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Abstract

We present an algorithm to compute the set of perfect public equilibrium payoffs as the

discount factor tends to one for stochastic games with observable states and public (but

not necessarily perfect) monitoring when the limiting set of (long-run players’) equilibrium

payoffs is independent of the initial state. This is the case, for instance, if the Markov chain

induced by any Markov strategy profile is irreducible. We then provide conditions under

which a folk theorem obtains: if in each state the joint distribution over the public signal

and next period’s state satisfies some rank condition, every feasible payoff vector above the

minmax payoff is sustained by a perfect public equilibrium with low discounting.
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1 Introduction

Dynamic games are difficult to solve. In repeated games, finding some equilibrium is easy,

as any repetition of a stage-game Nash equilibrium will do. This is not the case in stochastic

games. The characterization of even the most “elementary” equilibria for such games, namely

(stationary) Markov equilibria, in which continuation strategies depend on the current state only,

turns out to be often challenging. Further complications arise once the assumption of perfect

monitoring is abandoned. In that case, our understanding of equilibria in repeated games owes an

invaluable debt to Abreu, Pearce and Stacchetti (1990), whose recursive techniques have found

numerous applications. Similar ideas have been developed in stochastic games by Mertens and

Parthasarathy (1987, 1991) to establish the most general equilibrium existence results to date

(see also Solan, 1998). Those ideas have triggered a development of numerical methods (Judd,

Yeltekin and Conklin, 2003), whose use is critical for applications in which postulating a high

discount factor appears too restrictive.

In repeated games, more tractable characterizations have been achieved in the case of low

discounting. Fudenberg and Levine (1994, hereafter FL) and Fudenberg, Levine and Maskin

(1994, hereafter FLM) show that the set of (perfect public) equilibrium payoffs can be character-

ized by a family of static constrained optimization programs. Based on this and other insights,

they derive sufficient conditions for a folk theorem for repeated games with imperfect public

monitoring. The algorithm developed by FL has proved to be useful, as it allows to identify the

equilibrium payoff set in interesting cases in which the sufficient conditions for the folk theorem

fail. This is the case, for instance, in the partnership game of Radner, Myerson and Maskin

(1986). More importantly, FL’s algorithm can accommodate both long-run and short-run play-

ers, which is essential for many applications, especially in macroeconomics and political economy,

in which consumers or voters are often modeled as non-strategic (see Mailath and Samuelson,

2006, Chapters 5 and 6).

This paper extends these results to stochastic games. More precisely, it provides an algorithm

that characterizes the set of perfect public equilibrium payoffs in stochastic games with finitely

many states, signals and actions, in which states are observed, monitoring is imperfect but public,

under the assumption that the limiting set of equilibrium payoffs (of the long-run players) is

independent of the initial state. This assumption is satisfied, in particular, if the Markov chain

over states defined by any Markov strategy profile is irreducible. This algorithm is a natural

extension of FL, and indeed reduces to it if there is only one state. The key to this characterization
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lies in the linear constraints to impose on continuation payoffs. In FL, each optimization program

is indexed by a direction λ ∈ R
I that specifies the weights on the payoffs in the objective of

the I players. Trivially, the boundary point v of the equilibrium payoff set that maximizes this

weighted average in the direction λ is such that, for any realized signal y, the continuation payoff

w(y) must satisfy the property that λ · (w(y)− v) ≤ 0. Indeed, one of the main insights of FL is

that, once discounting is sufficiently low, attention can be restricted to this linear constraint, for

each λ, so that the program itself becomes linear in w, and hence considerably more tractable.

In a stochastic game, it is clear that the continuation payoff must be indexed not only by the

public signal, but also by the realized state, and since the stage games that correspond to the

current and to the next state need not be the same, there is little reason to expect this property

to be preserved for each pair of states. Indeed, it is not. One might then wonder whether the

resulting problem admits a linear characterization at all. The answer is affirmative.

When all players are long-run, this characterization can be used to establish a folk theorem

under assumptions that parallel those invoked by FLM. In stochastic games, note that state

transitions might be affected by actions taken, so that, because states are observed, they already

provide information about players’ past actions. Therefore, it is natural to impose rank conditions

at each state on how actions affect the joint distribution over the future state and signal. This

is weaker than requiring such conditions on signals alone, and indeed, it is easy to construct

examples where the folk theorem holds without any public signals.

This folk theorem also generalizes Dutta’s (1995) folk theorem for stochastic games with per-

fect monitoring. Unlike ours, Dutta’s ingenious proof is constructive, extending ideas developed

by Fudenberg and Maskin (1986) for the case of repeated games with perfect monitoring. How-

ever, his assumptions (except for the monitoring structure) are the same as ours. In independent

and simultaneous work, Fudenberg and Yamamoto (2010) provide a different, direct proof of the

folk theorem for stochastic games with imperfect public monitoring under irreducibility, without

a general characterization of the equilibrium payoff set. Their rank assumptions are stronger, as

discussed in Section 5.

Finally, our results also imply the average cost optimality equation from dynamic program-

ming, which obtains here as a special case of a single player. The average cost optimality equation

is widely used in operations research, for instance in routing, inventory, scheduling and queueing

problems, and our results might thus prove useful for game-theoretic extensions of such problems,

as in inventory or queueing games.
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Of course, stochastic games are also widely used in economics. They play an important

role in industrial organization (among many others, see Ericson and Pakes, 1995). It is hoped

that methods such as ours might help provide integrated analyses of questions whose treatment

had to be confined to simple environments so far, such as the role of imperfect monitoring

(Green and Porter, 1984) and of business cycles (Rotemberg and Saloner, 1986) in collusion, for

instance. Rigidities and persistence play an important role in macroeconomics as well, giving

rise to stochastic games. See Phelan and Stacchetti (2001), for example. In Section 6, we shall

apply our results to a simple political economy game, and establish a version of the folk theorem

when some players are short-run.

2 Notation and Assumptions

We introduce stochastic games with public signals. At each stage, the game is in one state,

and players simultaneously choose actions. Nature then determines the current reward (or flow

payoff) profile, the next state and a public signal, as a function of the current state and the

action profile. The sets S of possible states, I of players, Ai of actions available to player i, and

Y of public signals are assumed finite.1

Given an action profile a ∈ A := ×iA
i and a state s ∈ S, we denote by r(s, a) ∈ R

I the

reward profile in state s given a, and by p(t, y|s, a) the joint probability of moving to state t ∈ S

and of receiving the public signal y ∈ Y . (As usual, we can think of ri(s, a) as the expectation

given a of some realized reward that is a function of a private outcome of player i and the public

signal only.)

We assume that at the end of each period, the only information publicly available to all players

consists of nature’s choices: the next state together with the public signal. When properly

interpreting Y , this includes the case of perfect monitoring and the case of publicly observed

rewards. Note however that this fails to include the case where actions are perfectly monitored,

yet states are not disclosed. In such a case, the natural “state” variable is the (common) posterior

belief of the players on the underlying state.

Thus, in the stochastic game, in each period n = 1, 2, . . ., the state is observed, the stage game

is played, and the corresponding public signal is then revealed. The stochastic game is parame-

terized by the initial state s1, and it will be useful to consider all potential initial states simulta-

1For notational convenience, the set of available actions is independent of the state. See, however, footnote
11. All results extend beyond that case.
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neously. The public history at the beginning of period n is then hn = (s1, y1, . . . , sn−1, yn−1, sn).

We set H1 := S, the set of initial states. The set of public histories at the beginning of pe-

riod n is therefore Hn := (S × Y )n−1 × S. We let H :=
⋃

n≥1Hn denote the set of all public

histories. The private history for player i at the beginning of period n is a sequence hin =

(s1, a
i
1, y1, . . . , sn−1, a

i
n−1, yn−1, sn), and we similarly define H i

1 := S, H i
n := (S × Ai × Y )n−1 × S

and H i :=
⋃

n≥1H
i
n. Given a stage n ≥ 1, we denote by sn the state, an the realized action

profile, and yn the public signal in period n. We will often use the same notation to denote both

these realizations and the corresponding random variables.

A (behavior) strategy for player i ∈ I is a map σi : H i → ∆(Ai). Every pair of initial

state s1 and strategy profile σ generates a probability distribution over histories in the obvious

way and thus also generates a distribution over sequences of the players’ rewards. Players seek

to maximize their payoffs, that is, average discounted sums of their rewards, using a common

discount factor δ < 1. Thus, the payoff of player i ∈ I if the initial state is s1 and the players

follow the strategy profile σ is defined as

(1− δ)
+∞
∑

n=1

δn−1
Es1,σ[r

i(sn, an)].

We shall consider a special class of equilibria. A strategy σi is public if it depends on the

public history only, and not on the private information. That is, a public strategy is a mapping

σi : H → ∆(Ai). A perfect public equilibrium (hereafter, PPE) is a profile of public strategies

such that, given any period n and public history hn, the strategy profile is a Nash equilibrium from

that period on. Note that this class of equilibria includes Markov equilibria, in which strategies

only depend on the current state and period. In what follows though, a Markov strategy for

player i will be a public strategy that is a function of states only, i.e. a function S → ∆(Ai).2 For

each Markov strategy profile α = (αs)s∈S ∈ (×i∈I∆(Ai))S, we denote by qα(t|s) := p(t× Y |s, αs)

the transition probabilities of the Markov chain over S induced by α.

Note that the set of PPE payoffs is a function of the current state only, and does not otherwise

depend on the public history, nor on the period. Perfect public equilibria are sequential equilibria,

but it is easy to construct examples showing that the converse is not generally true. What we

characterize, therefore, is a subset of the sequential equilibrium payoffs.

We denote by Eδ(s) ⊂ RI the (compact) set of PPE payoffs of the game with initial state

2In the literature on stochastic games, such strategies are often referred to as stationary strategies.
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s ∈ S and discount factor δ < 1. All statements about convergence of, or equality between sets

are understood in the sense of the Hausdorff distance d(A,B) between sets A, B.

Because both state and action sets are finite, it follows from Fink (1964) and Takahashi (1964)

that a (perfect public) equilibrium always exists in this set-up.

Our main result does not apply to all finite stochastic games. Some examples of stochastic

games, in particular those involving absorbing states, exhibit remarkably complex asymptotic

properties. See, for instance, Bewley and Kohlberg (1976) or Sorin (1986). We shall come back

to the implications of our results for such games. Our main theorem makes use of the following

assumption.

Assumption A: The limit set of PPE payoffs is independent of the initial state: for all s, t ∈ S,

lim
δ→1

d(Eδ(s), Eδ(t)) = 0.

This is an assumption on endogenous variables. A stronger assumption on exogenous variables

that implies Assumption A is irreducibility : For any (pure) Markov strategy profile a = (as) ∈

AS, the induced Markov chain over S with transition function qa is irreducible. Actually, it is

not necessary that every Markov strategy gives rise to an irreducible Markov chain. It is clearly

sufficient if there is some state that is accessible from every other state regardless of the Markov

strategy.

Another class of games that satisfy Assumption A, although they do not satisfy irreducibility,

is the class of alternating-move games (see Lagunoff and Matsui, 1997 and Yoon, 2001). With

two players, for instance, such a game can be modeled as a stochastic game in which the state

space is A1 ∪A2, where ai ∈ Ai is the state that corresponds to the last action played by player

i, when it is player −i’s turn to move. (Note that this implies perfect monitoring by definition,

as states are observed.)

