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Abstract

We develop a theory of equilibrium in asset markets with adverse selection. Traders

can buy and sell an asset at any price. Sellers recognize that their trades may be

rationed if they ask for a high price, while buyers recognize that they can only get a

high quality good by paying a high price. These beliefs are consistent with rational

behavior by all traders. In the resulting equilibrium, the existence of low-quality assets

reduces the liquidity and price-dividend ratio in the market for high quality assets.

The emergence or worsening of an adverse selection causes a fire sale, with the price

and liquidity of all such assets declining. The price of other assets that do not suffer

from adverse selection may rise, a flight to quality. If a large player purchases and

destroys all the low quality assets, the liquidity and price-dividend ratio will increase

for high quality assets.

1 Introduction

This paper develops a dynamic equilibrium model of asset markets with adverse selection.

Sellers can attempt to sell a durable asset at any price. Buyers must form rational expec-

tations about the type of asset that is available at each price. In equilibrium, sellers are

rationed by a shortage of buyers at all prices except the lowest one, and it is increasingly

difficult to sell an asset at higher prices. This keeps the owners of low quality assets from

∗This paper is an outgrowth of research with Randall Wright; we are grateful to him for many discussions
and insights on this project. A previous version of this paper was entitled, “Competitive Equilibrium in
Asset Markets with Adverse Selection.” We also thank seminar audiences at the Aarhus University, the
American Economic Association Annual Meetings, the University of Essex, and the Federal Reserve Bank
of Chicago on previous versions of this paper. Shimer is grateful to the National Science Foundation for
research support.
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trying to sell them at high prices. On the other hand, the owners of high quality assets are

willing to set a high price despite the low sale probability because the asset is worth more

to them if they fail to sell it.

Our model offers an abstract view of an illiquid asset market, for example the market

for asset-backed securities during the 2007–2008 financial crisis. Prior to the crisis, market

participants viewed AAA securities as a safe investment, indistinguishable from Treasuries;

indeed, they were treated as such by banking regulators. In the early stages of the crisis,

investors started to recognize that some of these securities were likely to pay less than face

value. Moreover, it was difficult to determine the exact assets that backed each individual

security. Anticipating that she might later have to sell it, at this point it started to pay for

the owner of an asset to learn its quality. On the other hand, it did not pay potential buyers

to investigate the quality of all possible assets because they did not know which assets would

later be for sale. This created an adverse selection problem, where sellers have superior

information than buyers, as in the classic market for lemons (Akerlof, 1970).

We predict that within an asset class, such as AAA-rated mortgage backed securities, a

seller should always be able to sell an asset at a sufficiently low price. However, the owners of

good quality assets will choose to hold out for a higher price, recognizing that there will be a

shortage of buyers at that price and so it will take time to sell the asset. Moreover, the price

that buyers are willing to pay for a high quality asset will be depressed because the market is

less liquid. That is, even if a buyer somehow understood that a particular mortgage-backed

security would pay the promised dividends with certainty, he would pay less for it than for a

Treasury because he would anticipate having trouble reselling the MBS to future buyers who

don’t have his information. Illiquidity therefore serves to further depress asset prices. In

particular, the ability of sellers to learn the quality of their assets will depress the liquidity

and may depress the value of all securities even if the average quality is unchanged. We

view an event where sellers start to learn the quality of the assets in their portfolio as a fire

sale.1 On the other hand, buyers still would like to reinvest their income in some asset, and

so the decline in the demand for MBS will boost the demand for other assets that do not

suffer from an adverse selection problem, such as Treasury bonds. Thus our model generates

a flight-to-quality.

An obvious solution to this problem is to have a third party evaluate the quality of the

1For a detailed description of the first phase of the crisis and an analysis of the source of the adverse
selection problem, see Gorton (2008). This view of the crisis is consistent with Dang, Gorton and Holmström
(2009), who conclude, “Systemic crises concern debt. The crisis that can occur with debt is due to the
fact that the debt is not riskless. A bad enough shock can cause information insensitive debt to become
information sensitive, make the production of private information profitable, and trigger adverse selection.
Instead of trading at the new and lower expected value of the debt given the shock, agents trade much less
than they could or even not at all. There is a collapse in trade. The onset of adverse selection is the crisis.”
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assets. Indeed, this is the role that the rating agencies were supposed to play. But the rating

agencies lost their credibility during the crisis and there was no one with the reputation and

capability to take their place. We find instead that there may have been a role for an investor

with deep pockets, such as a government, to purchase low quality assets and alleviate the

illiquidity of high quality ones. In particular, suppose the government stood ready to buy

all assets at a moderate price. Any asset which the seller believed was worth less than that

price, even if fully liquid, would be sold to the government, which in turn would take a

loss on its purchases. The elimination of trade in low quality assets moderates the adverse

selection problem. This makes all other assets more liquid and more expensive. Thus asset

purchases can potentially alleviate both illiquidity and insolvency.

Our model is deliberately stylized. Assets are perfectly durable and pay a constant

dividend, a perishable consumption good. Better quality assets pay a higher dividend. Indi-

viduals are risk-neutral and have a discount factor that shifts randomly over time, creating

a reason for trade. The only permissible trades are between the consumption good and the

asset. Still, we believe this framework is useful for capturing our main idea that illiquidity

may serve to separate high and low quality assets. In particular, it is a dynamic general

equilibrium model in which the distribution of asset holdings evolves endogenously over time

as individuals trade and experience preference shocks. We define a competitive equilibrium

in this environment and prove that it is unique. In equilibrium, higher quality assets trade

at a higher price but with a lower probability. The expected revenue from selling an asset,

the product of its price and trading probability, is decreasing in the quality of the asset.

We also show that the trading frictions in this environment do not depend on any as-

sumptions about the frequency of trading opportunities. Even with continuous trading

opportunities, there are not enough buyers in the market for high quality assets and so it

takes a real amount of calendar time to sell at a high price. This is in contrast to models that

emphasize illiquidity in asset markets due to search frictions, such as Duffie, Gârleanu and

Pedersen (2005), Weill (2008), and Lagos and Rocheteau (2009), where the economy con-

verges to the frictionless outcome when the time between trading opportunities goes to zero.

In our adverse selection economy, real trading delays are essential for separating the good

assets from the bad ones. Of course, in reality adverse selection and search frictions may

coexist in a market, and it is indeed straightforward to introduce search into our framework

(Guerrieri, Shimer and Wright, 2010; Chang, 2010).

There is a large literature on dynamic adverse selection models. In many cases, the

authors implicitly assume that all trades must take place at one price, so there is necessar-

ily a pooling equilibrium (e.g. Eisfeldt, 2004; Kurlat, 2009; Daley and Green, 2010; Chari,

Shourideh and Zetlin-Jones, 2010). This implies that sellers choose not to sell some assets
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because the price is too low, and so in a sense these models also deliver illiquidity. In our

model, in contrast, sellers try to sell all their assets, but most only sell with some probability

in each period. Moreover, our model allows for the possibility that a seller can demand a

high price for her asset, something that models which impose a uniform price cannot address.

At the end of our paper, we compare our notion of equilibrium to an environment in which

we impose that all trades must take place at a common price. A number of substantive re-

sults differ. For example, our equilibrium is unique while equilibrium is generally not unique

in the pooling environment. In addition, public asset purchases, a policy intervention that

is important in practice, are more effective in our environment than in the economy with

pooling. For a detailed analysis of the effect of current and anticipated future public asset

purchase programs in a pooling environment, see Chiu and Koeppl (2011).

A third approach to adverse selection assumes random matching between uninformed

buyers and informed sellers and allows the buyers to make take-it-or-leave-it offers to sellers.

Some buyers offer higher prices than others and the owners of high quality assets only sell

when they are offered a high price. This generates an endogenous composition of sellers,

which mitigates the adverse selection problem in that environment (Inderst, 2005; Camargo

and Lester, 2011). Our approach to generating a separating equilibrium is fundamentally

different in that it does not depend on an endogenous composition of sellers. We highlight

this by assuming in our simplest model that the fraction of individuals who are sellers and

the fraction of assets owned by those individuals is constant and exogenous.

This paper builds on our previous work with Randall Wright (Guerrieri, Shimer and

Wright, 2010). It also complements a contemporaneous paper by Chang (2010). There are

a number of small differences between that paper and this one. For example, we look at an

environment in which individuals may later want to resell assets that they purchase today.

This means that buyers care about the liquidity of the asset and so liquidity affects the

equilibrium price-dividend ratio. It follows that interventions in the market which boost

liquidity may also raise asset prices. We allow individuals to hold multiple assets, although

that turns out to be inessential for our analysis. We also focus explicitly on a general

equilibrium environment, allowing for the possibility that buyers may be driven to a corner

in which they do not consume anything. This is essential for our model to generate a flight

to quality. Still, both papers leverage our earlier research to study separating equilibria in a

dynamic adverse selection environment.

Our notion of liquidity builds on DeMarzo and Duffie (1999), who study optimal security

design by an issuer with private information. That paper shows that the issuer may commit

to retain some ownership of the security in order to signal that it is of high quality. We show

that in an equilibrium environment, there is no need for sellers to make such commitments.
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Instead, when the seller of a high quality asset demands a high price, the market ensures

that the seller retains ownership with some probability by rationing sales at that price.

This paper proceeds as follows. Section 2 describes our basic model. Section 3 describes

the individual’s problem and shows how to express it recursively. Section 4 defines equilib-

rium and establishes existence and uniqueness. Section 5 provides closed-form solutions for

a version of the model with a continuum of assets. Section 6 extends the model to have

persistent preference shocks and then shows that the frictions survive in the continuous time

limit. Section 7 discusses how our model can generate fire sales following the revelation

of some information and how illiquidity and insolvency can be alleviated through an asset

purchase program, although the program necessarily loses money. Section 8 compares the

implications of our equilibrium concept to an environment in which a pooling equilibrium is

imposed.

