Tj + εj), for εi and εj positive.

Because Uj ≥ zk
j (qk

i , t
k
i ) and the function zk

j is continuous, it is possible, given the value of

εj, to choose εi small enough, so that type j trades ck
j following buyer k’s deviation. Turning

now to type i, observe that she must trade either ck
i or ck

j following buyer k’s deviation:

indeed, because εi > 0, type i strictly prefers ck
i to any contract she could have traded with

buyer k before the deviation. If type i selects ck
i , then buyer k’s profit from this deviation is

mi(b
k
i −εi)+mj(Bj−εj), which, since Bj > bk

j by assumption, is strictly greater than bk for εi

and εj close enough to zero, a contradiction. Therefore type i must select ck
j following buyer

k’s deviation, and for such a deviation not to be profitable one must have vQj−Tj−εj ≤ bk.

From (1), this may be rewritten as B −miSi − εj ≤ bk, from which (3) follows by letting εj

go to zero.

Now, it may be that for each j and k, Bj ≤ bk
j . Summing over k then yields Bj ≤ 0 for

all j, so that aggregate and individual profits must be equal to zero. Suppose alternatively

that Bj > bk
j for some j and k. Then, by (3) along with the fact that Si ≤ 0,

∑
l 6=k bl ≤ 0,

and hence bl = 0 for all l 6= k. There only remains to show that bk = 0. If Bi > bl
i or Bj > bl

j

for some l 6= k, then, by the same reasoning, bk = 0. Otherwise, Bi ≤ bl
i and Bj ≤ bl

j for all

l 6= k. By averaging over types, this yields B ≤ bl, and we know that bl = 0 for all l 6= k.

Therefore B = 0 and thus bk = 0, from which the result follows. ¥

Proof of Proposition 3. In the case of a pooling equilibrium, the conclusion follows

immediately from the zero-profit result. Consider next a separating equilibrium, and let

us start with case (ii): QL > QH ≥ 0. We know from Lemma 1 that SL ≤ 0. Suppose

SL < 0. From (3) and the zero-profit result, we get that BH ≤ bk
H for all k, which implies

that BH ≤ 0. Now notice from (1) that

B = vQH − TH + mLSL = BH + mL[SL − (vH − vL)QH ].

26



Because BH ≤ 0, SL < 0 and QH ≥ 0, we get that B < 0, a contradiction. Therefore it

must be that SL = 0. It follows that B = vQH − TH , so that TH = vQH since B = 0.

Hence the result. Case (iii) follows in a similar manner, exchanging the roles of L and H.

Consider finally case (i): QL > 0 > QH . As above, B = BH + mL[SL − (vH − vL)QH ] = 0.

Suppose that BH > 0 and thus BH > bk
H for some k. Again, from (3), this implies that

SL = 0 and thus that B = BH −mL(vH − vL)QH . Since BH > 0, one must have QH > 0, a

contradiction. Hence BH = 0, and therefore BL = 0 since B = 0. It follows that TL = vQL

and TH = vHQH . Hence the result. ¥

Proof of Lemma 2. If Bj > 0, then one must have Tj = vQj by Proposition 3. Any

buyer k can deviate by proposing a menu consisting of the no-trade contract and of the

contracts ck
i = (qk

i , t
k
i + εi) and ck

j = (Qj + δj, Tj + εj), for some numbers εi, δj, and εj.

Suppose by way of contradiction that τj(Qj, Tj) 6= v. Then one can choose δj and εj such

that τj(Qj, Tj)δj < εj < vδj. For δj and εj small enough, the first inequality guarantees

that type j can strictly increase her utility by trading ck
j with buyer k. It is then possible

to choose εi positive and small enough, so that, following buyer k’s deviation, type j prefers

trading ck
j to trading ck

i . Turning now to type i, observe that she must trade either ck
i or

ck
j following buyer k’s deviation: indeed, because εi > 0, type i strictly prefers ck

i to any

contract she could have traded with buyer k before the deviation. If type i selects ck
j , then

buyer k’s profit from this deviation is v(Qj + δj)− (Tj + εj) = vδj − εj > 0, in contradiction

with the zero-profit result. Therefore type i must select ck
i following buyer k’s deviation, and

for this deviation not to be profitable one must have

mi(b
k
i − εi) + mj[vj(Qj + δj)− (Tj + εj)] ≤ mib

k
i + mjb

k
j .