Note also that, by redefining the state space to be S × Y , one may further assume that only

states are disclosed. That is, the class of stochastic games with public signals is no more general

than the class of stochastic games in which only the current state is publicly observed. However,

the Markov chain over S × Y with transition function q̃a(t, z|s, y) := p(t, z|s, as) need not be

irreducible even if qa(t|s) is.
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3 An Algorithm to Compute Equilibrium Payoffs

3.1 Preliminaries: Repeated Games

As our results generalize the algorithm of FL, it is useful to start with a reminder of their

results, and examine, within a specific example, what difficulties a generalization to stochastic

games raises.

Recall that the set of (perfect public) equilibrium payoffs must be a fixed point of the Bellman-

Shapley operator (see Abreu, Pearce and Stacchetti, 1990). Define the one-shot game Γδ(w),

where w : Y → R
I , with action sets Ai and payoff function (1 − δ)r(a) + δ

∑

y∈Y p(y|a)w(y).

Note that if v is an equilibrium payoff vector of the repeated game, associated with action profile

α ∈ ×i∈I∆(Ai) and continuation payoff vectors w(y), as a function of the initial signal, then α

must be a Nash equilibrium of Γδ(w) with payoff v:

v = (1− δ)r(α) + δ
∑

y∈Y

p(y|α)w(y). (1)

Conversely, if we are given a function w such that w(y) ∈ Eδ for all y, and a Nash equilibrium α

of Γδ(w) with payoff v, then we can construct an equilibrium of the repeated game with payoff

v in which the action profile α is played in the initial period.

Therefore, the analysis of the repeated game can be reduced to that of the one-shot game.

The constraint that the continuation payoff lies in the (unknown) set Eδ complicates the analysis

significantly. FL’s key observation is that this constraint can be replaced by linear constraints

for the sake of asymptotic analysis (as δ → 1). If α is a Nash equilibrium of the one-shot game

Γδ(w) with payoff v ∈ Eδ, then, subtracting δv on both sides of (1) and dividing through by

1− δ, we obtain

v = r(α) +
∑

y∈Y

p(y|α)x(y),

where, for all y,

x(y) :=
δ

1− δ
(w(y)− v), or w(y) = v +

1− δ

δ
x(y).

Thus, provided that the equilibrium payoff set is convex, the payoff v is also in Eδ̃ for all δ̃ > δ,

because we can use as continuation payoff vectors w̃(y) the re-scaled vectors w(y) (see Figure 1).

Conversely, provided that the normal vector to the boundary of Eδ varies continuously with the

boundary point, then any set of payoff vectors w(y) that lie in one of the half-spaces defined by
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w̃(y3)
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λ

Figure 1: Continuation payoffs as a function of the discount factor

this normal vector (i.e. such that λ · (w(y)− v) ≤ 0, or equivalently, λ · x(y) ≤ 0) must also lie

in Eδ for discount factors close enough to one. In particular, if we seek to identify the payoff v

that maximizes λ · v on Eδ for δ close enough to 1, given λ ∈ R
I , it suffices to compute the score

k(λ) := sup
x,v,α

λ · v,

such that α is a Nash equilibrium with payoff v of the game Γ(x) whose payoff function is

given by r(a) +
∑

y∈Y p(y|a)x(y), and subject to the linear constraints λ · x(y) ≤ 0 for all y.

Note that the discount factor no longer appears in this program. We thus obtain a half-space

H(λ) := {v ∈ R
I : λ · v ≤ k(λ)} that contains Eδ for every δ.

This must be true for all vectors λ ∈ R
I . Let H :=

⋂

λ∈RI H(λ). It follows, under an

appropriate dimensionality assumption, that the equilibrium payoff set can be obtained as the

intersection of these half-spaces (see FL, Theorem 3.1):

H = lim
δ→1

Eδ.
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Figure 2: Rewards and Transitions in Example 1

3.2 A Stochastic Game

Our purpose is to come up with an algorithm for stochastic games that would generalize FL’s

algorithm. To do so, we must determine the appropriate constraints on continuation payoffs. Let

us attempt to adapt FL’s arguments to a specific example

There are two states, i = 1, 2, and two players. Each player only takes an action in his own

state: player i chooses L or R in state i. Actions are not observable, but affect transitions, so

that players learn about their opponents’ actions via the evolution of the state. If action L (R)

is taken in state i, then the next state is again i with probability pL (pR). Let us pick here

pL = 1 − pR = 1/10. Rewards are given in Figure 2 (transition probabilities to states 1 and 2,

respectively, are given in parenthesis). Throughout, we refer to this game as Example 1.

Player i has a higher reward in state j 6= i, independently of the action. Moreover, by playing

L, which yields him the higher reward in his own state, he maximizes the probability to switch

states. Thus, playing the efficient action R requires intertemporal incentives, which are hard

to provide absent public signals. Constructing an equilibrium in which L is not always played

appears challenging, but not impossible: playing R in state i if and only if the state was j 6= i in

the previous two periods (or since the beginning of the game if fewer periods have elapsed) is an

equilibrium for some high discount factor (δ ≈ .823). So there exist equilibrium payoffs above 1.

In analogy with (1), we may now decompose the payoff vector in state s = 1, 2 as

vs = (1− δ)r(s, αs) + δ
∑

t

p(t|s, αs)wt(s), (2)
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where t is the next state, wt(s) is the continuation payoff then, and p(t|s, αs) is the probability of

transiting from s to t given action αs at state s. Fix λ ∈ R
I . If vs maximizes the score λ ·vs in all

states s = 1, 2, then the continuation payoff in state t gives a lower score than vt, independently

of the initial state: for all s, t,

λ · (wt(s)− vt) ≤ 0. (3)

Our goal is to eliminate the discount factor. Note, however, that if we subtract δvs on both sides

of (2), and divide by 1− δ, we obtain

vs = r(s, αs) +
∑

t

p(t|s, αs)
δ

1− δ
(wt(s)− vs), (4)

and there is no reason to expect λ · (wt(s)− vs) to be negative, unless s = t (compare with (3)).

Unlike the limiting set of feasible payoffs as δ → 1, the set of feasible rewards does depend on

the state (in state 1, it is the segment [(1, 1), (0, 3)]; in state 2, the segment [(1, 1), (3, 0)]; see the

right panel of Figure 2), and so the score λ · wt(s) in state t might exceed the maximum score

achieved by vs in state s. Thus, defining x by

xt(s) :=
δ

1− δ
(wt(s)− vs),

we know that λ · xs(s) ≤ 0, for all s, but not the sign of λ · xt(s), t 6= s. On the one hand, we

cannot restrict it to be negative: if λ · x2(1) ≤ 0, then, because also λ · x1(1) ≤ 0, by considering

λ = (1, 0), player 1’s payoff starting from state 1 cannot exceed his highest reward in that state

(i.e., 1). Yet we know that some equilibria yield strictly higher payoffs. On the other hand, if

we impose no restrictions on xt(s), s 6= t, then we can set vs as high as we wish in (4) by picking

xt(s) large enough. The value of the program to be defined would be unbounded. What is the

missing constraint?

We do know that (3) holds for all pairs (s, t). By adding up these inequalities for (s, t) = (1, 2)

and (2, 1), we obtain

λ · (w1(2) + w2(1)− v1 − v2) ≤ 0, or, rearranging, λ · (x1(2) + x2(1)) ≤ 0. (5)

Equation (5) has a natural interpretation in terms of s-blocks, as defined in the literature on

Markov chains (see, for instance, Nummelin, 1984). When the Markov chain (induced by the

players’ strategies) is communicating, as it is in our example, we might divide the game into the
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subpaths of the chain between consecutive visits to a given state s. The score achieved by the

continuation payoff once state s is re-visited on the subpath (s1, . . . , sk) (where s1 = sk = s)

cannot exceed the score achieved by vs, and so the difference in these scores, as measured by the

sum λ ·
∑k−1

j=1 xsj+1
(sj), must be negative. Note that the irreducibility assumption also guarantees

that the limit set of feasible payoffs F (as δ → 1) is independent of the initial state, as shown in

the right panel of Figure 2.3

To conclude, we obtain the program

sup
v,x,α

λ · v,

over v ∈ R
2, {xt(s) ∈ R

2 : s, t = 1, 2}, and α = (αs)s=1,2 such that, in each state s, αs is a Nash

equilibrium with payoff v of the game whose payoff function is given by r(s, as)+
∑

t p(t|s, as)xt(s),

and such that λ · x1(1) ≤ 0, λ · x2(2) ≤ 0, and λ · (x1(2) + x2(1)) ≤ 0. Note that this program

already factors in our assumption that equilibrium payoffs can be taken to be independent of the

state.

It will follow from the main theorem of the next section that this is the right program.

Perhaps it is a little surprising that the constraints involve unweighted sums of vectors xt(s),

rather than, say, sums that are weighted by the invariant measure under the equilibrium strategy.

Lemma 1 below will provide a link between the constraints and such sums. What should come

as no surprise, though, is that generalizing these constraints to more than two states will involve

considering all cycles, or permutations, over states (see constraint (ii) below).

3.3 The Characterization

Given a state s ∈ S and a map x : S × Y → R
S×I , we denote by Γ(s, x) the one-shot game

with action sets Ai and payoff function

r(s, as) +
∑

t∈S

∑

y∈Y

p(t, y|s, as)xt(s, y),

where xt(s, y) ∈ R
I is the t-th component of x(s, y).

3This set can be computed by considering randomizations over pure Markov strategies (see Dutta, 1995,
Lemma 1).

11



Given λ ∈ R
I , we denote by P(λ) the maximization program

sup
v,x,α

λ · v,

where the supremum is taken over all v ∈ R
I , x : S × Y → R

S×I , and α = (αs) ∈ (×i∈I∆(Ai))S

such that

(i) For each s, αs is a Nash equilibrium with payoff v of the game Γ(s, x);

(ii) For each T ⊆ S, for each permutation φ : T → T and each map ψ : T → Y , one has

λ ·
∑

s∈T xφ(s)(s, ψ(s)) ≤ 0.4

Denote by k(λ) ∈ [−∞,+∞] the value of P(λ). We will prove that the feasible set of P(λ)

is non-empty, so that k(λ) > −∞ (Proposition 1), and that the value of P(λ) is finite, so that

k(λ) < +∞ (Section 3.4).

It is also useful to introduce the program P(λ, α) parameterized by α, where the supremum

is taken over all v and x, with α fixed. Let k(λ, α) denote the value of P(λ, α). Observe that

P(λ, α) is a linear program, and that k(λ) = supα k(λ, α).

We define H(λ) := {v ∈ R
I : λ ·v ≤ k(λ)}, and set H :=

⋂

λ∈RI H(λ). Note that H is convex.

Let S1 denote the set of λ ∈ R
I of norm 1.5 Observe that H(0) = R

I , and that H(λ) = H(cλ)

for every λ ∈ R
I and c > 0. Hence H is also equal to

⋂

λ∈S1 H(λ).

Our main result is a generalization of FL’s algorithm to compute the limit set of payoffs as

δ → 1.

Theorem 1 (Main Theorem) Assume that H has non-empty interior. Under Assumption A,

Eδ(s) converges to H as δ → 1, for any s ∈ S.

Note that, with one state only, our optimization program reduces to the algorithm of FL.

The proof of Theorem 1 is organized in two propositions, stated below and proved in appendix.

Note that these propositions do not rely on Assumption A.

Proposition 1 For every δ < 1, we have the following.

1. k(λ) ≥ mins∈S maxw∈Eδ(s) λ · w for every λ ∈ S1.

4When Y = ∅, the domain of x is S, and the definition should be understood without reference to ψ.
5Throughout, we use the Euclidean norm.
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2. H ⊇
⋂

s∈S Eδ(s).

We note that it need not be the case that H ⊇ Eδ(s) for each s ∈ S.