2 Model

There is a unit measure of risk-neutral individuals. In each period t, they can be in one of

two states, st ∈ {l, h}, which determines their discount factor βst between periods t and t+1.

We assume 0 < βl < βh < 1. The preference shock is independent across individuals and for

now we assume that it is also independent over time. Thus πs denotes the probability that

an individual is in state s ∈ {l, h} in any period, and it is also the fraction of individuals

who are in state s in any period. For any particular individual, let st ≡ {s0, . . . , st} denote

the history of states through period t.

There is a finite number of different types of assets, distinguished by their type j ∈

{1, . . . , J}. Assets are perfectly durable and so their supply is fixed; let Kj denote the

measure of type j assets in the economy. Each type j asset produces δj units of a homoge-

neous, nondurable consumption good each period, and so aggregate consumption
∑J

j=1 δjKj

is fixed. Without loss of generality, assume that higher type assets produce more of the

consumption good, 0 ≤ δ1 < · · · < δJ . The assumption that there is a finite number of asset

types simplifies our notation, but in Section 5, we discuss the limiting case with a continuum

of assets.

We are interested in how a market economy allocates consumption across individuals.

For the remainder of the paper, we refer to the assets as “trees” and the consumption good

as “fruit.” The timing of events within period t is as follows:

1. each individual i owns a vector {ki,j}
J
j=1 of trees which produce fruit;

2. each individual’s discount factor between periods t and t+ 1 is realized;
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3. individuals trade trees for fruit in a competitive market;

4. individuals consume the fruit that they hold.

We require that each individual’s consumption is nonnegative in every period and we

do not allow any other trades, e.g. contingent claims against shocks to the discount factor.

In addition, we assume that only the owner of a tree can observe its quality, creating an

adverse selection problem. Key to our equilibrium concept, which we discuss below, is that

the buyer of a tree may be able to infer its quality from the price at which it is sold. Finally,

we impose that only individuals with low discount factors may sell trees and henceforth call

them “sellers.” For symmetry, we refer to individuals with high discount factors as buyers.

This configuration is reasonable in the sense that, absent an adverse selection problem,

individuals with high discount factors would buy trees from individuals with low discount

factors, transferring consumption from those with a high intertemporal marginal rate of

substitution to those with a low one.

We now describe the competitive fruit market more precisely. After trees have borne

fruit, a continuum of markets distinguished by their positive price p ∈ R+ may open up.

Each buyer may take his fruit to any market (or combination of markets), attempting to

purchase trees in that market. Each seller may take his trees to any market (or combination

of markets) attempting to sell trees in that market.

All individuals have rational beliefs about the ratio of buyers to sellers in all markets.

Let Θ(p) denote the ratio of the amount of fruit brought by buyers to a market p, relative

to the cost of purchasing all the trees in that market at a price p. If Θ(p) < 1, there is not

enough fruit to purchase all the trees offered for sale in the market, while if Θ(p) > 1, there

is more than enough. A seller believes that if he brings a tree to a market p, it will sell with

probability min{Θ(p), 1}. That is, if there are excess trees in the market, the seller believes

that he will succeed in selling it only probabilistically. Likewise, a buyer who brings p units

of fruit to market p believes that he will buy a tree with probability min{Θ(p)−1, 1}. If there

is excess fruit in the market, he will be rationed. A seller who is rationed keeps his tree until

the following period, while a buyer who is rationed must eat his fruit.

Individuals also have rational beliefs about the types of tree sold in each market. Let

Γ(p) ≡ {γj(p)}
J
j=1 ∈ ∆J denote the probability distribution over trees available for sale in a

market p, where ∆J is the J-dimensional unit simplex.2 Buyers expect that, conditional on

buying a tree at a price p, it will be a type j tree with probability γj(p). Buyers only learn

the quality of the tree that they have purchased after giving up their fruit. They have no

recourse if unsatisfied with the quality.

2That is, γj(p) ≥ 0 for all j and
∑J

j=1
γj(p) = 1.
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Although trade does not happen at every price p, the functions Θ and Γ are not arbitrary.

Instead, if Θ(p) < ∞ (the buyer-seller ratio is finite) and γj(p) > 0 (a positive fraction of

the trees for sale are of type j), sellers must find it weakly optimal to sell type j trees at

price p. Without this restriction on beliefs, there would be equilibria in which, for example,

no one pays a high price for a tree because everyone believes that they will only purchase

low quality trees at that price.

3 Individual’s Problem

Each individual starts off at time 0 with some vector of tree holdings {kj}
∞
j=0 and preference

state s ∈ {l, h}. In each subsequent period t and history of preference shocks st, he decides

how many trees to attempt to buy or sell at every possible possible price p, recognizing

that he may be rationed at some prices and that the price may affect the quality of the

trees that he buys. Let V ∗
s ({kj}) denote the supremum of the individual’s expected lifetime

utility over feasible policies, given initial tree holdings. In Appendix A, we characterize this

value explicitly and prove that it is linear in tree holdings: V ∗
s ({kj}) ≡

∑J

j=1 vs,jkj for some

positive numbers vs,j. This is a consequence of the linearity of both the individual’s objective

function and the constraints that he faces.

In addition, we prove that the marginal value of tree holdings satisfy relatively simple

recursive problems. A seller solves

vl,j = δj +max
p

(

min{Θ(p), 1}p+ (1−min{Θ(p), 1})βlv̄j
)

, (1)

where v̄j ≡ πhvh,hj + πlvl,j. The individual earns a dividend δj from the tree and also gets

p units of fruit if he manages to sell the tree at the chosen price p. Otherwise he keeps the

tree until the following period. Note that there is no loss of generality in assuming that a

seller always tries to sell all his trees, since he can always offer them at a high price such

that this is optimal, p > βlv̄j . Of course, at such a high price, he may be unable to sell it,

Θ(p) = 0, in which case the outcome is the same as holding onto the tree.

For a buyer, a type j tree delivers δj units of fruit, each of which may either be consumed

or used to purchase trees. A key result is that the value of fruit to a buyer is independent

of the type of tree that produced that fruit. Define 1+ λ to be the value of a unit of fruit to

a buyer. If λ = 0, the individual finds it weakly optimal to eat the fruit, while if λ > 0 he

strictly prefers to purchase trees. Then

vh,j = δj(1 + λ) + βhv̄j (2)
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In addition, the value of a unit of fruit in excess of its consumption utility satisfies

λ ≡ max
p≥0

(

min{Θ(p)−1, 1}

(

βh

∑J

j=1 γj(p)v̄j

p
− 1

))

, (3)

with λ = 0 if the maximum value is negative. The buyer uses the fruit to attempt to purchase

1/p trees at an optimally chosen price p. If he succeeds, with probability Θ(p)−1 if Θ(p) > 1

and probability 1 otherwise, he enjoys the expected value of the tree next period but gives

up a unit of fruit.

Proposition 1 Let {vs,j} and λ be positive-valued numbers that solve the Bellman equa-

tions (1), (2), and (3) for s = l, h. Then V ∗
s ({kj}) ≡

∑J

j=1 v̄s,jkj for all {kj}.

The proof is in appendix A. Note that for some choices of the functions Θ and Γ, there is no

positive-valued solution to the Bellman equations. In this case, the price of trees is so low

that it is possible for an individual to obtain unbounded utility and there is no solution to

the individual’s problem. Not surprisingly, this cannot be the case in equilibrium.

4 Equilibrium

4.1 Partial Equilibrium

We are now ready to define equilibrium. We do so in two steps, first focusing on a partial

equilibrium where the buyer’s value of fruit λ is fixed and then later looking at a competitive

equilibrium in which λ is endogenous and the fruit market clears.

Definition 1 A partial equilibrium with adverse selection for fixed λ ≥ 0 is a pair of vectors

{vh,j} ∈ R
J
+ and {vl,j} ∈ R

J
+, functions Θ : R+ 7→ [0,∞] and Γ : R+ 7→ ∆J , a set of prices

P ⊂ R+, and a measure µ defined on subsets of P satisfying the following conditions:

1. consistency of the value functions: for all j ∈ {1, . . . , J},

vh,j = δj(1 + λ) + βhv̄j,

vl,j = δj +max
{

max
p∈P

(

min{Θ(p), 1}(p− βlv̄j)
)

, 0
}

+ βlv̄j ,

where v̄j ≡ πhvh,j + πlvl,j.

2. sellers’ optimality: for all p ∈ R+ and j ∈ {1, . . . , J},

vl,j ≥ δj +min{Θ(p), 1}(p− βlv̄j) + βlv̄j ,
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with equality if Θ(p) < ∞ and γj(p) > 0. Moreover, if p < βlv̄j, either Θ(p) = ∞ or

γj(p) = 0 or both.

3. buyers’ optimality: for all p ∈ R+,

λ ≥ min{Θ(p)−1, 1}

(

βh

∑J

j=1 γj(p)v̄j

p
− 1

)

,

with equality if p ∈ P.

4. all trees owned by sellers are offered for sale at some price p ∈ P:

πlKj =

∫

P

γj(p)µ({p})dp for all j ∈ {1, . . . , J}.

The first condition simply repeats the value functions (1) and (2), but recognizes that sellers

can only sell trees at a price p if there is trade at that price, p ∈ P but also have an option

not to sell a tree at all.. The second and third conditions mimic the definition of equilibrium

in Guerrieri, Shimer and Wright (2010). Sellers’ optimality requires that for every type of

tree j, the value of selling it at an arbitrary price p (possibly with p /∈ P) cannot exceed vl,j.

