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Abstract

This paper studies a financial agency problem which includes limited liability, moral
hazard and adverse selection. The paper develops a robust approach to dynamic con-
tracting based on calibrating the payoffs that would have been delivered by simple
benchmark contracts that are attractive but infeasible, due to limited liability con-
straints. The resulting contracts are detail-free and perform well independently of the
underlying process for returns. The paper discusses how these calibrated contracts
relate and differ from contracts used in practice.

1 Introduction

This paper considers financial agency problem in which a principal hires an agent to make

investment decisions on her behalf.1 The contracting environment is delicate as it includes

limited liability, moral hazard, adverse selection, and makes very few assumptions about the

underlying process for returns and information. The paper’s contribution is to develop a

robust approach to dynamic contracting. The main steps are as follows: 1) identify a simple

class of high-liability static linear contracts that satisfy attractive and robust efficiency prop-

erties; 2) construct limited-liability dynamic contracts that achieve the same performance

∗Contact: chassang@princeton.edu.
1Throughout the paper, the principal is referred to as she, while the agent is referred to as he. Appendix A

shows how to extend the analysis to a more general principal-agent framework not limited to asset allocation
problems.
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by calibrating the rewards to the agent so that they approximately satisfy key properties

of the benchmark high-liability contracts. The resulting calibrated contracts perform well

independently of the underlying process for returns. In particular, the results do not rely on

any ergodicity or stationarity assumptions.

The model considers a risk-neutral principal and a risk-neutral agent. Both the principal

and the agent are patient. The agent has a large but finite horizon which need not be

know to the principal. For simplicity the principal has an infinite horizon. In every period

a steady-state amount of wealth is to be invested on behalf of the principal by the agent.

The agent can be of two types. If the agent is talented, he can invest in costly information

acquisition. An untalented agent has no information beyond public knowledge. The agent

privately observes his own type, the information he acquires, and his time horizon. The

main constraint on contracts is limited liability: it is either impossible, or very difficult for

the agent to receive negative transfers, and rewards must satisfy a pay-as-you-go constraint

which rules out large deferred payments.

This is clearly a difficult environment to contract in. The principal is facing both adverse

selection (is the agent talented, what is the cost effectiveness of information acquisition. . . )

and moral hazard (is the agent acquiring information, is the agent making investment allo-

cations that maximize expected returns). At this level of generality, characterizing optimal

contracts is unlikely to be informative and may not actually be possible if the principal has

poorly specified beliefs over the environment. Instead the paper develops a robust approach

to dynamic contracting which emphasizes prior-free performance bounds.

The first step of the approach identifies a suitable – although infeasible – benchmark.

The paper focuses on a simple class of linear contracts in which the agent is rewarded a share

of his externality on the principal. These linear contract exhibit high-liability since the agent

is expected to provide partial compensation for losses. Regardless of the underlying process

for returns and information, they satisfy the following properties: (i) the agent can obtain

positive expected rewards if and only the principal obtains positive expected surplus; as a
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consequence, untalented types weakly prefer screening themselves out; (ii) the agent chooses

the optimal asset allocation given information; (iii) expected excess returns to the principal

can be bounded below as a function of the maximum feasible expected excess returns ; (iv)

the previous properties for continuation play from the perspective of any realized history.

The second step of the approach, and the main theoretical contribution of the paper, is

to develop a simple class of dynamic contracts that robustly approximate the performance

of linear high-liability contracts while satisfying severe limited liability constraints. The key

insight is to calibrate both the reward-rate of the agent and the share of total wealth he

is investing, so that for all possible strategies and all realizations of uncertainty, the payoff

obtained by the agent and the excess returns obtained by the principal remain as tightly

linked as they are under benchmark linear contracts.

Taking the agent as given, these calibrated contracts induce performance approximately

equal to that achieved by the benchmark linear contracts. A penalized version of the same

contracts, achieves screening at a moderate performance loss. Under these penalized con-

tracts, the agent is charged an initial performance fee and only obtains rewards in periods

where his performance is above a hurdle which depends on the magnitude of his trading

activity. Agents who trade often for moderate returns find it difficult to pass this hurdle,

whereas agents that can deliver moderate returns while trading rarely are hardly impeded.

The calibrated contracts described in this paper share many features with existing fi-

nancial contracts, notably those encountered in the hedge-fund industry. In particular, the

agent only gets rewarded when the current surplus created for the principal is higher than its

historical maximum, a feature shared by high-watermark contracts. However, the contracts

described here exhibit important features that typical incentive contracts do not have and

which matter essentially for performance:

1. The share of total wealth managed by the agent is calibrated jointly with his payoffs.

This allows to keep tight the relation between excess returns and payoffs to the agent.
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2. The returns generated by the agent are benchmarked using the counterfactual returns

the principal would have obtained on her own. This allows for screening to hold under

very general conditions.

3. The agent is only rewarded when his performance is above a hurdle which increases

with the magnitude of positions he has been taking. This favors agents delivering

good performance while taking relatively small positions, and allows the screening of

untalented agents at a moderate incentive cost to talented agents.

Inversely, a surprising aspect of the contracts developed in this paper is that they do not

exhibit some of the features typically deemed necessary for financial agents to deliver good

performance: the agent is not required to hold the underlying asset allocation and there are

no clawback provisions. Still, while the paper shows that these features are not necessary

for good performance when the agent’s horizon is long, it would be wrong to infer that they

are not useful, for instance when the agent’s horizon is short.

The approach of this paper is related to the work of Jackson and Sonnenschein (2007) who

show how linking decisions across different states can be used in a general mechanism design

context to relax incentive compatibility constraints (see also Radner (1981, 1985), Townsend

(1982), McAfee (1992), or Casella (2005)). As in their work, the main idea of this paper

is to constrain payoffs to satisfy key properties that would hold under an ideal benchmark.

In both cases, this style of approach shows that agents will behave appropriately with high

probability, but does not specify the rare circumstances in which agents might choose to

deviate. An important difference with Jackson and Sonnenschein (2007) is that they assume

the states of the world are i.i.d. In contrast, the contracts developed in this paper are

designed to perform well even in environments where the process for the underlying state

of the world is not ergodic. For instance, there can be non-vanishing probability that for a

large number of periods, returns happen to be negative, or that even talented managers do

not receive superior information.
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The methods used in the paper, as well as the emphasis on general stochastic processes,

connect the paper to the literature on testing experts (see for instance Foster and Vohra

(1998), Fudenberg and Levine (1999), Lehrer (2001) or more recently Al-Najjar and Wein-

stein (2008), Feinberg and Stewart (2008) and Olszewski and Sandroni (2008)). However,

the main question is not whether good tests are available. Rather, this paper takes a prin-

cipal agent approach related to that of Echenique and Shmaya (2007) and Olszewski and

Peski (forthcoming). These papers both show that in such environments there are satisfac-

tory ways to identify experts that generate positive surplus. Neither paper tackles incentive

provisions when information acquisition is costly or the issue of self-screening by experts.

The paper is related to the work of Lo (2001), Goetzmann et al. (2007) and Foster and

Young (2010) on appropriate performance measures and the difficulty of jointly rewarding

and screening wealth managers. In particular Foster and Young (2010) describe environ-

ments in which rewarding and screening is in fact impossible. This occurs because in their

environment, informed managers value income in early periods much more than in later

periods and so that even talented managers are unwilling to pay the monetary cost needed

to induce screening. In contrast, the current paper considers patient players with constant

marginal utility for income.2 In that case, self-screening can be obtained under severe limited

liability constraints.

The paper hopes to usefully complement the rich literature on optimal dynamic con-

tracting (see for instance Rogerson (1985), Spear and Srivastava (1987), and more recently

DeMarzo and Sannikov (2006), Biais et al. (2007), DeMarzo and Fishman (2007), Sannikov

(2008) or Edmans et al. (2009)). Indeed the optimal contracting approach delivers rich in-

sights about how contracts should vary with the environment, but the performance of the

resulting contracts is notoriously dependent on the underlying environment. In contrast, the

contracts developed in this paper perform well independently of the underlying environment,

2Appendix A partially bridges the two sets of results, by extending performance bounds to the case where
the agent does not have constant marginal utility of income.
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and are well suited candidates whenever the principal has poorly specified beliefs. However,

because these contracts are detail-free, this approach has little predictive power as to how

contracts should change with the underlying environment.

Finally the paper is related to the literature on robust mechanism design that opera-

tionalizes the doctrine set by Wilson (1987), and attempts to characterize mechanisms that

behave well under weak assumptions over payoff distributions and beliefs. A rich strand of

that literature studies mechanisms that are robust with respect to the solution concept used

to characterize the players’ behavior.3 The paper is especially related to a recent strand in

this literature, illustrated for instance by Hartline and Roughgarden (2008), which looks for

mechanisms that satisfy robust performance bounds regardless of the underlying distribution

of values.4 A tricky step, common to Hartline and Roughgarden (2008) and this paper, is to

define appropriate benchmark performance measures that allow for informative worst-case

analysis of mechanisms.

The paper is structured as follows. Section 2 describes the framework. Section 3 intro-

duces a benchmark class of high liability linear contracts that satisfy a number of attractive

efficiency properties but do require high levels of liability from the agent. Section 4 is the

core of the paper: it develops the idea of calibrated contracts and analyzes their perfor-

mance, taking the agent as given. Section 5 shows how to screen agents by means of an

activity-based hurdle. Section 6 relates calibrated contracts to contracts used in practice

and concludes. Appendix A extends the analysis to various environments. Proofs are given

in Appendix B, unless mentioned otherwise.

3See for instance Dasgupta et al. (1979), Hagerty and Rogerson (1987), Eliaz (2002), Chung and Ely
(2003, 2007) or Bergemann and Morris (2005).

4Local approaches are possible and informative. For instance Madarász and Prat (2010) consider screening
mechanisms that satisfy strong efficiency bounds for all type distributions within a small neighborhood.
Global incentive compatibility constraints play an important role in their analysis, and will also show up in
this paper.
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2 The Framework

Players, Actions and Payoffs. A principal (for instance, a representative investor, or

a bank) hires an agent (say a wealth manager, a financial advisor, or a trader) to make

investment allocations on her behalf. The agent is active for a large but finite number of

periods N . The principal has an infinite horizon and need not know the agent’s horizon N .

Both the principal and the agent are patient and do not discount future payoffs.5

In each period t ∈ {1, · · · , N}, the principal invests an amount w at the beginning of the

period. The amount of wealth w invested in each period is constant, and can be thought of

as a steady state amount of wealth to be invested. The realized wealth wt after investment

is consumed at the end of the period. Both the principal and the agent are risk neutral over

the range of flow payoffs.6 The agent’s outside option is set to zero.

Wealth can be invested in one of K assets whose returns at time t are denoted by

rt = (rk,t)k∈{1,··· ,K}. Let R denote the set of possible returns rt. An asset allocation at time t

is a vector at ∈ A ⊂ RK such that
∑K

k=1 at = 1. Set A is convex and compact. It represents

constraints on possible positions. These constraints on allocations can be thought of as a

mandate set by the principal as in He and Xiong (2010). Let 〈·, ·〉 denote the usual scalar

product. Given asset allocation at and returns rt, the consumer’s wealth at the end of period

t is

wt = w × (1 + 〈at, rt〉).