Proposition 2 Assume that H has non-empty interior, and let Z be any compact set contained

in the interior of H. Then Z ⊆ Eδ(s), for every s ∈ S and δ large enough.

The logic of the proof of Proposition 2 is inspired by FL and FLM, but differs in important

respects. We here give a short and overly simplified account of the proof, that nevertheless

contains some basic insights.

Let a payoff vector v ∈ Z and a direction λ ∈ S1 be given. Since v is interior to H, one has

λ · v < k(λ), and there thus exists x = (xt(s, y)) such that v is a Nash equilibrium payoff of the

one-shot game Γ(s, x), and all inequality constraints on x hold with strict inequalities.

For high δ, we use x to construct equilibrium continuation payoffs w adapted to v in the

discounted game, with the interpretation that xt(s, y) is the normalized (continuation) payoff

increment, should (t, y) occur. Since we have no control over the sign of λ · xt(s, y), the one-

period argument that is familiar from repeated games does not extend to stochastic games. To

overcome this issue, we will instead rely on large blocks of stages of fixed size. Over such a block,

and thanks to the inequalities (ii) satisfied by x, we will prove that the sum of payoff increments

is negative. This in turn will ensure that the continuation payoff at the end of the block is below

v in the direction λ.

Since H is convex, it follows from these two propositions that

H = lim
δ→1

⋂

s∈S

Eδ(s).

This statement applies to all finite stochastic games with observable states and full-dimensional

H, whether they satisfy Assumption A or not. Theorem 1 then follows, given Assumption A.

3.4 Finiteness of P(λ)

It is instructive, and useful for the sequel, to understand why the value of P(λ) is finite, for

each possible choice of λ. To see this, we rely on the next lemma, which we also use at other

places.
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Lemma 1 Let q be an irreducible transition function over a finite set R, with invariant measure

µ. Then, for each T ⊆ R and every one-to-one map φ : T → T , there is πT,φ ≥ 0, such that the

following holds. For every (xt(s)) ∈ R
R×R, one has

∑

s∈R

µ(s)
∑

t∈R

q(t|s)xt(s) =
∑

T⊆R

∑

φ:T→T

πT,φ
∑

s∈T

xφ(s)(s),

where the sum ranges over all one-to-one maps φ : T → T .

In words, for any payoff increments (xt(s)), the expectation of these increments (with respect

to the invariant measure) is equal to some fixed conical combination of their sums over cycles.

This provides a link between the constraints (i) and (ii).

Proof. We exploit an explicit formula for µ. Given a state s ∈ R, an s-graph is a directed

graph g with vertex set R, and with the following two properties:

• any state t 6= s has outdegree one, while s has outdegree zero;

• the graph g has no cycle.

Equivalently, for any t 6= s, there is a unique longest path starting from t, and this path ends

in s. We identify such a graph with its set of edges. The weight of any such graph g is defined

to be q(g) :=
∏

(t,u)∈g q(u|t). Let G(s) denote the set of s-graphs. Then the invariant measure is

given by

µ(s) =

∑

g∈G(s) q(g)
∑

t∈R

∑

g∈G(t) q(g)
,

see e.g. Freidlin and Wentzell (1991).

Thus, one has

∑

s∈R

µ(s)
∑

t∈R

q(t|s)xt(s) =

∑

s∈R

∑

g∈G(s)

∑

t∈R q(g)q(t|s)xt(s)
∑

t∈R

∑

g∈G(t) q(g)
.

Let Ω be the set of triples (s, g, t), such that g ∈ G(s). Define an equivalence relation ∼ over Ω

by (s, g, t) ∼ (s′, g′, t′) if g ∪ {(s → t)} = g′ ∪ {(s′ → t′)}. Observe that for each (s, g, t) ∈ Ω,

the graph g ∪ {(s→ t)} has exactly one cycle (which contains s→ t), and all vertices of R have

outdegree 1.
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Let C ⊆ Ω be any equivalence class for ∼. Let s1 → s2 → · · · → sk = s1 denote the unique,

common, cycle of all (s, g, t) ∈ C. Define T := {s1, . . . , sk−1}, and denote by φ : T → T the map

that associates to any state u ∈ T its successor in the cycle.

Observe that the product q(g)q(t|s) is independent of (s, g, t) ∈ C, and we denote it ρCT,φ. It

is then readily checked that

∑

(s,g,t)∈C

q(g)q(t|s)xt(s) = ρCT,φ
∑

u∈T

xφ(u)(u).

The result follows by summation over equivalence classes.

This lemma readily implies that the value of P(λ) is finite, for each direction λ. Indeed, let

a direction λ ∈ R
I , and a feasible point (v, x, α) in P(λ) be given, and recall that qα is the

transition function of the Markov chain induced by α. Let R ⊆ S be an arbitrary recurrent set

for this Markov chain, and denote by µ ∈ ∆(R) the invariant measure over R. For each s, t ∈ R,

let f(s, t) be a signal y that maximizes λ · xt(s, y). Then Lemma 1 implies that

λ · v ≤ λ ·
∑

s∈R

µ(s)r(s, αs) + λ ·
∑

s∈R

µ(s)
∑

t∈S

qα(t|s)xt(s, f(s, t))

= λ ·
∑

s∈r

µ(s)r(s, αs) +
∑

T⊆R

∑

φ:T→T

πT,φ

(

λ ·
∑

s∈T

xφ(s)(s, f(s, φ(s)))

)

≤ λ ·
∑

s∈R

µ(s)r(s, αs).

It thus follows that

λ · v ≤ λ ·
∑

s∈S

µ(s)r(s, αs),

for every invariant (probability) measure of the Markov chain induced by α.

4 Connection to Known Results

Our characterization includes as special cases the characterization obtained by FL for repeated

games, as well as the average cost optimality equation from dynamic programming in the case

of one player. In this section, we explain these connections in more detail.
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4.1 Another Generalization of FL’s Algorithm

The specific form of the optimization program P(λ) is intriguing, and calls for some discussion.

We here elaborate upon Section 3.2. Perhaps a natural generalization of FL’s algorithm to the

set-up of stochastic games would have been the following. Given a direction λ ∈ S1, and for each

initial state s ∈ S, consider the highest PPE payoff vs ∈ R
I in the direction λ, when starting

from s. Again, for each initial state s, there are a mixed action profile αs, and continuation PPE

payoffs wt(s, y), to be interpreted as continuation payoffs in the event that the signal is y and

the next state is t, and such that:

(a) For each s, αs is a Nash equilibrium with payoff vs of the game with payoff function (1 −

δ)r(s, as) + δ
∑

t,y p(t, y|s, as)wt(s, y);

(b) For any two states s, t ∈ S and any signal y ∈ Y , λ · wt(s, y) ≤ λ · vt.

Mimicking FL’s approach, we introduce the program, denoted P̃(λ, δ), sup(vs),w,αmins λ · vs,

where the supremum is taken over all ((vs), w, α) such that (a) and (b) hold.6 As we discussed

in Section 3.2, and unlike in the repeated game framework, the value of P̃(λ, δ) does depend on

δ. The reason is that, when setting xt(s, y) =
δ

1−δ
(wt(s, y) − vs), the inequality λ · xt(s, y) ≤ 0

need not hold (note that xt(s, y) involves wt(s, y) and vs, while (b) involves wt(s, y) and vt).

To obtain a program that does not depend on δ, we relax the program P̃(λ, δ) as follows.

Observe that, for any sequence s1, . . . , sk of states such that sk = s1, and for each yj ∈ Y

(1 ≤ j < k), one has

λ ·
k−1
∑

j=1

xsj+1
(sj, yj) =

δ

1− δ
λ ·

k−1
∑

j=1

(wsj+1
(sj , yj)− vsj )

=
δ

1− δ
λ ·

k−1
∑

j=1

(wsj+1
(sj , yj)− vsj+1

) ≤ 0,

where the second equality holds since s1 = sk, and the final inequality holds by (b). These are

precisely the averaging constraints which appear in our linear program P(λ).

6Taking the minimum (or maximum) over s in the objective function has no effect asymptotically under
Assumption A. We choose the minimum for the convenience of the discussion.
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That is, the program P(λ) appears as a discount-independent relaxation of the program

P̃(λ, δ).7 This immediately raises the issue of whether this is a “meaningful” relaxation of the

program. We here wish to suggest that this is the case, by arguing that the two programs P(λ)

and P̃(λ, δ) have asymptotically the same value, as δ → 1. To show this claim, we start with a

feasible point (v, x, α) in P(λ), and we construct a feasible point ((vs), w, α) in P̃(λ, δ) such that

the norm of vs − v is of the order of 1− δ for each s ∈ S.

To keep the discussion straightforward, we assume that state transitions are independent

of actions and signals: p(t, y|s, a) = q(t|s) × π(y|s, a).8 Set first w̃t(s, y) := v + 1−δ
δ
xt(s, y).

Note that, for each state s ∈ S, αs is a Nash equilibrium with payoff v of the one-shot game

with payoff function (1− δ)r(s, as) + δ
∑

t,y p(t, y|s, as)w̃t(s, y). The desired continuation payoff

vector w will be obtained by adding an action-independent vector to w̃. That is, we will set

wt(s, y) := w̃t(s, y) + Ct(s), for some vectors Ct(s) ∈ R
I . For each choice of (Ct(s)), the profile

αs is still a Nash equilibrium of the one-shot game when continuation payoffs are given by w

instead of w̃. And it yields a payoff of

vs := (1− δ)r(s, αs) + δ
∑

t∈S

∑

y∈Y

p(t, y|s, αs)wt(s, y) = v + δ
∑

t∈S

q(t|s)Ct(s).

We thus need to check that there exist vectors Ct(s), with norms of the order of 1− δ, such

that the inequalities λ · wt(s, y) ≤ λ · vt hold for all (s, t, y). Setting ct(s) := λ · Ct(s), basic

algebra shows that the latter inequalities are satisfied as soon as the inequalities

ct(s)− δ
∑

u∈S

q(u|t)cu(t) ≤ lt(s) (S)

hold for all pairs (s, t) of states, where lt(s) := miny∈Y λ · (v− w̃t(s, y)). We are left to show that

such values of ct(s) can be found.

Feasibility of (v, x, α) in P(λ) implies that
∑

s∈T lφ(s)(s) ≥ 0 for every T ⊆ S and every

permutation φ over T (this is a simple rewriting of condition (ii)). As shown in Appendix A.5

(see Claim 3), this implies that there exists a vector l∗ = (l∗t (s)) ∈ R
S×S such that l∗t (s) ≤ lt(s)

for every s, t ∈ S and
∑

s∈T l
∗
φ(s)(s) = 0 for every T ⊆ S and every permutation φ over T .

7Note that ((vs), x, α) does not define a feasible point in P(λ), since feasibility in P(λ) requires that payoffs
from different initial states coincide. This is straightforward to fix. Let s̄ be a state that minimizes λ · vs. Set
v := vs̄, and x̄t(s, y) := xt(s, y) + vs̄ − vs for each s, t, y. Then (v, x̄, α) is a feasible point in P(λ).

8The proof in the general case is available upon request.
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Given δ < 1 and t ∈ S, we denote by µδ,t ∈ ∆(S) the δ-discounted occupation measure of the

Markov chain with initial state t. That is, µδ,t(s) is the expected discounted frequency of visits

to state s, when starting from state t. Formally,

µδ,t(s) := (1− δ)

+∞
∑

n=1

δn−1
Pt (sn = s) ,

where Pt (sn = s) is the probability that the Markov chain visits state s in stage n.

Elementary algebra then shows that the vector ct(s) := Eµδ,t
[l∗
s
(s)] solves

ct(s)− δ
∑

u∈S

q(u|t)cu(t) = l∗t (s),

for each s, t, and is therefore a solution to (S).9

We conclude by arguing briefly that the norm of Ct(s) is of the order of 1 − δ, as desired.