Letting εi, εj, and δj go to zero yields that Bj ≤ bk
j . Since this holds for any buyer k, we

can sum over k to get Bj ≤ 0, a contradiction. The result follows. ¥

Proof of Lemma 3. Suppose first that Uj > z−k
j (0, 0) for some k. Then buyer k can deviate

by proposing a menu consisting of the no-trade contract and of the contract (Qj, Tj−ε), with

ε positive. For ε small enough, one has uj(Qj, Tj−ε) > z−k
j (0, 0), so type j trades the contract

(Qj, Tj − ε) following buyer k’s deviation. If type i does not trade the contract (Qj, Tj − ε),

buyer k’s profit from this deviation is mj(vjQj − Tj + ε) = mj(Bj + ε) > 0, in contradiction

with the zero-profit result. If type i trades the contract (Qj, Tj − ε), then, because Tj = vQj

by Proposition 3, buyer k’s profit from this deviation is vQj − Tj + ε = ε > 0, again in

contradiction with the zero-profit result. Since in any case Uj ≥ z−k
j (0, 0), it must be that
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Uj = z−k
j (0, 0) for all k. It follows that, for any buyer k, there exists a trade (Q−k, T−k) with

the buyers other than k such that uj(Q
−k, T−k) = Uj.

Suppose now that Q−k 6= Qj. Then, from Assumption C and Lemma 2, one must have

T−k > vQ−k. We now examine two deviations for buyer k that both pivot around (Q−k, T−k).

First, define (q1, t1) such that (q1, t1) + (Q−k, T−k) = (Qj, Tj). Then the quantity Qj − q1

can be traded with the buyers other than k, in exchange for a transfer Tj − t1. Moreover,

using the fact that Tj = vQj by Proposition 3, and that T−k > vQ−k, one gets

vq1 − t1 = v(Qj −Q−k)− (Tj − T−k)

= T−k − vQ−k

> 0.

Therefore, by Lemma 1, one must have vjq1 − t1 ≤ bk
j , that is, again using Tj = vQj,

T−k − vjQ
−k + (vj − v)Qj ≤ bk

j . Because T−k > vQ−k, this implies that

(vj − v)(Qj −Q−k) < bk
j . (4)

Second, define (q2, t2) such that (q2, t2) + (Q−k, T−k) = (Qi, Ti). Then the quantity Qi − q1

can be traded with the buyers other than k, in exchange for a transfer Ti − t1. Moreover,

using the fact that Si = 0 and Tj = vQj by Proposition 3, and that T−k > vQ−k and

(v − vi)(Qi −Qj) ≥ 0, one gets

vq2 − t2 = v(Qi −Q−k)− (Ti − T−k)

= T−k − vQ−k + vQi − [Tj + vi(Qi −Qj)− Si]

= T−k − vQ−k + (v − vi)(Qi −Qj)

> 0.

Therefore, by Lemma 1, one must have viq2 − t2 ≤ bk
i , that is, again using Si = 0 and

Tj = vQj, T−k − viQ
−k + (vi − v)Qj ≤ bk

i . Because T−k > vQ−k, this implies that

(vi − v)(Qj −Q−k) < bk
i . (5)

Since v = mivi + mjvj, and mib
k
i + mjb

k
j = 0 by the zero-profit result, averaging (4) and (5)

yields 0 < 0, a contradiction. Therefore it must be that Q−k = Qj. Since uj(Q
−k, T−k) =

Uj = uj(Qj, Tj), it follows that T−k = Tj, which implies the result. ¥

Proof of Proposition 4. Suppose by way of contradiction that Bj > 0 for some j. Then

any buyer k such that bk
j > 0 can deviate by proposing a menu consisting of the no-trade
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contract and of the contracts ck
i = (Qi − Qj + δi, vi(Qi − Qj) + εi) and ck

j = (qk
j , t

k
j + εj),

for some numbers δi, εi, and εj. Choose δi and εi such that τi(Qi, Ti)δi < εi. This ensures

that, for δi and εi small enough, type i can strictly increase her utility by trading ck
i with

buyer k, and (Qj, Tj) with the buyers other than k; according to Lemma 3, this is feasible,

since Bj > 0. Because Ui ≥ zk
i (qk

j , t
k
j ) and the function zk

i is continuous, it is possible, given

the values of δi and εi, to choose εj positive and small enough, so that type i trades ck
i

following buyer k’s deviation. Turning now to type j, observe that she must trade either

ck
i or ck

j following buyer k’s deviation: indeed, because εj > 0, type j strictly prefers ck
j

to any contract she could have traded with buyer k before the deviation. If type j selects

ck
j , then buyer k’s profit from this deviation is mi(viδi − εi) + mj(vjq

k
j − tkj − εj), which,

since vjq
k
j − tkj = bk

j > 0 by assumption, is positive when δi, εi, and εj are small enough, in

contradiction with the zero-profit result. Therefore type j must select ck
i following buyer k’s

deviation, and for this deviation not to be profitable one must have

v(Qi −Qj + δi)− vi(Qi −Qj)− εi ≤ 0. (6)

Now, recall that, as a consequence of Assumption SC, (Qi − Qj)(v − vi) ≥ 0. Therefore,

letting δi and εi go to zero in (6), we get Qi = Qj, so that the equilibrium must be pooling.