It is assumed that, for any a ∈ A and rt ∈ R, wt ≥ 0.7 For any pair of allocations (a, a′) ∈ A2,

the distance between a and a′ is defined by

d(a, a′) ≡ sup
rt∈R
| 〈a− a′, rt〉 |. (1)

5All results extend without difficulty to the case where future payoffs are discounted, but the performance
bounds that one can derive only become attractive for discount factors sufficiently close to 1.

6Appendix A allows for varying amounts of wealth to be invested, and also considers extensions to cases
where the principal is risk-averse or where the agent does not have constant marginal utility of income.

7This facilitates exposition but is inessential for the analysis.
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The following assumption puts constraints on the set of permissible allocations A and is

maintained throughout the paper.

Assumption 1. There exists d ∈ R+ such that for all (a, a′) ∈ A2, d(a, a′) ≤ d.

This assumption limits the magnitude of changes that can occur with the principal getting

no feedback.

There are two types of managers: talented and untalented managers. Managers know

their own type. At the beginning of every period t, talented managers can expend cost

ct ∈ [0, c] towards acquiring information. This cost can be the actual cost of obtaining data,

an effort cost, or the opportunity cost of time. Untalented managers only have access to

public information. Managers then make an asset allocation suggestion at ∈ A (whether

or not they have superior information) and receive a payment πt depending on the realized

public history at the end of period t. The manager’s objective is to maximize his expected

average payoffs

E

(
1

N

N∑
t=1

πt − ct

)
. (2)

Information. Information acquired at time t is represented as random variables It from

a measurable state space (Ω, σ) to a measurable signal space (I, σI). Untalented managers

only have access to publicly available information I0
t (which includes realized past returns).

In contrast, talented managers can acquire expert information Ict at cost c ∈ [0, c]. For all

c ≥ c′ ≥ 0, Ic
′
t is measurable with respect to Ict , i.e. the more the agent invests, the more he

knows. Given a sequence of information acquisition expenditures (ct)t≥1, let (Ft)t≥1 be the

informed manager’s filtration (generated by (Ictt )t≥1), and let (F0
t )t≥1 denote the uninformed

manager’s filtration (generated by (I0
t )t≥1).

For simplicity it is convenient to assume that the principal and the agent have a common

prior P over the state space (Ω, σ).8 Let P = (Ω, σ, P ) denote the resulting probability

8All results hold in a non-common prior setting, taking expectations under the agent’s prior.
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space. The paper does not assume that either information or returns follow an i.i.d. or

ergodic process. This results in a very flexible model. For instance, there may be non-

vanishing probability that returns are below their period t = 1 expectation for an arbitrarily

large number of periods. Also, the value of information that talented managers can collect

may vary in arbitrary ways. For instance, once valuable trading strategies can become

obsolete over time.

Strategies. Altogether, an agent’s strategy consists of an information acquisition strategy

c = (ct)t∈N, and an asset allocation strategy a = (at)t∈N, where both ct and at are adapted to

the information available to the manager at the time of decision. Let a0
t and a∗t respectively

denote efficient asset allocations under information F0
t and Ft:

a0
t ∈ arg max

a∈A
E[〈a, rt〉 |F0

t ] and a∗t ∈ arg max
a∈A

E[〈a, rt〉 |Ft]. (3)

Allocation a0
t is the allocation the principal could pick on her own, given public information

F0
t . Let w0

t = w × (1 + 〈a0
t , rt〉) and wt = w × (1 + 〈at, rt〉) denote realized wealth under

allocation a0
t and under the allocation at actually chosen by the agent.

Limited liability contracts. Contracts (πt)t∈N are adapted to public histories observed

by the principal, where public histories consist of past public information (including past

returns) as well as past suggested asset allocations by the agent.9 The principal has com-

mitment power but transfers are subject to the following constraints: in every period T ,

T∑
t=1

πt1πt<0 ≥ −b , and (4)

πT ≤ π, (5)

9To implement the contracts analyzed in the paper, it would be sufficient for the principal to observe
d(at, a

0
t ) – the distance between at and a0

t – rather than at itself.
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where π is a bound on rewards that is independent of N but weakly greater than wd, the

maximum single-period gain in wealth that the agent can generate.

Condition (4) is a strong limited-liability constraint on the agent’s side. The sum of

punishments that the principal can inflict on the agent is bounded above by a fixed amount

b. Punishments may correspond to monetary transfers, as well as non-monetary costs such

as grueling work, sleep deprivation, or tedious and lengthy training.

Condition (5) puts an upper bound on the per-period transfers that the principal can

make (or commit to make) to the agent. Importantly, this limits how long the payment of

wages can be delayed and precludes the possibility of large deferred payments. The fact that

the agent gets paid in real time complements the assumption that the agent is risk neutral

over the range of payoffs.10

These constraints are at the origin of the contracting problem: the agent does not share

on the downside, and rewards must be given in real time rather than delayed until the end.

3 The Benchmark: High-Liability Linear Contracts

The environment described in Section 2 involves both moral hazard and adverse selection:

the agent must acquire information and makes asset allocation decisions that may or may

not benefit the principal; in addition the agent’s talent and the information he may acquire

are private. At this level of generality, informative characterizations of optimal dynamic

contracts are unlikely. Solving for optimal contracts may also be of limited use if the principal

doesn’t have well defined beliefs over the underlying environment.

The paper embraces an alternative robust approach to dynamic contracting. The first

step is to define a class of benchmark contracts that have attractive properties, but violate the

limited liability constraints (4) and (5). The second step of the analysis is to construct a class

of dynamic contracts that do satisfy constraints (4) and (5), and also achieve performance

10Clearly, if it were possible, it would be optimal for the principal to delay payment until the end of the
relationship. This would maximize degrees of freedom with respect to payment design. The use of large
deferred payments would be a considerable stretch the assumption of risk-neutrality.
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approximately as good as that of the benchmark contracts, regardless of the underlying

environment P .

The benchmark contracts of interest in the paper are simple linear contracts, loosely in

the spirit of Vickrey-Clarke-Groves (VCG) mechanisms.11 Specifically, in period t the agent’s

reward πt is a share α of the externality his decisions have on the principal:

∀t, πt = α(wt − w0
t ).

12 (6)

For instance, if α = .2 and the default allocation a0
t is to invest all wealth in risk-free bonds,

the benchmark contract pays the agent 20% of the excess-returns when he beats the risk-free

rate, and charges him 20% of the foregone returns when he under-performs the risk-free

rate. Throughout the paper, the working assumption is that the main problem with such a

contract is not that it is too unsophisticated or provides insufficient incentives, but rather

that it requires unrealistic levels of liability on the part of the agent.13

This working assumption is motivated in two ways. First, one can leverage the extensive

literature pioneered by Holmstrom and Milgrom (1987), which makes the point that when

the agent has a sufficiently rich action set, optimal contracts often must take a linear form.14

In fact, as the example below shows, it is easy to come up with reasonable environments

under which such linear contracts are obviously optimal. Second, and more importantly

for the purposes of this paper, Theorem 1 shows that even when linear contracts are not

optimal, their VCG-like features guarantee a number of attractive properties, including a

lower bound on their performance.

11See Vickrey (1961), Clarke (1971) and Groves (1973).
12Recall that wt and w0

t respectively denote final wealth under the agent’s suggested asset allocation and
under the default, public information, asset allocation. Appendix A extends the analysis to a broader class
of benchmark contracts.

13In this paper the reward rate α is taken as given. Figuring out sensible ways to pick α is the object of
ongoing research. In the spirit of Hartline and Roughgarden (2008), one can devise crude lower bounds by
picking α at random, since this guarantees that at least sometimes, the reward rate will be appropriate.

14See also Sung (1995), Hellwig and Schmidt (2002), or Edmans and Gabaix (2009)
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An example of optimality. Assume that in order to generate flow expected excess returns

ν = E(wt − w0
t |Ft) in period t, the manager must invest a cost

ct = α0ν1ν≤νt +∞1ν>νt , (7)

where νt ∈ R+ can be stochastic, is unknown to the principal, and observed by the agent.

There is a constant marginal cost α0 to generate expected excess returns up to an upper

bound νt. Excess returns above bound νt are infeasible. Note that because νt can follow any

stochastic process, this class of models includes environments in which talented managers

can lose the ability to generate returns for extended periods of time. Clearly, any linear

contract with reward rate α ≥ α0 can achieve the first best. The linear contract such that

α = α0 transfers all the surplus to the principal.

Robust Efficiency Properties. The main motivation for the use of linear contracts as a

benchmark is that they satisfy a number of attractive properties regardless of the probability

space P .

Given a reward rate α, the agent solves optimization problem

max
c,a

E

(
1

N

N∑
t=1

α(wt − w0
t )− ct

)
. (P1)

The corresponding per-period excess returns rα accruing to the principal (net of payments

to the agent) are

rα ≡ inf

{
Ec,a

(
1

Nw

N∑
t=1

wt − w0
t − πt

)∣∣∣∣∣(c, a) solves (P1)

}
.15

The expression for returns rα involves an inf since the agent may be indifferent between

15For concision, the paper focuses on net excess returns accruing to the principal. The analysis can be
extended to total surplus without difficulties.
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multiple policy profiles. In anticipation of technical subtleties to come, it is useful to note

that because the underlying environment is very general, the paper cannot rule-out binding

(or almost binding) global incentive compatibility constraints.

Let rmax denote the per-period excess returns that can be generated when the agent

invests c towards information acquisition in every period and requires no rewards. Recalling

that a∗ is the surplus maximizing allocation strategy given information, we have rmax =

Ec,a∗

(
1
N

∑N
t=1 〈a∗t − a0

t , rt〉
)

.

Theorem 1. Regardless of probability space P, the benchmark contract defined by (6) satis-

fies

(i) (no-loss): expected rewards to the agent are positive if and only if expected re-

turns to the principal are positive; as a consequence, untalented managers screen

themselves out;

(ii) (truthfulness): given information Ft, it is optimal for the manager to pick the

efficient asset allocation a∗;

(iii) (lower bounds on returns): whenever the agent is rational,

rα ≥ (1− α)

(
rmax −

c

αw

)
; (8)

(iv) (history independence): the above properties hold for continuation behavior at

any history.

Point (i) ensures that regardless of the environment P , the principal can never lose surplus

in expectation. Since untalented agents cannot generate positive surplus, this implies that

they cannot obtain positive expected profit. Hence untalented agents are willing to screen

themselves out.16

16Any small participation fee would make it strictly optimal for uninformed agents to screen themselves
out.
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Point (ii) states that allocations are efficient conditional on information. Therefore, the

only agency concern under benchmark contracts is information acquisition.

Point (iii) provides a lower bound for the returns that the principal obtains under the

benchmark contract. For any α, as wealth under management w grows arbitrarily large, the

contract becomes approximately efficient, and the principal obtains a share approximately

1−α of the maximum returns rmax. To illustrate this bound for a finite value of w, consider

the specification c = $5M, rmax = 5% , w = $1Bn and α = 20%. In this case, bound (8)

guarantees that the principal obtains at least 40% of the maximum possible excess returns.