Moreover, if the buyer-seller ratio at p is finite and buyers expect to be able to purchase

type j trees with positive probability, then this must be a best price for selling that type of

tree. Buyers’ optimality requires that the value of a unit of fruit in excess of its consumption

value cannot exceed λ and must be equal to λ if there is trade at that price in equilibrium.

The fourth condition imposes that the quantity of type j trees held by sellers—the left hand

side of the equation—is equal to the quantity of those trees offered for sale at some price

p ∈ P—the right hand side.

For fixed λ, we find the partial equilibrium as the solution to a sequence of optimization

problems:

vl,j = δj +max
p,θ

(

min{θ, 1}p+ (1−min{θ, 1})βlv̄j
)

(P-j)

s.t. λ ≤ min{θ−1, 1}

(

βhv̄j
p

− 1

)

,

vl,j′ ≥ δj′ +min{θ, 1}p+ (1−min{θ, 1})βlv̄j′ for all j
′ < j

where

v̄j =
πhδj(1 + λ) + πlvl,j

1− πhβh

.
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To solve these problems, start with type 1 trees. The last constraint disappears from Problem

(P-1), and so we can solve directly for vl,1 and v̄1, as well as the optimal policy p1 and θ1.

Standard arguments ensure that the maximized value is unique if λ ≥ 0. In general, for

Problem (P-j), the first constraint and the constraint of excluding type j − 1 trees binds,

which determines pj and θj as well as vl,j and vh,j. The following Lemma states this claim

formally, focusing on the determination of the expected marginal value of a type j tree, v̄j .

Lemma 1 For fixed λ ∈ [0, βh/βl − 1], the solution to the sequence of Problems (P-j) is as

follows: If λ = 0, θ1 ≥ 1. If λ = βh/βl − 1, θ1 ∈ [0, 1]. Otherwise θ1 = 1. In any case,

p1 =
δ1βh(1 + πhλ)

1 + λ− βh(1 + πhλ)
and v̄1 =

δ1(1 + λ)(1 + πhλ)

1 + λ− βh(1 + πhλ)
.

For j ∈ {2, . . . , J}, θj ≤ θj−1, pj > pj−1, and v̄j > v̄j−1 are uniquely defined by the following

recursive system of equations:

pj =
βhv̄j
1 + λ

,

v̄j =
δj(1 + πhλ) + πlθjpj

1− πhβh − πlβl(1− θj)
,

θj(pj − βlv̄j−1) = min{θj−1, 1}(pj−1 − βlv̄j−1).

We focus on values of λ between 0 and βh/βl − 1 because these are the relevant ones for

equilibrium. One could, however, also characterize the partial equilibrium for λ > βh/βl−1.

Proposition 2 Fix λ ∈ [0, βh/βl − 1]. There exists a partial equilibrium and any partial

equilibrium is given by the solution to the Problems (P-j). More precisely:

• Existence: Take any {pj}, {θj}, {vh,j}, and {vl,j} that solve the set of problems {(P-j)}.

Then there exists a partial equilibrium (vh, vl,Θ,Γ,P, µ) where Θ(pj) = θj, γj(pj) = 1,

vh = {vh,j}, vl = {vl,j}, P = {pj}, and µ({pj}) = πlKj.

• Uniqueness: Take any partial equilibrium (vh, vl,Θ,Γ,P, µ). If pj ∈ P and γj(pj) > 0,

then (pj,Θ(pj)) solves Problem (P-j).

The proof in the appendix gives a complete characterization of the partial equilibrium and

proves that any allocation that does not solve Problem (P-j) is not a partial equilibrium.

Since we proved in Lemma 1 that the solution to problems (P-j) is unique, except possibly

for the value of θ1, this essentially proves uniqueness of the partial equilibrium.
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4.2 Competitive Equilibrium

We now turn to a full competitive equilibrium in which λ is endogenous:

Definition 2 A competitive equilibrium with adverse selection is a number λ ∈ [0, βh/βl−1],

a pair of vectors {vh,j} ∈ R
J
+ and {vl,j} ∈ R

J
+, functions Θ : R+ 7→ [0,∞] and Γ : R+ 7→ ∆J ,

a set of prices P ⊂ R+, and a measure µ defined on subsets of P satisfying the following

conditions:

1. ({vh,j}, {vl,j},Θ,Γ,P, µ) is a partial equilibrium with fixed λ; and

2. the fruit market clears: πh

J
∑

j=1

δjKj =

∫

P

Θ(p)pµ({p})dp.

A competitive equilibrium is a partial equilibrium plus the market clearing condition that

states that the fruit brought to market by buyers is equal to the value of trees brought to

the market by sellers. Recall from Proposition 2 that µ({pj}) = πlKj in partial equilibrium,

where pj is the equilibrium price of type j trees. Then the market clearing condition reduces

to

πh

J
∑

j=1

δjKj = πl

J
∑

j=1

Θ(pj)pjKj .

The left hand side is the fruit held by buyers at the start of the period, while each term in

the right hand side is the equilibrium cost of purchasing a particular type of tree multiplied

by the buyer-seller ratio for that tree.

Proposition 3 A competitive equilibrium (λ, vh, vl,Θ,Γ,P, µ) exists and is unique.

The proof (to be completed)3 shows that an increase in the value of fruit to a buyer λ drives

down the price of type j trees, i.e. pj such that µ(pj) > 0, θ(pj) < ∞, and γj(pj) > 0. In

addition, it makes it more difficult for sellers of good quality trees to separate themselves

from those selling bad trees, reducing Θ(pj) as well. Indeed, in the limit when λ = βh/βl−1,

Θ(pj) = 0 for all j > 1, and so trade breaks down in all but the worst type of tree. At the

opposite limit of λ = 0, buyers are indifferent about purchasing trees and so Θ(p1) > 1 and

buyers are rationed. By varying λ, we find the unique value at which the market clear.

3We have a proof of this result for the economy with a continuum of types of trees in Section 5, available
upon request.
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5 Continuous Types of Trees

We have assumed for notational convenience that there are only a finite number of types of

trees. It is conceptually straightforward to extend our analysis to an environment with a

continuum of trees. This is useful because it shows that the behavior of the economy is not

particularly sensitive to the number of types of trees, but rather it depends on the support

of the tree distribution.

Instead of redoing all our work, we take the limit as the tree distribution becomes dense

but atomless on some interval of the real line [δ, δ̄]. We let κ(δ) denote the density of trees

on this support. The key to our analysis is that for a fixed value of λ, the partial equilibrium

prices and values characterized in Proposition 2 depend only on the support of the tree

distribution. In particular, the price and expected value of the lowest quality tree is

P (δ) =
δβh(1 + πhλ)

1 + λ− βh(1 + πhλ)
and v̄(δ) =

δ(1 + λ)(1 + πhλ)

1 + λ− βh(1 + πhλ)
.

In addition, since the distribution of trees is atomless, we may simply assume Θ(P (δ)) = 1.4

For p < P (δ), Θ(p) = ∞ and Γ(p) is defined arbitrarily. These results are unchanged from

the model with a finite number of types of trees.

To analyze higher values of p, start with the condition that the seller of a type j− 1 tree

must be indifferent about representing it as a type j tree:

Θ(pj)(pj − βlv̄j−1) = min{Θ(pj−1), 1}(pj−1 − βlv̄j−1).

When the types of trees are dense, we can rewrite this as a differential equation. That is,

differentiate the right hand side with respect to pj−1 and evaluate at pj−1 = pj and v̄j−1 = v̄j .

Also eliminate v̄j using the buyer’s indifference condition v̄j = pj(1 + λ)/βh. This gives

Θ′(p)p

(

βh − βl(1 + λ)

βh

)

+Θ(p) = 0.

If λ = βh/βl − 1, this implies Θ(p) = 0 for all p > P (δ). Otherwise, solve this differential

equation using the terminal condition Θ(P (δ)) = 1 to get

Θ(p) =

(

P (δ)

p

)

βh
βh−βl(1+λ)

(4)

4One important difference between the economy with a continuum of trees and the economy with finitely
many types of trees is the market clearing condition when λ = 0. In the economy with finitely many types
of trees, we used Θ(p1) ≥ 1 to ensure that buyers brought all their trees to the market even when λ = 0.
Here it is easier to allow buyers to consume a positive fraction of their fruit and impose Θ(P (δ)) = 1.
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for p > P (δ). Finally, we compute the type of tree offered at a price p. We do this by

eliminating v̄j from the Bellman equation again using the buyer’s indifference condition

v̄j = pj(1 + λ)/βh. This gives γj(p) = 1 if and only if δj = D(p) where

D(p) = p

(

1 + λ + (βh − (1 + λ)βl)(1−Θ(p))(1− πh)

βh(1 + λπh)
− 1

)

, (5)

so buyers anticipate buying type D(p) trees (and only type D(p) trees) at a price p.

These equations hold as long as D(p) ≤ δ̄. For higher prices, Θ(p) is pinned down by the

indifference curve of the seller of the best type of tree.

One can of course also define a competitive equilibrium with adverse selection in this

environment, so market clearing determines λ. There is never an equilibrium with λ =

βh/βl − 1. In such an equilibrium, buyers would only purchase the worst type of tree, but

since the tree distribution is atomless, this would not use any of their fruit. Equilibrium

then imposes

πh

∫ δ̄

δ

δκ(δ)dδ ≥ πl

∫ δ̄

δ

Θ(P (δ))P (δ)κ(δ)dδ,

with equality if λ > 0. Using the functional forms of Θ and P , one can prove directly that

an increase in λ reduces the right hand side of this inequality, ensuring that the competitive

equilibrium is unique. The proof is available from the authors upon request.

