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Abstract

We de�ne a notion of correlated equilibrium for games with incomplete information in a general

setting with �nite players, �nite actions, and �nite states. We refer to this solution concept as Bayes

correlated equilibrium.

For a given common prior over the payo¤ relevant states and types, we show that the set of Bayes

correlated equilibrium probability distributions equals the set of probability distributions over actions,

states and types that might arise in any Bayes Nash equilibrium consistent with the given common prior

over states and types.

We de�ne a game of incomplete information in terms of a payo¤ environment, or the �basic game�,

and a belief environment, or the �information structure�. We show how the information structure a¤ects

the set of predictions that can be made about the Bayes correlated equilibrium distribution. We show

that a more informed information structure reduces the set of Bayes equilibrium distributions as it

imposes additional incentive constraints.
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1 Introduction

We present a notion of correlated equilibrium in games with incomplete information. Aumann (1974),

(1987) introduced the notion of correlated equilibrium in games with complete information. A number of

de�nitions of correlated equilibrium in games with incomplete information have been suggested, notably

in Forges (1993). Our de�nition is driven by a di¤erent motivation from the earlier literature; we seek

the solution concept which characterizes the set of Bayes Nash equilibria which can be sustained by some

information structure in a �xed economic setting. This leads us to suggest an equilibrium notion that

we shall call Bayes correlated equilibrium, which is a (weaker) of the weakest de�nition of incomplete

information correlated equilibrium (Bayesian solution) in Forges (1993).

We distinguish the "payo¤ environment" and the "belief environment" in the de�nition of the game.

By payo¤ environment, we refer to the set of actions, the set of payo¤ relevant states, the utility functions

of the agents, and the common prior over the payo¤ relevant states. By belief environment, we refer

to the information structure, the type space of the game, which is generated by a mapping from the

payo¤ relevant states to a probability distribution over types. The separation between payo¤ and belief

environment enables us to ask how changes in the belief environment a¤ect the equilibrium set for a given

and �xed payo¤ environment. By contrast with the earlier literature, we allow information not known to

any of the players to be re�ected in the equilibrium distribution.

In games of complete information, the notion of correlated equilibrium was meant to describe the

set of possible equilibrium outcomes which can be achieved when the agents may have access to some,

unobserved and unmodelled correlation opportunities. A correlated equilibrium was simply de�ned by

joint distribution over the actions of the agents. In a game with incomplete information, the unobserved

and unmodelled correlation opportunities still exist, but the existence of the private information of the

agents means that there are some constraints on the correlation opportunities as the actions have to be

consistent with the private information of the agents. From this perspective, the private information of

the agents imposes restrictions on the correlation that can arise in the Bayes correlated equilibrium.

An important special case is then given by the �null� information system in which the type space of

each agent consists of a singleton type for every agent. This �null�information system then imposes �null�

restrictions on the joint correlation of the agents�actions and payo¤ state over and above the common

prior of the payo¤ relevant states. The set of Bayes correlated equilibria for a given payo¤ environment

is then largest under the null information system as the lack of private information means that there are

no constraints imposed beyond a consistency requirement which asks that the marginal of the equilibrium

distribution over the states equals the common prior of the states. Subsequently, we ask how the presence of

private information restricts the correlation opportunities of the agents�actions. In particular, we compare
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information structures and ask which information structure contains more information for the agents, and

hence imposes more restrictions on the set Bayes correlated equilibria. We present a de�nition as to when

one information structure is more informed than another information structure. The criterion of �more

informed�represents an extension of the �garbling�condition by Blackwell (1953) to an environment with

many agents. We establish that an information structure is more informed than another information

structure if and only if it supports a smaller set of Bayes correlated equilibria.

The present de�nition of Bayes correlated equilibrium is used prominently in the analysis of our compan-

ion paper, "Robust Predictions in Games with Incomplete Information", (Bergemann and Morris (2011)).

In the companion paper, we analyze how much can be said about the joint distribution of actions and states

on the basis of the knowledge of the payo¤ environment alone. There we refer to �robust predictions�as

those predictions which can be made with the knowledge of the payo¤ environment alone, and without

any assumption about the belief environment. In the companion paper, the analysis was con�ned to an

environment with quadratic and symmetric payo¤ functions, a continuum of agents and normally distrib-

uted uncertainty about the common payo¤ relevant state. But this tractable class of models enabled us to

o¤er robust predictions in terms of restrictions on the �rst and second moments of the joint distribution

over actions and state. By contrast, here we present the de�nition of the Bayes correlated equilibrium in a

canonical game theoretic framework with a �nite number of agents, a �nite set of pure action and a �nite

set of payo¤ relevant states. After we introduce the relevant notions, we show towards the end of this

paper how the present results translate into the setting with a continuum of anonymous agents that we

considered in (Bergemann and Morris (2011)).

A number of papers have considered alternative de�nitions of correlated equilibrium in games with

incomplete information, most notably Forges (1993) and Forges (2006). In this paper, we document the

relationship between our version of correlated equilibrium and the various de�nitions in the literature.

In the discussion of the various de�nitions of correlated equilibrium, we will �nd it is useful to divide

restrictions that the various solution concepts impose on the joint distribution over actions, states and

types into two classes: feasibility conditions on the distributions of action type state pro�les, which are

required to hold independently of the payo¤ functions, and incentive compatibility conditions which are

rationality constraints on players�action choices. The only feasibility condition that we impose in de�ning

the Bayes correlated equilibrium is a consistency requirement that demands that the action type state

distribution of the equilibrium implies the distribution on the exogenous variables, namely the common

prior on the payo¤ relevant states and types. In contrast, in many of the existing solution concepts, the

feasibility conditions are intended to capture the outcome of some form of communication among the agents

with an uninformed mediator. It is then natural to impose additional restriction on the action state type
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distribution in equilibrium which have hold conditional on the agents�types. For example, the �Bayesian

solution�, the weakest of Forges��ve de�nitions, imposes the restriction, referred to here as join feasibility,

that the distribution over states conditional on agents�types is not changed conditional on the mediator�s

recommendations. Our notion of Bayes correlated equilibrium is closest to the �Bayesian solution�but is

strictly weaker than the Bayesian solution, because we do not insist on join feasibility.

A number of papers - notably Gossner (2000), Lehrer, Rosenberg, and Shmaya (2010) and Lehrer,

Rosenberg, and Shmaya (2011) - have examined comparative statics of how changing the information

structure e¤ects the set of predictions that can be made about players�actions, under Bayes Nash equilib-

rium or alternative solution concepts. We review these results and report a new result. We discussed above

that as the agents become more informed, where information is encoded in their type, the set of possible

predictions must be reduced. As the agents have more private information, the incentive constraints, here

referred to as obedience constraints, will become tighter. The role of the private information in re�ning

the equilibrium prediction is important in our "Robust Prediction" agenda. We will formalize this result

this result here in the general framework of the current paper rather than in the speci�c environment of

quadratic payo¤ functions and normally distributed uncertainty of (Bergemann and Morris (2011)). We

illustrate the notion of Bayes correlated equilibrium and the resulting robust predictions in variety of ex-

amples, among them a �rst price auction with private values and a sender-receiver game, which is closely

related to a problem studied by Gentzkow and Kaminca (2010), where senders are allowed to commit to a

communication strategy.

In Bergemann and Morris (2005) and later work, we studied a mechanism design environments and

de�ned the notion of robust mechanism. In this earlier setting, the agents knew their own "payo¤ types",

and while there was common knowledge of how utilities depended on the pro�le of payo¤ types, the agents

were allowed to have any beliefs and higher order beliefs about others�payo¤ types. We then de�ned a

mechanism to be robust if the social choice function or correspondence could be truthfully implemented in

the direct mechanism as a Bayes Nash equilibrium for any beliefs and higher order beliefs about others�

payo¤ types. In Bergemann and Morris (2007), we discussed the game theoretic framework underlying the

analysis in the mechanism design environment. The notion of Bayes correlated equilibrium is motivated

by the same concern for robustness but it encodes a less demanding notion of robustness. The Bayes

correlated equilibrium insists that the common prior over the state and type distribution is preserved, and

in the case of the �null information structure�that the common prior over the state alone is preserved, but

all additional correlation due to unobserved communication or information among the agents is permitted.

We proceed as follows. In Section 2, we describe a general incomplete information game and compare

Bayes Nash equilibrium with a solution concept which we call Bayes correlated equilibrium. In Section 3,
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we describe our robust predictions approach and explain the key role played an "epistemic" result: the set

of Bayes correlated equilibrium probability distributions over actions, types and payo¤-relevant variables

equals the set of probability distributions of actions, types and payo¤-relevant variables that might arise

in a Bayes Nash equilibrium if players were able to observe additional information signals beyond their

original types.

In Section 4, we explain how the solution concept we dub "Bayes Correlated Equilibrium" relates to

the literature, in particular Forges (1993) and Forges (2006). In Section 5, we report results on comparing

information structures. In Section 6, we review special cases in order to illustrate the robust predictions

agenda more broadly. In Section 7, we describe analogues of our results for continuum anonymous player

games, which apply to our work in �Robust Predictions in Games with Incomplete Information�. Section

8 concludes and contains a discussion of the relation to the signed covariance result of Chwe (2006) and

the "payo¤ types" environments of Bergemann and Morris (2007).

2 Bayes Nash and Bayes Correlated Equilibrium

Throughout the paper, we will �x a �nite set of players and a �nite set of payo¤ relevant states of the

world. There are I players, 1; 2; ::; I, and we write i for a typical player. We write � for the payo¤

relevant states of the world and � for a typical element of �.

A "basic game" G consists of (1) for each player i, a �nite set of action Ai and a utility function

ui : A � �! R; and (2) a full support prior  2 �(�), where we write A = A1 � :: � AI . Thus

G =
�
(Ai; ui)

I
i=1 ;  

�
. An "information structure" S consists of (1) for each player i, a �nite set of types

or "signals" Ti; and (2) a signal distribution � : � ! �(T ), where we write T = T1 � :: � TI . Thus

S =
�
(Ti)

I
i=1 ; �

�
.

Together, the "payo¤ environment" or "basic game" G and the "belief environment" or "information

structure" S de�ne a standard "incomplete information game". While we use di¤erent notation, this

division of an incomplete information game into the "basic game" and the "information structure" is a

standard one in the literature, see, for example, Lehrer, Rosenberg, and Shmaya (2010).

A (behavioral) strategy for player i in the incomplete information game game (G;S) is bi : Ti ! �(Ai).