Note that this is more than a share 40% of the maximum surplus since the agent must incur

information acquisition costs.

Finally, point (iv) states that the attractive properties of benchmark contracts hold from

the perspective of any history. Although the paper assumes full commitment, this provides

reassurance that renegotiation issues are limited under linear contracts. This directly echoes

the point made by Holmstrom and Milgrom (1987) that because linear contracts apply con-

stant incentive pressure across histories they limit the scope for gaming and manipulations.

The fact that these efficiency properties hold independently of probability space P mo-

tivates the use of linear contracts as a robust benchmark. The contribution of the paper

is to construct equally robust dynamic contracts that perform approximately as well as the

benchmark contracts, while also satisfying limited liability constraints (4) and (5).17

4 Calibrated Contracts

This section introduces a novel class of dynamic “calibrated” contracts that robustly ap-

proximate the performance of linear contracts while satisfying limited liability constraints

(4) and (5). This section focuses on providing a given agent with appropriate incentives.

17Appendix A shows that no static contract guarantees performance similar to linear contract while also
satisfying limited liability constraints (4) and (5). For instance, option contracts of the form πt = α(wt−w0

t )+

make the agent risk loving, which distorts investment and allocation decisions.
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Section 5 deals with screening. Section 6 relates calibrated contracts to contracts used in

practice.

4.1 The Contract

In every period t, the agent is allowed to invest a share λt ∈ (0, 1) of the principal’s wealth,

while the remaining share 1− λt is invested in the default asset allocation a0
t . At the end of

the period, the agent receives a payment πt.

Specifying investment shares and rewards (λt, πt)t≥1 requires additional notation. For all

periods T and T ′ < T , define

ΠT =
T∑
t=1

πt ; ΣT =
T∑
t=1

wt − w0
t ; ST =

T∑
t=1

λt(wt − w0
t ) (9)

and

ΠT\T ′ =
T∑

t=T ′

πt ; ΣT\T ′ =
T∑

t=T ′

wt − w0
t ; ST\T ′ =

T∑
t=T ′

λt(wt − w0
t ). (10)

Value ΠT corresponds to the payoffs that the agent has obtained; ΣT corresponds to the

excess profits that would have been generated by fully investing according to the agent’s

suggested asset allocation; ST corresponds to the actual excess profits that have been gener-

ated given that only a share λt of wealth w is invested according to the agent’s suggestion.

Values ΠT\T ′ , ΣT\T ′ and ST\T ′ compute the same quantities over time range {T ′, · · · , T}.

The difference ΣT\T ′−ST\T ′ corresponds to the foregone gains from not investing entirely

according to the agent’s allocation between T ′ and T . The difference ΠT −αST corresponds

to the agent’s excess rewards, the target being to reward him a share α of his externality

ST on the principal. Using the notation (x)+ = max{0, x}, investment shares and rewards
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(λt, πt)t≥1 are defined recursively as follows: λ1 = 1, π1 = 0, and for all T ≥ 1

λT+1 ≡
α
[
maxT ′≤T ΣT\T ′ − ST\T ′

]+
[ΠT − αST ]+ + α

[
maxT ′≤T ΣT\T ′ − ST\T ′

]+ (11)

≡ α × maximum foregone gain

excess rewards + α × maximum foregone gain

with the convention that 0
0

= 1, and

πT+1 ≡

 αλT+1(wT+1 − w0
T+1)+ if ΠT ≤ αST

0 otherwise
(12)

≡

 αλT+1(wT+1 − w0
T+1)+ if rewards ≤ α × actual excess returns

0 otherwise
.

Note that the contract specified above satisfies limited liability conditions (4) and (5):

payments (πt)t≥1 are positive and bounded above by αwd. Theorem 2 (stated below) shows

that this class of contracts approximates the performance of benchmark contracts. Some

additional notation is needed. Given a contract specification (λ, π) = (λt, πt)t≥1, let rλ,π

denote the net excess returns delivered by the agent under the corresponding contract:

rλ,π = inf

{
Ec,a

(
1

Nw

N∑
t=1

λt(wt − w0
t )− πt

)∣∣∣∣∣(c, a) solves max
c,a

E

(
1

N

N∑
t=1

πt − ct

)}
.

For any history hT , net returns conditional on hT are

rλ,π|hT = inf

{
Ec,a

(
1

Nw

N∑
t=T+1

λt(wt − w0
t )− πt

∣∣∣∣∣hT
)∣∣∣∣∣(c, a) solves max

c,a
E

(
1

N

N∑
t=1

πt − ct

)}
.

As in Section 3, when the contract in question is the benchmark contract with parameter α,

net returns are denoted by rα and rα|hT .
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Theorem 2 (approximate performance). Pick α0 ∈ (0, 1) and for any η ∈ (0, 1), let α =

α0 +η(1−α0). Consider the calibrated contract (λ, π) defined by (11) and (12). There exists

a constant m independent of time horizon N and probability space P such that,

rλ,π ≥ (1− η)rα0 −m
1√
N

(13)

∀hT , rλ,π|hT ≥ (1− η)rα0|hT −m
1√
N
. (14)

It follows that for N large enough, the calibrated contract described by (11) and (12)

generates a share approximately 1− η of the returns the principal obtains under the bench-

mark contract of parameter α0. The mechanics underlying Theorem 2, and the reason why

an additional wedge η is needed will be discussed in Section 4.2.

Note that for Theorem 2 to hold, it is not sufficient to just reward the agent according to

the payment rule (πt)t≥1 defined by (11) and (12). It is important that the principal actually

invest only shares (λt)t≥1 of her wealth according to the agent’s suggestion. Indeed the

reward scheme (πt)t≥1 does not to induce perfectly good behavior from the agent.18 Rather,

the payment scheme (πt)t≥1 reduces misbehavior to the point where it can be resolved by

using the cautious investment rule specified by (λt)t≥1.

4.2 The Mechanics of Calibrated Contracts

This idea behind calibrated contracts is to identify key incentive properties that hold under

the benchmark contract and calibrate payments (πt)t≥1 to the agent as well as investment

shares (λt)t≥1 so that the same incentive properties are approximately satisfied under the

calibrated contract. The properties that calibrated contracts attempt to satisfy are as follows.

18For instance, an agent who has lost or never had any informational advantage may systematically pick
allocations at that are inferior to a0

t , simply because they are different and, through volatility, induce a
non-zero probability of reward.
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For all histories hT ,

ΠT = αST (15)

∀T ′ ≤ T, ST\T ′ ≥ ΣT\T ′ . (16)

In words, the agent receives a share α of his actual performance ST , and over any time interval

{T ′, · · · , T}, his actual performance ST\T ′ (although potentially hindered by investment

shares λt ≤ 1) is at least as high as his potential performance ΣT\T ′ .
19 Note that the family

of inequalities (16) can be summarized by the single inequality

max
T ′≤T

ΣT\T ′ − ST\T ′ ≤ 0.

Let us now show how (11) and (12) calibrate parameters (λt, πt)t≥1 so that these properties

hold approximately, while satisfying limited liability constraints (4) and (5). Define regrets

R1,T ≡ ΠT − αST

R2,T ≡ max
T ′≤T

ΣT\T ′ − ST\T ′ .

RegretR1,T measures how overpaid the agent has been, while regretR2,T measures maximum

foregone profits from not fully investing according to the agent’s allocation. The goals are:

(i) to keep R1,T small so that the agent’s reward ΠT is a share approximately α of his actual

externality ST on the principal; (ii) to keep R+
2,T small, so that the foregone returns are not

large.

These goals can be achieved by following the approach of Blackwell (1956) and Hannan

19To obtain only inequality (13) in Theorem 2, it would be sufficient to consider only inequality ΣT ≤ ST

rather than the full family of inequalities described by (16). Considering the full family of inequalities (16)
yields the history independent performance bounds (14).
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(1957).20 Define RT ≡ (R1,T , αR2,T ) and ρT ≡ RT −RT−1 the vector of flow regrets.21 In

order to keep regrets (R1,t)t≥1 and (R2,t)t≥1 small, it is sufficient to keep vector RT small.

This can be achieved by choosing sequences (πt)t≥1 and (λt)t≥1 so that

∀T ≥ 1, ∀wT+1, ∀w0
T+1,

〈
R+
T , ρT+1

〉
≤ 0. (17)

Inequality (17) is known as an approachability condition, and ensures that flow regrets ρT+1

point in the direction opposite to that of aggregate regrets RT . This puts strong bounds on

the speed at which aggregate regrets (RT )T≥1 can grow.

By construction

R2,T+1 =

 (1− λT+1)(wT+1 − w0
T+1) +R2,T if R2,T ≥ 0

(1− λT+1)(wT+1 − w0
T+1) if R2,T < 0

.

Hence, it follows that R2,T+1 = (1 − λT+1)(wT+1 − w0
T+1) + R+

2,T . Thus, condition (17) is

equivalent to

[πT+1 − αλT+1(wT+1 −w0
T+1)]R+

1,T + α2
[
(1− λT+1)(wT+1 − w0

T+1) +R+
2,T −R2,T

]
R+

2,T ≤ 0.

Noting the identity (R+
2,T −R2,T )R+

2,T = 0, it follows that approachability condition (17) is

equivalent to

[πT+1 − αλT+1(wT+1 − w0
T+1)]R+

1,T + α2
[
(1− λT+1)(wT+1 − w0

T+1)
]
R+

2,T ≤ 0

⇐⇒ πT+1R+
1,T + α[λT+1R+

1,T + (1− λT+1)αR+
2,T ](wT+1 − w0

T+1) ≤ 0

Hence approachability condition (17) can be satisfied for any realization of wT+1 and w0
T+1

20See also Foster and Vohra (1999) or Cesa-Bianchi and Lugosi (2006). Regret measure R2,T is specifically
related to “tracking” regrets, as discussed in Cesa-Bianchi and Lugosi (2006).

21Vector RT is defined as (R1,T , αR2,T ) rather than (R1,T ,R2,T ) only because it leads to a slight im-
provement in performance bounds.
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by setting

λT+1 =
αR+

2,T

R+
1,T + αR+

2,T

and πT+1 =

 αλT+1(wT+1 − w0
T+1)+ if R1,T ≤ 0

0 if R1,T > 0

which corresponds to the calibrated contract defined by (11) and (12).

The following lemma shows that under the contract defined by (11) and (12), incentive

properties (15) and (16) are approximately satisfied. Recall that dt = supr∈R | 〈at − a0
t , r〉 |

denotes the magnitude of positions taken by the agent in period t.

Lemma 1 (approximate incentives). For all T , all T ′ ≤ T and all possible histories,

ΣT\T ′ − ST\T ′ ≤ w

√√√√ T∑
t=1

d2
t (18)

−αwd ≤ ΠT − αST ≤ αw

√√√√ T∑
t=1

d2
t . (19)

In words, Lemma 1 means that incentive properties (15) and (16) hold at any possible

history hT , up to an error term of order O(
√
T ). Note that this holds sample path by sample

path, rather than in expectation or in equilibrium.