Because lt(s) = miny∈Y λ · (v− w̃t(s, y)) = −1−δ
δ

maxy∈Y λ · xt(s, y), lt(s) is of the order of 1− δ.

It follows from the proof of Claim 3 that l∗ is a solution for a linear program whose constraints

are linear in l = (lt(s)). Thus l∗ and ct(s) = Eµδ,t
[l∗
s
(s)] are also of the order of 1 − δ. It then

suffices to choose Ct(s) of the order of 1− δ such that λ · Ct(s) = ct(s).

4.2 Dynamic Programming

It is sometimes argued that the results of Abreu, Pearce and Stacchetti (1990) can be viewed

as generalizations of dynamic programming to the case of multiple players. In the absence of any

payoff-relevant state variable, this claim is difficult to appreciate within the context of repeated

games. By focusing on one-player games, we show that, indeed, our characterization reduces to

the optimality equation of dynamic programming. We here assume irreducibility. Irreducibility

implies Assumption A, which in turn implies that the set of limit points of the family {vδ(s)}δ<1

as δ → 1, is independent of s, where vδ(s) is the value of the Markov decision process with initial

state s.

Corollary 1 In the one-player case with irreducible transition probabilities, the set H is a sin-

gleton {v∗}, with v∗ = limδ→1 vδ(s) for each s ∈ S. Moreover, there is a vector x∗ ∈ R
S such

9The computation uses the identity Eµδ,t
[f(s)] = (1 − δ)f(t) + δ

∑

u∈S q(u|t)Eµδ,u
[f(s)], which holds for any

map f : S → R.
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that

v∗ + x∗s = max
as∈A

(

r(s, as) +
∑

t∈S

p(t× Y |s, as)x
∗
t

)

(6)

holds for each s ∈ S, and v = v∗ is the unique value solving (6) for some x ∈ R
S.

This statement is the so-called Average Cost Optimality Equation. See Hoffman and Karp

(1966), Sennott (1998) or Kallenberg (2002). To get some intuition for this corollary, note first

that, with one player, signals become irrelevant, and we might ignore them. Consider then the

direction λ = 1. To maximize the player’s payoff, we should increase the values of xt(s) as much

as possible. So conjecture for a moment that all the constraints (ii) bind: for all T ⊆ S and

permutations φ : T → T ,
∑

s∈T xφ(s)(s) = 0. Let us then set x∗t := xt(s̄), for some fixed state

s̄ ∈ S. Note that, for all s, t ∈ S,

xt(s) = −xs̄(t)− xs(s̄) = xt(s̄)− xs(s̄) = x∗t − x∗s,

where the first two equalities use the binding constraints. Because as is a Nash equilibrium of

the game Γ(s, x) with payoff v∗, we have

v∗ = max
as∈A

(

r(s, as) +
∑

t∈S

p(t× Y |s, as)xt(s)

)

.

Using xt(s) = x∗t − x∗s gives the desired result. The proof below verifies the conjecture, and

supplies missing steps.

Proof. By Proposition 1 (first item), the common set of limit points of {vδ(s)}δ<1 is a subset

of H, so that H 6= ∅. We first argue that H is a singleton.

The set H is uniquely characterized by the two values k(λ), λ ∈ {−1,+1}. Since H 6= ∅, one

has k(+1) ≥ −k(−1).

Note now that any pair (v, x) that is feasible in P(λ, α) is also feasible in P(λ, a), for any

a ∈ AS such that αs(as) > 0 for each s. Consequently, one need only look at pure Markov

strategies in order to compute k(+1) and k(−1).

Let a = (as) ∈ AS be any pure Markov strategy, which induces an irreducible Markov chain

over S with invariant measure µ. Let (v+, x+) be a feasible pair in P(+1, a), and (v−, x−) be a
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feasible pair in P(−1, a). By Lemma 1, one has

v+ ≤
∑

s∈S

µ(s)r(s, as) +
∑

T⊆S

∑

φ:T→T

πT,φ
∑

s∈T

x+φ(s)(s, f
+(s, φ(s)))

≤
∑

s∈S

µ(s)r(s, as) +
∑

T⊆S

∑

φ:T→T

πT,φ
∑

s∈T

x−φ(s)(s, f
−(s, φ(s))) ≤ v−,

since
∑

s∈T x
+
φ(s)(s, f

+(s, φ(s))) ≤ 0 ≤
∑

s∈T x
−
φ(s)(s, f

−(s, φ(s))), where y = f+(s, t) maximizes

x+t (s, y) and y = f−(s, t) minimizes x−t (s, y). Therefore, k(+1) ≤ −k(−1), and H is a singleton.

This implies in particular that v∗ := limδ→1 vδ(s) exists, for each s ∈ S.

We will use the following claim.

Claim 1 If a vector (xt(s)) ∈ R
S×S satisfies

∑

s∈T xφ(s)(s) = 0 for all T ⊆ S and all permuta-

tions φ : T → T , and

v∗ ≤ r(s, as) +
∑

t∈S

p(t× Y |s, as)xt(s) (7)

for some a = (as) ∈ AS, and all s ∈ S, then the inequality (7) holds with equality, for each s.

Proof of the Claim. Assume to the contrary that the inequality (7) is strict for some s̄ ∈ S.

Let µ ∈ ∆(S) be the invariant measure of the Markov chain induced by a over S. By Lemma 1,

v∗ <
∑

s∈S

µ(s)r(s, as).

But this implies that, for all δ high enough, the δ-discounted payoff induced by a exceeds vδ(s),

which is a contradiction.

Pick a∗ ∈ AS and (xt(s, y)) such that (v∗, x) is feasible in P(+1, a∗). Pick a vector x∗ =

(x∗t (s)) ∈ R
S×S such that x∗t (s) ≥ xt(s, y) for all s, t ∈ S and y ∈ Y , and

∑

s∈T x
∗
φ(s)(s) = 0 for

all (T, φ).10 We claim that, for each s ∈ S, one has

v∗ = max
as∈A

(

r(s, as) +
∑

t∈S

p(t× Y |s, as)x
∗
t (s)

)

. (8)

10See Claim 3 in Appendix A.5 for the existence of x∗.
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Observe first that, for each given s,

v∗ = r(s, a∗s) +
∑

t∈S

∑

y∈Y

p(t, y|s, a∗s)xt(s, y) ≤ r(s, a∗s) +
∑

t∈S

p(t× Y |s, a∗s)x
∗
t (s).

Thus, the left-hand side in (8) does not exceed the right-hand side.

Let now a state s ∈ S and an action profile as ∈ A be given, that satisfy the inequality

v∗ ≤ r(s, as) +
∑

t∈S

p(t× Y |s, as)x
∗
t (s). (9)

Then, by Claim 1, applied to a := (a∗−s, as), (9) holds with equality. This proves that (8) holds

for each s ∈ S.

Since
∑

s∈T x
∗
φ(s)(s) = 0 for all (T, φ), there is a vector x∗ ∈ R

S such that x∗t (s) = x∗t − x∗s,

for each s, t ∈ S.

Uniqueness of v∗ follows at once. Assume indeed that (6) holds for some (v, x). For each

s ∈ S, let as be an action that maximizes the right hand side of (6), and a := (as). Set

x̃t(s, y) := xt − xs for each s, t ∈ S and y ∈ Y . Then (v, x̃, a) is feasible in P(+1) and in P(−1)

as well. Hence, −k(−1) ≤ v ≤ k(+1), so that v = v∗.

4.3 Interpretation of the Variables xt(s, y)

The variables xt(s, y) are not continuation payoffs per se. Rather, they are payoff differences

that account both for the signal and the possible change of states. In the case of a repeated

game, they reduce to a variable of the signal alone (in the notation of FL, they are then equal to
δ

1−δ
(w(y)− v)). This variable reflects how the continuation payoff adjusts, from the current to

the following period, to provide the appropriate incentives, as a function of the realized signal.

In the case of dynamic programming, these variables collapse to a function xt(s). This is the

relative value function, as it is known in stochastic dynamic programming, and it captures the

value of the Markov decision process in state t relative to state s. It can be further decomposed

into a difference x∗t − x∗s, for some function x∗ that only depends on the current state.

While there is no reason to expect the system of inequalities (ii) to simplify in general, there

are some special cases in which it does. For instance, given our discussion above, one might sus-

pect that the payoff adjustments required by the provision of incentives, on one hand, and by the

state transitions, on the other, can be disentangled whenever transitions are uninformative about
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actions, conditional on the signals. Indeed, both in the case of action-independent transitions,

studied in Section 7, and in the case of perfect monitoring, one can show that these variables

can be separated as x̂t(s)+ x̃(s, y), for some function x̂ that only depends on the current and the

next states, and some function x̃ that only depends on the current state and the realized signal.

5 The Folk Theorem

FLM establish a folk theorem for repeated games with imperfect public monitoring when the

signal distribution satisfies some rank condition. In this section, we extend their folk theorem

to stochastic games. We derive our folk theorem by investigating the programs P(λ) under a

similar rank condition and relating scores k(λ) to feasible sets and to minmax payoffs.

We do not rely on Assumption A in this section. Rather, it is more convenient to impose

state independence on limiting feasible sets and minmax values when necessary.

Let Fδ(s) be the convex hull of the set of feasible payoffs of the game with initial state s ∈ S

and discount factor δ < 1. The set Fδ(s) is compact, and converges to F (s) as δ → 1, where

F (s) is the set of limit-average feasible payoffs with initial state s (see, for instance, Dutta, 1995,

Lemma 2). Let also mi
δ(s) be player i’s minmax payoff in the game with initial state s and

discount factor δ, defined as

mi
δ(s) := min

σ−i
max
σi

(1− δ)
∞
∑

n=1

δn−1
Es,σ[r

i(sn, an)],

where the minimum and the maximum are taken over public strategies σ−i and σi, respectively.

As δ → 1, mi
δ(s) converges to mi(s), where mi(s) is player i’s limit-average minmax payoff with

initial state s (see Mertens and Neyman, 1981 and Neyman, 2003).

Define the intersection of the sets of feasible and individually rational payoffs:

F ∗ :=
⋂

s∈S

{v ∈ F (s) : vi ≥ mi(s) ∀i ∈ I}.

For a given state s ∈ S and an action profile α−i = (αj)j 6=i, let Πi(s, α−i) be the |Ai| × |S × Y |

matrix whose (ai, (t, y))-th component is given by p(t, y|s, ai, α−i). For s ∈ S and α = (αi), we
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stack two matrices vertically:

Πij(s, α) :=

(

Πi(s, α−i)

Πj(s, α−j)

)

.

An action profile α ∈ ×i∆(Ai) has individual full rank for player i in state s if Πi(s, α−i) has

rank |Ai|; the profile α has pairwise full rank for players i and j in state s if Πij(s, α) has rank

|Ai| + |Aj | − 1. Note that |Ai| + |Aj| − 1 is the highest possible rank since Πij(s, α) always has

at least one non-trivial linear relation among its row vectors.

Assumption F1: Every pure action profile has individual full rank for every player in every

state.

Assumption F2: For each state s and each pair (i, j) of distinct players, there exists a mixed

action profile that has pairwise full rank for players i and j in state s.

The assumptions are the obvious generalizations of the assumptions of individual and pairwise

full rank made by FLM. Note that Assumptions F1 and F2 are weaker than the rank assump-

tions of Fudenberg and Yamamoto (2010). Fudenberg and Yamamoto require that players can

statistically identify each others’ deviations via actual signals y, whereas we allow players to

make inferences from observed states as well.