Replacing in (6), what we have shown is that for any small enough δi and εi such that

τi(Qi, Ti)δi < εi, one has vδi ≤ εi. Since δi can be positive or negative, it follows that

τi(Qi, Ti) = v. However, according to Lemma 2, one also has τj(Qj, Tj) = v since Bj > 0.

Because (Qi, Ti) = (Qj, Tj) as the equilibrium is pooling, this contradicts Assumption SC.

The result follows. ¥

Proof of Lemma 4. Suppose that Qj = 0. If τj(0, 0) = vj, the result is immediate.

Suppose then that τj(0, 0) 6= vj. Any buyer k can deviate by proposing a menu consisting of

the no-trade contract and of the contract ck
j = (δj, εj) for some numbers δj and εj. Choose

δj and εj such that τj(0, 0)δj < εj. This ensures that, for δj and εj small enough, type j can

strictly increase her utility by trading ck
j with buyer k. If moreover vjδj > εj, then type i

must also trade ck
j following buyer k’s deviation, and one must have εj ≥ vδj, for, otherwise,

this deviation would be profitable. Thus we have shown that for any small enough δj and

εj, τj(0, 0)δj < εj < vjδj implies that εj ≥ vδj, which is equivalent to the statement of the

lemma. Hence the result. ¥

Proof of Lemma 5. By the no cross-subsidization result, if Qi 6= 0, the equilibrium must

be separating. Moreover, from Proposition 3, one must have Ti = viQi. Suppose by way
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of contradiction that τi(Qi, Ti) 6= vi. Then any buyer k can deviate by proposing a menu

consisting of the no-trade contract and of the contract ck
i = (qi, ti), for some numbers qi and

ti. Since τi(Qi, Ti) 6= vi, it follows from Assumption C that one can choose (qi, ti) close to

(Qi, Ti) such that Ui < ui(qi, ti) and ti < viqi, where qi is positive if i = L, and negative if

i = H. The first inequality guarantees that type i trades ck
i following buyer k’s deviation.

Since viqi > ti, type j must also trade ck
i following buyer k’s deviation, and one must have

ti ≥ vqi, for, otherwise, this deviation would be profitable. Overall, we have shown that

viqi > vqi. Since qi is positive if i = L, and negative if i = H, and since vH > v > vL, we

obtain a contradiction in both cases. The result follows. ¥

Proof of Theorem 1. Suppose first that a pooling equilibrium exists. Then, according to

the no cross-subsidization result, QL = QH = 0. Lemma 4 then implies that

vL ≤ τL(0, 0) ≤ v ≤ τH(0, 0) ≤ vH . (7)

Suppose next that a separating equilibrium exists. Then, according again to the no cross-

subsidization result, only three scenarios are possible.

(i) In the first case, QH < 0 < QL. Then, by Proposition 3, TL = vLQL and TH = vHQH .

Moreover, by Lemma 5, τL(QL, TL) = vL and τL(QH , TH) = vH . As a result, QL = Q∗
L and

QH = Q∗
H , so that Q∗

H < 0 < Q∗
L. Assumption C then implies that

τL(0, 0) < vL and τH(0, 0) > vH . (8)

(ii) In the second case, QH = 0 < QL. Then, by Lemma 4, v ≤ τH(0, 0) ≤ vH . Moreover,

by Proposition 3, TL = vLQL. Finally, by Lemma 5, τL(QL, TL) = vL. As a result QL = Q∗
L,

so that Q∗
L > 0. Assumption C then implies that

τL(0, 0) < vL and v ≤ τH(0, 0) ≤ vH . (9)

(iii) In the third case, QH < 0 = QL. Then, by Lemma 4, vL ≤ τL(0, 0) ≤ v. Moreover, by

Proposition 3, TH = vHQH . Finally, by Lemma 5, τH(QH , TH) = vH . As a result QH = Q∗
H ,

so that Q∗
H < 0. Assumption C then implies that

vL ≤ τL(0, 0) ≤ v and τH(0, 0) > vH . (10)

To conclude the proof, observe that, from (7) to (10), an equilibrium exists only if τL(0, 0) ≤
v ≤ τH(0, 0). Since conditions (7) to (10) are mutually exclusive, the characterization of the

candidate equilibrium aggregate trades is complete. Hence the result. ¥
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Proof of Proposition 5. Suppose by way of contradiction that bk
j > 0 for some j and k. We

first show that Si = Sj = 0. To prove that Si = 0, observe that, by the no cross-subsidization

result, one has bl
j < 0 = Bj for some l 6= k. From (3), this implies that miSi ≥ B − bl.