Proof. Let us first show that ||R+
T ||2 ≤ α2w2

∑T
t=1 d

2
t . The proof is by induction. The

property clearly holds at T = 1. Assume it holds at T . Consider the case where R2,T+1 > 0.

Since approachability condition (17) holds, we have that

||R+
T+1||

2 ≤ ||R+
T + ρT+1||2 = ||R+

T ||
2 + 2

〈
R+
T , ρT+1

〉
+ ||ρT+1||2

≤ ||R+
T ||

2 + ||ρT+1||2.

In addition ||ρT+1||2 = α2λ2
T+1(wT+1 − w0

T+1)2 + α2(1− λT+1)2(wT+1 − w0
T+1)2 ≤ α2w2d2

T+1.

Altogether this shows that the induction hypothesis holds when R2,T+1 > 0. A similar proof
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holds when R2,T+1 < 0, taking into account that in this case, R2,T+1 = (1 − λT+1)(w1
T+1 −

w0
T+1). Hence, by induction, this implies that for all T ≥ 1, ||R+

T ||2 ≤ α2w2
∑T

t=1 d
2
t . This

proves (18) and the right-hand side of (19).

The left-hand side of (18) is also proven by induction. If ΠT ∈ [αST − αwd, αST ], then

R1,T = 0, αT+1 = α and λT = 1. Hence by construction, ΠT+1 ≥ αST+1 − αwd. If instead

ΠT > αST , then by definition of d, ΠT+1 ≥ αST+1 − αwd. This implies the left-hand side of

(19).

As the next lemma shows, the approximate incentive conditions given by Lemma 1 imply

performance bounds for the corresponding contracts.

Lemma 2. Pick α0 ∈ (0, 1) and for any η ∈ (0, 1) let α = α0 + η(1 − α0). Consider a

contract (λ, π) and numbers A,B and C such that for all final histories hN , ΣN − SN ≤ A

and −B ≤ ΠN − αSN ≤ C. Then

rλ,π ≥ (1− η)rα0 −
1

Nw

[
C +

1− η
η

(αA+B + C)

]
.

Theorem 2 is an immediate corollary of Lemmas 2 and 1. Intuitively, Lemma 1 shows that

the calibrated contract (λ, π) defined by (11) and (12) gets incentives approximately right.

Lemma 2 implies that when incentives are approximately right, then performance must be

approximately right as well. While this last result seems natural, it isn’t immediate. When-

ever global incentive constraints are binding or almost binding under the benchmark linear

contract of parameter α0 getting incentives slightly wrong may result in dismal performance.

This would be the case if under the benchmark contract, the agent is indifferent between

working hard and not working at all. By sharing an additional fraction η of her returns,

the principal ensures that (almost) binding global incentive compatibility constraints do not

compromise performance. Madarász and Prat (2010) make the same point in a screening

context.
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A Simulation. Figure 1 illustrates the mechanics of calibrated contracts, and Lemma 1 in

particular. Figure 1(a) plots a sample path for potential accumulated returns (ΣT )T≥1. There

is significant variance and sharp drops in performance are possible. Figure 1(b) shows the

induced patterns of investment shares (λT )T≥1. When performance drops, investment shares

diminish and when performance improves, investment shares grow. Note that shares λt are

continuous rather than 0-1. This is essential for Lemma 1 to hold.22 As Figure 1(c) illustrates,

this implies that actual excess returns (ST )T≥1 track the growth of potential returns (ΣT )T≥1

but do not fall as much as (ΣT )T≥1 when performance drops. This allows to keep tight the

relationship between cumulated rewards (ΠT )T≥1—which are necessarily weakly increasing—

and scaled actual returns (αST )T≥1. A direct implication of this, illustrated in Figure 1(d),

is that the effective reward rate of the agent (ΠT/ST )T≥1 stays close to the target reward

rate α. More precisely, poor performance leads to slow divergence while good performance

leads to quick convergence. Because the effective reward rate is only approximately equal to

α, this perturbs incentives a little bit and it is necessary to use a target reward rate α strictly

greater than α0 to emulate the performance of the benchmark contract with parameter α0.

4.3 Robustness to Accidents

Before turning to screening, it is worth noting an additional property of calibrated contracts:

they are robust to the possibility of “unexpected accidents” during which the agent performs

particularly badly over an extended amount of time. Figure 1(c) illustrates this in a striking

way: whenever potential performance (ΣT )T≥1 drops by a significant amount, calibrated

contracts significantly limit the extent of the drop in actual performance (ST )T≥1. In turn,

this makes recovering from large performance drops possible.

This section expands on this point. Imagine that an accident can occur over some un-

known time interval [T1, T2] of arbitrary length. For instance, there may be a mistake in

22See Foster and Vohra (1999).
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Figure 1: the behavior of calibrated contracts for a given sample path of potential returns
(ΣT )T≥1, with target reward rate α = 20%.

the agent’s trading strategy, a bias in his data, or the agent may be temporarily irrational.

During time interval [T1, T2]—in the accident state—the agent uses an exogenously specified

allocation strategy aM
t . This strategy may be arbitrarily bad (within the bounds imposed by

Assumption 1) and need only be measurable with respect to FN . For instance, during the

lapse of the accident, the agent could pick the worst ex post asset allocation in every period.

In this environment, the benchmark linear contract is no longer sufficient to guarantee
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good performance. Accidents can undo all the profit generated by the well incentivized agent

in his normal state. Strikingly, in spite of accidents, calibrated contracts are such that the

excess returns generated by the agent will be approximately as high as the returns he could

generate when accidents are lucky, i.e. when the exogenous allocation during accident states

is

∀T ∈ [T1, T2], aMM
T =

 a0
T if

∑T2

t=T1
wM
t − w0

t < 0

aM
T if

∑T2

t=T1
wM
t − w0

t > 0

where wM
t is the realized wealth under the aM

t at time t. Denote by rM
λ,π the net expected

returns to the principal when accidental behavior is aM
t and the calibrated contract is used.

Denote by rMM
α the net expected returns to the principal when accidental behavior is aMM

t and

the benchmark contract of parameter α is used. The following holds.

Theorem 3 (accident proofness). Pick α0 and for any η > 0, set α = α0 + η(1−α0). There

exists a constant m, independent of N and P such that,

rM
λ,π ≥ (1− η)rMM

α0
− m√

N
.

5 Screening

As it is, the calibrated contract defined by (11) and (12) does not induce untalented managers

to screen themselves. Rewards are positive, and a sufficiently long-lived uninformed agent can

obtain large expected payoffs from luck and volatility alone. Indeed, imagine that the agent

has no information and all assets have the same expected returns. By systematically picking

assets different from the benchmark allocation, the agent ensures that (ΣT )T≥1 is a martingale

with volatility bounded away from 0. Hence, under appropriate time normalization, (ΣT )T≥1

behaves like a Brownian motion.23 Lemma 1 implies that the agent’s payoff in period T

satisfies ΠT ≥ αΣT − αwd(1 +
√
T ). In addition, since ΠT is weakly increasing in T , it

23See, for instance, Billingsley (1995), Theorem 35.12.
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follows that ΠN ≥ maxT≤N ΣT − αwd(1 +
√
N). Hence, given that maxT≤N ΣT behaves

approximately like the maximum of a Brownian motion, the agent can obtain rewards of

order
√
N with non-vanishing probability.

A simple modification of the contract described by (11) and (12) achieves screening by

imposing an initial participation cost −b and only paying the agent when his performance

is above a dynamic hurdle ΘT which depends on the size of positions he has been taking.

Given a free parameter M > 0, define

ΘT ≡ 2w

1 +

√√√√d
2

+
T∑
t=1

λ2
td

2
t


√√√√M + ln

(
d

2
+

T∑
t=1

λ2
td

2
t

)
, (20)

where dt = suprt∈R | 〈at − a0
t , rt〉 | and λtdt measures the size of the agent’s effective bet

λt(at− a0
t ) away from the default allocation a0

t (note that by Assumption 1, dt ≤ d). Hurdle

ΘT is an aggregate measure of how active the agent has been. If the agent makes significant

bets away from a0
t in every period then ΘT will be of order

√
T lnT . If the agent makes few

bets, hurdle ΘT will remain small. The quantity d
2

+
∑T

t=1 λ
2
td

2
t is a measure of time under

which (ΣT )T≥1 will have at most the variation of a standard Brownian motion.

Hurdled calibrated contracts are defined by a sequence (λt, π̂t, π
Θ
t )t≥1. Value λt is still the

share of wealth actually invested by the agent. For t > 1, reward πt is paid to the agent if

and only if St ≥ Θt. For t > 1, the actual (hurdled) reward πΘ
t is therefore πΘ

t = 1St≥Θtπt.
24

For t = 1, πΘ
1 = −b.

This hurdled contract coincides with the baseline calibrated contract defined in Section

4, except that: (i) the agent must pay a participation fee −b in the first period, and (ii) the

agent obtains rewards only when actual performance ST is above a hurdle ΘT which grows

at a rate at most
√
T lnT . Theorem 4 will shows that this contract induces uninformed

agents to screen themselves in the first period, and imposes only a moderate incentive cost

24Note that recursion equations (11) and (12) still use ΠT =
∑T

t=1 πt rather than hurdled aggregate
payment ΠΘ

T =
∑T

t=1 π
Θ
t .
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on informed agents.

An intuitive rationale for the form of hurdle ΘT is as follows. Imagine for simplicity

that the agent is frequently active, i.e.
∑T

t=1 d
2
t is of order T . Then hurdle ΘT is of order

√
T lnT . As has been discussed, an uninformed agent can guarantee that ΣT is comparable

to the maximum of a Brownian motion. The law of the iterated logarithm implies that with

probability 1, as T gets large, maxT ′≤T ΣT ′ is of order
√
T ln lnT .25 Because

√
T ln lnT√
T lnT

goes to

0 as T grows large, hurdle ΘT insures that uniformed agents have very little hope to obtain

unjustified returns. Indeed, the following result holds.

Lemma 3 (hurdle effectiveness). If the agent is uninformed, then for any allocation strategy

a,

Ea

(
N∑
t=1

1St≥Θt

)
≤ π2

2
exp(−2M),

where π is the constant 3.1415 . . .

As the next lemma shows, the use of hurdles comes only at a moderate incentive cost.

Lemma 4 (approximate incentives). For all T , T ′ < T , and all paths of play, we have that

ΣT\T ′ − ST\T ′ ≤ w

√√√√ T∑
t=1

d2
t (21)

−αΘT − αwd− b ≤ ΠT − αST ≤ αw

√√√√ T∑
t=1

d2
t . (22)

Combining Lemmas 2, 3 and 4 yields the main result of this section. Denote by rλ,πΘ

the net expected per-period returns generated by the agent under the hurdled calibrated

contract.