Example 1 in Section 3.2 illustrates the difference. In this example, there are no public

signals, so Fudenberg and Yamamoto’s rank assumptions are not satisfied. On the other hand,

Assumptions F1 and F2 are satisfied if pL 6= pR.11 If pL = pR, then incentives cannot be provided

for players to play R, so that the unique PPE payoff is (1, 1).

With the above assumptions, we characterize k(λ) in terms of feasible sets and minmax

payoffs. Let ei denote the i-th coordinate basis vector in R
I .

Lemma 2 Under Assumptions F1-F2, one has the following.

1. If λ ∈ S1 and λ 6= −ei for any i, then k(λ) = mins∈S maxw∈F (s) λ · w.

2. k(−ei) = −maxs∈Sm
i(s) for any i.

11 When the set of available actions depends on the state, as in Example 1, the definitions of full rank must be
adjusted in the obvious way. Namely, we say that α has individual full rank for player i at state s if the rank of
Πi(s, α−i) is no less than the number of actions available to player i at state s. A similar modification applies to
pairwise full rank.
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While this lemma characterizes the value of the optimization program for each direction λ

under Assumptions F1-F2, the algorithm can be adapted to the purpose of computing feasible

sets and minmax payoffs (in public strategies) without these assumptions. In the first case, it

suffices to ignore the incentive constraints (i) in the program P(λ) and to take the intersection of

the resulting half-spaces. In the second case, it suffices to focus on the incentives of the minmaxed

player i, and to take as a direction λ the coordinate vector −ei. The proofs follow similar lines,

and details are available from the authors.

Combined with Proposition 2, Lemma 2 implies the following folk theorem, which extends

both the folk theorem for repeated games with imperfect public monitoring by FLM and the folk

theorem for stochastic games with observable actions by Dutta (1995).12

Theorem 2 (Folk Theorem) Under Assumptions F1-F2, it holds that H = F ∗. In particular,

if F (s) = F and mi(s) = mi for all s ∈ S, and F ∗ = {v ∈ F : vi ≥ mi ∀i ∈ I} has non-empty

interior, then Eδ(s) converges to F ∗ as δ → 1, for any s ∈ S.

It is known that, under irreducibility, F (s) and mi(s) are independent of state s. In Example

1 in Section 3.2, irreducibility is satisfied if pL, pR 6= 1. Dutta (1995) provides somewhat weaker

assumptions on the transition function that guarantee the state-independence property. But

these assumptions are not necessary: the limit set of feasible payoffs is independent of the initial

state as long as at least one of these probabilities is strictly less than one, and the minmax payoff

is always independent of the initial state.

To illustrate this folk theorem, let for instance pL = 1 − pR = 1/10 in Example 1, so that

playing action L gives player i both his highest reward in that state and the highest probability

of transiting to the other state, in which his reward is for sure higher than in his own state. The

folk theorem holds here. The set of PPE payoffs is then the convex hull of (1, 1), (3/2, 3/2),

(55/28, 1) and (1, 55/28). See Figure 3.

6 Short-run Players

It is trivial to extend the algorithm to the case in which some players are short-run. Following

FL, suppose that players i = 1, . . . , L, L ≤ I, are long-run players, whose objective is to maximize

the average discounted sum of rewards, with discount factor δ < 1. Players j ∈ SR := {L +

12Note that Dutta (1995, Theorem 9.3) shows that full-dimensionality can be weakened to payoff asymmetry
if mixed strategies are observable, an assumption that makes little sense under imperfect monitoring.
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Figure 3: The limit set of PPE payoffs in Example 1

1, . . . , I} are short-run players, each representative of which plays only once. For each state

s ∈ S, let

B(s) : ×L
i=1∆(Ai) → ×I

j=L+1∆(Aj)

be the correspondence that maps any mixed action profile (α1, . . . , αL) for the long-run players

to the corresponding static equilibria for the short-run players in state s. That is, for each

α ∈ graphB(s), and each j > L, αj maximizes rj(s, ·, α−j). The characterization goes through if

we “ignore” the short-run players and simply modify (i) by requiring that v be a Nash equilibrium

payoff of the game Γ(s, x) for the long-run players, achieved by some αs ∈ graphB(s) for each s.

6.1 An Example

We now provide an illustration of the algorithm that attempts to tread the thin line between

accessibility and triviality. Consider the following game, loosely inspired by Dixit, Grossman and

Gul (2000) and Phelan (2006).

There are two parties. In any given period, one of the two parties is in power. Party i = 1, 2

is in power in state i. Only the party in power and the households take actions. Households can

produce (P ) at cost c with value one, or not produce (NP ). There is a continuum of households,

and we treat them therefore as one short-run player. The government in power can either

honor (H) or confiscate (C). Honoring means choosing a fixed tax rate τ and getting therefore

revenues τµi, where µi is the fraction of households who produce in state i. By confiscating, the

government appropriates all output. This gives rise to the payoff matrix given by Figure 4.

It is assumed that 1− τ > c > 0. Actions are not observed, but parties that honor are more

25



P NP
H τ, 1− τ − c 0, 0
C 1,−c 0, 0

Figure 4: A Political Game

likely to remain in power. More precisely, if the state is i, and the realized action is H , the state

remains i with probability pH ; if the action is C, it remains the same with probability pL, with

0 < pL < pH < 1. We call this game Example 2.

Note that, given the households’ preferences, the best-reply correspondence in state i is

B(i)(αi) =



















[0, 1] if αi = c/(1− τ),

{0} if αi < c/(1− τ),

{1} if αi > c/(1− τ),

where αi is the probability that party i plays H . The feasible set F is independent of the initial

state, and equal to the convex hull of the payoff vectors (0, 0), ((1 − c)/2, (1− c)/2), (v̄, 0) and

(0, v̄), where

v̄ :=
1− pL

2− p̄− pL
(1− c), p̄ :=

c

1− τ
pH +

(

1−
c

1− τ

)

pL.

These expressions are intuitive. Note that the highest symmetric payoff involves both parties

confiscating as much as possible, subject to the constraint that the households are still willing

to produce. The payoff from confiscating at this rate is 1− c, and since time in power is equally

spent between both parties, the resulting payoff is ((1− c)/2, (1− c)/2). Consider next the case

in which one party always confiscates, so that households never produce in that state, while the

other party confiscates at the highest rate consistent with all the households producing. The

invariant distribution assigns probability (1−pL)/(2− p̄−pL) to that state, and the asymmetric

payoff follows. Finally, the minmax payoff of each party is zero, which is an equilibrium payoff.

Theorem 1 applies to this game. Let us compute the equilibrium payoff set as δ → 1. The

optimization program with weights λ = (λ1, λ2) involves eight variables xit(s), i = 1, 2, s, t = 1, 2,

satisfying the constraints

λ · x1(1) ≤ 0, λ · x2(2) ≤ 0, λ · (x2(1) + x1(2)) ≤ 0, (10)
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in addition to the requirement that αi be a Nash equilibrium of the game Γ(i, x), i = 1, 2.

Consider a vector λ > 0. Note that the constraints (10) must bind: Indeed, because player

i does not make a choice in state −i, the Nash equilibrium requirements (i.e. constraints (i) in

program P(λ)) give us at most three constraints per player (his preference ordering in the state in

which he takes an action, and the fact that he gets the same payoff in the other state). In addition

to the three constraints (10), this gives us nine constraints, and there are eight variables xit(s).

One can check that, if one of the three constraints is slack, we can increase the payoff of a player

by changing the values of xit(s), while satisfying all binding constraints. Observe now that we

must have µi ∈ {0, 1}, i = 1, 2. Indeed, suppose that µi ∈ (0, 1), for some i, so that αi ≥ c/(1−τ).

Then we can increase µi and decrease xii(i), x
i
i(−i) so as to keep player i’s payoff constant, while

keeping him indifferent between both actions (which he must be since µi ∈ (0, 1)). Given these

observations, this now becomes a standard problem that can be solved by enumeration. Note,

however, that we do not need to consider the case α1 > c/(1− τ), α2 > c/(1− τ): if this were the

case, we could decrease both these probabilities in such a way as to maintain the relative time

spent in each state the same, while increasing both players’ payoffs in their own state (because

µi = 1 is feasible as long as αi ≥ c/(1− τ)).

It is not hard to guess that the optimal action profile for λ1 = λ2 > 0 is to set αi = c/(1− τ),

i = 1, 2 (and, as mentioned, µi = 1), and we obtain the highest feasible symmetric payoff. If

we consider a coordinate direction, say λ1 > 0, λ2 = 0, it is intuitive that households will not

produce in state 2, and party 2 will confiscate with sufficient probability for such behavior to be

optimal, and party 1 will confiscate at the highest rate consistent with households producing.

Party 1 must not be willing to either confiscate for sure (which increases his reward when he

does) or honor for sure (which increases the fraction of time spent in his state, when his reward

is positive), and this means that his payoff cannot exceed

ṽ := min

{

pH − τpL − (1− τ)

pH − pL
,
(1− pL)(pH − τpL)

(2− pL)(pH − pL)

}

,

assuming this is positive. It follows that the limit equilibrium payoff set is given by H = {v ∈

F : 0 ≤ vi ≤ ṽ ∀i = 1, 2} if ṽ > 0, and the singleton payoff (0, 0) otherwise. Note that, from

the first argument defining ṽ, the payoff set shrinks to (0, 0) as pH → pL, as is to be expected: if

confiscation cannot be statistically detected, households will prefer not to produce. See Figure

5 for an illustration in the case in which ṽ > (1− c)/2.
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Figure 5: The limit set of equilibrium payoffs in Example 2

6.2 A Characterization with Full Rank

The equilibrium payoff set obtained in Example 2 is reminiscent of the results of FL for

repeated games with long-run and short-run players. We provide here an extension of their

results to the case of stochastic games, but maintain full rank assumptions for long-run players.

One of the main insights of FL, which is an extension of Fudenberg, Kreps and Maskin

(1990), is that achieving some payoffs may require the long-run players to randomize on the

equilibrium path, so as to induce short-run players to take particular actions. This means that

long-run player i must be indifferent between all actions in the support of his mixture, and so

continuation payoffs must adjust so that his payoff cannot exceed the one he would achieve from

the action in this support that yields him the lowest payoff.

For a direction λ 6= ±ei, the pairwise full rank condition ensures that the above requirement

is not restrictive, that is, we only need to care about the feasibility given that short-run players

take static best responses. However, for the coordinate directions λ = ±ei, since we cannot

adjust long-run player i’s continuation payoffs without affecting the score, the optimal mixed

action of player i is determined taking into account both the effect on the short-run players’

actions and the cost of letting player i take that action.

The same applies here. We first deal with non-coordinate directions. To incorporate short-

run players’ incentives, we define Fδ(s) as the convex hull of the set of long-run players’ feasible

payoffs of the game with initial state s and discount factor δ, where we require that the players

play actions from graphB(t) whenever the current state is t. The set F (s) of long-run players’

limit-average feasible payoffs is defined similarly. The set Fδ(s) converges to F (s) as δ → 1.

Assumption F3: For each state s and pair (i, j) of long-run players, every mixed action profile
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in graphB(s) has pairwise full rank for players i and j in state s.

Similarly to Lemma 2, we have the following.

Lemma 3 Under Assumption F3, one has the following.

1. If λ ∈ S1 and λ 6= ±ei for any i, then k(λ) = mins∈S maxw∈F (s) λ · w.

2. H =
{

v ∈
⋂

s∈S F (s) : −k(−e
i) ≤ vi ≤ k(ei) ∀i = 1, . . . , L

}

.