Since B − bl = 0 by the zero-profit result, and since Si ≤ 0 by Proposition 1, it follows that

Si = 0. To prove that Sj = 0, observe that if bk
j > 0, then bk

i < 0 = Bi by the zero-profit

result and the no cross-subsidization result. Arguing as for Si, we obtain that Sj = 0. Hence

Si = Sj = 0, as claimed. Because Si + Sj = (vi − vj)(Qi − Qj), one must have Qi = Qj,

and the equilibrium is pooling: (Qi, Ti) = (Qj, Tj) = (0, 0). Now, since bk
j > 0, and since

(Qj, Tj) = (0, 0) can obviously be traded with the buyers other than k, one can show as in

the proof of Proposition 4 that τi(0, 0) = v. Finally, consider buyer l as above. Since bl
j < 0,

one has bl
i > 0 by the zero-profit result. Since (Qi, Ti) = (0, 0) can obviously be traded

with the buyers other than l, it follows along the same lines that τj(0, 0) = v as well, which

contradicts Assumption SC. The result follows. ¥

Proof of Proposition 6. Consider first the case Qi = 0. Then Ti = 0 and Tj = vjQj by

the characterization of aggregate equilibrium trades; notice that one may have Qj = 0 as

well. It follows that Sj = vj(Qj − Qi) − (Tj − Ti) = 0. Now, from the proof of Proposition

1, one has Sj ≤ sk
j for all k, so that actually sk

j = 0 for all k. Since

sk
j = vj(q

k
j − qk

i )− (tkj − tki ) = bk
j − bk

i − (vj − vi)q
k
i = (vi − vj)q

k
i (11)

as bk
i = bk

j = 0 by Proposition 5, it follows that qk
i = 0 for all k. Hence the result.

Consider next the case QL > 0, the argument for QH < 0 being symmetrical. Suppose

by way of contradiction that qk
L < 0 for some k. Then, letting i = L and j = H in (11), it

follows that sk
H > 0. We now show that sk

i ≤ 0 for all i and k, which concludes the proof by

contradiction. We first prove in analogy with (2) that for each i, k, and l 6= k, one has

sk
i > 0 only if mis

k
i ≤ mj(s

k
j + sl

j). (12)

Set q = qk
i + ql

i − qk
j and t = tki + tli − tkj . Then the quantity Qi − q = qk

j +
∑

m6=k,l q
m
i can be

traded with the buyers other than k, in exchange for a transfer Ti − t = tkj +
∑

m6=k,l t
m
i . We

can thus apply Lemma 1. One has

viq − t− bl
i = vi(q

k
i + ql

i − qk
j )− (tki + tli − tkj )− bl

i

= bk
i − bk

j − (vi − vj)q
k
j

= sk
i
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and

vjq − t− bl
j = vj(q

k
i + ql

i − ql
j)− (tki + tli − tlj)− bk

j

= −[bk
j − bk

i − (vj − vi)q
k
i + bl

j − bl
i − (vj − vi)q

l
i]

= −(sk
j + sl

j),

so that we get (12) by Lemma 1. Now, suppose by way of contradiction that sk
i > 0 for some

i and k. Then, by (12),

mis
k
i ≤ mj(s

k
j + sl

j) (13)

for all l 6= k. Summing on l 6= k yields

(n− 1)mis
k
i ≤ mj[Sj + (n− 2)sk

j ].

From Proposition 1, we know that Sj ≤ 0. Hence, if sk
i > 0, one must also have sk

j > 0.

Applying (12) once more yields

mjs
k
j ≤ mi(s

k
i + sl

i) (14)

for all l 6= k. Combining (13) and (14) leads to mis
k
i ≤ mjs

l
j + mi(s

k
i + sl

i), or, equivalently,

mis
l
i + mjs

l
j ≥ 0 for all l 6= k. Note that we also have mis

k
i + mjs

k
j > 0 as both sk

i and sk
j

are positive. Summing all these inequalities yields miSi + mjSj > 0, in contradiction with

Proposition 1. Hence the result. ¥

Proof of Theorem 2. Consider some buyer k that attempts to deviate from a candidate

equilibrium. When constructing his deviation, he can restrict himself to menus that contain,

on top of the no-trade contract, at most two other contracts (q̃k
L, t̃kL) and (q̃k

H , t̃kH). For (q̃k
L, t̃kL)

to be selected by type L, and (q̃k
H , t̃kH) to be selected by type H, the following incentive and

participation constraints must hold:

z−k
L (q̃k

L, t̃kL) ≥ z−k
L (q̃k

H , t̃kH), (15)

z−k
H (q̃k

H , t̃kH) ≥ z−k
H (q̃k

L, t̃kL), (16)

z−k
L (q̃k

L, t̃kL) ≥ UL, (17)

z−k
H (q̃k

H , t̃kH) ≥ UH . (18)

Observe that, in formulating the participation constraints, we implicitly supposed that the

equilibrium aggregate trade of each type remains available following buyer k’s deviation.
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Separating Equilibria There are three subcases to examine.

