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Abstract

This paper argues that the capacity of financial markets to aggregate information is di-

minished in times of distress, resulting in countercyclical economic uncertainty. I build a

rational expectations equilibrium model in which informed financial intermediaries face coun-

tercyclical fund outflows, which expose them to non-fundamental price fluctuations during

contractions. This reduces information-based trading and price informativeness. Uncertainty

spikes as conditions deteriorate due to amplification mechanisms arising from the dispersed

nature of information and externalities in a dynamic environment. Heightened uncertainty

increases risk premia, Sharpe ratios and price volatility even when attitude towards risk and

the unconditional variance of fundamentals are constant. I trace the implications for real

allocations in an economy with partial investment irreversibilities in which firms learn about

demand condiitons from stock prices. Uncertainty reduces the level of real investment as a

precautionary response of firms.
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1 Introduction

Asset prices play a key role in the allocation of resources. By aggregating information about

economic fundamentals, they reduce the uncertainty about the future prospects of firms and help

guide both portfolio allocations of investors, as well as real allocations through firm’s production

decisions. The idea that asset prices have an informational role beyond clearing current output

markets can be traced to Hayek (1945), and was formalized by the rational expectations equilibrium

(REE) models of the 1980’s.1

Economic recessions –including the latest subprime episode– offer some stylized facts that beg

the question of whether the information aggregation process depends itself upon the business cycle.

These facts include i) a tightening of funding constraints of financial intermediaries in the form

of capital outflows and margin calls;2 ii) steep declines in the prices of risky assets and spikes in

volatility; and iii) sharp and persistent contraction in aggregate real investment.

This paper investigates the relation between the tightening of funding constraints through fund

outflows, and the fluctuations of asset prices and real investment. I argue that the endogenous

variation of the informational content of asset prices provides a key linking mechanism.

More specifically, the paper makes three contributions. First, I offer a tractable model where

countercyclical uncertainty arises endogenously from the diminished capacity of financial markets

to aggregate information about economic fundamentals in times of distress.3 The model combines

two literatures that are central in macroeconomics and finance: the REE analysis of information

aggregation, and the limits of arbitrage (De Long, Shleifer, Summers and Waldmann (1990);

Shleifer and Vishny (1997)). I consider agents that react to private, heterogeneous information

trading with agents that have non-informational motives (noise trading), resulting in the partial

aggregation of information about fundamentals into asset prices. The limits of arbitrage qualify

the extent of such aggregation through the trading restrictions that arise from funding constraints

in actual markets. I argue that because funding constraints are particularly binding in times of

distress, the informativeness of asset prices is diminished during contractions.4

The second contribution of this paper is to trace the asset pricing implications of countercyclical

uncertainty. I argue that the model can shed light into the observed time-variation of expected

returns and Sharpe ratios.5 As economic conditions and the informativeness of prices deteriorate,

traders demand a larger compensation for holding risk. Higher expected returns translate into

1Grossman and Stiglitz (1980); Hellwig (1980); Diamond and Verrecchia (1981), and Kyle (1985).
2The tightening of funding constraints during contractions dates at least to the great depression, as documented

by Galbraith (1954).
3I will refer to uncertainty as measurable risk: the variance of fundamentals, conditional on information.
4Countercyclical uncertainty is documented in Veronesi (1999), Rich and Tracy (2003) and Bollerslev and Zhou

(2007).
5Hansen and Singleton (1983); Campbell and Shiller (1988); Fama and French (1989); Ferson and Harvey (1991).
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heightened price variability in the presence of noise trading, consistent with countercyclical stock

market volatility.6 Importantly, the model delivers these results in an environment when both the

attitude towards risk and the unconditional volatility of fundamentals remain constant.

As a third contribution, I study the implications for real allocations in an production economy

featuring partial irreversibilities in investment.7 I show that when firms learn information about

productivity conditions from stock prices,8 heightened noise reduces the accuracy of investment

decisions. Moreover, I provide a closed-form solution for the investment problem in which the level

of investment is negatively affected by the conditional variance of fundamentals. Time variability

in information aggregation can thus provides a theoretical foundation for the negative impact of

uncertainty shocks on investment documented in recent empirical work (Bloom (2009)).

The central feature of the model is that traders with private information are financial interme-

diaries who invest on behalf of households. Intermediaries choose asset positions in a first stage,

trading against noise traders. In a second stage, a fraction of households face liquidity shocks that

trigger the redemption of funding from the intermediaries, forcing them to liquidate positions.