6 Persistent Shocks and Continuous Time

Our model explains how adverse selection can generate liquidity frictions, in the sense that

a tree only sells with a certain probability each period. But suppose that the time between

periods is negligible. Will the trading frictions become negligible as well? We argue in

this section that they will not. Instead, a separating equilibrium requires a real amount of

calendar time before a high quality tree is sold.

To address this concern, we consider the limiting behavior of the economy when the

number of periods per unit of calendar time becomes very large. That is, we take the limit

as the discount factors converge to 1, holding fixed the ratio of discount rates (1−βh)/(1−βl).

But as we take this limit, we also want to avoid changing the stochastic process of shocks.

With i.i.d. shocks and very short time periods, there is almost no difference in preferences

between high and low types of individuals and so the gains from trade become negligible. We

therefore also introduce persistent shocks into the basic model. We prove that as the period

length shortens, the probability of sale in a given period falls to zero, while the probability

of sale per unit of calendar time converges to a well-behaved number.
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We start by introducing persistent shocks into the discrete time model. Assume that

st ∈ {l, h} follows a first order stochastic Markov process; let πss′ denote the probability

that the state next period is s′ given that the current state is s. A partial equilibrium with

a fixed value of λ ≥ 0 is still characterized by a pair of value functions {vs,j} ∈ R
J
+ that

represent the value of a type s individual holding a type j tree, a function Θ : R+ 7→ [0,∞],

a function Γ : R+ 7→ ∆J , a set of prices P ⊂ R+, and a measure µ defined on subsets of P.

In partial equilibrium, buyers and sellers optimize and beliefs are rational. A competitive

equilibrium fixes a value of λ such that markets clear.

To simplify the exposition, we focus on parameters such that in equilibrium λ = 0, so

buyers are indifferent between buying trees and consuming. In this case, problem (P-j)

becomes

vl,j = δj +max
p,θ

(

min{θ, 1}p+ (1−min{θ, 1})βl(πllvl,j + πlhvh,j))
)

s.t. p ≤ βh(πhlvl,j + πhhvh,j),

vl,j′ ≥ δj′ +min{θ, 1}p+ (1−min{θ, 1})βl(πllvl,j′ + πlhvh,j′)) for all j
′ < j

and vh,j = δj + βh(πhlvl,j + πhhvh,j).

As before, the worst type of tree can be sold with probability 1 at a price that leaves

buyers’ indifferent about purchasing the tree. We focus for analytical convenience on the

case where the trees are dense and denote the worst type of tree by its dividend δ. Then

P (δ) =
βhδ

1− βh

and vl,1 = vh,1 =
δ

1− βh

.

For p < P (δ), Θ(p) = ∞ and Γ(p) is defined arbitrarily. For higher types of trees, the price

and sale probabilities are pinned down by the relevant constraints and Bellman equations:

vl,j = δj +Θ(pj)pj + (1−Θ(pj))βl(πllvl,j + πlhvh,j))
)

vh,j = δj + βh(πhlvl,j + πhhvh,j)

pj = βh(πhlvl,j + πhhvh,j),

Θ(pj)(pj − βl(πllvl,j−1 + πlhvh,j−1)) = Θ(pj−1)(pj−1 − βl(πllvl,j−1 + πlhvh,j−1))

Focusing on the limit where trees are dense, the last constraint reduces to

Θ′(pj)(pj − βl(πllvl,j + πlhvh,j)) + Θ(pj) = 0

Solve the first three constraints for vl,j, vh,j, and δj to get an expression for πllvl,j + πlhvh,j.
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Then solving the differential equation gives

Θ(p) =
1− βl(1− πlh − πhl)

(

p

P (δ)

)

βh(1−βl(1−πlh−πhl))

βh−βl − βl(1− πlh − πhl)
∈ [0, 1]

for p > P (δ). Also solve those same equations for D(p), the type of tree sold at price

p > P (δ):

D(p) = p

(

1−
(

βl(1− πlh)− βhπhl

)

(1−Θ(p))

βh(1− βl(1−Θ(p))(1− πlh − πhl))
− 1

)

.

These are natural generalizations of equations (4) and (5), which obtains when πlh = πhh =

1− πhl.

We now take the continuous time limit of this model. Define discount rates ρs and

transition rates qhl and qlh as

ρs =
1− βs

∆
, qhl =

πhl

∆
, and qlh =

πlh

∆
.

We think of 1/∆ as the number of periods within a unit of calendar time. Also assume a

type δ tree produces δ fruit per unit of time, or δ∆ fruit per period. With fixed values of

ρs, qhl, and qlh, the limit as ∆ → 0 (and so βs → 1 and πhl and πlh → 0) then corresponds

to the continuous time limit of the model. We find that in this limit, Θ(p) → 0 but the sale

rate per unit of time does not:

α(p) ≡ lim
∆→0

Θ(p)

∆
=

qhl + qlh + ρl
(

p

P (δ)

)

qhl+qlh+ρl
ρl−ρh − 1

≥ 0

for all p ≥ P (δ) ≡ δ/(∆ρs), where δ/∆ is the minimum dividend per unit of time. From the

perspective of a seller, α(p) is the arrival rate of a Poisson process that permits her to sell

at a price p. Equivalently, the probability that she fails to sell at a price p > P (δ) during

a unit of elapsed time is exp(−α(p)), an increasing function of p that converges to 1 as p

converges to infinity and is well-behaved in the limiting economy.

We can also simplify the expression for the type of tree sold at price p. In the continuous

time limit,

D(p)

p
= ρh +

qhl(ρl − ρh)
(

1−
(

p

P (δ)

)−
qhl+qlh+ρl

ρl−ρh

)

qhl + qlh + ρl
.

For the lowest type of tree, this confirms that the price-dividend per unit of time ratio is

1/ρh, while it is lower for higher priced trees, reflecting their illiquidity. Only in the special

case where qhl = 0, so buyers never anticipate needing to sell their trees, is the price-dividend

15



ratio constant at 1/ρh. We can also define the inverse of D, the price of a type δ tree, P (δ).

To close the model, we can compute the share of type j trees held by individuals with

discount factor βs, ωs(δ). Equating inflows and outflows, we obtain that in steady state

(

qlh + α(P (δ))
)

ωl(δ) = qhlωh(δ). (6)

The left had side is the rate at which type δ trees get transferred from low to high types,

either because of a preference shock or because of a sale. The right hand side is the rate that

they are transferred in the other direction. Finally, using these steady state values, we can

check the market clearing condition. In the case with λ = 0, this is an inequality constraint:

∫ δ̄

δ

ωh(δ)δκ(δ)dδ ≥

∫ δ̄

δ

ωl(δ)α(P (δ))P (δ)κ(δ)dδ.

The left hand side is the fruit available to individuals with a high discount factor. The right

hand side is the fruit required to purchase the trees sold by individuals with low discount

factors. Eliminating ωh(δ) using ωh(δ) + ωl(δ) = 1 and equation (6), this reduces to

∫ δ̄

δ

(qlh + α(P (δ)))δ

qhl + qlh + α(P (δ))
κ(δ)dδ ≥

∫ δ̄

δ

qhlα(P (δ))P (δ)

qhl + qlh + α(P (δ))
κ(δ)dδ.

If this inequality is violated, we would instead look for an equilibrium with λ ∈ (0, βh/βl−1),

with little conceptual change in the outcome.

Superficially, the economy in the continuous time limit looks different than the discrete

time model. We can again imagine a continuum of marketplaces, each distinguished by its

price p. Sellers try to sell their trees in the appropriate market, while buyers bring some of

their fruit to all of the markets and consume the rest (since we are focusing on the partial

equilibrium with λ = 0). In all but the worst market, there is always too little fruit to

purchase all of the trees. That is, a stock of trees always remains in the market to be

purchased by the gradual inflow of new fruit from buyers. Buyers are able to purchase trees

immediately, but sellers are rationed and get rid of their trees only at a Poisson rate. Of

course, a seller could immediately sell her trees for the low price P (δ), but she chooses not

to do so.

More generally, the frictions generated by adverse selection do not disappear when the

period length is short. Intuitively, it must take a real amount of calendar time to sell a

tree at a high price or the owners of low quality trees would misrepresent them as being of

high quality. This is in contrast to models where trading is slow because of search frictions.5

5See, for example, Duffie, Gârleanu and Pedersen (2005), Weill (2008), or Lagos and Rocheteau (2009)
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In such a framework, the extent of search frictions governs the speed of trading and as the

number of trading opportunities per unit of calendar time increases, the relevant frictions

naturally disappear.

7 Fire Sales and Flight to Quality

Our model shows how prices and illiquidity can be used to separate trees with different

qualities. High quality trees trade at a higher price but the market is less liquid. A seller

could always choose to sell them at a lower price, but in equilibrium she prefers not to do so.

We now consider how our model can be used to understand a financial crisis characterized

by a collapse in the liquidity and price of some assets and a flight to other high quality,

liquid assets. We also ask how outside intervention may increase liquidity and prices in the

first type of market and restore normal prices in the second.

To begin, we imagine that we start from a situation in which everyone believes that all

trees produce δ0 fruit per unit of time. At time 0, everyone learns that there is dispersion in

the quality of trees. For example, this may correspond to the development of a technology

that allows sellers to see which of their trees produce more fruit. Alternatively, we might

imagine that the outbreak of a disease reduces the productivity of some trees while leaving

others unaffected. After this shock, the support of the quality distribution is now some

interval [δ, δ̄], where δ < δ0 and in principle we allow δ̄ R δ0.

We first ask whether sellers would be willing to pay to learn the quality of their trees. As

long as buyers understand that in principle sellers may be able to acquire this information,

it is valuable in the sense that the value function vs,j is convex in the dividend δj.
6 This is

because sellers who acquire the information would act on it by setting a different price for

trees of different quality. On the other hand, one might imagine that free-rider problems

and uncertainty about which trees will be available for sale in the future prevent any single

buyer from acquiring this information.