(i) Suppose first that τL(0, 0) < vL and τH(0, 0) > vH . Then Q∗
L > 0 > Q∗

H , and

the candidate equilibrium aggregate trades are characterized by QL = Q∗
L, TL = vLQL,

QH = Q∗
H , and TH = vHQH , with τL(QL, TL) = vL and τH(QH , TH) = vH . We show that

there exists an equilibrium in which each buyer offers the menu

CFB = {(0, 0), (Q∗
L, vLQ∗

L), (Q∗
H , vHQ∗

H)}.

By construction, the equilibrium aggregate trade of type L remains available following buyer

k’s deviation. An upper bound to buyer k’s profit from deviating is given by

max {mL(vLq̃k
L − t̃kL) + mH(vH q̃k

H − t̃kH)}

subject to the participation constraints (17) and (18). For each i, one must thus solve

max {viq̃
k
i − t̃ki }

subject to z−k
i (q̃k

i , t̃
k
i ) ≥ Ui. We claim that the value of this problem is zero. Indeed, let

(Q̃i, T̃i) be a final aggregate trade of type i when trading (q̃k
i , t̃

k
i ) with buyer k and optimally

choosing from the menus CFB offered by the buyers other than k. Then

Q̃i = niQ
∗
i + njQ

∗
j + q̃k

i ,

T̃i = niviQ
∗
i + njvjQ

∗
j + t̃ki ,

where ni and nj are the numbers of times type i optimally trades the contracts (Q∗
i , viQ

∗
i )

and (Q∗
j , vjQ

∗
j), respectively, with the buyers other than k. Thus

viq̃
k
i − t̃ki = nj(vj − vi)Q

∗
j + viQ̃i − T̃i ≤ viQ̃i − T̃i ≤ 0,

where the first inequality reflects that vH > vL and Q∗
L > 0 > Q∗

H , and the second that

ui(Q̃i, T̃i) ≥ ui(Q
∗
i , viQ

∗
i ) = maxQ ui(Q, viQ). Hence, given the menus CFB offered by the

buyers other than k, a contract (q̃k
i , t̃

k
i ) may attract type i only if t̃ki ≥ viq̃

k
i . As a result,

there is no profitable deviation for buyer k. The result follows.

(ii) Suppose next that τL(0, 0) < vL and v ≤ τH(0, 0) ≤ vH . Then Q∗
L > 0, and the

candidate equilibrium aggregate trades are characterized by QL = Q∗
L, TL = vLQL, and

QH = TH = 0, with τL(QL, TL) = vL. Observe in particular that QL ≥ Q∗
L > 0 for each QL

that satisfies Assumption T. Fix one such QL. We show that there exists an equilibrium in

which each buyer offers the menu

CL =

{
(q, t) : 0 ≤ q ≤ QL

n− 1
and t = vLq

}
.
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Since τ(QL, TL) = vL, one has QL < QL by definition of QL, so that the equilibrium aggregate

trade of type L remains available following buyer k’s deviation. An upper bound to buyer

k’s profit from deviating is given by

max {mL(vLq̃k
L − t̃kL) + mH(vH q̃k

H − t̃kH)}

subject to the incentive constraint (15), and the participation constraints (17) and (18).

Since z−k
L and z−k

H are strictly decreasing with respect to transfers, (18) must be binding.

That is, letting (Q̃H , T̃H) be a final aggregate trade of type H when trading (q̃k
H , t̃kH) with

buyer k and optimally choosing from the menus CL offered by the buyers other than k, one

must have uH(Q̃H , T̃H) = UH . Two cases must be distinguished.

If Q̃H ≤ 0, then, since q̃k
H ≤ Q̃H and τH(0, 0) ≤ vH , vH q̃k

H − t̃kH ≤ 0. Moreover,

z−k
L (q̃k

H , t̃kH) < UL, so that, by (17), (15) must be slack. Thus (q̃k
L, t̃kL) solves

max {vLq̃k
L − t̃kL}

subject to the participation constraint (17). We claim that the value of this problem is zero.