Assets liquidated in the second stage are absorbed by uninformed traders –rational investors who

learn from prices– at a price that can diverge from fundamentals due noise trading in this stage as

well. Liquidations therefore expose informed traders to a second source of risk beyond uncertainty

about fundamentals: noise trading risk –the price impact of exogenous trading motives.

When economic conditions deteriorate, liquidity needs of households cause more funding with-

drawals. This lowers expected returns and increasing trading risks for intermediaries in the second

stage. In anticipation, intermediaries trade less aggressively in response to private information in

the first stage, which reduces the informativeness of the asset price. A key element of the equilib-

rium is that uninformed traders, who act as liquidity providers when intermediaries are forced to

reverse positions, have an endogenous demand elasticity for the asset. Indeed, their willingness to

absorb net supply depends on the informativeness of the price. When the price is noisy, uninformed

traders require larger compensation for bearing risk, lowering the average price and increasing its

volatility in the second stage. This reduces expected returns and increases the risk for intermedi-

aries in the first stage, who therefore trade even less aggressively and reduce the informativeness of

the price even further. Endogenous supply of liquidity by uninformed traders amplifies the effect

of funding withdrawals on uncertainty, and can result in multiple trading equilibria.

This paper relates to three other broad strands of literature that cover countercyclical uncer-

tainty, asset pricing models of asymmetric information and financial constraints, and time-varying

risk premium.

First, several papers have studied countercyclical uncertainty and business cycle learning dy-

6Schwert (1989); Bollerslev, Chou and Kroner (1992).
7Bernanke (1993); Dixit and Pindyck (1994); Bertola and Caballero (1994)
8Dow and Gorton (1997); Dow and Rahi (2003); Goldstein and Guembel (2008).
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namics. While Van Niewerburgh and Veldkamp (2006) and Angeletos and Lao (2008) focus on

neoclassical production economies with no role for financial frictions, Veronesi (1999) discusses

learning in financial markets in a model of regime shifts, but in a representative agent framework

without financing constraints.

A second line of literature features models of asymmetric information and financial constraints.

Xiong (2001) and Kyle and Xiong (2001) build equilibrium models in which arbitrageurs’ wealth

losses destabilize asset prices by increasing risk aversion. He and Krishnamurthy (2008) study

the impact of wealth shocks on the contracting problem between households and intermediaries.

Brunnermeier and Pedersen (2009) focus on the feedback between funding liquidity and non-

fundamental volatility.9 While accurately predicting several moments of pricing data, these models

do not offer enough tractability to focus on the informational role of equilibrium prices, assuming

instead exogenous information asymmetries across agents. By focusing on dynamic risk considera-

tions triggered by withdrawals, I am able to provide closed-form solutions for the informativeness

of asset prices as a function of underlying fundamentals, allowing an explicit analysis of time-

varying information aggregation. Closest to this paper, Barlevy and Veronesi (2003) and Yuan

(2005) simultaneously deal with funding constraints and learning to explain stock market crashes.

My paper differs from these last two contributions in the specification of information asymmetries,

limits of arbitrage, and the dynamic nature of risk.

A third line of research that relates to my results studies the origins of time variation in the

risk premium. Campbell and Cochrane (1999) build a representative agent model with external

habit formation, arguing that the effective risk aversion of households spikes as consumption falls

towards habit levels in recessions. The alternative explanation stresses exogenous time variation

in the volatility of the dividend generating process of risky assets (Barsky and DeLong (1993);

Bansal and Yaron (2004)). While the attitude towards risk and the exogenous amount of it are

likely to be higher in recessions,10 I argue that uncertainty arising from the endogenous fluctuation

of asset price informativeness can play a role by itself. Alternatively, my explanation can serve

as a microfoundation for the empirical work that models time-variation in the volatility process

through reduced-form equations. To my knowledge, no related paper has formally studied the

connection between endogenous information aggregation and time-variation in the price of risk.11

The remainder of the paper is structured as follows. The next section describes a simple REE

model in which funding constraints exogenously limit market participation to a subset of informed

traders, with the aim of elucidating the broad link between real market constraints and the cyclical

variation of price informativeness. Section 3 introduces dynamic risk in a three stage model. In

9Gromb and Vayanos (2002) analyze arbitrage and welfare in a multi-period model with collateral constraints.
10Bekaert, Engstrom and Xing (2009) find that both varying risk aversion and conditional variance of fundamen-

tals have explanatory power for the variance decomposition of the term structure, equity prices and risk premia.
11I am indebted to Andy Atkeson for pointing this out.
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section 4, I discuss the asset pricing implications of the model. Section 5 discusses the impact

on real allocations when asset prices provide information for real investment decisions. Section 6

offers testable predictions of the model and brief remarks for policy. Section 7 concludes.