Write Bi for the set of strategies of player i in the game (G;S). The following is the standard de�nition of

Bayes Nash Equilibrium in this setting.

De�nition 1 A strategy pro�le b is a Bayes Nash Equilibrium (BNE) of (G;S) if for each i = 1; 2; ::; I,
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ti 2 Ti and ai 2 Ai with bi (aijti) > 0, we haveX
t�i2T�i;�2�

ui ((ai; b�i (ti)) ; �) (�)� ((ti; t�i) j�)

�
X

t�i2T�i;�2�
ui
��
a0i; b�i (t�i)

�
; �
�
 (�)� ((ti; t�i) j�) .

for each a0i 2 Ai.

The relevant space of uncertainty in the incomplete information game (G;S) is A � T � �, and we
will write � for a typical element of �(A� T ��). There are two kinds of constraints imposed in

de�ning alternative versions of incomplete information correlated equilibrium: "feasibility" constraints

and "incentive compatibility" conditions. Our preferred de�nition will impose one feasibility condition:

De�nition 2 Distribution � 2 �(A� T ��) is consistent for (G;S) if, for all t 2 T and � 2 �, we haveX
a2A

� (a; t; �) =  (�)� (tj�) (1)

This simply says the marginal of distribution � on the exogenous variables T and � is consistent with

the description of the game (G;S). We will also impose the weakest natural incentive compatibility

condition, "obedience", that says that a player i who knows his type ti, his recommended action ai and

the distribution � only has an incentive to follow that recommendation.

De�nition 3 Distribution � 2 �(A� T ��) is obedient for (G;S) if, for each i = 1; ::; I, ti 2 Ti and

ai 2 Ai, we have X
a�i2A�i;t�i2T�i;�2�

ui ((ai; a�i) ; �) � ((ai; a�i) ; (ti; t�i) ; �) (2)

�
X

a�i2A�i;t�i2T�i;�2�
ui
��
a0i; a�i

�
; �
�
� ((ai; a�i) ; (ti; t�i) ; �) ;

for all a0i 2 Ai.

Now our leading de�nition of correlated equilibrium for incomplete information games will be:

De�nition 4 A probability distribution � 2 �(A� T ��) is a Bayes Correlated Equilibrium (BCE) of

(G;S) if it is consistent and obedient.
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As will discuss in detail below in Section 4, this is essentially the de�nition of "Bayesian solution" in

Forges (1993), with the di¤erence that we work with a incomplete information game description that does

not integrate out payo¤ relevant states and thus allows the mediator to make action recommendations that

depend on a payo¤-relevant state that is observed by nobody. We will discuss in the next section why this

de�nition is interesting for our robust predictions agenda.

A Bayes Nash Equilibrium b is a strategy pro�le in B. A Bayes Correlated Equilibrium � is an element

of �(A� T ��) and thus a distribution over action type state pro�les. To compare the two solution

concepts, we would like to discuss the distribution of action type state pro�les generated by a BNE.

De�nition 5 Distribution � 2 �(A� T ��) is induced by strategy pro�le b 2 B if, for each a 2 A, t 2 T
and � 2 �, we have

� (a; t; �) =  (�)� (tj�)
 

IY
i=1

bi (aijti)
!
.

Distribution � 2 �(A� T ��) is Bayes Nash action type state distribution of (G;S) if there exists a
Bayesian Nash Equilibrium b of (G;S) that induces it.

We also have the following straightforward observation:

Lemma 1 Every Bayes Nash action type state distribution of (G;S) is a Bayes Correlated Equilibrium of

(G;S).

We will also sometimes be interested in the induced action state distributions, i.e., what we can say if

types are not observed.

De�nition 6 Action state distribution � 2 �(A��) is induced by � 2 �(A� T ��) if it is the marginal
of � on A��. Action state distribution � 2 �(A��) is a BNE action state distribution of (G;S) if it is
induced by a Bayes Nash action type state distribution of (G;S). Action state distribution � 2 �(A��)
is a BCE action state distribution of (G;S) if it is induced by a Bayes Correlated Equilibrium of (G;S).

An important special case is when the information system is "null" with the players knowing nothing

about the states. Formally, the null information system S0 =
���

t0i
	�I
i=1

; �0
�
, where t0i is the singleton

type of player i and �0
�
t0j�
�
= 1 for each � 2 �. We will abbreviate the (degenerate) incomplete

information game (G;S0) to G. Observe that in the special case of a null information system, the space

A� T �� reduces to A�� and the consistency condition (1) on � 2 �(A��) becomesX
a2A

� (a; �) =  (�) (3)
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for all � 2 �; and the obedience constraint (2) reduces toX
a�i2A�i;�2�

ui ((ai; a�i) ; �)� ((ai; a�i) ; �) (4)

�
X

a�i2A�i;�2�
ui
��
a0i; a�i

�
; �
�
� ((ai; a�i) ; �) ;

for each i = 1; ::; I, ai 2 Ai and a0i 2 Ai.

Now we have:

Lemma 2 If � 2 �(A��) is induced by a BCE action type state distribution � 2 �(A� T ��), then
� is a BCE of G.

As we will discuss in detail below, this result is in the spirit of Proposition 4 of Forges (1993), which

shows that "any" correlated equilibrium solution concept of (G;S) generates an equilibrium of the basic

game G.

3 Robust Predictions

Consider an analyst who knows that

1. G describes actions, payo¤ functions depending on fundamental states, and a prior distribution on

fundamental states.

2. Players have observed at least information system S.

3. The full, common prior, information system is common certainty among the players.

4. The players�actions follow a Bayes Nash Equilibrium.

What can she deduce about the joint distribution of actions, types in the "information structure" S

and states? In this section, we will formalize this question and show that all she can deduce is that the

distribution will be a BCE distribution of (G;S).

To formalize this, let eS =
�
(Zi)

I
i=1 ; �

�
be a supplementary information system, over and above S,

and suppose each agent i observes a supplementary signal zi 2 Zi, where � : � � T ! Z describes the

distribution of supplementary signals. Now
�
G;S; eS� is an "augmented incomplete information game".

Write � i : Ti � Zi ! �(Ai) for a behavior strategy of player i in the augmented incomplete information

game.
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De�nition 7 A strategy pro�le � is a Bayes Nash Equilibrium of the augmented game
�
G;S; eS� if, for

each i = 1; 2; ::; I, ti 2 Ti, zi 2 Zi and ai 2 Ai with �i (aij (ti; zi)) > 0, we haveX
a�i2A�i;t�i2T�i;z�i2Z�i;�2�

ui ((ai; ��i (t�i; z�i)) ; �) (�)� ((ti; t�i) j�)� ((zi; z�i) j (ti; t�i) ; �)

�
X

a�i2A�i;t�i2T�i;z�i2Z�i;�2�
ui
��
a0i; ��i (t�i; z�i)

�
; �
�
 (�)� ((ti; t�i) j�)� ((zi; z�i) j (ti; t�i) ; �) .

for each a0i 2 Ai.

Write �� for the probability distribution over A� T �� generated by strategy pro�le � , so

�� (a; t; �) =  (�)� (tj�)
X
z2Z

� (zjt; �)
 

IY
i=1

� i (aijti; zi)
!

De�nition 8 A probability distribution � 2 �(A� T ��) is a BNE action type state distribution of�
G;S; eS� if there exists a BNE � of

�
G;S; eS� such that � = �� .

Proposition 1 A probability distribution � 2 �(A� T ��) is a Bayes Correlated Equilibrium of (G;S) if
and only if it is a BNE action type distribution distribution of

�
u;  ; S; eS� for some augmented information

system eS.
Proof. Suppose that � is a correlated equilibrium of (u;  ; S). ThusX

a�i2A�i;t�i2T�i;�2�
ui ((ai; a�i) ; �) � ((ai; a�i) ; (ti; t�i) ; �)

�
X

a�i2A�i;t�i2T�i;�2�
ui
��
a0i; a�i

�
; �
�
� ((ai; a�i) ; (ti; t�i) ; �) ;

for each i, ti 2 Ti, ai 2 Ai and a0i 2 Ai; and

X
a2A

� (a; t; �) =  (�)� (tj�)

for all t 2 T and � 2 �. Construct an augmented information system eS = �(Zi)Ii=1 ; �� with each Zi = Ai

and

� (ajt; �) = � (aj�; t) .
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Now in the augmented incomplete information game
�
G;S; eS�, consider the "truthful" strategy pro�le �

with �i (aijti; ai) = 1 for all i, ti and ai. Clearly, we have �� = �. NowX
t�i2T�i;z�i2Z�i;�2�

ui
��
a0i; ��i (t�i; z�i)

�
; �
�
 (�)� ((ti; t�i) j�)� ((zi; z�i) j (ti; t�i) ; �)

=
X

t�i2T�i;z�i2Z�i;�2�
ui
��
a0i; a�i

�
; �
�
� ((ai; a�i) ; (ti; t�i) ; �)

and thus Nash equilibrium conditions are implied by the correlated equilibrium conditions on �.

Conversely, suppose that � is a Nash equilibrium of
�
G;S; eS�. Now �i (aij (ti; zi)) > 0 impliesX

t�i2T�i;z�i2Z�i;�2�
ui ((ai; ��i (t�i; z�i)) ; �) (�)� ((ti; t�i) j�)� ((zi; z�i) j (ti; t�i) ; �)

�
X

t�i2T�i;z�i2Z�i;�2�
ui
��
a0i; ��i (t�i; z�i)

�
; �
�
 (�)� ((ti; t�i) j�)� ((zi; z�i) j (ti; t�i) ; �) .

for each a0i 2 Ai. Thus

X
zi2Zi

�i (aij (ti; zi))
X

t�i2T�i;z�i2Z�i;�2�
ui ((ai; ��i (t�i; z�i)) ; �) (�)� ((ti; t�i) j�)� ((zi; z�i) j (ti; t�i) ; �)

�
X
zi2Zi

�i (aij (ti; zi))
X

t�i2T�i;z�i2Z�i;�2�
ui
��
a0i; ��i (t�i; z�i)

�
; �
�
 (�)� ((ti; t�i) j�)� ((zi; z�i) j (ti; t�i) ; �) .

But X
zi2Zi

�i (aij (ti; zi))
X

t�i2T�i;z�i2Z�i;�2�
ui
��
a0i; ��i (t�i; z�i)

�
; �
�
 (�)� ((ti; t�i) j�)� ((zi; z�i) j (ti; t�i) ; �)

=
X

a�i2A�i;t�i2T�i;�2�
ui
��
a0i; a�i

�
; �
�
�� ((ai; a�i) ; (ti; t�i) ; �)

and thus BNE conditions imply that � is a BCE.