Theorem 4 (performance with screening). Pick α0 ∈ (0, 1) and for any η ∈ (0, 1), let

α > α0 +η(1−α0). There exists a constant m independent of time horizon N and probability

25See Billingsley (1995), Theorem 9.5.
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space P such that for all hT ,

rλ,πΘ|hT ≥ (1− η)rα0|hT −m
√

lnN

N
(23)

Furthermore, whenever −b+ αwd× π2

2
exp(−2M) < 0, it is strictly optimal for uninformed

agents not to participate.

The combination of initial fee −b and hurdle Θt induces early screening by uninformed

agents. Hurdle Θt is large enough that uninformed agents have little hope to be rewarded by

luck but small enough that it does not significantly affect the incentives of informed agents.

The penalty which was of order 1√
N

in Theorem 2 is now of order
√

lnN
N

. The next lemma

provides conditions under which the performance loss from screening is in fact of order 1√
N

.

Assumption 2 (grainy returns). Let (c, a∗) denote the agent’s policy under the benchmark

contract with rate α0. There exists ξ > 0 such that whenever Ec,a∗ [wt − w0
t |Ft] > 0, then

Ec,a∗ [wt − w0
t |Ft] > ξ.

Theorem 5. Pick α0 and for any η > 0, set α = α0 + η(1 − α0). If Assumption 2 holds,

there exists a constant m such that for all N and all probability spaces P,

rλ,πΘ ≥ (1− η)rα0 −m
1√
N
.

Indeed, whenever Assumption 2 holds it can be shown that hurdles grow at a slow rate

compared to expected excess returns. In fact the expected number of payments that are

omitted because of hurdles is bounded above independently of N .
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6 Discussion

6.1 Relation to High-Watermark Contracts

High-watermark contracts. The calibrated contracts described in Section 4 and 5 are

closely related to the high-watermark contracts frequently used in the financial industry (see

for instance Goetzmann et al. (2003) or Panageas and Westerfield (2009)). High-watermark

contracts are structured as follows: at time T , the investment share λT is always 1, and the

agent gets paid

πwmk
T = α

(
T∑
t=1

wt − w0
t −max

T ′<T

[
T ′∑
t=1

wt − w0
t

])+

.26 (24)

Quantity maxT ′<T

[∑T ′

t=1 wt − w0
t

]
represents the maximum historical returns at time T —

i.e the high-watermark. The agent only gets paid when he improves on his own historical

performance. Note that high-watermark contracts are dynamic and satisfy limited liability

constraints (4) and (5). In particular, for all T , πT ∈ [0, αwd].

High-watermark contract, as well as calibrated contracts, attempt to reward the agent a

share α of his externality on the principal. In other words, both types of contracts attempt to

keep aggregate rewards ΠT close to αST . Lemma 1 shows that calibrated contracts achieve

this goal for any realization of uncertainty and any allocation strategy. High-watermark

contracts also do well in this respect, provided that the sequence of returns does not have

prolonged downturns. For instance, if an agent has performance (1, 1, 1, 1, · · · ), then SN = N

and Πwmk
N = αN = αSN . If the agent has performance (1,−1, 1,−1, ·), then SN ∈ {0, 1} and

Πwmk
N = α, so that Πwmk

N = αSN + o(N). In this respect, high watermark contracts do much

better than static option contracts of the form πt = α(wt − w0
t )

+, which would reward the

agent αN/2.

26This is in fact slightly different from standard high-watermark contracts. Payments under high-
watermark contracts are typically based on gross performance wt − w rather than on performance net
of default returns wt − w0

t .
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The value of jointly calibrating rewards and investment shares. An important

issue with high-watermark contracts—which calibrated contracts resolve—is that they do

not behave well if the agent’s performance goes through an extended downturn. This is

illustrated by Figure 2(a). Whenever there is an extended drop in performance, the relation-

ship between rewards ΠT and performance αST breaks down. Indeed ΠT is by construction

weakly increasing while under the high-watermark contract, αST can decrease in arbitrary

ways. This has two implications. First, because the agent does not suffer from extended

downturns, an agent who has lost the ability to generate positive return (e.g. his informa-

tion has become unreliable) may prefer to make negative expected value investments that

generate variance, rather than admit he has become uninformed. Second, if a talented agent

has been unlucky and experienced a drop in returns, the difficulty of catching up with a high

watermark may discourage investment altogether.

As Figure 2(b) shows, calibrated contracts keep tight the relationship between ΠT and

αST by calibrating investment shares so that actual performance ST has limited downturns

without losing too much on the growth of potential returns ΣT . As a result, extended down-

turns have a much more limited impact on incentives. As was noted previously, investment

shares λt must move smoothly with performance. Rather than a stop-loss provision, it is more

accurate to think of the calibrated investment shares (λt)t≥0 as continuously implementing

a robust option on the agent’s potential performance ΣT .27

Screening. Unlike high-watermark contracts, the contracts described in this paper achieve

screening by using hurdles that link payoffs to the size of positions that the agent has been

taking. Given an initial participation cost −b, these activity based hurdles insure that it is

not viable strategy for uninformed agents to participate. Note that these hurdles depend

only on activity measure dt = suprt∈R | 〈at − a0
t , rt〉 |. In particular the actual asset allocation

27See DeMarzo et al. (2009) for a discussion of the relation between approachability methods and robust
option pricing.
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Figure 2: high watermark and calibrated contracts for a sample path of potential returns
(ΣT )T≥1, with target reward rate α = 20%.

chosen by the agent need not be made public, which matters if the agents are worried about

privacy.

Note also that while such hurdles reduce incentives, they are specifically chosen to have

minimal impact on talented agents. In particular, whenever returns are grainy, talented

agents can deliver significant returns without taking large aggregate positions and the use

of hurdles hardly reduces their payoffs.

In addition note that the use of an accurate counter-factual performance measure w0
t

is essential for the success of the screening strategy. Indeed, it ensures that whenever the

agent is uninformed, then ΣT =
∑T

t wt−w0
t is a martingale with weakly negative drift (i.e. a

surmartingale). Not all contracts have this property. Imagine for instance that the an ex ante

counter factual performance measure w0
t = E(w0

t |F1) is used. Because, ΣT =
∑T

t=1 wt − w0
t

is not a martingale with weakly negative drift, there can be non-vanishing probability that

a fixed asset allocation beat period 1 expectations w0
t arbitrarily many times. As a result

screening cannot be achieved using ex ante counterfactual performance measures.
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Absent Features. Finally, a surprising property of the calibrated contracts developed in

Sections 4 and 5 is that they do not require the use of contractual provisions often deemed

necessary for good performance: agents are not required to hold a significant amount of the

asset allocation they are suggesting and there is no use of clawbacks or deferred payments.

Of course this doesn’t mean that such provision aren’t useful, especially if the agent’s horizon

is small.

6.2 Future Work

This paper develops a robust approach to dynamic contracting in two steps: the first step

identifies high-liability linear contracts that satisfy attractive efficiency properties regardless

of the underlying environment; the second step shows how to approximate the performance

of benchmark contracts using limited-liability dynamic contracts. The contracting strategy

is to calibrate rewards to the agent as well as the share of wealth he manages, so that key

properties of the benchmark contract are approximately replicated. The resulting calibrated

contracts are simple, and perform approximately as well as an attractive benchmark under

very general conditions. The simplicity of the results is encouraging and suggests that the

approach might be fruitfully applied in other settings.

From a theoretical perspective, a first valuable extension would be to allow for risk-

aversion on both sides. Appendix A develops extensions to environments where the principal

is risk averse or the agent may have varying marginal utility of income, but more works

remains to be done on that issue. For instance, the calibration strategy described in Section

4 results in unnecessary variation in the rewards to the agent: if he has been performing well,

but underperforms one period, he does not receive rewards in the following period. When

the agent is risk-averse, such a calibration strategy leads to inefficiencies and smoother

calibration techniques become desirable.

Another avenue for research is to develop robust approaches to pick an appropriate reward
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rate α for the benchmark linear contract. In this respect, it may be fruitful to consider multi-

agent mechanisms that may help extract information from agents. Considering multi-player

environments may also be interesting beyond the principal-agent setting that this paper

focuses on. For instance many attractive allocation mechanisms, such as VCG, require agents

to make significant payments and are therefore ill-suited in environments where agents are

severely cash constrained. A dynamic calibration approach such as the one developed in this

paper may help relax such limited liability constraints.

Finally, with respect to applications, it seems important to determine whether calibrated

contracts really do induce approximately good behavior from agents. Indeed, Theorems 2

and 4 may place unrealistic confidence in the agent’s ability to understand the incentive

properties of calibrated contracts. This is ultimately an empirical question. An advantage

of the calibrated contract approach is that it lends itself naturally to realistic experiments

using actual returns data, since the contracts should perform well regardless of the agent’s

beliefs over the process for returns.

Appendix

A Additional Results and Extensions

A.1 Static Contracts under Limited Liability

This appendix shows that there is no limited-liability static contract that can approximate

the performance of the high-liability benchmark contract described in Section 3 ( even though

the benchmark contract is itself static). Option-like static contracts that reward the agent

according to α(wt−w0
t )

+ have well-known issues: uninformed agents can obtain large payoffs,

and talented agents may be induced to choose asset allocations with large variance and

negative expected value. All static limited-liability contracts suffer from similar issues.
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Consider contracts such that for all t ≥ 1 reward πt depends only on returns at time

t (i.e. πt = πt(wt, w
0
t )) and πt ∈ [−b, wt]. Note that this is actually a weaker limited

liability constraint than that imposed by conditions (4) and (5). The following lemma uses

an argument similar to that of Foster and Young (2010) to show that such contracts cannot

simultaneously screen agents and reward them a share of the surplus they create. The proof

requires that the ex post optimal asset allocation be uncertain from the perspective of public

information, i.e. any selection at ∈ arg maxa∈A 〈a, rt〉 is not F0
t −measurable.

Lemma A.1. Consider a one-shot reward function πt satisfying limited liability, and such

that for all distributions wt of realized wealth,

Eπt ≥ αE[wt − w0
t ].

There exists α > 0 such that for w large enough, an untalented manager can obtain expected

profit at least αw.

Proof. Let at denote an ex post optimal asset allocation, i.e. at ∈ arg maxa∈A 〈a, rt〉 . By

assumption, we have that r ≡ E 〈at − a0
t , r

t〉 > 0. Since A is a compact set, for M large

enough, there exists M points {a1, · · · , aM} ⊂ A such that for all a ∈ A, there exists

k ∈ {1, · · · ,M} satisfying for all rt, | < ak − a, rt > | ≤ r/2. Hence there is a selection aMt

of assignments in {a1, · · · , aM} such that E 〈aM − a0
t , rt〉 > r/2.

Consider the allocation strategy ã, consisting of independently and uniformly picking an

allocation a ∈ {a1, · · · , aM}. The agent’s expected payment satisfies

Eãπt ≥
1

M
EaM

t
πt ≥

1

2M
αrw.

This concludes the proof.

A corollary of this is that if the agent receives significant rewards using static limited

liability contracts, there can be no screening. Such misaligned incentives can also affect
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talented managers. Imagine that at each time t there is positive probability that the in-

formation Ict acquired by the manager is such that the optimal portfolio is the same under

Ft and F0
t , i.e. expert information is not helpful. When this happens, the manager cannot

deliver excess returns. However, by deviating from truthtelling, the manager can obtain an

expected payoff of at least αw.