2 A noisy REE model with financial constraints

2.1 Setup

This section illustrates how financial constraints can hinder information aggregation using a simple

REE model of an endowment economy with asymmetric information, which will be extended in

subsequent sections. There are two stages: 1, and 2. A consumption good is produced in the ran-

dom amount θ at stage 2. I refer to θ as the dividend, or economic fundamentals interchangeably,

which follows a normal distribution with zero mean and variance λ−1
θ .

The economy is populated by traders that exchange claims on the risky endowment through

shares in a financial market that opens in stage 1. In stage 2, θ is revealed and traders are paid

according to their net positions, and consume.

Traders can be either informed traders or noise traders. There are a continuum of informed

traders indexed by i ∈ [0, 1], each endowed with one share. At stage 1, they observe a private

signal si about the value of the dividend:

si = θ + εi; εi ∼ N
(
0, λ−1

ε

)
, (1)

The signal consists of the true realization of θ plus idiosyncratic noise εi, which is identically

and independently distributed across traders conditional on θ. Informed traders have CARA

preferences with risk aversion γ over the consumption of terminal wealth at stage 2: U (Wi,2) =

− exp (−γ ·Wi,2) .

Noise traders have other (unmodeled) trading motives and supply the random amount of n

shares, with n ∼ N (0, λ−1
n ).

To illustrate the impact of funding constraints on information aggregation, suppose informed

traders have a funding status fi ∈ {0, 1}, so that only traders with fi = 1 can exchange claims

on the financial market. F ≡
∫
fidi measures the fraction of informed traders that are allowed to

trade, which I label aggregate funding liquidity. Limits to trading can arise from losses on prior

positions. If the wealth (capital) of traders is low enough, they are likely to face constraints in

raising funds for further trading. Alternatively, agents that use informed traders as intermediaries

might face liquidity needs that force them to make withdrawals. I explore the latter channel in

section 3, but for now I take F as exogenous, focusing on the informational properties of the share

price that result from its variation. I assume that liquid traders (fi = 1) can borrow at a riskless
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rate normalized at zero.

2.2 Equilibrium

A competitive equilibrium is 1) a share price function P1 (θ, n;F ), 2) demand schedules by informed

traders ti = t (si, P1; fi, F ), and 3) prior beliefs H (θ), and posterior beliefs H (θ | si, P1) such that

∀ i ∈ [0, 1]: (i) If fi = 0, ti = 0 and if fi = 1 asset demands are optimal given posterior beliefs and

aggregate funding liquidity F ; (ii) The share price clears the market; and (iii) Posterior beliefs are

updated through Bayes law.

The price function P1 (·) depends on the realization of the fundamental (θ), noise trading (n),

and aggregate funding liquidity F . Condition (i) states that informed traders who can trade

(fi = 1) maximize expected utility given posterior beliefs and aggregate funding conditions, since

F will affect the informativeness of the share price. Condition (ii) imposes market clearing for any

realization of the noisy asset supply, while (iii) restricts beliefs to follow Bayes rule: the conditional

distribution of D is updated from the observation of signals si and the share price P1.

The solution method follows three steps (Grossman (1976)). First, I conjecture that the price

function is linear in the shocks;

P1 (θ, n, ·) = A1 + A2 · θ + A3 · n (2)

so that informed traders back out a noisy signal about θ from the observation of price labeled p̂1:

the informational content of the price,

p̂1 ≡
P1 − A1

A2

= θ −∆ · n (3)

where ∆ = −A3/A2. p̂1 given θ is distributed normally with mean θ and variance λ−1
1 = λ−1

n ·∆2.

The variance of the noise in the price signal is the product of two terms: the variance of noise

trading shocks (λ−1
n ) and the noise amplifier ∆. The latter captures the response of the price

to innovations in noise trading relative to fundamentals (the ratio −A3/A2). When high, noise

trading has a large impact on the price, which becomes a poor aggregator of dispersed information

about the fundamental θ.

Informed traders’ posterior beliefs of θ depend on private signals and the market-clearing price.

Applying the projection theorem (Appendix A), the first two moments of informed traders’ pos-

terior beliefs are given by

E[θ | si, p̂1] = a0 · si + a1 · p̂1 (4)

V[θ | si, p̂1] =
[
λθ + λε + λn/∆

2
]−1

5



where ao, and a1 are the Bayesian weights assigned to the private and public signals that depend

on their relative precision.