An alternative formulation of this result would be to say that BCE captures the implications of common

certainty of rationality (and the common prior assumption) in the game (G;S), since requiring BNE in

some game with augmented information is equivalent to describing a belief closed subset where the game

(G;S) is being played and there is common certainty of rationality. Thus this is an incomplete information

analogue of the Aumann (1987) characterization of correlated equilibrium for complete information games

and thus - as described in more detail in the next section - corresponds to the "partial Bayesian approach"

of Forges (1993), with the di¤erence that she works with the reduced game - integrating out the payo¤

states �.



Correlated Equilibrium May 24, 2011 11

4 A Number of Legitimate De�nitions of Correlated Equilibrium in

Incomplete Information Games

Forges (1993) is titled and identi�es "�ve legitimate de�nitions of correlated equilibrium in games with

incomplete information." Forges (2006) describes a mistake in Forges (1993) that leads to a sixth de�nition.

Our purpose in this section is to review these six de�nitions and understand their relation to the solution

concept we dub "Bayes correlated equilibrium." Let us highlight a few di¤erences between our formulation

of games and solution concepts to bear in mind as we describe the relation:

1. While we directly de�ne solution concepts for (G;S) as subsets of action type state distributions

�(A� T ��), she characterizes the set of equilibrium payo¤s satisfying a set of restrictions which

implicitly de�ne the solution concept.

2. While we work with a "basic game", G =
�
(Ai; ui)

I
i=1 ;  

�
, describing prior and payo¤s and an

"information structure" S =
�
(Ti)

I
i=1 ; �

�
, she distinguishes between the "decision problem with

incomplete information," (Ai; ui)
I
i=1 and includes the prior on payo¤ relevant states in her description

of the "information scheme".

3. While we include the distribution of payo¤ relevant states � in our solution concept, she integrates

out payo¤ relevant states.

4. While we and Forges (2006) allow for any �nite number of players, Forges (1993) focussed on the two

player case for simplicity.

We start with �ve de�nitions of correlated equilibrium for a incomplete information game (G;S). It

is useful to divide restrictions into two classes: feasibility conditions on the distributions of action type

state pro�les, which are required to hold independent of the payo¤ functions, and incentive compatibility

conditions which are rationality constraints on players�action choices. The closest solutions rely only on

additional feasibility constraints, maintaining obedience as the only incentive compatibility constraint.

Recall that the only feasibility condition we imposed in de�ning Bayes Correlated Equilibrium was the

consistency requirement (De�nition 2) that the action type state distribution implied the distribution on

exogenous variables (types and states) was that of the game (G;S). If the solution concept is intended to

capture the outcome of communication among the players perhaps allowing for an uninformed mediator,

it is natural to impose the additional restriction that the distribution over states conditional on agents�

types is not changed conditional on the mediator�s recommendations:
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De�nition 9 Distribution � 2 �(A� T ��) is join feasible for (G;S) if, for all a 2 A and t 2 T such

that X
�2�

� (a; t; �) > 0;

we have
� (a; t; �)X

�02�

�
�
a; t; �0

� =  (�)� (tj�)X
�02�

 
�
�0
�
�
�
tj�0
� (5)

for all � 2 �.

This assumption is (implicitly) maintained in all Forges�solution concepts for (G;S) and is made explicit

in Lehrer, Rosenberg, and Shmaya (2011) and Lehrer, Rosenberg, and Shmaya (2010) (e.g., condition 4 on

page 676 in Lehrer, Rosenberg, and Shmaya (2010)).

De�nition 10 A probability distribution � 2 �(A� T ��) is a Bayesian solution of (G;S) if it is
consistent, join feasible and obedient.

This is the solution concept discussed in Section 4.4 of Forges (1993) and one of the two discussed in

section 2.5 of Forges (2006). Lehrer, Rosenberg, and Shmaya (2011) refer to this as a "global equilibrium."

It also corresponds to the set of jointly coherent outcomes in Nau (1992), justi�ed from no arbitrage

conditions. Forges and Koessler (2005) provide a justi�cation if players are able to certify their types to

the mediator.

This solution concept allows players to learn about other players�types from the mediator�s recommen-

dation. The following condition removes this possibility:

De�nition 11 Distribution � 2 �(A� T ��) is belief invariant for (G;S) if, for all ti 2 Ti and ai 2 Ai
such that X

a�i2A�i;t�i2T�i;�2�
� ((ai; a�i) ; (ti; t�i) ; �) > 0;

we have X
a�i2A�i;�2�

� ((ai; a�i) ; (ti; t�i) ; �)X
a�i2A�i;t0�i2T 0�i;�2�

�
�
(ai; a�i) ;

�
ti; t0�i

�
; �
� =

X
�2�

 (�)� ((ti; t�i) j�)X
t0�i2T 0�i;�2�

 (�)�
��
ti; t0�i

�
j�
� (6)

for each t�i 2 T�i.

This is condition 3 on page 676 in Lehrer, Rosenberg, and Shmaya (2010). As Forges (2006) puts it,

"the omniscient mediator can use his knowledge of the types to make his recommendations but the players
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should not be able to infer anything on the others�types from their recommendations." This restriction

is added to give the second solution concept:

De�nition 12 A probability distribution � 2 �(A� T ��) is a belief invariant Bayesian solution of
(G;S) if it is consistent, join feasible, belief invariant and obedient.

This is the second solution concept discussed in Section 2.5 of Forges (2006); it was discussed informally

in Section 4.4 of Forges (1993) but it was then mistakenly claimed that it was equivalent to agent normal

form correlated equilibrium. This solution concept is also used in Lehrer, Rosenberg, and Shmaya (2011)

and Lehrer, Rosenberg, and Shmaya (2010). Because they do not work with the reduced game, i.e.,

they explicitly discussed payo¤ relevant states like �, and they must explicitly impose a join feasibility

restriction.

The belief invariant Bayesian solution allows the mediator to use information about players�types to

make a recommendation to players. Suppose that the mediator has no information about the players�types

when deciding what strategy to recommend as a function of the players�types. This is re�ected in the

next feasibility restriction. A pure strategy in the incomplete information game is function �i : Ti ! Ai.

Write �i for the set of pure strategies of agent i and � for the set of pure strategy pro�les, � = �1� :::��I .

De�nition 13 Distribution � 2 �(A� T ��) is agent normal form feasible for (G;S) if there exists

q 2 �(�) such that
� (a; t; �) =  (�)� (tj�)

X
f�2�j�(t)=ag

q (�) (7)

for each a 2 A, t 2 T and � 2 �.

One can show that agent normal form feasibility implies belief invariance. This restriction is added to

give the third solution concept:

De�nition 14 A probability distribution � 2 �(A� T ��) is an agent normal form correlated equilib-

rium of (G;S) if it is consistent, uninformed mediator feasible, agent normal form feasible (and thus belief

invariant) and obedient.

This is the solution concept discussed in Section 4.2 of Forges (1993) and Section 2.3 of Forges (2006).

It corresponds to applying the complete information de�nition of correlated equilibrium to the agent normal

form of the reduced incomplete information game. It was also studied by Samuelson and Zhang (1989)

and Cotter (1994). The solution concept only makes sense on the understanding that the players receive

a recommendation for each type but do not learn what recommendation they would have received if they

had been di¤erent types. If they did learn the whole strategy that the mediator choose for them in the

strategic form game, then an extra incentive compatibility condition would be required:
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De�nition 15 Distribution � 2 �(A� T ��) is strategic form incentive compatible for (G;S) if there

exists q 2 �(�) such that
� (a; t; �) =  (�)� (tj�)

X
f�2�j�(t)=ag

q (�) (8)

for each a 2 A, t 2 T and � 2 �; and, for each i = 1; ::; I, ti 2 Ti, ai 2 Ai and �i 2 �i such that
�i (ti) = ai, we have

X
a�i2A�i;t�i2T�i;�2�

 (�)� (tj�)

0@ X
f��i2��ij��i(t�i)=a�ig

q (�i; ��i)

1Aui ((ai; a�i) ; �) (9)

�
X

a�i2A�i;t�i2T�i;�2�
 (�)� (tj�)

0@ X
f��i2��ij��i(t�i)=a�ig

q (�i; ��i)

1Aui
��
a0i; a�i

�
; �
�

for all a0i 2 Ai.

Note that this condition implies both agent normal form feasibility and obedience. This restriction

gives the fourth solution concept:

De�nition 16 A probability distribution � 2 �(A� T ��) is a strategic form correlated equilibrium of

(G;S) if it is consistent, uninformed mediator feasible and strategic form incentive compatible (and thus

agent normal form feasible, belief invariant and obedient).

This is the solution concept discussed in Section 4.1 of Forges (1993) and Section 2.2 of Forges (2006).

This solution concept was studied by Cotter (1991).

Thus far we have simply been adding restrictions, so that the solution concept have become stronger

as we go from Bayesian solution, to belief invariant Bayesian solution, to agent normal form correlated

equilibrium, to strategic form correlated equilibrium. For the Bayesian solution, an omniscient mediator

who observes players� types for free is assumed. For agent normal form and strategic form correlated

equilibrium, the players�types cannot play a role in the selection of recommendations to the players. An

intermediate assumption is that the players can report their types to the mediator, but will do so truthfully

only if it is incentive compatible to do so. Write �� : T � � ! A for the mediator�s recommendation

strategy implied by � 2 �(A� T ��), so that, for each t 2 T and � 2 � with
X
a02A

� (a0; t; �) > 0,

�� (ajt; �) =
� (a; t; �)X

a02A
� (a0; t; �)

for each a 2 A.
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De�nition 17 Distribution � 2 �(A� T ��) is truth telling for (G;S) if, for each i = 1; ::; I and ti 2 Ti,
we have X

a2A;t�i2T�i;�2�
 (�)� ((ti; t�i) j�) �� ((ai; a�i) j (ti; t�i) ; �) (10)

�
X

a2A;t�i2T�i;�2�
 (�)� ((ti; t�i) j�) ��

�
(�i (ai) ; a�i) j

�
t0i; t�i

�
; �
�
;

for all t0i 2 Ti and �i : Ai ! Ai.

Note that this condition implies obedience (De�nition 2). One can show that this condition is implied

by strategic form incentive compatibility. Now we have the �fth solution concept:

De�nition 18 A probability distribution � 2 �(A� T ��) is a communication equilibrium of (G;S) if

it is consistent, join feasible and incentive compatible (and thus obedient).