Once sellers have acquired this information, there is an adverse selection problem. Nat-

urally the price of trees with δ < δ0 falls; these trees are known to be of lower quality than

before. More interestingly, if the average quality of trees is unchanged, the average price

must fall because of the reduction in liquidity in the tree market. In fact, it is possible that

the price of all trees fall from the resulting decline in the liquidity of high quality trees.

The adverse selection problem also has a general equilibrium effects. The average price

for models where assets are illiquid because of search frictions.
6If buyers do not understand that trees are heterogeneous, then they will be unwilling to pay more for a

higher quality tree, making the information worthless to sellers.
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of trees and the liquidity in the tree market both unambiguously decline, and so buyers need

less fruit to purchase the available trees. Assuming that initially λ > 0, so buyers were not

consuming any fruit, the value of λ must decline in a competitive equilibrium. This increase

in the availability of fruit offsets the partial equilibrium effects, making it easier to sell trees

at a given price (equation 4) and raising prices for trees of a given quality (equation 5).7

These general equilibrium effects generate a flight to quality. To explain this requires a

slight extension of our model. We suppose that in addition to the trees that we have already

modeled—apple trees, to be concrete—there is another type of tree that is not subject to

the moral hazard problem, banana trees. Banana trees produce a known amount of fruit,

and apples and bananas are perfect substitutes in consumption. A worsening of the adverse

selection problem for apple trees lowers the price and liquidity of apple trees and so reduces

the amount of fruit used to purchase apple trees. In general equilibrium, this lowers λ, which

in turn raises the price of banana trees. This is a flight to quality: the amount of fruit held

by buyers is unchanged and is still used to purchase trees. If the market for apple trees dries

up due to adverse selection, the price of banana trees must be increase. In the case of the

2007–2008 financial crisis, we think of apple trees as mortgage back securities and banana

trees as treasury bonds. A worsening of adverse selection in the MBS market increases the

demand for treasuries as buyers seek some place to reinvest their dividends.

Finally, we can use our model to understand the impact of asset purchase programs, such

as the original vision of the Troubled Asset Relief Program in 2008 or the Public-Private

Investment Program for Legacy Assets in 2009. Both of these programs were designed to

remove “toxic assets” from the balance sheets of troubled financial institutions, thereby

improving the solvency of the financial institutions. According to the U.S. government,

this would occur not only because of the direct subsidy from the asset purchase but also

through the equilibrium effects on the price and liquidity of assets that were not sold to the

government.

To model this, we suppose that a player with substantial fruit holdings, the “government”

to be concrete, announces that it is willing to purchase any asset at a price p̂, greater than

the current minimum price P (δ). We ask which assets are sold to the government and what

happens to the price and liquidity of assets that remain in private hands. The answer to

the first question is that all trees that would sell for less than p̂ if completely liquid are

sold to the government, while all more valuable remain trees remain in private hands. The

government suffers a loss on its tree purchases, necessarily overpaying for the trees that it

gets. Although our model does not have balance sheet effects, it is not hard to imagine that

7The general equilibrium effects cannot fully offset the partial equilibrium effects, because if they did λ

would rise and the general equilibrium effects would reinforce the partial equilibrium.
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this subsidy directly boosts the solvency of the financial institutions that previously owned

the assets.

In addition, the program has the desired effect on prices and liquidity. After the govern-

ment intervention, it is common knowledge that the worst type of tree in the private market

produces dividend δ̂ > δ. This tree sells for sure at price p̂, while the liquidity and price

of all better trees both jump up (equations 4 and 5). Indeed, there are trees that would

have sold for less than p̂ before the government announced its program which are not sold

to the government, but instead become more liquid and experience an increase in price to

something in excess of p̂. This further increases the net worth of the owners of those assets,

as predicted by the advocates of these interventions.

8 Pooling Environment

Much of the literature on adverse selection in financial markets assumes that all trades occur

at a common price p, so the equilibrium is pooling (see, for example, Eisfeldt, 2004; Kurlat,

2009; Daley and Green, 2010; Chari, Shourideh and Zetlin-Jones, 2010). In contrast, we find

that different types of trees never trade at the same price, so the equilibrium is separating.

The source of the difference in results lies in the definitions of equilibrium. In models with

pooling, the environment is set up in such a way that a seller cannot even consider selling

his trees at a price different than p. In contrast, this thought experiment is central to our

definition of equilibrium. In this section, we consider an alternative definition of equilibrium

where we restrict all trades to occur at a common price p. The rest of the environment is

exactly as in our benchmark model, but the equilibrium is necessarily pooling.8 We show that

this significantly affects several important outcomes, including the cross-sectional behavior

of prices, dividends, and liquidity; the nature of fire sales; and the efficacy of asset purchase

programs. Thus our notion of equilibrium is central to our results.

We look for an equilibrium in which all trades occur at a price p. Sellers (individuals

with low discount factors) are able to choose whether to sell their trees at that price and

buyers (individuals with high discount factors) are able to choose whether to buy trees at

that price. This implies that the price must leave the marginal seller indifferent about selling

his tree and it must leave the buyer indifferent about buying the average tree offered for sale.

Our definition of a pooling equilibrium embodies these requirements.

We look at a simple version of our model with i.i.d. preference shocks and a continuum

8We stress that the model we have analyzed thus far in the paper has a unique equilibrium. There is no
pooling equilibrium in our model.
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of types of trees.9 As before, we let vs(δ) denote the marginal value of a type δ tree to an

individual with discount factor βs and λ denote the value of a unit of fruit to a buyer in

excess of its consumption value. We assume that all trades occur at a common price p. Let

ζ(δ) denote the fraction of type δ trees that sellers attempt to sell at price p. This is equal

to 0 if p < βlv̄(δ) and 1 if p > βlv̄(δ). Buyers purchase trees only if the expected value of a

purchased tree is equal to the value of the foregone fruit, p(1 + λ). More formally,

Definition 3 A pooling equilibrium with adverse selection is a triple of functions vh : [δ, δ̄] 7→

R+, vl : [δ, δ̄] 7→ R+, and ζ : [δ, δ̄] 7→ [0, 1], a price p ∈ R+, and a number λ ∈ [0, βh/βl − 1]

satisfying the following conditions:

1. consistency of the value functions: for all δ ∈ [δ, δ̄],

vh(δ) = δ(1 + λ) + βhv̄(δ) and vl(δ) = δ +max{p, βlv̄(δ)},

where v̄(δ) ≡ πhvh(δ) + πlvl(δ).

2. sellers’ optimality: for all δ ∈ [δ, δ̄], ζ(δ) =

{

1 if p > βlv̄(δ)

0 if p < βlv̄(δ).

3. buyers’ optimality: p(1 + λ) = βh

∫ δ̄

δ
ζ(δ)v̄(δ)κ(δ)dδ
∫ δ̄

δ
ζ(δ)κ(δ)dδ

.

4. market clearing: πh

∫ δ̄

δ

δκ(δ)dδ ≷ πlp

∫ δ̄

δ

ζ(δ)κ(δ)dδ ⇒ λ =

{

0

βh/βl − 1.

The definition of a pooling equilibrium consists of four parts. First is the value functions,

which state that an individual with a high discount factor values his trees based on the

possibility of using the fruit to purchase more trees, while an individual with a low discount

factor values them both for their fruit and potentially for their resale value. This immediately

implies that trees that produce more fruit are more valuable, v̄(δ) is increasing.

The second part of the definition of equilibrium states that a seller will sell a tree for

sure if the price exceeds the discounted value of the tree and won’t sell it if the inequality is

reversed. If p = βlv̄(δ), the sale probability is some arbitrary ζ(δ). This implies that all trees

below some threshold are sold whenever they are held by a consumer with a low discount

factor.

The third part of the definition states that in equilibrium, buyers pay a fair price for

trees, given their valuation of a unit of fruit at 1 + λ. The left hand side is the value of the

9Working directly with a continuum of trees allows us to avoid a technical treatment of tie-breaking.
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fruit used to purchase a tree, while the right hand side is the expected discounted value of

the tree that the buyer obtains.

Finally, the market clearing condition states that if the amount of fruit held by buyers

at the beginning of the period exceeds the cost of purchase the trees sold by sellers, then the

value of fruit must be equal to its consumption value (since some buyers eat fruit). If it is

smaller, then the value of fruit must be so high that sellers must keep some of their worst

trees and the value of fruit is driven up to βh/βl. Otherwise, 1 + λ takes on an intermediate

value and buyers do not consume any fruit.

One can prove the existence of equilibrium in this environment. We are more interested

in how liquid markets are in this environment. The following proposition is key:

Proposition 4 In any pooling equilibrium, only trees with δ ≤ δ∗ are sold in the market,

where

δ∗ =
βh(1− β̄)

βl

(

1− βh + λ(1− πhβh)
)

∫ δ∗

δ
δκ(δ)dδ

∫ δ∗

δ
κ(δ)dδ

(7)

and β̄ = πlβl + πhβh is the expected discount factor.