Indeed, let (Q̃L, T̃L) be a final aggregate trade of type L when trading (q̃k
L, t̃kL) with buyer k

and optimally choosing from the menus CL offered by the buyers other than k. Then

Q̃L = Q−k
L + q̃k

L,

T̃L = vLQ−k
L + t̃kL,

where (Q−k
L , vLQ−k

L ), with Q−k
L ∈ [0, QL], is the aggregate trade type L makes with the buyers

other than k. Thus

vLq̃k
L − t̃kL = vLQ̃L − T̃L ≤ 0,

where the inequality reflects that uL(Q̃L, T̃L) ≥ uL(Q∗
L, vLQ∗

L) = maxQ uL(Q, vLQ). Hence,

given the menus CL offered by the buyers other than k, a contract (q̃k
L, t̃kL) may attract type

L only if t̃kL ≥ vLq̃k
L. As a result, there is no profitable deviation for buyer k such that

Q̃H ≤ 0.

If Q̃H > 0, then, since τH(Q̃H , T̃H) > τH(0, 0) ≥ v > vL as uH(Q̃H , T̃H) = uH(0, 0), one

must have q̃k
H = Q̃H ; for, if q̃k

H < Q̃H , then type H could strictly increase her utility by

trading (q̃k
H , t̃kH) with buyer k and (Q̃H− q̃k

H−ε, vL(Q̃H− q̃k
H−ε)) with the buyers other than

k, for ε positive and small enough. Define (Q̃L, T̃L) as above. By Assumption SC, Q̃L ≥
Q̃H = q̃k

H . Now, suppose that T̃L − t̃kH ≥ vL(Q̃L − q̃k
H). Then, since vLq̃k

L − t̃kL = vLQ̃L − T̃L,

it follows by averaging that buyer k’s profit from deviating is at most vq̃k
H − t̃kH , which is
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negative, since uH(q̃k
H , t̃kH) = uH(0, 0), q̃k

H > 0, and τH(0, 0) ≥ v. Thus buyer k can earn a

positive profit only if T̃L − t̃kH < vL(Q̃L − q̃k
H). If Q̃L ≤ q̃k

H + QL, this is impossible if type

L is optimizing when trading (Q̃L, T̃L) in the aggregate, since she always has the option to

trade (q̃k
H , t̃kH) with buyer k, and then to sell any positive quantity up to QL at a unit price

vL to the buyers other than k. If Q̃L > q̃k
H +QL, then, because τL(q̃k

H +QL, t̃kH + vLQL) > vL

by Assumption T, one has

uL(q̃k
H + QL, t̃kH + vLQL) > uL(q̃k

H + Q̃L − q̃k
H , t̃kH + vL(Q̃L − q̃k

H))

> uL(Q̃L, T̃L).

Thus type L would be strictly better off trading (q̃k
H , t̃kH) with buyer k, and then selling QL

at a unit price vL to the buyers other than k, a contradiction. Hence there is no profitable

deviation for buyer k such that Q̃H > 0. The result follows.

(iii) Suppose finally that vL ≤ τL(0, 0) ≤ v and τH(0, 0) > vH . Then Q∗
H < 0, and the

candidate equilibrium aggregate trades are characterized by QL = TL = 0, QH = Q∗
H , and

TH = vHQH , with τH(QH , TH) = vH . Observe in particular that QH ≤ Q∗
H < 0 for each

QH that satisfies Assumption T. Fix one such QH . One can show as in (ii) above that there

exists an equilibrium in which each buyer offers the menu

CH =

{
(q, t) :

QH

n− 1
≤ q ≤ 0 and t = vHq

}
.

The result follows.

Pooling Equilibria If vL ≤ τL(0, 0) ≤ v ≤ τH(0, 0) ≤ vH , then Q∗
L ≤ 0 ≤ Q∗

H , and

the candidate equilibrium aggregate trades are characterized by QL = TL = QH = TH = 0.

Suppose without loss of generality that QL > 0 > QH , where QL and QH satisfy Assumption

T. Fix two such QL and QH . We show that there exists an equilibrium in which each buyer

offers the menu

CLH = CL ∪ CH .

The following result reflects how the structure of offers in the menus CLH affects the seller’s

behavior following a deviation by buyer k.

Fact 1 Let (Q̃i, T̃i) be a final aggregate trade of type i when trading (q̃k
i , t̃

k
i ) with buyer k and

optimally choosing from the menus CLH offered by the buyers other than k. Then,

(i) If τi(Q̃i, T̃i) > vL, then q̃k
i ≥ Q̃i and T̃i − t̃ki = vH(Q̃i − q̃k

i ),
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(ii) If τi(Q̃i, T̃i) < vH , then q̃k
i ≤ Q̃i and T̃i − t̃ki = vL(Q̃i − q̃k

i ).