This is the solution concept discussed in Section 4.3 of Forges (1993) and Section 2.4 of Forges (2006),

and developed earlier in the work of Myerson (1982) and Forges (1986).

Thus we have Forges��ve solution concepts for the incomplete information game (G;S):

1. Bayesian solution (De�nition 10);

2. Belief invariant Bayesian solution (De�nition 12);

3. Agent normal form correlated equilibrium (De�nition 14);

4. Strategic form correlated equilibrium (De�nition 16); and

5. Communication equilibrium (De�nition 18).

As documented by Forges (1993) and Forges (2006) and implied by the above de�nitions, we have that

the Bayesian solution [1] is weaker than the belief invariant Bayesian equilibrium solution [2], which is

weaker than the agent normal form correlated equilibrium [3], which is weaker than the strategic form

correlated equilibrium [4]; and also the Bayesian solution [1] is weaker than communication equilibrium [5]

which is weaker than strategic form correlated equilibrium [4]. Examples reported in Forges (1993) and

Forges (2006) that each weak inclusion is strict and that the belief invariant Bayesian solution [2] and agent

normal form correlated equilibrium [3] cannot be ranked relative to communication equilibrium [5]. Our

de�nition of Bayes Correlated Equilibrium is weaker than the Bayesian solution, the weakest of Forges�

�ve, because we do not maintain join feasibility.
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The following is a trivial (one player) example showing that Bayes Correlated Equilibrium is a more

permissive solution concept than any of Forges��ve solution concepts for (G;S). Suppose there is one

player, I = 1, and two states, � =
�
�; �0

	
. Let the basic game G = (A1; u1;  ) be de�ned by A1 = fa1; a01g,

u1 (a1; �) = 2, u1
�
a1; �

0� = �1 and u1 (a01; �) = u1
�
a01; �

0� = 0, and  (�) =  
�
�0
�
= 1

2 . And consider the

null information system S0. Consistency (3), obedience (4) and join feasibility (5) together imply that

� (a1; �) = �
�
a1; �

0� = 1

2
and �

�
a01; �

�
= �

�
a01; �

0� = 0.
This is thus the unique Bayesian solution, belief invariant Bayesian solution, agent normal form correlated

equilibrium, strategic form correlated equilibrium and communication equilibrium. However, consistency

(3) implies only that

� (a1; �) + �
�
a01; �

�
=

1

2

�
�
a1; �

0�+ � �a01; �0� =
1

2

and obedience (4) implies only that

2� (a1; �)� �
�
a1; �

0� � 0

2�
�
a01; �

�
� �

�
a01; �

0� � 0.

There are many Bayesian Correlated Equilibria satisfying the above constraints. The one maximizing the

player�s utility has

� (a1; �) = �
�
a01; �

0� = 1

2
and �

�
a1; �

0� = �
�
a01; �

�
= 0.

In Section 4.5, Forges (1993) discusses how more solution concepts are conceivable, including by drop-

ping join feasibility, and gives an example like the above illustrating this point.

In Section 6, Forges (1993) considers a "universal Bayesian approach" in which a prior "information

scheme" (in our language, prior on � and information system) is not taken as given. Thus her "uni-

versal Bayesian solution" is de�ned for (Ai; ui)
I
i=1. Expressing her ideas in the language of action state

distributions, she studies the following solution concept.

De�nition 19 A probability distribution � 2 �(A��) is a universal Bayesian solution of (Ai; ui)Ii=1 if
it satis�es (4).

Thus a probability distribution � 2 �(A��) is Bayes Correlated Equilibrium of G =
�
(Ai; ui)

I
i=1 ;  

�
if and only if it is a universal Bayesian solution and satis�es (3). Note that applying Proposition 1

to the special case of the null information system, we have that � 2 �(A��) is a Bayes Correlated
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Equilibrium of G if and only if there exists an information system S and a Bayes Correlated Equilibrium

� 2 �(A� T ��) of (G;S) which induces � 2 �(A��). This then corresponds to Forges�Proposition
4 when applied to the solution concept of Nash equilibrium (although she states the results in terms of

equilibrium payo¤s rather than distributions). As she notes, her Proposition 4 is a natural incomplete

information generalization of Aumann (1987) and our Proposition 1 is an example of such a generalization

stated in a di¤erent language.

5 Comparing Information Systems

An important result for our robust predictions agenda is that as players become more informed, the set of

possible predictions must be reduced, since obedience constraints will become tighter. We will formalize

this result in the next sub-section. First, we review some existing results on comparing information

systems.

5.1 The Existing Literature

The following useful terminology is used in Lehrer, Rosenberg, and Shmaya (2011) and Lehrer, Rosenberg,

and Shmaya (2010).

De�nition 20 Information system S0 is a garbling of S if there exists � : T ! �(T 0) and satisfying

�0
�
t0j�
�
=
X
t2T

� (tj�)�
�
t0jt
�

for each t0 2 T 0 and � 2 �. The map � is called a garbling that transforms S to S0.

This says that the join of the information in S0 is a garbling in the sense of Blackwell (1951) of the join

of the information in S0. Garbling � is non-communicating if, for each i = 1; :::; I, ti 2 Ti, t0i 2 Ti,X
t0�i2T 0�i

�
��
t0i; t

0
�i
�
j (ti; t�i)

�
=

X
t0�i2T 0�i

�
��
t0i; t

0
�i
�
j
�
ti;et�i��

for all t�i;et�i 2 T�i.
De�nition 21 Information system S0 is a non-communicating garbling of S if there exists a non-communicating

garbling � that transforms S into S0.

This condition requires that each player�s information in S0 is a Blackwell garbling of his information in

S. If garbling � is a non-communicating garbling, we write �i (t
0
ijti) for the (t�i independent) probability
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of t0i conditional on ti, i.e.,

�i
�
t0ijti

�
�
X
t0�i2Ti

�
��
t0i; t

0
�i
�
j (ti; t�i)

�
Garbling � is coordinated if there exist � 2 �(f1; :::;Kg) and, for each i, �i : Ti�f1; :::;Kg ! �(Ti) such

that

�
�
t0jt
�
=

KX
k=1

� (k)

IY
i=1

�i
�
t0ijti; k

�
for each t 2 T and t0 2 T 0.

De�nition 22 Information system S0 is a coordinated garbling of S if there exists a coordinated garbling

� that transforms S into S0.

A garbling is independent if it is coordinated withK = 1, so that there exists, for each i, �i : Ti ! �(Ti)

such that

�
�
t0jt
�
=

KX
k=1

� (k)
IY
i=1

�i
�
t0ijti; k

�
for each t 2 T and t0 2 T 0.

De�nition 23 Information system S0 is an independent garbling of S if there exists a independent garbling

� that transforms S into S0

Lehrer, Rosenberg, and Shmaya (2010) and Lehrer, Rosenberg, and Shmaya (2011) note that, by de�-

nition, an independent garbling is a coordinated garbling, a coordinated garbling is a non-communicating

garbling and a non-communicating garbling is a garbling, and present elegant examples showing that none

of the reverse implications is true.

Say that an information system S is larger that S0 under a given equilibrium concept if, for every game

G, every action state distribution induced by an equilibrium of (G;S0) is also induced by an equilibrium

of (G;S). Information system S is equivalent to S0 under a given equilibrium concept if S is larger than

S0 and S0 is larger than S under that equilibrium.

Lehrer, Rosenberg, and Shmaya (2011) show that (in Theorem 2.8) that

1. Two information systems are equivalent under Bayes Nash Equilibrium if and only if they are inde-

pendent garblings of each other.

2. Two information systems are equivalent under Agent Normal Form Correlated Equilibrium (De�ni-

tion 14) if and only if they are coordinated garblings of each other.
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3. Two information systems are equivalent under the Belief Invariant Bayesian Solution (De�nition 12)

if and only if they are non-communicating garblings of each other.

They do not report an analogous result for Bayes Correlated Equilibrium. They do not report results

for the "larger than" relation.

Lehrer, Rosenberg, and Shmaya (2010) consider common interest games. Say that information system

is S better than S0 under a given solution concept if, for every common interest game G, the maximum

(common) equilibrium payo¤ is higher in (G;S) than (G;S0). They show

1. (Theorem 3.5) Information system S is better than S0 under Bayes Nash Equilibrium if and only if

S0 is a coordinated garbling of S.

2. (Theorem 4.2) Information system S is better than S0 under Agent Normal Form Correlated Equi-

librium (De�nition 14) if and only if S0 is a coordinated garbling of S.

3. (Theorem 4.2) Information system S is better than S0 under Strategic Form Correlated Equilibrium

(De�nition 16) if and only if S0 is a coordinated garbling of S.

4. (Theorem 4.5) Information system S is better than S0 under the Belief Invariant Bayesian Solution

(De�nition 12) if and only if S0 is a non-communicating garbling of S.

5. (Theorem 4.6) Information system S is better than S0 under Communication Equilibrium (De�nition

18) if and only if S0 is a garbling of S.

Gossner (2000) studies Bayes Nash equilibrium only as a solution concept. His focus is on complete

information games but also reports results for incomplete information games. The idea of his results is

that more correlation possibilities are better for the set of BNE that can be supported. To state Gossner�s

result, write BNE (G;S) for the set of BNE action state distributions of (G;S) (see De�nition 6), i.e., the

set of distributions on A�� that can be induced by a BNE of (G;S).

De�nition 24 Information system S is BNE-larger than information system S0 if BNE (G;S0) � BNE (G;S)

for all basic games G.

An independent garbling � is faithful if whenever for each i, ti 2 Ti and t0i 2 T 0i with �i (t0ijti) > 0, we
have

 (�)�0
��
t0i; t

0
�i
�
j�
�X

et0�i2T 0�i;e�2�
 
�e���0 ��t0i;et0�i� je�� =

 (�)
X

t�i2T�i

� ((ti; t�i) j�)

0@Y
j 6=i

�j

�
t0j jtj

�1A
X

t�i2T�i;e�2�
 
�e��� �(ti; t�i) je��
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for all t0�i 2 T 0�i and � 2 �.

De�nition 25 Information system S0 is a faithful independent garbling of S if there exists a faithful

independent garbling � that transforms S into S0.

Intuitively, this states that information system S allows more correlation possibilities than S0 but does

does not give more information about beliefs and higher order beliefs about payo¤ relevant states. Now

we have:

Proposition 2 Information system S is BNE-larger than S0 if and only if S0 is a faithful independent

garbling of S.