Note that in general there is no guarantee that the pooling equilibrium is unique. For-

mally, there can be multiple solutions to equation (7). This is because both the left and right

hand sides of equation (7) are increasing in δ∗ for fixed λ, and the slope of the right hand

side may be arbitrarily large, for example when the density κ is large in a neighborhood of

δ∗. In that case, there can be an equilibrium with a low price in which sellers are only willing

to sell bad trees and buyers pay a low price anticipating that they will purchase only bad

trees. There can be another equilibrium in which more trees sell and so buyers are willing to

pay more for a tree. Chari, Shourideh and Zetlin-Jones (2010) propose a slightly modified

definition of equilibrium which selects the outcome with the highest price, and so we do not

view this nonuniqueness as an essential feature of a pooling environment.10

Like the competitive equilibrium with adverse selection, some trees are illiquid in the

pooling equilibrium, namely those with δ > δ∗. In fact, the distinction between liquid and

illiquid trees is dichotomous in this environment. Trees that are more productive than the

critical value are never sold, while trees that are less productive sell whenever they are held

by an individual with a low discount factor. Moreover, a seller could always sell an illiquid

asset for the market price p, but he chooses not to do so. In this sense the nature of illiquidity

is similar in the two models, although it is more extreme in the pooling environment.

10In addition, modest regularity conditions on κ like log-concavity are enough to eliminate this source of
multiple equilibrium.
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Still, there are important qualitative differences between the two environments. First, in

the competitive equilibrium with adverse selection, we predict that higher quality trees will

sell at a higher price but take longer to sell. This prediction can be tested empirically. For

example, we predict that within a class of securities that look outwardly similar, those that

sell for a higher price will take longer to sell but will generate higher dividends on average.11

In the pooling equilibrium, any two trees within the same class should sell at the same time

and should sell as soon as they are offered in the market. The model therefore predicts no

correlation between price, time to sell, and dividend.

Second, consider a fire sale. Again, suppose the pooling economy starts from an initial

condition in which everyone believes that all trees produce dividend δ0 and there are lots of

buyers, so λ = 0. A small amount of dispersion in tree quality will not affect the equilibrium,

since even a seller with the best tree δ̄ would be willing to sell it for the price of the average

tree δ0. But if the dispersion in tree quality continues to grow, adverse selection will be a

problem and so the average quality of trees sold and the equilibrium price will fall. This

again looks different than in the competitive equilibrium with adverse selection. In that

case, the price of a high quality tree may be higher or lower in the presence of adverse

selection than in the initial condition where everyone views the trees as homogeneous. In

any case, the market for high quality trees will continue to exist, although it may be thin.

In the pooling equilibrium, the price of a high quality tree is unchanged by a small amount

of adverse selection, while sellers withdraw it completely from the market when the adverse

selection problem is too severe.

Finally, we consider the impact of an asset purchase program. Suppose the “government”

stands ready to purchase as many trees as people want to sell at price p̄ > p∗. In the pooling

environment, if there is any more trade in the private market, the private market price has

to equal p̄. Sellers’ indifference condition p̄ = βlv̄(δ
∗) then pins down the quality of the

marginal tree in the market, while buyers’ indifference condition p̄(1+λ) = βlEδ≤δ∗ v̄(δ) pins

down the average quality. But there is no condition to pin down the amount of trees left in

the private market. That is, if there is an equilibrium of the model in which the density of

assets with δ ≤ δ∗ is given by κ̃ after the intervention, there is another equilibrium in which

it is given by ηκ̃ for any η < 1. In particular, there is always a solution in which arbitrarily

few assets are left in the private market.

This might not be a desirable outcome, and so one can imagine the government attempt-

ing to avoid this by capping the amount of assets it is willing to purchase for p̄. In this

case, the asset purchase program will be oversubscribed and the government will have to

11We include the caveat “on average” because dividends may follow a stochastic process in reality. In that
case, assets are distinguished based on the expected present value of future dividends.
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ration its purchases, presumably without knowing the quality of the assets it is buying.12 It

follows that the private market price after the intervention is simply bounded above by p̄.

If, for example, the government is equally likely to buy any asset that sellers value at less

than p̄, one can prove that this intervention will not affect the private market price p∗ but

will instead simply reduce the volume of assets in circulation. If the government is somehow

able to screen out the worst assets from the purchase program, perhaps by requiring sellers

to hold onto the asset for some time before announcing which assets it will purchase, then

the intervention will lower the private market price. In contrast, the asset purchase program

appears to be a much more promising intervention if our notion of competitive equilibrium

with adverse selection is the relevant one.

12This is consistent with the approach in Chiu and Koeppl (2011), who assume that the government
chooses both the price it pays for assets and the amount of assets it purchases. In their model, there are only
two types of assets and so the government necessarily purchases only bad assets, rendering the indeterminacy
we raise here irrelevant.
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Appendix

A Individual’s Problem: Details

For any period t, history st−1, and type j ∈ {1, . . . , J}, let ki,j,t(s
t−1) denote individual

i’s beginning-of-period t holdings of type j trees. For any period t, history st, type j ∈

{1, . . . , J}, and set P ⊂ R+, let qi,j,t(P ; st) denote his net purchase in period t of type j trees

at a price p ∈ P . The individual chooses a history-contingent sequence for consumption

ci,t(s
t) and measures of tree holdings ki,j,t+1(s

t) and net tree purchases qi,j,t(P ; st) to maximize

his expected lifetime utility

∞
∑

t=0

∑

st

(

t−1
∏

τ=0

πsτβsτ

)

πstci,t(s
t).

This simply states that the individual maximizes the expected discounted value of consump-

tion, given the stochastic process for the discount factor. The individual faces a standard

budget constraint,

J
∑

j=1

δjki,j,t(s
t−1) = ci,t(s

t) +

∫ ∞

0

p

(

J
∑

j=1

qi,j,t({p}; s
t)

)

dp,

for all t and st. The left hand side is the fruit produced by the trees he owns at the start of

period t. The right hand side is consumption plus the net purchase of trees at nonnegative

prices p. He also faces a law of motion for his tree holdings,

ki,j,t+1(s
t) = ki,j,t(s

t−1) + qi,j,t(R+; s
t),

for all j ∈ {1, . . . , J}. This states that the increase in his tree holdings is given by his net

purchase of that type of tree. Finally, the individual faces a set of constraints that depends

on whether his discount factor is high or low.

If the individual has a high discount factor, st = h, he is a buyer, which implies qi,j,t(P ; st)

is nonnegative for all j ∈ {1, . . . , J} and P ⊂ R+. In addition, he must have enough fruit to

purchase trees,

J
∑

j=1

δjki,j,t(s
t−1) ≥

∫ ∞

0

max{Θ(p), 1}p

(

J
∑

j=1

qi,j,t({p}; s
t)

)

dp.
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If the individual wishes to purchase q trees at a price p and Θ(p) > 1, he will be rationed

and so must bring Θ(p)pq fruit to the market to make this purchase. This constrains his

ability to buy trees in markets with excess demand. Together with the budget constraint,

this also ensures consumption is nonnegative. Finally, he can only purchase type j trees at

a price p if individuals are selling them at that price, that is

qi,j,t(P ; st) =

∫

P

γj(p)

(

J
∑

j′=1

qi,j′,t({p}; s
t)

)

dp

for all j ∈ {1, . . . , J} and P ⊂ R+. The left hand side is the quantity of type j trees

purchased at a price p ∈ P . The integrand on the right hand side is the product of quantity

of trees purchased at price p and the share of those trees that are of type j.

If the individual has a low discount factor, st = l, he is a seller, which implies qi,j,t(P ; st)

is nonpositive for all j ∈ {1, . . . , J} and P ⊂ R+. In addition, he may not try to sell more

trees than he owns:

ki,j,t(s
t−1) ≥ −

∫ ∞

0

max{Θ(p)−1, 1}qi,j,t({p}; s
t)dp,

for all j ∈ {1, . . . , J}. Each tree only sells with probability min{Θ(p), 1} at price p, so if

Θ(p) < 1, an individual must bring Θ(p)−1 trees to the market to sell one of them. Sellers

are not restricted from selling trees in the wrong market. Instead, in equilibrium they will

be induced not to do so.

Let V̄ ∗({kj}) be the supremum of the individuals’ expected lifetime utility over feasible

policies, given initial tree holding vector {kj}. We prove in Proposition 1 that the function

V̄ ∗ satisfies the following functional equation:

V̄ ({kj}) = πhVh({kj}) + πlVl({kj}), (8)
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where

Vh({kj}) = max
{qj ,k′j}

(

J
∑

j=1

δjkj −

∫ ∞

0

p

(

J
∑

j=1

qj({p})

)

dp+ βhV̄ ({k′
j})

)

(9)

subject to k′
j = kj + qj(R+) for all j ∈ {1, . . . , J}

J
∑

j=1

δjkj ≥

∫ ∞

0

max{Θ(p), 1}p

(

J
∑

j=1

qj({p})

)

dp,

qj(P ) =

∫

P

γj(p)

(

J
∑

j=1

qj({p})

)

dp for all j ∈ {1, . . . , J} and P ⊂ R+

qj(P ) ≥ 0 for all j ∈ {1, . . . , J} and P ⊂ R+,

and

Vl({kj}) = max
{qj ,k′j}

(

J
∑

j=1

δjkj −

∫ ∞

0

p

(

J
∑

j=1

qj({p})

)

dp+ βlV̄ ({k′
j})

)

(10)

subject to k′
j = kj + qj(R+) for all j ∈ {1, . . . , J}

kj ≥ −

∫ ∞

0

max{Θ(p)−1, 1}qj({p})dp for all j ∈ {1, . . . , J},

qj(P ) ≤ 0 for all j ∈ {1, . . . , J} and P ⊂ R+,

We now prove Proposition 1 working with the recursive version of the individuals’ problem.

Let Θ̄(p) ≡ max{Θ(p), 1} and Θ(p) = min{Θ(p), 1}. Fix Θ and Γ and take any positive-

valued numbers {vs,j} and λ that solve the Bellman equations (1), (2), and (3) for s = l, h.

Let ph be an optimal price for buying trees,

ph ∈ argmax
p

(

Θ̄(p)−1

(

βh

∑J

j=1 γj(p)v̄j

p
− 1

))

.