Theorem 1 applies here. Namely, if Assumption A is satisfied and H has non-empty interior,

then Eδ(s) converges to H as δ → 1, for every s ∈ S.

Lemma 3 leaves open how to determine k(±ei). Under Assumption F3, since every mixed

action profile has individual full rank, we can control each long-run player’s continuation payoffs

and induce him to play any action. This implies that, without loss of generality, in program

P(±ei), we can ignore the incentives of long-run players other than player i without affecting

the score.

We can obtain a further simplification if Assumption F3 is strengthened to full monitoring.

In this case, k(ei) is equal to the value of the program Qi
+:

sup
vi,x̄i,α

vi,

where the supremum is taken over vi ∈ R, x̄i : S → R
S, and α = (αs) ∈ ×sgraphB(s) such that

(i) For each s,

vi = min
ais∈support(αi

s)

(

ri(s, ais, α
−i
s ) +

∑

t∈S

p(t× A|s, ais, α
−i
s )x̄it(s)

)

;

(ii) For each T ⊆ S and for each permutation φ : T → T , one has
∑

s∈T x̄
i
φ(s)(s) ≤ 0.

See Section A.4 for a proof. Here vi is equal to the minimum of player i’s payoffs, where ais is

taken over the support of player i’s mixed action αi
s. If vi were larger than the minimum, then

we would not be able to provide incentives for player i to be indifferent between all actions in the

support of αi
s. Note that this program is simpler than P(ei) in that player i’s choice is restricted

to the support of αi
s and that x̄i depends on the current and next states, but is independent of

realized actions.
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Similarly, −k(−ei) is equal to the solution for the program Qi
−:

inf
vi,x̄i,α

vi,

where the infimum is taken over vi ∈ R, x̄i : S → R
S, and α = (αs) ∈ ×sgraphB(s) such that

(i) For each s,

vi = max
ais∈A

i

(

ri(s, ais, α
−i
s ) +

∑

t∈S

p(t× A|s, ais, α
−i
s )x̄it(s)

)

;

(ii) For each T ⊆ S and for each permutation φ : T → T , one has
∑

s∈T x̄
i
φ(s)(s) ≥ 0.

These programs reduce to FL, Theorem 6.1 (ii) if there is only one state. See also Section

4.2 for the discussion of the related one-player case.

7 Action-independent Transitions

Our characterization can be used to obtain qualitative insights. We here discuss the case

in which the evolution of the state is independent of players’ actions. To let the transitions

probabilities of the states vary, while keeping the distributions of signals fixed, we assume that

the transition probabilities can be written as a product q(t|s) × π(y|s, a). In other words, and

in any period, the next state t and the public signal y are drawn independently, and the action

profile only affects the distribution of y.

In this setup, it is intuitively clear that the (limit) set of PPE payoffs should only depend on

q through its invariant measure, µ. If the signal structure is rich enough and the folk theorem

holds, this is straightforward. Indeed, the (limit) set of feasible payoffs is equal to the convex

hull of {
∑

s∈S µ(s)r(s, a) : a ∈ A}, and a similar formula holds for the (limit) minmax.

We prove below that this observation remains valid even when the folk theorem fails to hold.

The proof is based on our characterization, and providing a direct proof of this fact does not

seem to be an easy task.

In this subsection, we fix a signal structure π : S × A → ∆(Y ), and consider two transi-

tion functions, denoted q and (with an abuse of notation) p. To stress the dependence of the

analysis on the transition function, and given a (unit) direction λ ∈ S1, we denote by Pq(λ) the

optimization program P(λ), when the transition probability over states is set to q : S → ∆(S).
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We also denote by kq(λ) the value of Pq(λ), and by H(q) the intersection of all half-spaces

{v ∈ R
I : λ · v ≤ kq(λ)} obtained by letting λ vary.

Proposition 3 Let p and q be two irreducible transition functions over S, with the same invari-

ant measure µ. Then H(p) = H(q).

This implies that, for the purpose of studying the limit equilibrium payoff set in the case of

transitions that are action-independent, one might as well assume that the state is drawn i.i.d.

across periods.13 In that case, the stochastic game can be viewed as a repeated game, in which

player i’s actions in each period are maps from S to Ai. The program P(λ, α) can then be

shown to be equivalent to the corresponding program of FL. One direction is a simple change of

variable. The other direction relies on Lemma 1.

8 Concluding Comments

This paper shows that recursive methods developed for the study of repeated games can be

generalized to stochastic games, and can be applied to obtain qualitative insights as δ → 1.

This, of course, leaves many questions unanswered. First, as mentioned, the results derived

here rely on δ → 1. While not much is known in the general case for repeated games either, there

still are a few results available in the literature (on the impact of the quality of information, for

instance). It is then natural to ask whether those results can be extended to stochastic games.

Within the realm of asymptotic analysis, it also appears important to generalize our results

to broader settings. The characterization of the equilibrium payoff set and the folk theorem

established in this paper rely on some strong assumptions. The set of actions, signals and

states are all assumed to be finite. We suspect that the characterization can be generalized to

the case of richer action and signal sets, but extending the result to richer state spaces raises

significant challenges. Yet this is perhaps the most important extension: even with finitely many

states, beliefs about those states affect the players’ incentives when states are no longer common

13One direction is intuitive: when transitions are action-independent, one can construct equilibria in which
play in periods 1, k + 1, 2k + 1, . . ., proceeds independently from play in periods 2, k + 2, 2k + 2, . . ., etc. Hence,
the equilibrium payoff set with transition q and discount δ “contains” the equilibrium payoff set with transition
qk and discount δk (note, however, that we are not comparing sets for a common initial state). Hence, taking δ
to 1 faster than we take k to infinity makes it plausible that the limit payoff set in the i.i.d. case is included in
the limit set given q.
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knowledge, as is often the case in applications in which players have private information, and

these beliefs must therefore be treated as state variables themselves.

Finally, there is an alternative possible asymptotic analysis that is of significant interest. As

is the case with public signals (see the concluding remarks of FLM), an important caveat is in

order regarding the interpretation of our limit results. It is misleading to think of δ → 1 as

periods growing shorter, as transitions are kept fixed throughout the analysis. If transitions are

determined by physical constraints, then these probabilities should be adjusted as periods grow

shorter. As a result, feasible payoffs will not be independent of the initial state. It remains to

be seen whether such an analysis is equally tractable.

A Proofs

A.1 Proof of Proposition 1

Let δ < 1 be given. To show the first statement, for each state s, choose an equilibrium payoff

vs that maximizes the inner product λ · w for w ∈ Eδ(s). Consider a PPE σ with payoffs (vs).

For each initial state s, let αs = σ(s) be the mixed moves played in stage 1, and wt(s, y) be the

continuation payoffs following y, if in state t at stage 2. Note that λ · wt(s, y) ≤ λ · vt for y ∈ Y

and s, t ∈ S. By construction, for each s ∈ S, αs is a Nash equilibrium, with payoff vs, of the

game with payoff function

(1− δ)r(s, as) + δ
∑

t∈S

∑

y∈Y

p(t, y|s, as)wt(s, y).

Set xt(s, y) :=
δ

1−δ
(wt(s, y)− vs). Observe that αs is a Nash equilibrium of the game Γ(s, x),

with payoff vs. Next, let s̄ be a state that minimizes λ · vs, and x̃t(s, y) := xt(s, y) + vs̄ − vs for

each s, t ∈ S, y ∈ Y . Then αs is a Nash equilibrium of Γ(s, x̃), with payoff vs̄. On the other

hand, for each T, φ, ψ, one has

λ ·
∑

s∈T

xφ(s)(s, ψ(s)) =
δ

1− δ
λ ·
∑

s∈T

(wφ(s)(s, ψ(s))− vs)

=
δ

1− δ
λ ·
∑

s∈T

(wφ(s)(s, ψ(s))− vφ(s)) ≤ 0,
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and hence

λ ·
∑

s∈T

x̃φ(s)(s, ψ(s)) = λ ·
∑

s∈T

xφ(s)(s, ψ(s)) + λ ·
∑

s∈T

(vs̄ − vs) ≤ 0.

Therefore, (vs̄, x̃, α) is feasible in P(λ). Thus

k(λ) ≥ λ · vs̄ = min
s∈S

max
w∈Eδ(s)

λ · w.

The second statement follows immediately from the first statement.

A.2 Proof of Proposition 2

Since Z is a compact set contained in the interior of H, there exists η > 0 such that

Zη := {z ∈ R
I : d(z, Z) ≤ η}

is also a compact set contained in the interior of H. Zη is a “smooth approximation” of Z such

that the curvature of the boundary of Zη is at most 1/η. We start with a technical statement.

We say that (v, x) is feasible in P(λ) if (v, x, α) is feasible in P(λ) for some α.

Lemma 4 There are ε0 > 0 and a bounded set K ⊂ R
I × R

S×Y×S×I of (v, x) such that the

following holds. For every z ∈ Zη and λ ∈ S1, there exists (v, x) ∈ K such that (v, x) is feasible

in P(λ) and λ · z + ε0 < λ · v.

Proof. Given z ∈ Zη and since Zη is contained in the interior of H, one has λ · z < k(λ) for

every λ ∈ S1. Therefore, there exists a feasible pair (v, x) in P(λ) such that λ · z < λ · v. The

conclusion of the lemma states that (v, x) can be chosen within a bounded set, independently of

λ and of z.14

Choose ε̃ > 0 such that λ · z + ε̃ < λ · v, and define

x̃t(s, y) = xt(s, y)− ε̃λ, ṽ = v − ε̃λ

for each s, t ∈ S and y ∈ Y . Observe that for each s ∈ S, v is an equilibrium payoff of the game

Γ(s, x̃). Note in addition that
∑

s∈T λ · x̃φ(s)(s, ψ(s)) ≤ −ε̃|T | < 0 for each T, φ and ψ. Therefore,

14Note however that, for given z and λ, the set of feasible pairs (v, x) in P(λ) such that λ · z < λ · v is typically
unbounded.
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for every z̃ close enough to z, for every λ̃ close enough to λ, the pair (ṽ, x̃) is feasible in P(λ̃)

and λ̃ · z̃ < λ̃ · ṽ. The result then follows, by compactness of Zη and of S1.

In the sequel, we let κ0 > 0 be such that ‖x‖ ≤ κ0 and ‖z− v‖ ≤ κ0 for every (v, x) ∈ K and

z ∈ Zη. Choose n ∈ N such that ε0(n− 1)/2 > 2κ0|S|. Set

ε := ε0
n− 1

2
− 2κ0|S| > 0.

Next, choose δ̄ < 1 to be large enough so that (n/2)2(1−δ) ≤ |S| and 1−δn−1 ≥ (n−1)(1−δ)/2

for every δ ≥ δ̄. Finally, set

κ :=
2(n− 1)

δ̄n−1
κ0.

Given a map w : Hn → R
I which associates to any history of length n a payoff vector, we

denote by Γn(s, w; δ) the δ-discounted, (n− 1)-stage game, with final payoffs w and initial state

s.

The following proposition is essential for the proof of Proposition 2.

Proposition 4 For every direction λ ∈ S1, every z ∈ Zη and every discount factor δ ≥ δ̄, there

exist continuation payoffs w : Hn → R
I such that:

C1 For each s, z is a PPE payoff of the game Γn(s, w; δ).

C2 One has ‖w(h)− z‖ ≤ (1− δ)κ for every h ∈ Hn.

C3 One has λ · w(h) ≤ λ · z − (1− δ)ε for every h ∈ Hn.

Proof. Let λ, z and δ be given as stated. Pick a feasible point (v, x, α) in P(λ) such that

(v, x) ∈ K and λ · z + ε0 < λ · v.