This is Theorem 19 in Gossner (2000). [In the brie�y described (Section 6) statement of Gossner�s re-

sult, his de�nition of BNE-larger ("richer" in his language) refers only to distributions over action pro�les,

and not over action pro�les and �; however his arguments would apply the above result.] An interest-

ing special case is when S0 is uninformative, i.e., contains neither information about � nor correlation

opportunities, so that there exist, for each i, �i 2 �(T 0i ) such that

�0
�
t0j�
�
=

IY
i=1

�i
�
t0i
�

for all t0 2 T 0 and � 2 �. In this case, BNE (G;S0) is just equal to the independent distributions over

actions generated by Nash equilibria in the basic game G. This S0 is a faithful independent garbling of S

for any S which is not informative about �: simply set

�
�
t0jt
�
=

IY
i=1

�i
�
t0i
�

for all t0 2 T 0 and � 2 �. Now BNE (G;S) contains BNE (G;S0) because there are weakly more

correlation possibilities in S.

5.2 More Information Reduces the set of Bayes Correlated Equilibria

We present a new result showing that more information reduces the set of Bayes Correlated Equilibria.

Note that this result seems to go in the opposite direction to Gossner�s result, as we are seeing that more

information rules out more outcomes. The explanation for this apparent contradiction is that by using

BCE as a solution concept, the players can correlate their behavior for free in equilibria and the only

impact of more information is to impose more incentive constraints.

The relevant formalization of less information is as follows:
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De�nition 26 Information system S0 is less informed than S if there exist � : T � � ! �(T 0) and, for

each i, �i : Ti ! �(T 0i ), such that

�0
�
t0j�
�
=
X
t2T

�
�
t0jt; �

�
� (tj�)

for each t0 2 T 0 and � 2 �, satisfying also that for each i = 1; :::; I, ti 2 Ti, t0i 2 T 0i ,X
t0�i2T 0�i

�
��
t0i; t

0
�i
�
j (ti; t�i) ; �

�
= �i

�
t0ijti

�
for all t�i 2 T�i and � 2 �.

Note that if S0 is a non-communicating garbling of S exactly if the above de�nition is satis�ed but

with the function � not dependent on �. Thus if S0 is a non-communicating garbling of S, then S0 is less

informed than S. But a robust example in the Appendix (Section 9.1) shows that the converse is not true.

Now we have:

De�nition 27 Information system S0 is BCE-larger than information system S if BCE (G;S) � BCE (G;S0)

for all games G.

Theorem 1 S0 is BCE-larger than S if and only if S0 is less informed than S:

A sketch of the proof is the Appendix (Section 9.2). The argument involves relating the higher order

beliefs about � under the two information systems. See Tang (2010) for more discussion of this issue.

6 The Robust Predictions Agenda

We will report a couple of examples to illustrate the logic of our approach.

6.1 One Player, Binary State, Binary Action Games

Suppose there is one player and two states. There are two states, � = f�0; �1g. Consider the game G

with A = fa0; a1g; u (a0; �0) = �, u (a1; �1) = 1 � � and u (a0; �1) = u (a1; �0) = 0; and  (�0) = � and

 (�1) = 1 � �. Consider an arbitrary information system S = (T; �) and write �k (t) for the probability

of signal t in state �k.

We are interested in Bayes Correlated Equilibria of the game (G;S). In the special case where S is

the null information system, this reduces to the problem of �nding outcomes of a sender receiver game

where we can exogenously choose the sender strategy. This is thus closely related to the problem studied

by Gentzkow and Kaminca (2010), where senders are allowed to commit to a communication strategy.
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Suppose that the mediator recommends action a1 if the player observes signal t in state �k with

probability �k (t) (and thus a0 with probability 1 � �k (t)). Thus the mediator�s behavior is given by

(�1; �2) with each �k : T ! [0; 1]. Now if the player observes signal t and is advised to take action a1, he

attaches probability
��0 (t)�0 (t)

��0 (t)�0 (t) + (1� �)�1 (t)�1 (t)
to state �0 and thus follows the recommendation if

(1� �)�1 (t)�1 (t) (1� �) � ��0 (t)�0 (t)� (11)

or

�1 (t) �
�

�

1� �

��
�

1� �

��
�0 (t)

�1 (t)

�
�0 (t) . (12)

If the player observes signal t and is advised to take action a0, he attaches probability

��0 (t) (1� �0 (t))
��0 (t) (1� �0 (t)) + (1� �)�1 (t) (1� �1 (t))

to state �0 and thus follows the recommendation if

(1� �)�1 (t) (1� �1 (t)) (1� �) � ��0 (t) (1� �0 (t))�

or

(1� �)�1 (t)�1 (t) (1� �) � ��0 (t)�0 (t)�+ (1� �)�1 (t) (1� �)� ��0 (t)� (13)

or

�1 (t) �
�

�

1� �

��
�

1� �

��
�0 (t)

�1 (t)

�
�0 (t) +

�
1�

�
�

1� �

��
�

1� �

��
�0 (t)

�1 (t)

��
. (14)

Now the two obedience constraints (12) and (14) can be combined in the constraint that

�1 (t) �
�

�

1� �

��
�

1� �

�
�0 (t) + max

�
0; 1�

�
�

1� �

��
�

1� �

��
�0 (t)

�1 (t)

��
. (15)

Now distribution � 2 �(A� T ��) is a Bayes Correlated Equilibrium if and only if

� (a; t; �) =

8>>>>><>>>>>:
(1� �)�1 (t)�1 (t) , if (a; �) = (a1; �1)
(1� �)�1 (t) (1� �1 (t)) , if (a; �) = (a0; �1)
��0 (t)�0 (t) , if (a; �) = (a1; �0)

��0 (t) (1� �0 (t)) , if (a; �) = (a0; �0)

for some (�1; �2) satisfying (15).

To understand how the set of BCE vary with di¤erent information structures, we can consider some

extreme points. Consider the player�s ex ante utilityX
t2T

(���0 (t) (1� �0 (t)) + (1� �) (1� �)�1 (t)�1 (t)) .
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This is maximized by setting �0 (t) = 0 and �1 (t) = 1 for all t 2 T , giving maximum ex ante utility

U (S) = ��+ (1� �) (1� �) .

We write this as a function of the information system S, although it turns out to be independent of the

information system. Now let�s �nd the BCE minimizing the player�s ex ante utility. From (11) and (13),

we have that

(1� �)�1 (t)�1 (t) (1� �)� ��0 (t)�0 (t)� � max f0; (1� �)�1 (t) (1� �)� ��0 (t)�g (16)

Thus the utility minimizing BCE is attained by setting �0 (t) = �1 (t) = 0 if�
�

1� �

��
�

1� �

��
�0 (t)

�1 (t)

�
� 1

and �0 (t) = �1 (t) = 1 if �
�

1� �

��
�

1� �

��
�0 (t)

�1 (t)

�
> 1

This gives minimum ex ante utility

U (S) = ��Pr

��
�

1� �

��
�

1� �

��
�0 (t)

�1 (t)

�
> 1

�
+(1� �) (1� �) Pr

��
�

1� �

��
�

1� �

��
�0 (t)

�1 (t)

�
� 1
�
.

Notice that more information will increase the minimum ex ante utility and not change the maximum ex

ante utility.

Now consider the probability that action a1 is chosen,X
t2T

(��0 (t)�0 (t) + (1� �)�1 (t)�1 (t)) .

This is maximized by setting �0 (t) = �1 (t) = 1 if�
�

1� �

��
�

1� �

��
�0 (t)

�1 (t)

�
� 1

and �1 (t) = 1 and �0 (t) solves

�0 (t) =

�
1� �
�

��
1� �
�

��
�1 (t)

�0 (t)

�
(17)

otherwise. Thus the maximum probability of action a1 in a BCE is

�(S) = 1�Pr
��

�

1� �

��
�

1� �

��
�0 (t)

�1 (t)

�
> 1

��
1�

�
1� �
�

��
1� �
�

��
�1 (t)

�0 (t)

���
��0 (t)

��0 (t) + (1� �)�1 (t)

�
This is minimized by setting �0 (t) = �1 (t) = 0 if�

�

1� �

��
�

1� �

��
�0 (t)

�1 (t)

�
> 1
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and �0 (t) = 0 and �1 (t) solves

�1 (t) = 1�
�

�

1� �

��
�

1� �

��
�0 (t)

�1 (t)

�
(18)

otherwise. Thus the minimum probability of action a1 in a BCE is

�(S) = Pr

��
�

1� �

��
�

1� �

��
�0 (t)

�1 (t)

�
� 1
��

1�
�

�

1� �

��
�

1� �

��
�0 (t)

�1 (t)

���
(1� �)�1 (t)

��0 (t) + (1� �)�1 (t)

�
6.2 First Price Auctions

We consider a discretized �rst price private value auction with independent uniform priors. Suppose there

are two players and K2 states, � =
�
1
K ;

2
K ; :::;

K�1
K ; 1

	2
with typical element � = (�1; �2) 2 �. Consider

the game G with A1 = A2 =
�
0; 1M ;

2
M ; :::;

M�1
M ; 1

	
;  (�) = 1

K2 for each � 2 �;

ui ((ai; aj) ; (�i; �j)) =

8>><>>:
�i � ai, if �i > �j
1
2 (�i � ai) , if �i = �j

0, if �i < �j

.

The information structure S has each player i observing his private value �i. Formally, we have S =�
(Ti)i=1;2 ; �

�
where T1 = T2 =

�
1
K ;

2
K ; :::;

K�1
K ; 1

	
and

� (tj�) =

8<: 1, if t = �

0, otherwise
.

Now a Bayes Correlated Equilibrium is a distribution � 2 �(A� T ��) consistency

X
a2A

� (a; t; �) =

8<: 1
K2 , if t = �

0, otherwise

for all t and �; and obedienceX
aj ;tj ;�j

� ((ai; aj) ; (ti; tj) ; (�i; �j))ui ((ai; aj) ; (�i; �j)) �
X

aj ;tj ;�j

� ((ai; aj) ; (ti; tj) ; (�i; �j))ui
��
a0i; aj

�
; (�i; �j)

�
for each i, �i; ti, ai and a0i.