Similarly let pl,j be an optimal price for selling type j trees,

pl,j = argmax
p

Θ(p)
(

p− βlv̄j
)

for all δ. We seek to prove that V̄ ∗({kj}) ≡
∑J

j=1 v̄jkj where v̄j = πhvh,j + πlvl,j.

If λ = 0, equations (1) and (2) imply

v̄j = πh

(

δj + βhv̄j
)

+ πl

(

δj +Θ(pl,j)pl,j + (1−Θ(pl,j))βlv̄j
)

.
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for all δ. Equivalently,

v̄j =
δj + πlΘ(pl,j)pl,j

1− πhβh − πlβl(1−Θ(pl,j))
> 0.

Alternatively, if λ > 0, the same equations imply

v̄j = πh

(

δj

(

(

1− Θ̄(ph)
−1
)

+ Θ̄(ph)
−1

βh

∑J

j′=1 γj′(ph)v̄j′

ph

)

+ βhv̄j

)

+ πl

(

δj +Θ(pl,j)pl,j + (1−Θ(pl,j))βlv̄j
)

for all δ. Since vl,j and vh,j are positive by assumption so is v̄j , and equivalently we can write

v̄j

(

1− πhβh − πlβl(1−Θ(pl,j))− πhβhΘ̄(ph)
−1

δj
∑J

j′=1 γj′(ph)v̄j′

phv̄j

)

= πhδj
(

1− Θ̄(ph)
−1
)

+ πl

(

δj +Θ(pl,j)pl,j
)

.

The right hand side of this expression is positive for all j. Once again since v̄j > 0, with

λ > 0, this holds if and only if

1− πhβh − πlβl(1−Θ(pl,j)) > πhβhΘ̄(ph)
−1

δj
∑J

j′=1 γj′(ph)v̄j′

phv̄j
. (11)

If this restriction fails at any prices ph and pl,j, it is possible for an individual to obtain

unbounded expected utility by buying and selling trees at the appropriate prices. We are

interested in cases in which it is satisfied.

Next, let V̄ ({kj}) =
∑J

j=1 v̄jkj and Vs({kj}) ≡
∑J

j=1 vs,jkj for s = l, h. It is straightfor-

ward to prove that V̄ and V̄s solve equations (8), (9), and (10) and that the same policy is

optimal. (Include proof?)

Finally, we adapt Theorem 4.3 from Werning (2009), which states the following: suppose

V̄ (k) for all k satisfies the recursive equations (8), (9), and (10) and there exists a plan that is

optimal given this value function which gives rise to a sequence of tree holdings {k∗
i,j,t(s

t−1)}

satisfying

lim
t→∞

∑

st

(

t−1
∏

τ=0

πsτβsτ

)

V̄ ({k∗
i,j,t(s

t−1)}) = 0. (12)

Then, V̄ ∗ = V̄ .

If λ = 0, an optimal plan is to sell type j trees at price pl,j when impatient and not to

purchase trees when patient. This gives rise to a non-increasing sequence for tree holdings.
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Given the linearity of V̄ , condition (12) holds trivially.

If λ > 0, it is still optimal to sell type j trees at price pl,j when impatient, but patient

individuals purchase trees at price ph and do not consume. Thus

k′
h,j = kj + Θ̄(ph)

−1γj(ph)

∑J

j′=1 δj′kj′

ph

k′
l,j =

(

1−Θ(pl,j)
)

kj.

Using linearity of the value function, the expected discounted value next period of an indi-

vidual with tree holdings {kj} this period is

J
∑

j=1

v̄j
(

πhβhk
′
h,j + πlβlk

′
l,j

)

=
J
∑

j=1

v̄j

(

πhβh

(

kj + Θ̄(ph)
−1γj(ph)

∑J

j′=1 δj′kj′

ph

)

+ πlβl

(

1−Θ(pl,j)
)

kj

)

=
J
∑

j=1

v̄jkj

(

πhβh + πlβl

(

1−Θ(pl,j)
)

+ πhβhΘ̄(ph)
−1

δj
∑J

j′=1 γj′(ph)v̄j′

phv̄j

)

,

where the second equality simply rearranges terms in the summation. Equation (11) implies

that each term of this sum is strictly smaller than v̄jkj. This implies that there exists an

η < 1 such that

η >

∑J

j=1 v̄j
(

πhβhk
′
h,j + πlβlkl,j

)

∑J

j=1 v̄jkj
=

πhβhV̄ ({k′
h,j}) + πlβlV̄ ({k′

l,j})

V̄ ({kj})
,

and so condition (12) holds.

B Omitted Proofs

Proof of Lemma 1. Write Problem (P-1) as

vl,1 = δ1 +max
p,θ

(

min{θ, 1}p+ (1−min{θ, 1})βlv̄1
)

s.t. λ ≤ min{θ−1, 1}

(

βhv̄1
p

− 1

)

.

Raising p increases the objective function and tightens the constraint, which ensures the con-

straint binds. Substituting the binding constraint into the objective function and eliminating
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the price gives

vl,1 = δ1 + βlv̄1 +max
θ≥0

(

min{θ, 1}

(

βhmin{θ−1, 1}

λ+min{θ−1, 1}
− βl

))

v̄1

If λ = 0, any θ1 ≥ 1 attains the maximum. If λ = βh/βl − 1, any θ1 ∈ [0, 1] attains the

maximum. For intermediate values of λ, the unique maximizer is θ1 = 1. In any case,

combining this equation with equation (2) and the definition v̄1 = πhvh,1 + πlvl,1 gives

p1 =
δ1βh(1 + πhλ)

1 + λ− βh(1 + πhλ)
and v̄1 =

δ1(1 + λ)(1 + πhλ)

1 + λ− βh(1 + πhλ)
.

This is the unique solution to Problem (P-1).

We now proceed by induction. Fix j ≥ 2 and assume for all j′ ∈ {2, . . . , j − 1}, we

have established the characterization of pj′, θj′, and v̄j′ in the statement of the lemma. We

establish the result for j. Setting (θ, p) = (θj−1, pj−1) is feasible but not generally optimal.

Indeed, it delivers a value v̄j > v̄j−1 and leaves the constraint λ ≤ min{θ−1, 1}(βhv̄j/p− 1)

slack. So consider reducing θ and increasing p while keeping min{θ, 1}(p− βlv̄j−1) constant.

This raises the value of the objective function, leaves the constraints for j′ < j−1 slack, and

tightens the constraint λ ≤ min{θ−1, 1}(βhv̄j/p−1). The optimal policy is therefore achieved

when λ = min{θ−1
j , 1}(βhv̄j/pj−1) and min{θj−1, 1}(pj−1−βlv̄j−1) = min{θj , 1}(pj−βlv̄j−1).

Moreover, even if θj−1 > 1, it is always the case that θj < 1 at this solution, allowing a further

simplification of these expressions.

Finally, we need to prove that there is a unique value of v̄j > v̄j−1 that solves these

equations. Eliminate pj and θj from the Bellman equation for v̄j with the binding constraints:

(1− πhβh − πlβl)v̄j = δj(1 + πhλ) + πl min{θj−1, 1}

(

βh − βl(1 + λ)
)2
v̄j−1v̄j

(

βhv̄j − βl(1 + λ)v̄j−1

)

(1 + λ)
. (13)

If λ = βh/βl−1, the last term is zero and so this pins down v̄j uniquely. Otherwise we prove

that there is a unique solution to equation (13) with v̄j > v̄j−1. In particular, the left hand

side is a linearly increasing function of v̄j , while the right hand side is an increasing, concave

function, and so there are at most two solutions to the equation. As v̄j → ∞, the left hand

side exceeds the right hand side, and so we simply need to prove that as v̄j → v̄j−1, the right

hand side exceeds the left hand side.

First assume j = 2 so θj−1 = θ1 ≥ 1. Then we seek to prove that

(1− πhβh − πlβl)v̄1 < δ2(1 + πhλ) + πl

(

βh − βl(1 + λ)
)

v̄1

1 + λ
.
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Since v̄1 =
δ1(1+λ)(1+πhλ)
1+λ−βh(1+πhλ)

and δ1 < δ2, we can confirm this directly. Next take j ≥ 3. In this

case, in the limit with v̄j → v̄j−1, the right hand side of (13) converges to

δj(1 + πhλ) + πl min{θj−1, 1}

(

βh − βl(1 + λ)
)

v̄j−1

(1 + λ)

> δj−1(1 + πhλ) + πl min{θj−2, 1}

(

βh − βl(1 + λ)
)2
v̄j−2v̄j−1

(

βhv̄j−1 − βl(1 + λ)v̄j−2

)

(1 + λ)
,

where the inequality uses the indifference condition

min{θj−2, 1}(pj−2 − βlv̄j−2) = min{θj−1, 1}(pj−1 − βlv̄j−2)

and the assumption δj−1 < δj. Rewriting equation (13) for type j − 1,

(1− πhβh − πlβl)v̄j−1 = δj−1(1 + πhλ) + πl min{θj−2, 1}

(

βh − βl(1 + λ)
)2
v̄j−2v̄j−1

(

βhv̄j−1 − βl(1 + λ)v̄j−2

)

(1 + λ)
,

it follows that

(1− πhβh − πlβl)v̄j−1 < δj(1 + πhλ) + πl min{θj−1, 1}

(

βh − βl(1 + λ)
)

v̄j−1

(1 + λ)
,

which completes the step.

Finally, set pj = βhv̄j/(1+λ) > pj−1 and θj = min{θj−1, 1}(pj−1−βlv̄j−1)/(pj−βlv̄j−1) <

θj−1, completing the proof.

Proof of Proposition 2.