A.2 A More General Principal-Agent Framework

This appendix extends the analysis to a principal-agent framework more general than the

financial contracting problem studied in the paper. The principal and the agent are still risk-

neutral, but in every period the agent suggests and implements an action at ∈ A, where A is

a potentially non-convex set of actions. Every period, a state of the world rt is drawn, which

given action a yields observable payoffs w(a, rt) to the principal. Cost ct may now represent

the cost of information, as well as the cost of making a specific action available. Action a0
t

is the action that the principal would (could) implement on her own. The main difference

is that because set A need not be convex, the principal must use randomized strategies to

calibrate her contract with the agent.

The calibrated contract of Section 4 can be adapted as follows. Parameter λt now denotes

the probability that the principal follow the action suggested by the agent.28 Let aλt denote

the action actually taken at time t. Denote by ψt ≡ w(at, rt)−w(a0
t , rt) the potential excess

returns and by ψλt ≡ w(aλt , rt)−w(a0
t , rt) the realized excess returns. As in Section 4, define

ΣT =
T∑
t=1

ψt, ΠT =
T∑
t=1

πt, ST =
T∑
t=1

ψλt ,

as well as ΣT\T ′ = ΣT − ΣT ′−1, ΠT\T ′ = ΠT − ΠT ′−1 and ST\T ′ = ST − ST ′−1. As in Section

28For calibration results to hold, it is important that the agent not be able to condition his suggested
action on the outcome of the principal’s randomization. Note that the agent may also take the action on
behalf of the principal. In that case λt should be interpreted as the probability that the principal approve
the agent’s proposed course of action.
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4, regrets are defined by

R1,T ≡ ΠT − αST and R2,T ≡ max
T ′≤T

ΣT\T ′ − ST\T ′ .

Let RT = (R1,T , αR2,T ). Contract (λt, πt)t∈N is defined by

λT+1 =
αR+

2,T

R+
1,T + αR+

2,T

and πT+1 =

 0 if R1,T > 0

αψ+
T+1 if R1,T ≤ 0

(25)

with the convention that 0
0

= 1. Lemma 1 extends as follows.

Lemma A.2 (approximate incentives). For all T , and any strategy (c, a) of the agent, we

have that

Ec,aΣT − Ec,aST ≤ wd
√
T (26)

−αwd ≤ ΠT − αEc,aST ≤ αwd
√
T . (27)

Proof. The left-hand side of (27) follows from a proof identical to that of the left-hand side

of (19).

Let us turn to the other inequalities. Let ρT = RT − RT−1 denote flow regrets, and

observe that Ec,a

(〈
R+
T−1, ρT

〉)
≤ 0. Hence, a proof identical to that of Lemma 1 yields that

∀(c, a), Ec,a||R+
T ||

2 ≤ (αdw)2T.

Finally note that by Jensen’s inequality, for all i ∈ {1, 2},

Ec,a(R+
i,t) ≤ Ec,a

(√[
R+
i,t

]2) ≤√Ec,a

([
R+
i,t

]2) ≤ wd
√
T .

This implies (26) and the right-hand side of (27).
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Given Lemma A.2, a proof identical to that of Lemma 2 yields the following performance

bound: pick α0, η > 0 and let α = α0 + η(1− α0). There exists m independent of N and P

such that

rλ,π ≥ (1− η)rα0 −
m√
N

where returns r generated by some contract are given by r = E
[

1
N

∑N
t=1w(aλt , rt)− w(a0

t , rt)
]
,

and the expectation depends on the policy induced by the relevant contract.

A.3 Risk Aversion

This paper considers the case where both the principal and the agent have quasilinear pref-

erences. Extending the analysis to the case where either the principal or the agent are risk

averse presents a number of challenges, most of which are left for future research. A sig-

nificant difficulty relates to the provision of insurance by the agent. Indeed, if a significant

portion of first best surplus is derived by having the agent provide insurance to the principal,

it seems unlikely that such surplus can be generated using only positive transfers from the

principal to the agent. This section is able to provide a partial extension of the calibrated

contracts analyzed in the paper to the case where the agent is risk neutral while the principal

is risk averse.

Consider an increasing concave utility function u. This section considers the case where

the agent is risk-neutral while the principal has utility function u over flow wealth. This

section shows how to construct calibrated contracts such that payoffs to the agent and

residual utility to the principal satisfy

N∑
t=1

πt ' ν
N∑
t=1

[u(wt − πt)− u(w0
t )], (28)

where ν > 0 is a design parameter used to shift surplus between the principal and the agent.

If this condition holds, it ensures that whenever the agent gets positive surplus, the principal
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must obtain a commensurate expected payoff.29 Note that if u(w) = w, then condition (28)

simply boils down to the condition that
∑N

t=1 πt ' α
∑N

t=1wt − w0
t with α = ν/(1 + ν), i.e.

the framework considered in the bulk of the paper.

Preliminaries. Let us begin by providing a generalization of Assumption 1.

Assumption 3. There exists d such that for all For all (a, a′) ∈ A2 and all rt ∈ R,

|u(w 〈a, rt〉)− u(w 〈a′, rt〉)| ≤ d.

In addition, it is assumed that there exists κ > 0 such that for any possible realized

wealth wt, u
′(wt) ≤ κ. Let φ(·, ·) denote the implicit function uniquely defined by

∀w1, w0, φ(w1, w0) = ν [u(w1 − φ(w1, w0))− u(w0)] , (29)

Note that by construction, |φ(wt, w
0
t )| ≤ νd. The following properties will be useful in the

analysis.

Lemma A.3. (i) φ(w,w) = 0 for all w;

(ii) φ(·, ·) is increasing and concave in its first argument;

Proof. Point (i) and the fact that φ is increasing in its first argument follow immediately

from (29). The fact that φ(w1, w0) is concave in w1 follows from concavity of u. For any

values, w0, w1, w2 and ρ ∈ (0, 1), let us define

φ1 = ν[u(w1 − φ1)− u(w0)] ; φ2 = ν[u(w2 − φ2)− u(w0)]

φρ = ρφ1 + (1− ρ)φ2 and wρ = ρw1 + (1− ρ)w2.

29An important motivating example for this extension is the case in which u = log and w0
t = w

〈
a0

t , rt

〉
,

with a0
t ∈ arg maxa∈A E

[
log(w 〈a, rt〉)|F0

t

]
. The corresponding calibrated contract would be appropriate if

wealth is accumulated (with compounded returns) and the principal has log utility over the final outcome.
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By concavity of u we have that

ν[u(wρ − φρ)− u(w0)] ≥ ν[ρu(w1 − φ1) + (1− ρ)u(w2 − φ2)− u(w0)]

≥ ρφ1 + (1− ρ)φ2.

Hence, it must be that φ(wρ, w0) ≥ ρφ(w1, w0) + (1− ρ)φ(w2, w0), i.e. φ(·, ·) is concave in its

first argument.

Calibrated contracts. For any sequence of adapted investment shares λ = (λt)t≥0 and

actual payments (πt)t≥0, let wλt = λtwt + (1− λt)w0
t , and

ΣT =
T∑
t=1

ν[u(wt − πt)− u(w0
t )] ; ΠT =

T∑
t=1

πt ; ST =
T∑
t=1

ν[u(wλt − πt)− u(w0
t )]. (30)

For any T ′ < T , let ΣT\T ′ = ΣT − ΣT ′−1, ΠT\T ′ = ΠT − ΠT ′−1 and ST\T ′ = ST − ST ′−1. In

addition, let

R1,T = ΠT − ST and R2,T = max
T ′<T

[ΣT\T ′ − ST\T ′ ]

The objective is to calibrate payments (πt)t≥0 and investment shares (λt)t≥0 so that R1,T

and R+
2,T be remain small compared to T .

As in Section 4, this can be achieved by setting

λT+1 =
R+

2,T

R+
1,T +R+

2,T

and πT+1 =

 0 if R1,T > 0

φ(wλt , w
0
t )

+ if R1,T ≤ 0
(31)

Indeed, under this calibrated contract the following extension of Lemma 1 holds.

Lemma A.4. For all T and T ′ < T , we have that

ΣT\T ′ − ST\T ′ ≤ νd
√
T (32)

−νd ≤ ΠT − ST ≤ νd
√
T . (33)
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Proof. The first part of the proof shows that as T grows large, ||R+
T || remains small compared

to T . Let RT = (R1,T ,R2,T ) and ρT = RT −RT−1. We have that

R2,T+1 = ν
[
u(wt − πt)− u(w0

t )− [u(wλt − πt)− u(w0
t )]
]

+R+
2,T .

In addition R+
2,T (R+

2,T −R2,T ) = 0. Hence, it follows that

〈
R+
T , ρT+1

〉
= R+

1,TπT+1 + ν
(
R+

2,T [u(wt − πt)− u(w0
t )]− [R+

1,T +R+
2,T ][u(wλt − πt)− u(w0

t )]
)
.

We want to show that
〈
R+
T , ρT+1

〉
≤ 0. Consider first the case where πT+1 = 0. Given

concavity of u, simple algebra yields that

〈
R+
T , ρT+1

〉
≤ R+

1,TπT+1 + ν
(
R+

2,T − λT+1[R+
1,T +R+

2,T ]
)

[u(wt − πt)− u(w0
t )]

≤ 0,

where the last inequality follows from the fact that (λt, πt)t≥0 satisfies (31). Now consider

the case where πT+1 > 0. By construction, we must have that wT+1 > w0
T+1 and πT+1 =

φ(wλT+1, w
0
T+1). By definition of φ and using the concavity of φ in its first argument (Lemma

A.3), as well as the fact that (λt, πt)t≥0 satisfies (31), we obtain that

〈
R+
T , ρT+1

〉
= R+

1,TπT+1 +R+
2,Tφ(wT+1, w

0
T+1)− [R+

1,T +R+
2,T ]φ(wλT+1, w

0
T+1)

≤ R+
1,TπT+1 +

(
R+

2,T − λT+1[R+
1,T +R+

2,T ]
)
φ(wT+1, w

0
T+1) ≤ 0.

We now prove by induction that ||R+
T ||2 ≤ (νd)2T. The property clearly holds for T = 1.

Assume that it holds for T ≥ 1 and let us show it must hold for T + 1. Consider first the

case where R2,T > 0. We have that

||R+
T+1||

2 ≤ ||R+
T ||

2 + 2
〈
R+
T , ρT+1

〉
+ ||ρT+1||2 ≤ ||R+

T ||
2 + (νd)2 (34)
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where we used the fact that
〈
R+
T , ρT+1

〉
≤ 0, and

||ρT+1||2 ≤ ν2
(
[u(wλT+1 − πT+1)− u(w0

T+1)]2

+ [u(wλT+1 − πT+1)− u(w0
T+1)− (u(wT+1 − πT+1)− u(w0

T+1))]2
)

≤ ν2
(
[u(wT+1 − πT+1)− u(w0

T+1)]2 + 2[u(wλT+1 − πT+1)− u(w0
T+1)]2

−2[u(wT+1 − πT+1)− u(w0
T+1)][u(wλT+1 − πT+1)− u(w0

T+1)]
)

≤ ν2[u(wT+1 − πT+1)− u(w0
T+1)]2.