Proof. Consider first case (i). If (Q̃i, T̃i) is a final aggregate trade of type i when trading

(q̃k
i , t̃

k
i ) with buyer k, then there exist trades (q̃l

i, t̃
l
i) with the buyers other than k, such that

Q̃i − q̃k
i =

∑
l 6=k q̃l

i, T̃i − t̃ki =
∑

l 6=k t̃li, and (q̃l
i, t̃

l
i) ∈ CLH for all l 6= k. Now, suppose by way

of contradiction that q̃l
i > 0 for some l 6= k. Then (q̃l

i, t̃
l
i) ∈ CL, and (q̃l

i − ε, t̃li − vLε) ∈ CL

as long as 0 < ε < q̃l
i. By trading (q̃l

i − ε, t̃li − vLε) with buyer l, instead of (q̃l
i, t̃

l
i), and by

keeping all her other trades unchanged, type i can trade (Q̃i − ε, T̃i − vLε) in the aggregate.

However, if τi(Q̃i, T̃i) > vL, one has ui(Q̃i − ε, T̃i − vLε) > ui(Q̃i, T̃i) for ε positive and small

enough, contradicting the assumption that type i is optimizing when trading (Q̃i, T̃i) in the

aggregate. Thus we have proved that q̃l
i ≤ 0 for all l 6= k. Then (q̃l

i, t̃
l
i) ∈ CH for all l 6= k, so

that q̃k
i ≥ Q̃i and T̃i − t̃ki = vH(Q̃i − q̃k

i ), as claimed. Case (ii) follows in a similar manner.

Hence the result. ¥

We can now go on with the proof. We first show that there exists no profitable pooling

deviation for buyer k. Indeed, suppose that the contract (q̃k, t̃k) is offered by buyer k. Then,

if q̃k ≥ 0 and vq̃k− t̃k > 0, type H does not want to trade (q̃k, t̃k) given the menus CLH offered

by the buyers other than k, because v ≤ τH(0, 0) ≤ vH . Similarly, if q̃k ≤ 0 and vq̃k− t̃k > 0,

type L does not want to trade (q̃k, t̃k) given the menus CLH offered by the buyers other

than k, because vL ≤ τL(0, 0) ≤ v. Hence, if both types trade the same contract (q̃k, t̃k)

with buyer k, the resulting profit for buyer k is at most zero. This implies that, if buyer k

attempts to deviate by offering, on top of the no-trade contract, two contracts (q̃k
L, t̃kL) and

(q̃k
H , t̃kH) such that both incentive constraints (15) and (16) of types L and H are binding,

one can always construct the continuation equilibrium in such a way that both types select

the same contract, resulting in at most a zero profit for buyer k. One can thus focus without

loss of generality on deviations by buyer k such that at least one incentive constraint (15)

or (16) is slack. Since z−k
L and z−k

H are strictly decreasing with respect to transfers, at least

one of the participation constraints (17) or (18) must then be binding. In what follows,

we suppose that (18) is binding, that is, in the notation of Fact 1, uH(Q̃H , T̃H) = UH ; the

argument when (17) is binding is symmetrical. Two cases must be distinguished.

If Q̃H < 0, then, since uH(Q̃H , T̃H) = uH(0, 0), τH(Q̃H , T̃H) < τH(0, 0) ≤ vH . Thus, by

Fact 1(ii), q̃k
H ≤ Q̃H and vLq̃k

H − t̃kH = vLQ̃H − T̃H . Since vHQ̃H − T̃H < 0, one thus has

vH q̃k
H − t̃kH = (vH − vL)q̃k

H + vLq̃k
H − t̃kH

= (vH − vL)q̃k
H + vLQ̃H − T̃H
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= (vH − vL)(q̃k
H − Q̃H) + vHQ̃H − T̃H

< 0.

Consider now (Q̃L, T̃L), as defined in Fact 1. One must have Q̃L ≥ 0, for, otherwise, (17)

along with the fact that (18) is binding would imply that (16) is violated. It is easy to deduce

from this that (17) is binding. Indeed, since z−k
L and z−k

H are strictly decreasing with respect

to transfers, (15) would otherwise be binding, which is impossible since UL > z−k
L (q̃k

H , t̃kH).