Given s, t ∈ S, and y ∈ Y , set

φt(s, y) = v +
1− δ̄

δ̄
xt(s, y).

For each history h of length not exceeding n, we define w(h) by induction on the length of h.

The definition of w follows FL. If h = (s1), we set w(h) = z. For k ≥ 1 and hk+1 ∈ Hk+1, we set

w(hk+1) =
δ − δ̄

δ(1− δ̄)
w(hk) +

δ̄(1− δ)

δ(1− δ̄)

(

φsk+1
(sk, yk) +

w(hk)− v

δ̄

)

(11)
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where hk is the restriction of hk+1 to the first k stages.

Let k ≥ 1, and hk ∈ Hk. As in FL, using (11), αsk is a Nash equilibrium of the one-shot game

with payoff function

(1− δ)r(sk, a) + δ
∑

t∈S

∑

y∈Y

p(t, y|sk, a)w(hk, y, t),

with payoff w(hk). By the one-shot deviation principle, it follows that the Markov strategy profile

α is a PPE of the game Γn(s1, w; δ), with payoff z (for each initial state s1). This proves C1.

We now turn to C2. Let hn ∈ Hn be given and let hk (k ≤ n) denote the restriction of hn to

the first k stages. Observe that

w(hk+1)− v =
δ − δ̄

δ(1− δ̄)
(w(hk)− v) +

δ̄(1− δ)

δ(1− δ̄)

(

φsk+1
(sk, yk)− v +

1

δ̄
(w(hk)− v)

)

=
1

δ
(w(hk)− v) +

1− δ

δ
xsk+1

(sk, yk)

for any k ≤ n− 1. Therefore,

w(hn)− v =
1

δn−1
(z − v) +

1− δ

δ

n−1
∑

k=1

1

δn−1−k
xsk+1

(sk, yk),

and one gets

w(hn)− z =
1− δn−1

δn−1
(z − v) +

1− δ

δn−1

n−1
∑

k=1

δk−1xsk+1
(sk, yk). (12)

Hence

‖w(hn)− z‖ ≤
1− δn−1

δn−1
‖z − v‖+

1− δ

δn−1

n−1
∑

k=1

δk−1‖xsk+1
(sk, yk)‖

≤
2(1− δn−1)

δn−1
κ0

≤
2(n− 1)(1− δ)

δ̄n−1
κ0 = (1− δ)κ.

This proves C2.

We finally prove that C3 holds as well. The proof makes use of the following lemma.
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Lemma 5 Let x1, . . . , xm ∈ [−1, 1] be such that
m
∑

k=1

xk ≤ 0. Then
m
∑

k=1

δk−1xk ≤
(1− δm/2)2

1− δ
.

Proof. If m is even, the sum
∑m

k=1 δ
k−1xk is highest if xk = 1 for k ≤ m

2
, and xk = −1 for

k > m
2
. If m is odd, the sum is maximized by setting xk = 1 for k < m+1

2
, xk = 0 for k = m+1

2

and xk = −1 for k > m+1
2

. In both cases, the sum is at most 1−2δm/2+δm

1−δ
.

Set m0 = 0, l1 + 1 := min{k ≥ 1 : sm = sk for some m > k} (min∅ = +∞), and m1 + 1 :=

max{k ≤ n : sk = sl1+1}. Next, as long as lj < +∞, define lj+1 + 1 := min{k ≥ mj + 1 : sm =

sk for some m > k} and mj+1 +1 := max{k ≤ n : sk = slj+1+1}. Let J the largest integer j with

lj < +∞.

Since slj+1 = smj+1, one has λ ·
∑mj

k=lj+1 xsk+1
(sk, yk) ≤ 0 for each j ≤ J . By Lemma 5, this

implies

J
∑

j=1

mj
∑

k=lj+1

δk−1λ · xsk+1
(sk, yk) ≤

κ0
1− δ

J
∑

j=1

δlj(1− δ(mj−lj)/2)2

=
κ0

1− δ

J
∑

j=1

(δlj/2 − δmj/2)2.

The sum which appears in the last line is of the form

J
∑

j=1

(uj − vj)
2,

with 1 ≥ u1 ≥ v1 ≥ · · · ≥ uJ ≥ vJ ≥ δn/2. Such a sum is maximized when J = 1, u1 = 1 and

v1 = δn/2. It is then equal to (1− δn/2)2. On the other hand, there are at most |S| stages k with

mj < k ≤ lj+1 for some j. Therefore,

1− δ

δn−1

n−1
∑

k=1

δk−1λ · xsk+1
(sk, yk) ≤ |S|κ0

1− δ

δn−1
+

κ0
δn−1

(1− δn/2)2

≤ |S|κ0
1− δ

δn−1
+

κ0
δn−1

(n

2

)2

(1− δ)2

≤ 2|S|κ0
1− δ

δn−1
.
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Substituting this inequality into (12), one obtains

λ · w(hn) ≤ λ · z +
1− δn−1

δn−1
λ · (z − v) +

1− δ

δn−1

n−1
∑

k=1

δk−1λ · xsk+1
(sk, yk)

≤ λ · z − ε0
n− 1

2

1− δ

δn−1
+ 2|S|κ0

1− δ

δn−1

= λ · z − ε
1− δ

δn−1
≤ λ · z − ε(1− δ)

as claimed.

Let ¯̄δ < 1 be large enough so that (1− ¯̄δ)κ ≤ η and (1− ¯̄δ)κ2 ≤ 2εη. The next lemma follows

since the curvature of Zη is uniformly bounded from above.

Lemma 6 For every z ∈ Zη and every δ ≥ ¯̄δ, there exists a direction λ ∈ S1 such that, if w ∈ R
I

satisfies ‖w − z‖ ≤ (1− δ)κ and λ · w ≤ λ · z − (1− δ)ε, then one has w ∈ Zη.

Proof. By the definition of Zη, for each z ∈ Zη, there exists z0 ∈ Z such that ‖z − z0‖ ≤ η.

Let λ := (z − z0)/‖z − z0‖. (If z0 = z, then take any unit vector.) Then, for any w, one has

‖w − z0‖
2 = ‖z − z0‖

2 + 2(z − z0) · (w − z) + ‖w − z‖2

≤ ‖z − z0‖
2 − 2(1− δ)ε‖z − z0‖+ (1− δ)2κ2.

The last expression is a quadratic form, which is maximized when ‖z − z0‖ = 0 or ‖z − z0‖ = η.

Therefore,

‖w − z0‖
2 ≤ max{(1− δ)2κ2, η2 − 2(1− δ)εη + (1− δ)2κ2} ≤ η2,

because δ ≥ ¯̄δ. Thus ‖w − z0‖ ≤ η, hence w ∈ Zη.

We here prove Proposition 2. Fix any δ ≥ max{δ̄, ¯̄δ}. For any z ∈ Zη, we construct a public

strategy σ : H → ×i∆(Ai) and continuation payoffs w : H → Zη inductively as follows. Set

w(h) = z ∈ Zη for any h = (s1) ∈ H1. For k ≥ 1 and h ∈ H(n−1)(k−1)+1, given that w(h) ∈ Zη,

by Proposition 4, there exist continuation payoffs wh : Hn → R
I that satisfy C1 (that is, there

exists a PPE of Γn(s(n−1)(k−1)+1, wh; δ), with payoff w(h)), C2 and C3. Let σ prescribe the PPE

of Γn(s(n−1)(k−1)+1, wh; δ) for the block of periods between (n− 1)(k − 1) + 1 and (n− 1)k. For

any h̃ ∈ H(n−1)k+1 whose restriction to the first (n − 1)(k − 1) + 1 periods is equal to h, let

w(h̃) = wh(nh̃), where nh̃ is the restriction of h̃ to the last n periods. It follows from C2, C3
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and Lemma 6 that w(h̃) ∈ Zη. By the one-shot deviation principle and C1, for any initial state

s, the constructed strategy σ is a PPE of the whole (infinite-horizon) game, with payoff z. Thus

Z ⊂ Zη ⊆ Eδ(s) for any s ∈ S.

A.3 Proof of Lemma 2

We prove the two statements in turn. We start with the first one, and consider the following

two cases: λ 6= ±ei for any i, and λ = ei.

Suppose that λ 6= ±ei for any i. Let δ < 1 be given. Then there exists a pure Markov strategy

profile (as) ∈ AS with payoff (vs) such that, for each state s, vs maximizes the inner product

λ · w for w ∈ Fδ(s). By construction, for each s ∈ S, vs = (1− δ)r(s, as) + δ
∑

t p(t× Y |s, as)vt.

Fix ε > 0 arbitrarily. By Assumption F2 and Lemma 6.2 of FLM, there exists an open

and dense set of action profiles, each of which has pairwise full rank for all pairs of players.

Therefore, for each s ∈ S, there exist v̂s, α̂s, and ŵt(s) such that λ · ŵt(s) ≤ λ · v̂t for t ∈ S,

v̂s = (1 − δ)r(s, α̂s) + δ
∑

t p(t × Y |s, α̂s)ŵt(s), λ · v̂s ≥ λ · vs − ε, and α̂s has pairwise full rank

for all pairs of players in state s.

Similarly to the proof of Proposition 1, let s̄ be a state that minimizes λ · v̂s. Set x̃t(s) :=
δ

1−δ
(ŵt(s)− v̂s) + v̂s̄ − v̂s for s, t ∈ S. Then we have

v̂s̄ = r(s, α̂s) +
∑

t∈S

p(t× Y |s, α̂s)x̃t(s)

for each s ∈ S, and

λ ·
∑

s∈T

x̃φ(s)(s) ≤ 0,

for each T ⊆ S, for each permutation φ : T → T . For each s ∈ S, although α̂s may not be a Nash

equilibrium of Γ(s, x̃), since α̂s satisfies pairwise full rank, there exist x̂t(s, y) for y ∈ Y and t ∈ S

such that α̂s is a Nash equilibrium of Γ(s, x̃+ x̂) with payoff v̂s̄, and such that λ · x̂t(s, y) = 0 for

each y ∈ Y and t ∈ S. With xt(s, y) := x̃t(s) + x̂t(s, y), one has

λ ·
∑

s∈T

xφ(s)(s, ψ (s)) ≤ 0

for each T ⊆ S, each permutation φ : T → T , and each map ψ : T → Y .
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It follows that

k(λ) ≥ λ · v̂s̄ ≥ min
s∈S

max
w∈Fδ(s)

λ · w − ε.

Since ε > 0 and δ < 1 are arbitrary,

k(λ) ≥ sup
δ<1

min
s∈S

max
w∈Fδ(s)

λ · w ≥ min
s∈S

max
w∈F (s)

λ · w.

Conversely, we have

max
w∈F (s)

λ · w = sup
α
λ ·
∑

t∈S

µα,s(t)r(t, αt),

where µα,s(t) is the (expected) long-run frequency of state t under the Markov chain induced

by α with initial state s, and where the supremum is taken over all Markov strategy profiles

α = (αt)t∈S. Thus

min
s∈S

max
w∈F (s)

λ · w ≥ sup
α

min
µα

λ ·
∑

t∈S

µα(t)r(t, αt),

where the minimum is taken over all invariant measures µα of the Markov chain induced by α.

By Lemma 1, for each α, one has

λ ·
∑

t∈S

µα(t)r(t, αt) ≥ k(λ, α).

for any invariant measure µα. Hence,

min
s∈S

max
w∈F (s)

λ · w ≥ sup
α
k(λ, α) = k(λ).