The last inequality uses the fact that φ(wλt , w
0
t )

2 ≤ φ(wt, w
0
t )φ(wλt , w

0
t ). This is implied by

the fact that: φ is increasing in its first argument; φν(w,w) = 0; and for all t, wt − πt and

wλt − πt are on the same side of w0
t . Altogether, this implies that the induction hypothesis

holds for T + 1 when R2,T > 0. A similar proof holds in the case where R2,T ≤ 0. Hence,

for all T ≥ 1, ||RT ||2 ≤ (νd)2T .

Inequality ||RT || ≤ νd
√
T implies (32) and the right-hand side of (33). The left-hand

side of (33) follows from a proof identical to that of the left-hand side of (19).

Let us denote by rλ,π = 1
N

Eλ,π

(∑N
t=1 u(wλt − πt)− u(w0

t )
)

the average expected utility

gain when the agent is given the calibrated contract of parameter ν. Similarly, denote

by rmax = 1
N

Ec,a∗

(∑N
t=1 u(wt)− u(w0

t )
)

the maximum feasible utility gain, i.e. the utility

gain when the agent invest c in every period, chooses the allocation a∗ that maximizes the

principal’s expected utility, and does not get paid.

Theorem A.1. There exists m > 0 such that for all N and all P,

rλ,π ≥
1

ν
Eλ,π

(
ΠN

N

)
− m√

N
and rλ,π ≥

1

1 + νκ
rmax −

c

ν
− m√

N
. (35)
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Proof. The first inequality follows from (33). Indeed, we have that

SN + νd
√
N ≥ ΠN ⇐⇒

N∑
t=1

ν[u(wλt − πt)− u(w0
t )] ≥ ΠN − νd

√
N

⇐⇒ 1

N

N∑
t=1

u(wλt − πt)− u(w0
t ) ≥

1

ν N
ΠN −

d√
N
.

The first part of (35) follows directly by taking expectations.

Let us turn to the second inequality. Combining (32) and (33) it follows that

ΠN ≥ ΣN − νd(1 +
√
N)

≥
N∑
t=1

ν[u(wt − πt)− u(w0
t )]− νd(1 +

√
N)

≥
N∑
t=1

ν[u(wt)− u(w0
t )− κπt]− νd(1 +

√
N)

⇒ ΠN ≥ ν

1 + νκ

N∑
t=1

[u(wt)− u(w0
t )]−

νd

1 + νκ
(1 +

√
N).

The agent’s optimal policy (c̃, ã) under calibrated contract (λ, π) must provide the agent

with greater utility than (c, a∗). Hence

Ec̃,ã

(
ΠN −

N∑
t=1

c̃t

)
≥ Ec,a∗ (ΠN −Nc)

⇒ 1

N
Ec̃,ãΠN ≥ ν

1 + νκ
rmax − c−

νd

1 + νκ

1 +
√
N

N
.

This last inequality and the first part of (35) implies the second part of (35).

A.4 Varying Wealth

The calibrated contracts described in Section 4 performs equally well if the invested wealth

in each period varies within some set [0, w]. Let wit denote the initial invested wealth in
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period i. Given a contract (λ, π), quantities ΣT , ST and ΠT are defined as

ΠT =
T∑
t=1

πt ; ΣT =
T∑
t=1

wit
〈
at − a0

t , rt
〉

; ST =
T∑
t=1

λtw
i
t

〈
at − a0

t , rt
〉
.

Similarly, let ΣT\T ′ = ΣT − ΣT ′−1, ΠT\T ′ = ΠT − ΠT ′−1, ST\T ′ = ST − ST ′−1. As in Section

4, regrets R1,T and R2,T are defined by

R1,T = ΠT − αST and R2,T = max
T ′≤T

ΣT\T ′ − ST\T ′ .

Contract (λ, π) is unchanged:

λT+1 =
αR2,T

αR2,T +R1,T

and πT+1 =

 αλT+1(wT+1 − w0
T+1)+ if R1,T ≤ 0

0 otherwise
.

Under this adjusted contract, Theorem 2 extends as is, with an identical proof.

A.5 Perturbed Preferences

A more challenging extension is to allow for the agent’s marginal utility for money to vary

over time. In particular, assume that the agent has preferences
∑N

t=1 µtπt, where µ = (µt)t≥1

is bounded below by µ > 0. Contract (λ, π) is the same as in Section 4. Hence, it does

not correct for varying marginal utility, which is consistent with the idea that (µt)t≥1 is

an unobserved nuisance parameter. Let υ ≡
∑N

t=1 |µt − µt+1| denote the total variation of

sequence (µt)t≥1 and υ̂ the total variation of sequence (µ−1
t )t≥1. This section provides an

adequate extension of Lemma 1 involving the agent’s perturbed utility. For all T ≥ 1, let

Πµ
N =

∑N
t=1 µtπt, Σµ

T =
∑T

t=1 µt(wt−w0
t ) and SµT =

∑T
t=1 µtλt(wt−w0

t ). The following result

holds.
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Lemma A.5 (perturbed incentives).

Σµ
N − S

µ
N ≤ wd(µN + υ)

√
N (36)

−αwd(1 + υ
√
N) ≤ Πµ

N − αS
µ
N ≤ αwd(µN + υ)

√
N. (37)

Proof. Let us begin with inequality (36). Using summation by part and Lemma 1, we have

that

SµN =
T∑
t=1

µtλt(wt − w0
t ) = µNSN +

N−1∑
t=1

(µt − µt+1)St

≥ µNΣN +
N∑
t=1

(µt − µt+1)Σt − wdµN
√
N

(
µN +

N−1∑
t=1

|µt − µt+1|

)
.

≥ Σµ
N − wd(µN + υ)

√
N.

Let us turn to (37). Again, Lemma 1 and summation by part implies that

N∑
t=1

µtπt = µNΠN +
N−1∑
t=1

(µt − µt+1)Πt

≤ αµNSN + α
N−1∑
t=1

(µt − µt+1)St + αwdµN
√
N

(
µN +

N−1∑
t=1

|µt − µt+1|

)
.

≤ αSµN + αwd(µN + υ)
√
N.

Finally, a similar argument implies that

N∑
t=1

µtλtπt ≥ αSµN − αwd(1 + υ
√
N).

This concludes the proof.

Lemma A.5 implies that under the original calibrated contracts of Section 4, even though

the agent’s payoff are perturbed, they still approximate the aggregate payoffs the agent
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would have received under the benchmark linear contract. Lemma A.5 can be used to derive

efficiency bounds.

Theorem A.2. There exists m > 0 such that for all N and all P,

rλ,π ≥
(

1− α
αµ

)
Eλ,π

(
Πµ
N

N

)
− mυ√

N
and rλ,π ≥

(1− α)µ

µ
rmax −

c

αµ
− mυ√

N
. (38)

Proof. Let us begin with the first part of (38). Let (c̃, ã) denote the agent’s optimal policy

under the calibrated contract (λ, π). Let a∗ denote the allocation policy that maximizes

expected final wealth (wt)t≥1 given information. By (37), and by definition of a∗ we have

that

Ec̃,ãΠ
µ
N − αwd(µN + υ)

√
N ≤ αEc̃,ãS

µ
N ≤ αEc̃,a∗S

µ
N .

By definition of ã and (37), we also have that

Ec̃,ãΠ
µ
N ≥ Ec̃,a∗Π

µ
N ≥ αEc̃,a∗S

µ
N − αwd(µN + υ)(1 +

√
N)

hence Ec̃,a∗S
µ
N − Ec̃,ãS

µ
N ≤ αwd(µN + υ)(1 + 2

√
N).

By definition of a∗, for all t, Ec̃,a∗λt(wt − w0
t ) ≥ Ec̃,ãλt(wt − w0

t ). Therefore,

Ec̃,a∗SN − Ec̃,ãSN =
N∑
t=1

Ec̃,a∗λt(wt − w0
t )− Ec̃,ãλt(wt − w0

t )

≤ 1

µ

N∑
t=1

µt
[
Ec̃,a∗λt(wt − w0

t )− Ec̃,ãλt(wt − w0
t )
]
≤ 1

µ
[Ec̃,a∗S

µ
N − Ec̃,ãS

µ
N ]

≤ 1

µ
αwd(µN + υ)(1 + 2

√
N).
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This implies that

Ec̃,ãSN +
1

µ
αwd(µN + υ)(1 + 2

√
N) ≥ Ec̃,a∗SN ≥

1

µ+ υ
Ec̃,a∗S

µ
N

≥ 1

α(µ+ υ)

[
Ec̃,ãΠ

µ
N − αwd(µN + υ)

√
N
]
.

Since (19) still holds, this yields the first part of (38). Let us turn to the second part of (38).

By definition of (c̃, ã), it must be that

Ec̃,ã

(
Πµ
N −

N∑
t=1

c̃t

)
≥ Ec,a∗ (Πµ

N −Nc) ≥ αEc,a∗Σ
µ
N −Nc− αwd(µN + υ)(1 + 2

√
N)

≥ αµEc,a∗ΣN −Nc− αwd(µN + υ)(1 + 2
√
N).

This and the first part of (38) yields the second part of (38).

Note that this provides a connection with the results of Foster and Young (2010) whose

counter-example is based on an agent whose marginal utility for income becomes arbitrarily

large in early periods as the agent’s time horizon increases.

B Proofs

B.1 Proofs for Section 3

Proof of Theorem 1: Points (i) and (ii) follow immediately from the fact that

πt = α(wt − w0
t ) =

α

1− α
(wt − w0

t − πt).

Let us turn to point (iii). Let r̂α ≡ 1
1−αrα denote gross returns under the benchmark

contract of parameter α. Let (c, a) denote the agent’s policy under the benchmark contract.

Since policy (c, a∗) guarantees the agent a per-period payoff of αwrmax − c, it must be that
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αwr̂α − Ec ≥ αwrmax − c. Since the agent must expend weakly positive effort, this implies

that αwr̂α ≥ αwrmax − c, which yields point (iii).

Point (iv) follows immediately from the static nature of the benchmark contract.

B.2 Proofs for Section 4

Proof of Lemma 2: Under any benchmark linear contract, the agent is truthful – i.e. uses

allocation policy a∗. Let (c, a∗) denote the agent’s policy under the benchmark contract of

parameter α, (c̃, ã) his policy under contract (λ, π), and (c0, a
∗) the agent’s policy in the

benchmark contract of parameter α0.

By optimality of (c̃, ã) under contract (λ, π), we have that Ec̃,ã

[
ΠN −

∑N
t=1 c̃t

]
≥ Ec,a∗

[
ΠN −

∑N
t=1 ct

]
.