We first prove that the solution to Problems (P-j) describe a partial equilibrium and

then prove that there is no other equilibrium.

Existence. As described in the statement of the proposition, we look for a partial equi-

librium where P = {pj}, Θ(pj) = θj , γj(pj) = 1, µ({pj}) = πlKj, and vs,j solves Problem

(P-j). Also for notational convenience define pJ+1 = ∞. To complete the characterization,

we define Θ and Γ on their full support R+. For p < p1, Θ(p) = ∞ and Γ(p) can be chosen

arbitrarily, for example γ1(p) = 1. For j ∈ {1, . . . , J} and p ∈ (pj, pj+1), Θ(p) satisfies sellers’

indifference condition vl,j = δj +βlv̄j +Θ(p)(p−βlv̄j) and γj(p) = 1. To prove that this is an

equilibrium, we simply verify that under these beliefs, the four conditions in the definition
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of partial equilibrium hold.

The first condition, consistency of the value functions, holds by construction.

The second condition is sellers’ optimality. By construction, for all j ∈ {1, . . . , J} and

p ≥ p1, vl,j = δj + βlv̄j + Θ(p)(p − βlv̄j) if γj(p) = 1. We must only show that vl,j ≥

δj + βlv̄j +Θ(p)(p− βlv̄j) for all other p.

To prove this, first take any j ∈ {2, . . . , J}, j′ < j, and p ∈ (pj, pj+1). By construction,

Θ(pj)(pj − βlv̄j) = Θ(p)(p − βlv̄j) which implies that Θ(p) < Θ(pj), given that p > pj .

Since v̄ is increasing in j, it follows that Θ(pj)(pj − βlv̄j′) > Θ(p)(p − βlv̄j′). Also by the

construction in Problem (P-j), Θ(pj′)(pj′−βlv̄j′) ≥ Θ(pj)(pj−βlv̄j′). Combining inequalities

gives Θ(pj′)(pj′ − βlv̄j′) > Θ(p)(p− βlv̄j′) for all p ∈ (pj, pj+1) and j′ < j.

Similarly, take any j ∈ {1, . . . , J − 1}, j′ > j, and p ∈ (pj, pj+1). By construction,

Θ(pj+1)(pj+1 − βlv̄j) = Θ(p)(p− βlv̄j), since type j is indifferent about the price pj+1. Since

p < pj+1, this implies that Θ(p) > Θ(pj+1). Moreover, since v̄ is increasing in j, it follows

that Θ(pj+1)(pj+1−βlv̄j′) > Θ(p)(p−βlv̄j′). Also by the construction in Problem (P-(j+1)),

Θ(pj′)(pj′ −βlv̄j′) ≥ Θ(pj+1)(pj+1−βlv̄j′). Combining inequalities gives Θ(pj′)(pj′ −βlv̄j′) >

Θ(p)(p− βlv̄j′) for all p ∈ (pj , pj+1) and j′ > j.

Third we turn to buyers’ optimality condition. By construction, the inequality binds at

all p ∈ P. For p < p1, it is satisfied because Θ(p)−1 = 0. If λ = 0, the inequality holds

for all p ∈ (pj, pj−1) because βhv̄j/pj = 1 and so βhv̄j/p < 1. If λ > 0, Lemma 1 implies

min{Θ(p)−1, 1} = 1 for all p ≥ p1 and βhv̄j/pj > βhv̄j/p for all p ∈ (pj , pj−1), and so the

inequality again holds for all p > p1.

Finally, the requirement that all trees are offered for sale at some price holds by con-

struction.

Uniqueness. Now take any partial equilibrium {vh, vl,Θ,Γ,P, µ}. We first claim that v̄ is

increasing in j. This follows immediately from part 1 of the definition of equilibrium: Let pj′

denote the price offered by j′. For j > j′, it is feasible to offer the same price pj′, and since

δj > δj′, this gives a higher value v̄j > v̄j′. Behaving optimally gives a still higher value.

Next, the fourth piece of the definition of equilibrium implies that for each j ∈ {1, . . . , J},

there exists a price pj ∈ P with γj(pj) > 0.

In the remainder of the proof, we take any j ∈ {1, . . . , J} and pj ∈ P with γj(pj) > 0.

Let θj = Θ(pj). First we prove that the constraint λ ≤ min{θ−1
j , 1}(βhv̄j/pj − 1) is satisfied.

Second we prove that the constraint vl,j′ ≥ δj′ + βlv̄j′ +min{θj , 1}(pj − βlv̄j′) is satisfied for

all j′ < j. Third we prove that the pair (θj , pj) delivers value vl,j to sellers of type j trees.

Fourth we prove that (θj , pj) solves (P-j).

Step 1. To derive a contradiction, assume λ > min{θ−1
j , 1}(βhv̄j/pj − 1). Equilibrium
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condition (iii) implies that there is a j′ with γj′(pj) > 0 and λ < min{θ−1
j , 1}(βhv̄j′/pj − 1).

If θj = ∞, min{θ−1
j , 1} = 0 ≤ λ, which is impossible; therefore θj < ∞. Then for all p′ > pj

and θ′ = Θ(p′),

min{θ′, 1}(p′ − βlv̄j′) ≤ min{θj , 1}(pj − βlv̄j′) < min{θj , 1}(p
′ − βlv̄j′).

The weak inequality holds from type j′ sellers’ optimality condition, since pj is an optimal

price for type j′ sellers, while the strict inequality uses p′ > pj . This implies θ′ < θj . Next

observe that for all j′′ < j′,

min{θ′, 1}(p′ − βlv̄j′′) < min{θj, 1}(pj − βlv̄j′′) ≤ vj′′ − δj′′ − βlv̄j′′,

where the first inequality follows because θ′ < θj and v̄j′′ < v̄j′ and the second follows from

type j′′ sellers’ optimality condition. This implies that γj′′(p
′) = 0. Thus any p′ > pj only

attracts type j′ sellers or higher and so delivers value at least equal to min{θ′−1, 1}(βhv̄j′/p
′−

1) to buyers. For p′ sufficiently close to pj , this exceeds λ, contradicting buyers’ optimality.

Step 2. Sellers’ optimality implies vl,j′ ≥ δj′ + βlv̄j′ +min{θj, 1}(pj − βv̄j′) for all j
′, and

so the second constraint is satisfied.

Step 3. Sellers’ optimality implies vl,j = δj + βlv̄j +min{θj , 1}(pj − βv̄j) for all j, and so

the policy delivers value vl,j.

Step 4. Suppose there is a policy (θ, p) that satisfies the constraints of problem (P-j) and

delivers a higher payoff. That is,

vl,j < δj + βlv̄j +min{θ, 1}(p− βlv̄j)

λ ≤ min{θ−1, 1}(βhv̄j/p− 1)

vl,j′ ≥ δj′ + βlv̄j′ +min{θ, 1}(p− βlv̄j′) for all j
′ < j.

If these inequalities hold with θ > 1, then the same set of inequalities holds with θ = 1, and

so we may assume θ ≤ 1 without loss of generality. Choose p′ < p such that

vl,j < δj + βlv̄j + θ(p′ − βlv̄j) (14)

λ < βhv̄j/p
′ − 1 (15)

vl,j′ > δj′ + βlv̄j′ + θ(p′ − βlv̄j′) for all j
′ < j. (16)

Now sellers’ optimality condition vl,j ≥ δj + βlv̄j + min{Θ(p′), 1}(p′ − βlv̄j), together with
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equation (14), implies Θ(p′) < θ. This together with equation (16) implies that

vl,j′ > δj′ + βlv̄j′ +Θ(p′)(p′ − βlv̄j′) for all j
′ < j,

and so in particular γj′(p
′) = 0 for all j′ < j. But then, using equation (15), we obtain

λ < min{Θ(p′)−1, 1}

(

βhv̄j
p′

− 1

)

≤ min{Θ(p′)−1, 1}

(

βh

∑J

j′=1 γj′(p
′)v̄j′

p′
− 1

)

,

a violation of buyers’ optimality condition. This completes the proof.

Proof of Proposition 3. We prove that there exists a unique λ ∈ [0, βh/βl − 1] such that

the market clearing condition holds. To be completed.

Proof of Proposition 4. The first part of the definition of a pooling equilibrium implies

v̄(δ) is increasing. Then the second part implies ζ(δ) = 1 if δ < δ∗ and ζ(δ) = 0 if δ > δ∗,

with no restriction on ζ(δ) if δ = δ∗.

Next, for δ < δ∗, the value functions imply vh(δ) = δ(1 + λ) + βhv̄(δ) and vl(δ) = δ + p.

Summing these and solving for v̄(δ) gives

v̄(δ) =
δ(1 + πhλ) + πlp

1− πhβh

.

Then p > βlv̄(δ) if and only if δ < δ∗ defined by

p = βl

δ∗(1 + πhλ)

1− β̄
. (17)

Substituting this back into the previous equation gives

v̄(δ) =

(

(1− β̄)δ + πlβlδ
∗
)

(1 + πhλ)

(1− πhβh)(1− β̄)
. (18)

This holds if δ ≤ δ∗; otherwise, the value is reduced by the fact that the asset is never resold.

Next, eliminate p from the buyer’s indifference condition, the third part of the definition

of equilibrium, using equation (17). Also eliminate v̄(δ) using equation (18). Solving for δ∗

gives

δ∗ =
βh(1− β̄)

βl

(

1− βh + λ(1− πhβh)
)

∫ δ̄

δ
ζ(δ)δκ(δ)dδ

∫ δ̄

δ
ζ(δ)κ(δ)dδ

.
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Imposing that ζ(δ) = 1 if δ < δ∗ and ζ(δ) = 0 if δ > δ∗ gives the expression in the statement

of the Proposition.
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