Suppose next that λ = ei for some i. Let δ < 1 be given. Then there exists a pure Markov

strategy profile (as) ∈ AS with payoff (vs) such that, for each state s, vis maximizes wi for

w ∈ Fδ(s). By construction, for each s ∈ S, vs = (1−δ)r(s, as)+δ
∑

t p(t×Y |s, as)vt, and player

i maximizes his own payoff.

Let s̄ be a state that minimizes vis. Set x̃t(s) :=
δ

1−δ
(vt − vs) + vs̄ − vs for s, t ∈ S. Then we

have vs̄ = r(s, as) +
∑

t p(t× Y |s, as)x̃t(s) for each s ∈ S without affecting player i’s incentives.

For each s ∈ S, although players other than i may not maximize their payoffs in Γ(s, x̃), by

Assumption F1, there exist x̂t(s, y) for y ∈ Y and t ∈ S such that as is a Nash equilibrium of

Γ(s, x̃ + x̂) with payoff vs̄, and such that x̂it(s, y) = 0 for each y ∈ Y and t ∈ S. Thus we have

k(ei) ≥ supδ<1 mins∈S maxw∈Fδ(s)w
i ≥ mins∈S maxw∈F (s)w

i. The other direction of inequality is
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similar to that in the previous case. This concludes the proof of the first statement.

Lastly, consider λ = −ei for some i. Let δ < 1 be given. Then there exists a minmaxing

Markov strategy profile (ais, α
−i
s ) for player i. By construction, for each s ∈ S, mi

δ(s) = (1 −

δ)ri(s, ais, α
−i
s ) + δ

∑

t p(t× Y |s, ais, α
−i
s )mi

δ(t), and player i maximizes his own payoff.

Let s̄ be a state that maximizes mi
δ(s). Set x̃it(s) := δ

1−δ
(mi

δ(t) − mi
δ(s)) + mi

δ(s̄) − mi
δ(s)

for s, t ∈ S. Then we have mi
δ(s̄) = ri(s, ais, α

−i
s ) +

∑

t p(t × Y |s, ais, α
−i
s )x̃it(s) for each s ∈ S

without affecting player i’s incentives. For each s ∈ S, although players other than i may not

maximize their payoffs in Γ(s, x̃), by Assumption F1, there exist x̂t(s, y) for y ∈ Y and t ∈ S

such that as is a Nash equilibrium of Γ(s, x̃ + x̂) with player i’s payoff mi
δ(s̄), and such that

x̂it(s, y) = 0 for each y ∈ Y and t ∈ S. (If (ais, α
−i
s ) does not have individual full rank, apply

Lemma 6.3 of FLM to approximate (ais, α
−i
s ) by a sequence of action profiles with individual full

rank and the best response property for player i, as we did in the case of λ 6= ±ei.) Thus we

have k(−ei) ≥ supδ<1(−maxsm
i
δ(s)) ≥ −maxsm

i(s).

Conversely, we have

mi(s) ≤ inf
α−i

sup
αi

∑

t∈S

µα,s(t)r
i(t, αt),

where αi and α−i are Markov strategies and µα,s(t) is the long-run frequency of state t under the

Markov chain induced by α with initial state s. Thus

max
s∈S

mi(s) ≤ inf
α−i

sup
αi

max
µα

∑

t∈S

µα(t)r
i(t, αt),

where the maximum is taken over all invariant measures µα of the Markov chain induced by α.

Let (α̃i, α−i) be an arbitrary Markov strategy, and ε > 0. Then there exists (v, x) that is

feasible in P(−ei, (α̃i, α−i)) and −vi > k(−ei, α̃i, α−i)−ε. It follows from the incentive constraints

in P(−ei, (α̃i, α−i)) that, for each s ∈ S, one has

vi ≥ ri(s, αi
s, α

−i
s ) +

∑

t∈S,y∈Y

p(t, y|s, αi
s, α

−i
s )xit(s, y).

By Lemma 1, it thus follows that for each (α̃i, α−i),

∑

s∈S

µαi,α−i(s)ri(s, αi
s, α

−i
s ) ≤ vi < −k(−ei, α̃i, α−i) + ε,
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for any αi and any invariant measure µαi,α−i. Since (α̃i, α−i) and ε > 0 are arbitrary,

max
s∈S

mi(s) ≤ inf
α−i

inf
α̃i
(−k(−ei, α̃i, α−i)) = −k(−ei).

This concludes the proof of the second statement.

A.4 Proof for the Characterization with Full Monitoring

We first show that P(ei) and Qi
+ are equivalent. Take any (v, x, α) that is feasible in P(ei).

We have

vi = ri(s, ais, α
−i
s ) +

∑

t∈S

∑

a−i
s ∈A−i

α−i
s (a−i

s )p(t, as|s, a
i
s, a

−i
s )xit(s, a

i
s, a

−i
s )

for every s ∈ S and ais ∈ support(αi
s). For each s, set

x̃it(s) := max
ais∈support(αi

s)
max

a−i
s ∈A−i

xit(s, a
i
s, a

−i
s ),

and

ṽis := min
ais∈support(αi

s)

(

ri(s, ais, α
−i
s ) +

∑

t∈S

p(t× A|s, ais, α
−i
s )x̃it(s)

)

.

Next, set x̄it(s) := x̃it(s)+ v
i− ṽis. Since ṽis ≥ vi for every s ∈ S, we have that (vi, x̄i, α) is feasible

in Qi
+.

Conversely, take any (vi, x̄i, α) that is feasible in Qi
+. For each s ∈ S and a−i

s ∈ A−i, we set

xit(s, a
i
s, a

−i
s ) := x̄it(s) + vi −

(

ri(s, ais, α
−i
s ) +

∑

u∈S

p(u× A|s, ais, α
−i
s )x̄iu(s)

)

if ais ∈ support(αi
s) (note that the right-hand side is independent of a−i

s ), and we let xit(s, a
i
s, a

−i
s )

be sufficiently small if ais /∈ support(αi
s). Since vi ≤ ri(s, ais, α

−i
s ) +

∑

u∈S p(u×A|s, ais, α
−i
s )x̄iu(s)

for every ais ∈ support(αi
s), we have that (vi, v−i, xi, x−i, α) is feasible in P(ei). (v−i and x−i are

chosen to give incentives for players −i to play α−i.)

The equivalence between P(−ei) and Qi
− follows similarly.
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A.5 Proof of Proposition 3

We let a unit direction λ ∈ S1, and a Markov strategy profile α = (αs) be given. Consider

programs Pp(λ, α) and Pq(λ, α) with fixed α. We prove that for each feasible pair (v, x) in

Pp(λ, α), there is z : S × Y → R
S×I such that (v, z) is a feasible pair in Pq(λ, α). This implies

the result. The proof uses the following two observations.

Denote by P (resp. Q) the S × S matrix whose (s, t)-th entry is p(t|s) (resp. q(t|s)).

Claim 2 The ranges of the two linear maps (with matrices) Id− P and Id−Q are equal.

Proof of the Claim. Assume that q is aperiodic. Let be given a vector ξ ∈ R
S in the

range of Id − P . Hence, there is ψ ∈ R
S, such that ξ = ψ − Pψ. Hence, 〈µ, ξ〉 = 0. Since q is

an irreducible transition function with invariant measure µ, the vector Qnξ converges as n→ ∞

to the constant vector, whose components are all equal to 〈µ, ξ〉 = 0. Moreover, the convergence

takes place at an exponential speed. Therefore, the vector ψ̃ :=

+∞
∑

n=0

Qnξ is well-defined, and

solves ψ̃ = ξ +Qψ̃. This proves the result.15

Claim 3 Let a vector c = (ct(s)) ∈ R
S×S be given, such that the inequality

∑

s∈T cφ(s)(s) ≤ 0

holds for every T ⊆ S, and every permutation φ over T . Then there exists a vector c∗ = (c∗t (s)) ∈

R
S×S such that (i) c∗ ≥ c (componentwise) and (ii)

∑

s∈T c
∗
φ(s)(s) = 0, for every T ⊆ S and

every permutation φ over T .

Proof of the Claim. Consider the linear program sup
g

∑

T,φ

∑

s∈T

gφ(s)(s), where the first sum

ranges over all (T, φ) such that T ⊆ S and φ is a permutation over T , and the supremum is taken

over all g such that (i) g ≥ c and (ii)
∑

s∈T gφ(s)(s) ≤ 0, for every T ⊆ S and every permutation

φ over T . This program is bounded and c is a feasible point, hence there is an optimal solution,

c∗. We claim that the value of the program is 0. Assume to the contrary that

∑

s∈T

c∗φ(s)(s) < 0 (13)

for some T and some φ. It must then be the case that for each s ∈ T , there exists some set Ts ⊆ S

containing s, and some permutation φs over Ts with φs(s) = φ(s), and such that the constraint

15The proof in the case where q is periodic is similar. As in the aperiodic case, the infinite sum in ψ̃ is
well-defined.
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∑

t∈Ts
c∗φs(t)

(t) ≤ 0 is binding. (Otherwise indeed, a small increase in the value of c∗φ(s)(s) would

preserve feasibility of c∗, and improve upon c∗.) In particular,

∑

t∈Ts,t6=s

c∗φs(t)(t) = −c∗φ(s)(s).

When summing over s ∈ T , and by (13), one obtains

∑

s∈T

∑

t∈Ts,t6=s

c∗φs(t)(t) > 0. (14)

We claim that the directed graph over S with edge set
⋃

s∈T

⋃

t∈Ts,t6=s(t, φs(t)) (where any edge

that appears more than once is repeated) is a collection of disjoint cycles. Hence (14) is in

contradiction with the fact that c∗ is feasible.

To see this last claim, observe that for each state s ∈ T , the edges (t, φs(t)), where t ∈ Ts,

t 6= s, form a directed path from φ(s) to s. Hence, the union over s of these paths is a union of

disjoint cycles.

We turn to the proof of Proposition 3. Let (v, x) be a feasible pair in Pp(λ, α). For (s, t) ∈ S,

we set ct(s) := maxy∈Y λ · xt(s, y). Apply Claim 3 to obtain (c∗t (s)). Since
∑

s∈T c
∗
φ(s)(s) = 0, for

every T ⊆ S and every permutation φ over T , there is a vector c̄∗ ∈ R
S, such that c∗t (s) = c̄∗t − c̄

∗
s

for every s, t ∈ S.

Next, by Claim 2, there is d̄ ∈ R
S, such that (Id − P )c̄∗ = (Id − Q)d̄. For s, t ∈ S, set

dt(s) := d̄t − d̄s. Observe that, by construction, one has
∑

t∈S

p(t|s)c∗t (s) =
∑

t∈S

q(t|s)dt(s) for each

s ∈ S.

Finally, we set

zit(s, y) := λidt(s) +
∑

u∈S

p(u|s)
(

xiu(s, y)− λic∗u(s)
)

,

for any i, s, t, y. We claim that (v, z) is feasible in Pq(λ, α), as desired.

By construction, one has

λ · zt(s, y) = dt(s) +
∑

u∈S

p(u|s) (λ · xu(s, y)− c∗u(s)) ≤ dt(s),

hence the vector z satisfies all linear constraints in Pq(λ, α).
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On the other hand, and for each y, one has

∑

t∈S

q(t|s)zit(s, y) =
∑

u∈S

p(u|s)xiu(s, y) + λi

(

∑

t∈S

q(t|s)dt(s)−
∑

u∈S

p(u|s)c∗u(s)

)

=
∑

t∈S

p(t|s)xit(s, y).

Hence the equality

∑

t∈S,y∈Y

q(t|s)π(y|s, αs)z
i
t(s, y) =

∑

t∈S,y∈Y

p(t|s)π(y|s, αs)x
i
t(s, y)

holds for any s ∈ S. This concludes the proof of Proposition 3.
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