To summarize, Q̃L ≥ 0 and (17) is binding if Q̃H < 0. In particular, if Q̃L = 0, then T̃L = 0,

so that τL(Q̃L, T̃L) ≤ v < vH and vLq̃k
L− t̃kL = vLQ̃L−T̃L = 0 by Fact 1(ii). Finally, if Q̃L > 0,

then, since uL(Q̃L, T̃L) = uL(0, 0), τL(Q̃L, T̃L) > τH(0, 0) ≥ vL. By Fact 1(i), q̃k
L ≥ Q̃L and

vH q̃k
L − t̃kL = vHQ̃L − T̃L. Since vLQ̃L − T̃L < 0, one thus has

vLq̃k
L − t̃kL = (vL − vH)q̃k

L + vH q̃k
L − t̃kL

= (vL − vH)q̃k
L + vHQ̃L − T̃L

= (vL − vH)(q̃k
L − Q̃L) + vLQ̃L − T̃L

< 0.

Overall, we have shown that, if Q̃H < 0, then vH q̃k
H − t̃kH < 0 and vLq̃k

L − t̃kL ≤ 0. Hence

there is no profitable deviation for buyer k such that Q̃H < 0.

If Q̃H ≥ 0, then, since uH(Q̃H , T̃H) = uH(0, 0), τH(Q̃H , T̃H) ≥ τH(0, 0) ≥ v > vL. Thus,

by Fact 1(i), q̃k
H ≥ Q̃H and vH q̃k

H − t̃kH = vHQ̃H − T̃H ≤ 0, so that it remains only to

show that vLq̃k
L − t̃kL ≤ 0. Note also that Q̃L ≥ Q̃H by Assumption SC. Two subcases

must be distinguished. If q̃k
H > Q̃H , then (17) is slack, so that, since z−k

L and z−k
H are

strictly decreasing with respect to transfers, (15) must be binding. Proceeding as in the end

of case (ii) of the proof for separating equilibria, one can show that buyer k can earn no

profit from deviating if Q̃L ≥ q̃k
H . Thus, if q̃k

H > Q̃H , buyer k may earn a positive profit

only if Q̃H ≤ Q̃L < q̃k
H . Observe that T̃L − T̃H ≥ vH(Q̃L − Q̃H) since type L always has

the option to trade (q̃k
H , t̃kH) with buyer k, and then to sell any negative quantity up to

Q̃H − q̃k
H at a unit price vH to the buyers other than k. Since Q̃L ≥ Q̃H ≥ 0, it follows

that vLQ̃L − T̃L ≤ vHQ̃H − T̃H ≤ 0. Hence, to complete the argument in the case where

q̃k
H > Q̃H ≥ 0, we only need to check that vLq̃k

L− t̃kL ≤ vLQ̃L− T̃L. Let (q̃l
L, t̃lL) be the trades

by type L with buyers l 6= k, while trading (q̃k
L, t̃kL) with buyer k. Then, proceeding as in the

end of case (i) of the proof for separating equilibria, one can show that

vLq̃k
L − t̃kL ≤ (vH − vL)

∑

{l 6=k : q̃l
L≤0}

q̃l
L + vLQ̃L − T̃L ≤ vLQ̃L − T̃L,
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as claimed. Hence there is no profitable deviation for buyer k such that q̃k
H > Q̃H ≥ 0. To

conclude the proof, consider the case where q̃k
H = Q̃H ≥ 0. If (17) is slack, the same reasoning

as above implies that there are no profitable deviation for buyer k. Thus such a deviation

may exist only if (17) is binding. One must then have Q̃H = 0, for, otherwise, (15) would be

violated. If τL(Q̃L, T̃L) < vH , then, by Fact 1(ii), vLq̃k
L − t̃kL = vLQ̃L − T̃L, which is at most

zero since uL(Q̃L, T̃L) = uL(0, 0), Q̃L ≥ 0, and τL(0, 0) ≥ vL. If τL(Q̃L, T̃L) ≥ vH > vL, then,

by Fact 1(i), qk
L ≥ Q̃L and vH q̃k

L− t̃kL = vHQ̃L− T̃L. By now standard computations, one has

vLq̃k
L − t̃kL = (vL − vH)(q̃k

L − Q̃L) + vLQ̃L − T̃L,

which again is at most zero. Hence there is no profitable deviation for buyer k such that

q̃k
H = Q̃H ≥ 0. The result follows. ¥
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Figure 1 This figure depicts a candidate separating equilibrium with QL > QH > 0.
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τL(0, 0)

τH(0, 0)

vH

v

vvL

First-Best:
QL = Q∗L > 0

QH = Q∗H < 0

Separating:

QL = Q∗L > 0

QH = 0

Separating:

QL = 0

QH = Q∗H < 0

No Equilibrium

No Equilibrium

Pooling:

QL = 0

QH = 0

Figure 2 This figure depicts the structure of equilibrium aggregate trades as a function of

τL(0, 0) and τH(0, 0) > τL(0, 0), for fixed parameters vL, vH , and v.
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