The following simple example illustrates the di¤erence in the bidding behavior in the Bayes Nash

Equilibria (BNE) and Bayes Correlated Equilibria (BCE) of the game (G;S) with a payo¤ type space and

a rich type space. Let K = 3 and M = 8. The unique BNE is given by a symmetric pure strategy pro�le



Correlated Equilibrium May 24, 2011 25

displayed in the left matrix below:

ai n �i
1
3

2
3

3
3

0 0 0 0

1
8 0 0 0

2
8 1 0 0

3
8 0 1 0

4
8 0 0 1

ai n �i
1
3

2
3

3
3

0 0:18 0 0

1
8 0:56 0 0

2
8 0:26 0:50 0

3
8 0 0:50 0:70

4
8 0 0 0:30

The entry in each cell is the conditional probability, �i (ai j�i ), that agent i with value �i submits a bid ai.
In contrast, the revenue minimizing BCE gives rise to the conditional distributions of bids ai given values

�i described the above right matrix. We observe that the average bid in the revenue minimizing BCE is

strictly below the bid in the BNE. The revenue in the BCE is given by 0.33 whereas in the BNE it is 0.43.

(The examples were computed with programs written for Matlab.)

7 Anonymous Games

In this section, we specialize our analysis to the case of anonymous games, where each player is symmetric

in payo¤s and information, so that players�labels are assumed to not matter for either the description of

the game or their choice of strategy. Once we have an anonymous �nite player, �nite action, �nite state

version of Bayes Correlated Equilibrium, it is then possible to present analogue results for continuum player,

continuum action, continuum state games. This is the foundation for our quadratic normal modelling in

Bergemann and Morris (2011):

7.1 The Finite Case

As before, there are I players and �nite state space �. A "basic game" G now consists of (1) a common

action set A; (2) a common utility function u : A��I (A)��! R; , where u (a; h; �) is a player�s payo¤

if he chooses action a, the distribution of actions among the I players is h 2 �I (A) and the state is

�. (For any �nite set X, we write �I (X) for the set of probability distributions on X with support on�
0; 1I ;

2
I ; ::; 1

�
); and (3) a full support prior  2 �(�). Thus a basic game G = (A; u;  ). An "information

structure" S now consists of (1) a common set of types or "signals" T ; and (2) a signal distribution

� : � ! �(�I (T )). Now � (�) 2 �(�I (T )) is a probability distribution over the realized distribution
of signals in the population. Thus S = (T; �). Now (G;S) describes a standard (anonymous) Bayesian

game.
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If � 2 �I (A� T ) is a distribution over action-signal pairs, write margT � 2 �I (T ) for the marginal
distribution over signals, so

margT � (t) =
X
a2A

� (a; t)

for each t 2 T ; write margA� 2 �I (A) for the marginal distribution over actions, so

margA� (a) =
X
t2A

� (a; t)

for each a 2 A. If � 2 �(�I (A� T )��) is a distribution over action-signal pair distributions and states,
write marg�I(T )��� 2 �(�I (T )��) for the marginal distribution over realized distributions of signals
and states, so

marg�I(T )��� (g; �) =
X

f�2�I(A�T ):margT �=gg
� (�; �)

for each g 2 �I (T ) and � 2 �. Finally, write � � for the probability distribution on �I (T )�� induced
by  2 �(�) and � : �! �(�I (T )), so

� �  (g; �) =  (�)� (gj�)

for each g 2 �I (T ) and � 2 �.

De�nition 28 (Bayes Correlated Equilibrium )

A probability distribution � 2 �(�I (A� T )��) is a Bayes Correlated Equilibrium (BCE) of (G;S) ifX
�2�I(A�T );�2�

u (a;margA�; �) � (a; t) � (�; �) �
X

�2�I(A�T );�2�
u
�
a0;margA�; �

�
� (a; t) � (�; �) ; (19)

for each t 2 T , a 2 A and a0 2 A; and

marg�I(T )��� = � �  . (20)

In the special case of a null information system (so there are no signals), then the obedience condition

(19) for � 2 �(�I (A)��) will beX
g2�I(A);�2�

u (a; g; �) g (a)� (g; �) �
X

g2�I(A);�2�
u
�
a0; g; �

�
g (a)� (�; �) ;

for each a 2 A and a0 2 A while the consistency condition (20) will be

marg�� =  . (21)
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7.2 The Continuum Case

There is a continuum [0; 1] of players and state space �. A "basic game" G now consists of (1) a common

action set A; (2) a common utility function u : A��(A)��! R; where u (a; h; �) is a player�s payo¤ if

he chooses action a, the distribution of actions among the continuum players is h 2 �(A) and the state
is �; and (3) a full support prior  2 �(�). Thus G = (A; u;  ). An "information structure" S now

consists of (1) a common set of types or "signals" T ; and (2) a signal distribution � : � ! �(� (T )).

Now � (�) 2 �(� (T )) is a probability distribution over realized distributions of signals in the population.
Thus S = (T; �). Now (G;S) describes a standard continuum (anonymous) Bayesian game.

Now the de�nitions for the continuum case are as before, except that distributions are over a continuum

population and summations are replaced with integrals. We omit the measurability conditions that will

be required in general (they are not an issue for applications using densities).

As before, if � 2 �(A� T ) is a distribution over action-signal pairs, write margT � (t) 2 �I (T )

and margA� 2 �I (A) for the marginal distributions over signals and actions respectively. If � 2
�(� (A� T )��), write marg�(T )��� 2 �(� (T )��) for the marginal distribution over realized dis-
tributions of signals and states. Write � �  for the probability distribution on �(T ) � � induced by

 2 �(�) and � : �! �(� (T )).

De�nition 29 (Bayes Correlated Equilibrium )

A probability distribution � 2 �(� (A� T )��) is a Bayes Correlated Equilibrium (BCE) of (G;S) ifZ
�2�(A�T );�2�

u (a;margA�; �) � (a; t) d� �
Z

�2�(A�T );�2�

u
�
a0;margA�; �

�
� (a; t) d�; (22)

for each t 2 T , a 2 A and a0 2 A; and

marg�(T )��� = � �  . (23)

In the special case of a null information system (so there are no signals), then the obedience condition

(22) for � 2 �(� (A)��) will beZ
g2�(T );�2�

u (a; g; �) g (a) d� �
Z

g2�(T );�2�

u
�
a0; g; �

�
g (a) d�;

for each a 2 A and a0 2 A while the consistency condition (23) will be

marg�� =  :
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8 Discussion

8.1 Payo¤Type Spaces

In Bergemann and Morris (2005) and later work, we studied a robust mechanism environments in a setting

where agents knew their own "payo¤ types", there was common knowledge of how utilities depended on the

pro�le of payo¤ types, but agents were allowed to have any beliefs and higher order beliefs about others�

payo¤ types. In Bergemann and Morris (2007), we discussed a game theoretic framework underlying this

work. Here we brie�y how this environment maps into the setting of this paper.

Suppose that � is a product space with � = �1� ::::��I . Consider the special information structure
where agent i�s set of possible signals is �i, and each agent i observes the realization �i 2 �i, so S�� =�
(�i)

I
i=1 ; id

�
, where id is the identity map id : � ! � with id (�) = � for all �. Now the set of Bayes

Correlated Equilibria of a game (G;S) describe all the distributions over payo¤ type pro�les and actions

consistent with the common prior and common knowledge of rationality. Bergemann and Morris (2007)

- in the language of this paper - is an analysis of the structure of Bayes Correlated Equilibria with the

special information structure S��.

8.2 Signed Covariance

Chwe (2006) analyzes statistical implications of incentive compatibility in general, and in particular sta-

tistical implications of correlated equilibrium play. We can state his main observation in the language of

our paper. Fix any basic game G. Fix any Bayes Correlated Equilibrium � 2 �(A��) of the basic
game (i.e., the game with the null information structure). Fix a player i and action a�i 2 Ai. Consider

the random variable Ia�i on A�� that takes value 1 if a
�
i is played and 0 otherwise. Fix any other action

a0i 2 Ai. Let �a�i ;a0i be the random variable on A � � equal to the payo¤ gain to player i of choosing

action a�i rather than a
0
i. Then, conditional on a

�
i or a

0
i being played, the random variables Ia�i and �a�i ;a0i

have positive covariance. This is the content of the main result in Chwe (2006). As he notes, this is not

merely a re-writing of the incentive compatibility constraints, since these are linear in probabilities while

the covariance is quadratic in probabilities. Thus his signed conditional covariance result is a necessary

property of second order statistics of a Bayes Correlated Equilibrium.

We sketch a formal statement and proof. The formal de�nitions of the random variables Ia�i and �a�i ;a0i
are

Ia�i (a; �) =

8<: 1, if ai = a�i

0, otherwise

�a�i ;a0i (a; �) = ui ((a
�
i ; a�i) ; �)� ui

��
a0i; a�i

�
; �
�
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The expectations of Ia�i , �a�i ;a0i and their product, under �, conditional on the event fa
�
i ; a

0
ig occurring, are:

E�
�
Ia�i

���a�i ; a0i	� =

X
a�i;�

� ((a�i ; a�i) ; �)X
a�i;�

� ((a�i ; a�i) ; �) +
X
a�i;�

� ((a0i; a�i) ; �)

E�

�
�a�i ;a0i

���a�i ; a0i	� =

8>>><>>>:
X
a�i;�

� ((a�i ; a�i) ; �) (ui ((a
�
i ; a�i) ; �)� ui ((a0i; a�i) ; �))

+
X
a�i;�

� ((a0i; a�i) ; �) (ui ((a
�
i ; a�i) ; �)� ui ((a0i; a�i) ; �))

9>>>=>>>;X
a�i;�

� ((a�i ; a�i) ; �) +
X
a�i;�

� ((a0i; a�i) ; �)

E�

�
Ia�i�a�i ;a0i

���a�i ; a0i	� =

X
a�i;�

� ((a�i ; a�i) ; �) (ui ((a
�
i ; a�i) ; �)� ui ((a0i; a�i) ; �))X

a�i;�

� ((a�i ; a�i) ; �) +
X
a�i;�

� ((a0i; a�i) ; �)

Now the incentive compatibility condition that that player i prefers a�i to a
0
i when advised to play a

�
i can

be written as

E�

�
Ia�i�a�i ;a0i

���a�i ; a0i	� � 0 (24)

while that incentive compatibility condition that player i prefers a0i to a
�
i when advised to play a

0
i is

E�

��
1� Ia�i

�
�a�i ;a0i

���a�i ; a0i	� � 0
which can be re-written as

E�

�
Ia�i�a�i ;a0i

���a�i ; a0i	� � E�

�
�a�i ;a0i

���a�i ; a0i	� . (25)

Now the covariance of Ia�i and �a�i ;a0i , conditional on fa
�
i ; a

0
ig, is

E�

�
Ia�i�a�i ;a0i j

�
a�i ; a

0
i

	�
� E�

�
Ia�i j

�
a�i ; a

0
i

	�
E�

�
�a�i ;a0i j

�
a�i ; a

0
i

	�
If E�

�
�a�i ;a0i j fa

�
i ; a

0
ig
�
� 0, (24) and E�

�
Ia�i j fa

�
i ; a

0
ig
�
� 0 imply that this is non-negative. If E�

�
�a�i ;a0i j fa

�
i ; a

0
ig
�
�

0, (25) and E�
�
Ia�i j fa

�
i ; a

0
ig
�
� 1 imply that this is non-negative:
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9 Appendix

9.1 Example

The following is a robust example of non-redundant information systems where S0 is not a non-communicating

garbling of S in the sense of Lehrer, Rosenberg, and Shmaya (2011) and Lehrer, Rosenberg, and Shmaya

(2010), but S0 is less informed than S in the sense of De�nition 26 and thus - by Theorem 1 - S0 is

BCE-richer than S.