We obtain that

Ec̃,ã

[
αSN −

N∑
t=1

c̃t

]
+C ≥ Ec,a∗

[
αSN −

N∑
t=1

ct

]
−B ≥ Ec,a∗

[
αΣN −

N∑
t=1

ct

]
−B−αA. (39)

By optimality of (c, a∗) under the benchmark contract of parameter α, we have that

Ec,a∗

[
αΣN −

N∑
t=1

ct

]
≥ Ec0,a∗

[
αΣN −

N∑
t=1

c0,t

]
. (40)

By optimality of (c0, a
∗) under the benchmark contract of parameter α0 we obtain

Ec0,a∗

[
α0ΣN −

N∑
t=1

c0,t

]
≥ Ec̃,a∗

[
α0ΣN −

N∑
t=1

c̃t

]
.

Note that by definition of a∗ and SN , Ec̃,a∗ΣN ≥ Ec̃,ãSN . Indeed, under a∗, ΣT delivers

positive expected returns every period, while ST (under any allocation policy) provides at
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best a fraction of these returns. This implies that

Ec0,a∗

[
α0ΣN −

N∑
t=1

c0,t

]
≥ Ec̃,ã

[
α0SN −

N∑
t=1

c̃t

]
. (41)

Combining (39), (40) and (41) yields

Ec̃,ã

[
αSN −

N∑
t=1

c̃t

]
+ αA+B + C ≥ Ec0,a∗

[
αΣN −

N∑
t=1

c0,t

]

≥ (α− α0)Ec0,a∗ΣN + Ec0,a∗

[
α0ΣN −

N∑
t=1

c0,t

]

≥ (α− α0)Ec0,a∗ΣN + Ec̃,ã

[
α0SN −

N∑
t=1

c̃t

]
.

Altogether, this implies that (α−α0) [Ec0,a∗ΣN − Ec̃,ãSN ] ≤ αwd(2
√
N+1). Hence we obtain

that

Ec̃,ã[SN − ΠN ] ≥ (1− α)Ec0,a∗ΣN − (1− α)
αA+B + C

α− α0

− C.

Dividing by Nw, this yields that

rλ,π ≥ (1− η)rα0 +
1

Nw

[
C +

1− η
η

(αA+B + C)

]
.

Proof of Theorem 3: Let wMM
t and ΣMM

N =
∑N

t=1w
MM
t −w0

t denote potential realized wealth

and aggregate excess returns when accidents are lucky. The notation of Section 4 extends,

adding superscripts M and MM to denote relevant values under the original accidental allocation

aM, and under the lucky accidental allocation aMM. The key step is to provide an adequate

extension of Lemma 1.
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Inequality (19) still applies, and we necessarily have that

−αwd ≤ ΠM
N − αSM

N ≤ αwd
√
N. (42)

In turn let us show that for any investment strategy of the agent,

ΣMM
N − 4wd

√
N ≤ SM

N (43)

i.e. up to an order
√
N , given any investment strategy, the actual excess returns generated

under the responsive calibrated contract are at least as high as the returns generated when

accidents are lucky. We have that ΣMM
N = ΣM

N\T2+1 + ΣM,+
T2\T1

+ ΣM
T1−1. Because inequality (18)

still holds, this implies that

ΣMM
N ≤

 SM
N + wd

√
N if ΣM

T2\T1
> 0

SM
N\T2+1 + SM

T1−1 + 3wd
√
N otherwise

By (42), it follows that

ΠM
T2
− αwd

√
T2 ≤ αSM

T2
≤ ΠM

T2
+ αwd

ΠM
T1−1 − αwd

√
T1 − 1 ≤ αSM

T1−1 ≤ ΠM
T1−1 + αwd.

Subtracting these two inequalities yields that,

ΠM
T2\T1

− αwd(1 +
√
T2) ≤ α(SM

T2
− SM

T1−1) = α(SM
T2\T1

).

By construction, ΠM
T2\T1

≥ 0, which implies that for any realization of returns,

ΣMM
N ≤ SM

N\T2+1 + SM
T2\T1

+ SM
T1−1 + 4wd

√
N

≤ SM
N + 4wd

√
N.
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This implies (43). Given (42) and (43) Theorem 3 follows from a reasoning identical to that

of Lemma 2.

B.3 Proofs for Section 5

The proof of Lemma 3 (as well as that of Theorem 5) requires the following extension of the

Azuma-Hoeffding inequality.

Lemma B.1 (an extension of Azuma-Hoeffding). Consider a martingale with increments

∆t such that |∆t| ≤ γ. Let γt ≡ sup |∆t|
∣∣∣Ft and Tm ≡ inf

{
T
∣∣∣ γ2 +

∑T
t=1 γ

2
t ≥ m

}
. The

following hold.

(i) ∀κ > 0, Prob
(∑Tm

t=1 ∆t ≥ κ
)
≤ exp

(
−2κ

2

m

)
(ii) ∀κ > 0, Prob

(
maxT≤Tm

∑T
t=1 ∆t ≥ κ

)
≤ 2 exp

(
−2κ

2

m

)
.

Proof of Lemma B.1: Let us begin with point (i). By Hoeffding’s Lemma, (see Hoeffding

(1963) or Cesa-Bianchi and Lugosi (2006), Lemma 2.2) we have that

E(exp(−λ∆t)|Ft) ≤ exp

(
λ2γ2

t

8

)
.

By construction
∑Tm

t=1 γ
2
t ≤ m. Hence, using Chernoff’s method, we have that for any λ > 0

Prob

(
τm∑
t=1

∆t ≥ κ

)
≤ exp(−λκ)E

(
τm∏
t=1

exp(λ∆t)

)
≤ exp(−λκ)E (exp(λ∆1)E (exp(λ∆2) · · ·E (exp(λ∆τm|Fτm) | · · · |F2))

≤ exp(−λκ)E

(
exp

(
λ2

8

τm∑
t=1

γ2
t

))
≤ exp(−λκ) exp

(
λ2

8
m

)
.

Minimizing over λ (i.e. setting λ = 4κ/m) yields point (i).

Point (ii) follows from point (i) by adapting the standard reflection techniques used for

Brownian motions. LetBT =
∑T

t=1 ∆t. Pick κ > 0. We want to evaluate Prob(maxT≤Tm BT ≥

49



κ). Consider the process B̃T =
∑T

t=1 εt∆t, where εt = 1maxs<t Bs<κ − 1maxs<t Bs≥κ. Process

B̃T is a martingale, corresponding to reflecting BT once it crosses level κ. Note also that

|εt∆t| = |∆t|. We have that

Prob

(
max
T≤Tm

BT ≥ κ

)
= Prob(BTm ≥ κ) + Prob(BTm < κ and max

T≤Tm

BT ≥ κ)

≤ Prob(BTm ≥ κ) + Prob(B̃Tm ≥ κ). (44)

Note that (44) is an inequality, rather than an equality as in the case of a Brownian

motion, because of the discreteness of martingale increments. Still this suffices for our

purpose. Indeed, by applying point (i) to both BTm and B̃Tm , we obtain that indeed,

Prob
(

maxT≤Tm

∑T
t=1 ∆t ≥ κ

)
≤ 2 exp

(
−2κ

2

m

)
. This concludes the proof.

Proof of Lemma 3: We have that

ST =
T∑
t=1

λtEa[wt − w0
t |F0

t ] +
T∑
t=1

λt(wt − w0
t − Ea[wt − w0

t |F0
t ]).

Since the agent only has access to public information, by definition of w0
t , we have that for all

allocation strategies a, Ea[wt −w0
t |F0

t ] ≤ 0. In addition, ∆t ≡ λt(wt −w0
t −Ea[wt −w0

t |F0
t ])

is a martingale increment such that |∆t| ≤ 2λtdt.

Let us define χT = d
2

+
∑T

t=1 λ
2
td

2
t . For all m ∈ N, let Tm denote the stopping time

inf {T |χT ≥ m}. Using Lemma B.1, we obtain that for all m

Prob
(
STm ≥ 2

√
χTm

√
M + lnχTm

)
≤ Prob

(
Tm∑
t=1

∆t ≥ 2
√
χTm

√
M + lnχTm

)
≤ exp (−2(lnm+M)) ≤ exp(−2M)

1

m2
.

Given that STm ≤ 2
√
χTm

√
M + lnχTm , the probability that there exists T ∈ [Tm, Tm+1− 1]
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such that ST ≥ ΘT is less than

Prob

(
sup

T∈{Tm,··· ,Tm+1−1}

T∑
t=Tm

∆t ≥ 2
√
M + lnm

)
≤ 2 exp(−2M)

1

m2
.

Hence it follows that

Ea

(
N∑
t=1

1St>Θt

)
≤ 3 exp(−2M)

∑
m∈N

1

m2
≤ π2

2
exp(−2M).

This concludes the proof.

Proof of Lemma 4: A proof identical to that of Lemma 1 yields the left-hand side of

(21) and the right-hand side of (22). The left-hand side of (22) is proven by induction. If

αST−αΘT ≤ 0, then the inequality holds trivially. Consider now the case where αST−αΘT >

0. If ΠT ≥ αST − αΘT then we necessarily have ΠT+1 ≥ αST+1 − αΘT+1 − αwd since ΘT is

increasing in T . If instead, ΠT ∈ [αST −ΘT −αwd, αST −ΘT ], then necessarily, ΠT < αST ,

so that λT = 1 and πT = α(wT −w0
T )+. It follows that ΠT+1 ≥ αST+1−αΘT+1−αwd.

Proof of Theorem 5: Consider the case where the agent is informed. As in the case of

Theorem 2, 3, and 4, the proof strategy is to adapt the the bounds of Lemma 1 and the

reasoning of Lemma 2. Let (c, a∗) denote the agent’s optimal strategy under the benchmark

contract of parameter α. To exploit the reasoning of Lemma 2 it is sufficient to prove a

bound of the form

−B ≤ Ec,a∗ [ΠN − αSN ] , (45)

where B is a number independent of N and P . By construction, we have that

Ec,a∗ΠN ≥ Ec,a∗αSN − αwd− αwdEc,a∗

[
N∑
T=1

1ST<ΘT

]
.
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Hence, it is sufficient to show that under (c, a∗), the expected number of periods where the

hurdle is not met is bounded above by a constant independent of N .

Let ∆t = wt−w0
t −E[wt−w0

t |Ft] and χT =
∑T

t=1 d
2
t . Note that under allocation strategy

a∗, By (21), for any T ,

Probc,a∗(ST < ΘT ) ≤ Probc,a∗ (ΣT < ΘT + w
√
χT )

≤ Probc,a∗

(
T∑
t=1

E[wt − w0
t |Ft] +

T∑
t=1

∆t < ΘT + w
√
χT

)

≤ Probc,a∗

(
ξ

d
2χT +

T∑
t=1

∆t < ΘT + w
√
χT

)

≤ Probc,a∗

(
T∑
t=1

∆t < −
ξ

d
2χT + ΘT + w

√
χT

)
.

An argument similar to that of Lemma 3 yields that
∑+∞

T=1 Prob
(∑T

t=1 ∆t < − ξ

d
2χT + ΘT + w

√
χT

)
is bounded above by some constant. This concludes the proof.
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