Suppose that there is uniform prior on � = f�1; �2g. Information system S has T1 = ft11; t12g,
T2 = ft21; t22g and � : �! �(T ) given by

� (tj�1) t21 t22

t11
4
9

2
9

t12
2
9

1
9

� (tj�2) t21 t22

t11
1
9

1
9

t12
2
9

2
9

This information system simply has each agent observing a conditionally independent signal with "accu-

racy" 2
3 .

Information system S0 has T 01 = ft011; t012g, T 02 = ft021; t022g and �0 : �! �(T 0) given by

� (t0j�1) t021 t022

t011
13
27

2
27

t012
2
27

10
27

�0 (t0j�2) t021 t022

t011
1
27

11
27

t012
11
27

4
27

Consider the following mapping � : T ��! �(T 0).

� (t0jt; �) (t011; t
0
21) (t011; t

0
22) (t012; t

0
21) (t012; t

0
22)

(�1; t11; t21)
2
3 0 0 1

3

(�1; t11; t22)
1
3

1
3 0 1

3

(�1; t12; t21)
1
3 0 1

3
1
3

(�1; t12; t22)
1
3 0 0 2

3

(�2; t11; t21)
1
3

1
3

1
3 0

(�2; t11; t22) 0 2
3

1
3 0

(�2; t12; t21) 0 1
3

2
3 0

(�2; t12; t22) 0 1
3

1
3

1
3

Observe �rst that if � is drawn according to its uniform prior, t is drawn according to S and t0 is drawn
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according to �, we get the following distribution � 2 �(T 0 � T ��):

� (t0; t; �) (t011; t
0
21) (t011; t

0
22) (t012; t

0
21) (t012; t

0
22)

(�1; t11; t21)
8
54 0 0 4

54

(�1; t11; t22)
2
54

2
54 0 2

54

(�1; t12; t21)
2
54 0 2

54
2
54

(�1; t12; t22)
1
54 0 0 2

54

(�2; t11; t21)
1
54

1
54

1
54 0

(�2; t11; t22) 0 4
54

2
54 0

(�2; t12; t21) 0 2
54

4
54 0

(�2; t12; t22) 0 4
54

4
54

4
54

Observe that the marginal of � on T 0 �� is:

marg� (t0; �1) t021 t022

t011
13
54

2
54

t012
2
54

10
54

marg� (t0; �2) t021 t022

t011
1
54

11
54

t012
11
54

4
54

This is distribution resulting from drawing � according to the uniform prior and drawing t0 according to

S0.

Also observe that � satis�es the property that there exist �1 : T1 ! �(T 01) and �2 : T2 ! �(T 02) such

that X
t02

�
��
t01; t

0
2

�
j (t1; t2) ; �

�
= �1

�
t01jt1

�
for each t2 and �

X
t01

�
��
t01; t

0
2

�
j (t1; t2) ; �

�
= �2

�
t02jt2

�
for each t1 and �

This is true for the following (�1; �2):

�1 (t
0
1jt1) t011 t012

t11
2
3

1
3

t12
1
3

2
3

�2 (t
0
2jt2) t021 t022

t21
2
3

1
3

t22
1
3

2
3

Thus from each individual�s point of view, under S0, he is simply observing a noisy version (with accuracy
2
3) of the original signal (with accuracy

2
3). Note in particular that this implies that each player i attaches

probability 5
9 to �1 if he observe t

0
i1 and probability

4
9 to �1 if he observe t

0
i2.

We have now established that S0 is a "non-coordinated �-dependent garbling" of S and thus that, for

every game G, the set of Bayes Correlated Equilibria of (G;S0) contains the Bayes Correlated Equilibria

of (G;S).
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However, S0 is not a "non-coordinated garbling" of S. To show this, we would have to show that there

exists � : T ! �(T 0), �1 : T1 ! �(T 01) and �2 : T2 ! �(T 02) such that

�0
�
t0j�
�
=
X
t

�
�
t0jt
�
� (tj�)

and X
t02

�
��
t01; t

0
2

�
j (t1; t2)

�
= �1

�
t01jt1

�
for each t2 and �

X
t01

�
��
t01; t

0
2

�
j (t1; t2)

�
= �2

�
t02jt2

�
for each t1 and �

In order for this to hold, (�1; �2) would have to be as de�ned above. Let us focus on the probability of

a �xed pro�le of S0 signals (t011; t
0
21) and write �jk for the probability of (t

0
11; t

0
21) conditional on (t1j ; t2k)

under �, i.e.,

�jk = �
��
t011; t

0
21

�
j (t1j ; t2k)

�
Now observe that in order to satisfy the above marginal conditions, we must have

1

3
� �11 �

2

3

0 � �12 �
1

3

0 � �21 �
1

3

0 � �22 �
1

3

But

�0
��
t011; t

0
21

�
j�1
�
=
X
t

�
��
t011; t

0
21

�
jt
�
� (tj�1)

requires we must have
13

27
=
4

9
�11 +

2

9
�12 +

2

9
�21 +

1

9
�22.

But this requires �11 = 2
3 , �12 =

1
3 , �21 =

1
3 and �22 =

1
3 . However,

�0
��
t011; t

0
21

�
j�2
�
=
X
t

�
��
t011; t

0
21

�
jt
�
� (tj�2)

requires we must have
1

27
=
1

9
�11 +

2

9
�12 +

2

9
�21 +

4

9
�22.

which is a contradiction.
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9.2 Proof of Theorem 1

We will need a number of intermediate results to prove Theorem 1.

9.2.1 Higher Order Beliefs for a Fixed Information System

Fix an information system S =
�
(Ti)

I
i=1 ; �

�
. For a type ti 2 Ti, write b�1i [ti] 2 �(�) for his posterior

under a uniform prior on �, so

b�1i [ti] (�) =
X

t�i2T�i

� ((ti; t�i) j�)X
�02�;t�i2T�i

�
�
(ti; t�i) j�0

� .
Write �1i � �(�) for the range of b�1i and �1i for a typical element of �1i .

Write b�2i (ti) 2 ���� ��
j 6=i
�1j

��
for his belief over � and the �rst order beliefs of other players, so

b�2i [ti] ��; �1�i� =
X

ft�i2T�ijb�1j (tj)=�1j for each j 6=ig
� ((ti; t�i) j�)

X
�02�;ft�i2T�ijb�1j (tj)=�1j for each j 6=ig

�
�
(ti; t�i) j�0

� .

Write �2i � �
�
��

�
�
j 6=i
�1j

��
for the range of b�2i and �2i for a typical element of �2i .

Proceeding inductively for k � 2, write b�ki (ti) 2 ���� ��
j 6=i
�k�1j

��
for his belief over � and the

(k � 1)th order beliefs of other players, so

b�ki [ti]��; �k�1�i

�
=

X
ft�i2T�ijb�k�1j (tj)=�

k�1
j for each j 6=ig

� ((ti; t�i) j�)

X
�02�;ft�i2T�ijb�k�1j (tj)=�

k�1
j for each j 6=ig

�
�
(ti; t�i) j�0

� .

Write �ki � �
�
��

�
�
j 6=i
�k�1j

��
for the range of b�ki and �ki for a typical element of �ki .

Each b�ki generates a partition Ti which becomes more re�ned as k increases. Since each Ti is �nite,

the information system has a depth K, so that the depth of the information system S is smallest integer

K such that b�ki (ti) = b�ki �t0i�, b�Ki (ti) = b�Ki �t0i�
for all k � K. Let ��i [ti] be a list of the �rst Kth level beliefs of player i, so

��i [ti] =
�b�ki [ti]�K

k=1
.
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Let ��i � �
k=1;::;K

�ki be the range of �
�
i .

A type space is non-redundant if each type has distinct higher order beliefs, i.e., ti 6= t0i =) b�Ki (ti) 6=b�Ki (t0i).
For a type ti 2 Ti, write e�1i [ti] 2 �(�� T�i) for his posterior under a uniform prior on �� T�i, so

e�i [ti] (�) = � ((ti; t�i) j�)X
�02�;t0�i2T�i

�
��
ti; t0�i

�
j�0
� .

Observe that if information system is non-redundant, then by construction we have that for each i and

ti; t
0
i 2 Ti, e�i (ti) 6= e�i (t0i) :
For any redundant information system, we can construct a canonical "reduced information system"

which is non-redundant. Let T �i be the (�nite) range of b�1i . De�ne ��� : �! T � by

��� (t�j�) =
X

ft2T jb�Ki (ti)=t�i for each ig
� (tj�) .

By construction, each type in ti 2 Ti, will have the same higher order beliefs and type b�Ki (ti) 2 T �i and

each type in T �i will have distinct higher order beliefs.

9.2.2 Higher Order Belief Equivalence

Write BCE (G;S) � �(A��) for the set of BCE action state distributions of (G;S) (see De�nition 6),
i.e., the set of distributions on A�� that can be induced by a BCE of (G;S).

Lemma 3 If S� =
�
(T �i )

I
i=1 ; �

�
�
is the reduced information system of S =

�
(Ti)

I
i=1 ; �

�
, then BCE (G;S�) =

BCE (G;S) for all G.

Proof. Suppose �� 2 �(A� T � ��) is a BCE of (G;S�). De�ne �� : T � ��! �(A) by

� (ajt�; �) = �� (a; t�; �)X
a02A

�� (a0; t�; �)

and � 2 �(A� T ��) by
� (a; t; �) =  (�)� (tj�)� (ajb�1 (t) ; �)

By construction, � is a BCE of (G;S) which induces the same action state distribution as ��.

Suppose � 2 �(A� T ��) is a BCE of (G;S). De�ne �� : T � ��! �(A) by

� (ajt�; �) =

X
ft2T jb�1i (ti)=t�i for each ig

� (a; t; �)

X
ft2T jb�1i (ti)=t�i for each ig

X
a02A

�� (a0; t; �)
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and �� 2 �(A� T � ��) by
�� (a; t; �) =  (�)�� (t�j�)�� (ajt�; �)

By construction, � is a BCE of (G;S) which induces the same action state distribution as ��.

Lehrer, Rosenberg, and Shmaya (2011) report a related result as Theorem 6.1.

9.2.3 Higher Order Beliefs Game

For a �xed non-redundant information system S =
�
(Ti)

I
i=1 ; �

�
and integer ", we will construct a �nite

"higher order beliefs game" GS;". This is a variation and simpli�cation of such a game used in Dekel,

Fudenberg, and Morris (2006). For any �nite set X, the Euclidean distance between two points �; � 0 2
�(X) is de�ned as 

� � � 0

 =sX

x2X

�
� (x)� � 0 (x)

�2
A set of probability distributions � � �(X) is said to be an "-grid of �(X) if every point in �(X)

is within " of a point in �. Now let A1i be any "-grid of �(�) including �1i . Let A2i be any "-

grid of �
�
��

�
�
j 6=i
A1j

��
including �2i . Inductively, for each k = 2; ::;K, let Aki be any "-grid of

�

�
��

�
�
j 6=i
Ak�1j

��
including �k�1i . Let

Ai = �
k=1;::;K

Aki .

We assume the prior over states is given by the uniform prior  0, so

 0 (�) =
1

#�

for all � 2 �. We want to give players an incentive to truthfully announces their higher order beliefs. We
write ai =

�
a1i ; ::; a

K
i

�
for a typical element of Ai. Let

ui ((ai; a�i) ; �) = u1i
�
a1i ; �

�
+

KX
k=2

uki

�
aki ; a

k�1
�i

�
.

Now let

u1i
�
a1i ; �

�
= 2a1i (�)�

X
�02�

�
a1i
�
�0
��2

and, for k � 2,
uki

�
aki ; a

k�1
�i

�
= 2aki

�
�; ak�1�i

�
�

X
ak�1�i 2A

k�1
�i

�
aki

�
ak�1�i

��2
This completes the description of the game GS;" =

�
(��i ; ui)

I
i=1 ;  0

�
.
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Now observe that each player has an incentive to set each aki as close as possible to his true belief over

��
�
�
j 6=i
Ak�1j

�
. By the construction of the action space, each aki will always be within " of the player�s

true belief.

9.2.4 Playing the Game

Lemma 4 For every " > 0, the game (GS;"; S) has a BCE where each player always announces his true

higher order beliefs, i.e., if � 2 �(A� T ��) satis�es

� (a; t; �) =

8<:  0 (�)� (tj�) , if a = �� [t]

0, otherwise

for all a; t and �, then � is a BCE of (GS;"; S). In this BCE, each players�actions are restricted to the

set ��i � Ai. This BCE induces an action state distribution � 2 �(A��) satisfying

� (a; �) =

8<:  0 (�)� (tj�) , if there exists t with a = �� [t]

0, otherwise

Now suppose that the game is played with a di¤erent information system S0. Does there exists a

BCE of the game (GS;"; S0) where players only choose action pro�les in ��? For a distribution � 0 2
�(�� � T 0 ��), write � 0 (�j��i (ti); t0i) for the induced distribution over T�i � � of a type t0i of player i

advised to take action ��i (ti), so that

� 0
�
t�i; �j��i (ti); t0i

�
=

X
t0�i

� 0
��
��i (ti); �

�
�i(t�i)

�
;
�
t0i; t

0
�i
�
; �
�

X
t0�i;et�i;e�

� 0
��
��i (ti); �

�
�i(et�i)� ; �t0i; t0�i� ;e��

Lemma 5 For each " > 0, if � 0 2 �(�� � T 0 ��) is a BCE of (GS;"; S0), then each player choosing

action ��i (ti) under �
0 has beliefs over ���i �� within " of e�i(ti), i.e., X

�;a�i;t0�i

� 0 (a; t0; �) > 0 implies that



� 0 ��j��i (ti); t0i�� e�i(ti)

 � ".

Proof. A �rst necessary condition is that player i with type t0i and recommendation �
�
i (ti) has an

incentive to set a1i = b�2i [ti]. A necessary condition for this is that his beliefs on � are within " of b�2i [ti].
Now for each k = 2; ::;K, a necessary condition is that player i with type t0i and recommendation �

�
i (ti)

has an incentive to set aki = b�ki [ti]. A necessary condition for this is that his beliefs on Ak�1�i � � are

within " of b�ki [ti]. But this last condition reduces to the condition of the lemma.
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9.2.5 Completing the Proof

Without loss of generality, we will assume that S and S0 are non-redundant: by Lemma 3, redundancies

do not change the set of BCE.

If: We �rst establish that if S0 is less informed than S, then S0 is BCE richer than S.

First note that if S0 is less informed that the reduced information system of S, it is also less informed

than S. Let � 2 �(A� T ��) be a BCE of (G;S). Write Vi (ai; a0i; ti) for the expected utility for agent
i under distribution � if he is type ti, receives recommendation ai but chooses action a0i, so that

Vi
�
ai; a

0
i; ti
�
,

X
a�i2A�i;t�i2T�i;�2�

ui
��
a0i; a�i

�
; �
�
� ((ai; a�i) ; (ti; t�i) ; �) .

Now - by De�nition 3 - for each i = 1; ::; I, ti 2 Ti and ai 2 Ai, we have

Vi (ai; ai; ti) � Vi
�
ai; a

0
i; ti
�
; (26)

and a0i 2 Ai; and, by De�nition 2, for all t 2 T and � 2 �, we have

X
a2A

� (a; t; �) =  (�)� (tj�) (27)

Now let � be a ��dependent non-communicating garbling that transforms S to S0 and de�ne � 0 2
�(A� T 0 ��) by

� 0
�
a; t0; �

�
=
X
t2T

� (a; t; �)�
�
t0jt; �

�
. (28)

By construction, for all t 2 T and � 2 �,X
a2A

� 0
�
a; t0; �

�
=

X
a2A;t2T

� (a; t; �)�
�
t0jt; �

�
, by (28)

=
X
t2T

 (�)� (tj�)�
�
t0jt; �

�
, by (27)

=  (�)�0
�
t0j�
�
, because � is an �-dependent non-communicating garbling that transforms S to S0

Thus � 0 satis�es the consistency condition (De�nition 2) to be a BCE of (G;S0). Write V 0i (ai; a
0
i; t

0
i) for the

expected utility for agent i under distribution � 0 if he is type t0i, receives recommendation ai but chooses

action a0i, so that

V 0i
�
ai; a

0
i; t

0
i

�
,

X
a�i2A�i;t0�i2T 0�i;�2�

ui
��
a0i; a�i

�
; �
�
� 0
�
(ai; a�i) ;

�
t0i; t

0
�i
�
; �
�
.
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and symmetrically write

Vi
�
ai; a

0
i; ti
�
,

X
a�i2A�i;t�i2T�i;�2�

ui
��
a0i; a�i

�
; �
�
� ((ai; a�i) ; (ti; t�i) ; �) .

Now � 0 satis�es the obedience condition (De�nition 3) to be a correlated equilibrium of (u;  ; S0) if for each

i = 1; ::; I, t0i 2 T 0i and ai 2 Ai,
V 0i
�
ai; ai; t

0
i

�
� V 0i

�
ai; a

0
i; t

0
i

�
for all a0i 2 Ai. But

V 0i
�
ai; a

0
i; t

0
i

�
=

X
a�i2A�i;t0�i2T 0�i;�2�

ui
��
a0i; a�i

�
; �
�
� 0
�
(ai; a�i) ;

�
t0i; t

0
�i
�
; �
�

=
X

a�i2A�i;t0�i2T 0�i;�2�;t2T
ui
��
a0i; a�i

�
; �
�
� ((ai; a�i) ; (ti; t�i) ; �)�

�
t0jt; �

�
, by the de�nition of � 0 (28)

=
X

a�i2A�i;;t2T;�2�
ui
��
a0i; a�i

�
; �
�
� ((ai; a�i) ; (ti; t�i) ; �)

X
t0�i2T 0�i

�
��
t0i; t

0
�i
�
j (ti; t�i) ; �

�
=

X
a�i2A�i;t2T;�2�

ui
��
a0i; a�i

�
; �
�
� ((ai; a�i) ; (ti; t�i) ; �)�i

�
t0ijti

�
,

=
X
ti2Ti

�i
�
t0ijti

�24 X
a�i2A�i;t�i2T�i;�2�

ui
��
a0i; a�i

�
; �
�
� ((ai; a�i) ; (ti; t�i) ; �)

35
=

X
ti2Ti

�i
�
t0ijti

�
Vi
�
ai; a

0
i; ti
�

(29)

Now for each i = 1; ::; I, t0i 2 T 0i and ai 2 Ai,

V 0i
�
ai; ai; t

0
i

�
=

X
ti2Ti

�i
�
t0ijti

�
Vi (ai; ai; ti) , by (29)

�
X
ti2Ti

�i
�
t0ijti

�
Vi
�
ai; a

0
i; ti
�
, by (26) for each ti 2 Ti

= V 0i
�
ai; a

0
i; t

0
i

�
, by (29)

for each a0i 2 Ai. Thus � 0 is a BCE of (G;S0). By construction � 0 and � induce the same distribution in
�(A��). Since this argument started with an arbitrary BCE � of (G;S) and an arbitrary G, we have

BCE (G;S0) � BCE (G;S) for all games G.

Only if: Now we show that if S0 is not less informed than S, then there exists a game G and an action

state distribution � 2 �(A��) such that � is a BCE equilibrium action distribution of (G;S) but is not

a BCE equilibrium action distribution of (G;S0).

Consider the higher order beliefs game G (S; ") described above. There exists a truthtelling equilibrium

for (G;S). Because S0 is not less informed than S�, there does not exist a action type state distribution
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� 0 2 �(T � T 0 ��) that induces � and assigns every type t0i assigned to play ti the same belief about
others�actions and the state as the type ti under �. Thus by compactness, the necessary condition of

Lemma 5 for an equilibrium of (G;S0) inducing the same action state distribution fails.
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