The second step is to compute the optimal demands that follow from the posterior beliefs

characterized by (4). Informed traders’ terminal wealth is given by Wi,2 = ti · (θ − P1) + θ, which

conditional on demand ti and the information set {si, p̂1} is normally distributed. Maximizing

the expectation of exponential utility is then equivalent to maximizing a mean-variance utility

augmented by risk-aversion (γ), leading to demands

ti =
E [θ | si, p̂1]− P1

Σ
− 1 (5)

where Σ = γ ·V [θ | si, p̂1] is the risk-aversion adjusted variance conditional on information, which is

common across traders. Demand schedules in (5) have two components. The first term is the ratio

between expected returns and risk-aversion adjusted variance, and captures information-based

motives for trade. The -1 term is the hedging motive arising from the initial risky endowment of

one share.

To solve the linear equilibrium the third step imposes market-clearing:

F ·
∫
tidi = n (6)

where the left hand side is the aggregate demands of informed traders, which equals the noisy

asset supply. Solving for P1 yields the coefficients in (2) through the method of undetermined

coefficients. These are functions of the primitive parameters and aggregate funding liquidity; F .

The following proposition summarize the main results.

Proposition 1 (Equilibrium): There exists a unique linear equilibrium price function P1 (θ, n, ·):12

P1 = Ã1 + Ã2 · θ + Ã3 · n

with coefficients

Ã1 = −Σ; Ã2 = a0 + a1; Ã3 = −Σ

F
· a0 + a1

a0

where Σ, a0 and a1 are given by (4) as a function of the noise amplifier ∆:

∆ (F ) =
γ

λε
· 1

F
(7)

Proof. In appendix A.

12I ignore whether there exist non-linear equilibria.
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Figure 1: Noise and Uncertainty
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Expression (7) gives the noise amplifier ∆ (·) as a function of funding liquidity F . Figure 1

plots the impact of funding on ∆ (·), and the conditional variance of fundamentals V [θ | s, p̃1]. As

F → 1, all informed traders impound their private information into the price. The noise amplifier

reaches its lower bound ∆ (1) = γ · λ−1
ε , an increasing function of the variance of idiosyncratic

noise in private signals (λ−1
ε ) and risk aversion (γ).13

Conversely, as F → 0 the asset price loses informational value completely (∆ → ∞). Since

information is dispersed, traders learn additional information from the price in this economy. As

a result, a higher value of ∆ increases the conditional variance of fundamentals. Economic uncer-

tainty, defined as the variance of the dividend conditional on information, is therefore decreasing

in funding liquidity: ∂V [θ | ·] /∂F < 0 (expression (4)).

3 A noisy REE model with dynamic risk

This section provides a model of dynamic risk arising from funding constraints going forward : even

if current financing is available, traders might fear tightening of constraints in the near future. The

following quote from Shleifer and Vshny (1997) captures the essence of the argument,

13The noise amplifier in this limit is equivalent to the one that obtains in the endogenous information acquisition
model of Grossman and Stiglitz (1980), when the unit measure of traders choose to become informed.
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“Arbitrageurs can become most constrained .. when the mispricing they have bet against gets

even worse... the fear of this scenario would make them more cautious when they put on their

initial trades, and hence less effective in bringing about market efficiency”.

Mounting evidence suggests that this “fear of illiquidity”mechanism is important empirically,

particularly when asset prices fall at the outset of contractions. Several studies document pre-

dictability of mutual fund net inflows from lagged fund performance.14 In the time series, Warther

(1995) documents a positive correlation between mutual fund performance and aggregate inflows

into the industry. Reliance on debt raises similar concerns. Brunnermeier and Pedersen (2009)

argue that margin requirements tighten when counter-party risk increases during crises. Moreover,

rolling-over short-term debt becomes increasingly difficult as liquidity dries up15 and can escalate

to virtual market freezes, as illustrated by the subprime episode.16 In short, all sources of financing

become increasingly fragile as crises unfold.

In practice, funding constraints arise both from the behavior of financial intermediaries’ cred-

itors (debt) and its clients (capital). I focus on the latter. Modeling risky debt is burdensome

because it usually requires imposing limited liability constraints (Bernanke and Gertler (1989);

Holmstrom and Tirole (1997)), a property at odds with CARA preferences which allow negative

consumption. However, CARA permits tractable information aggregation in a risk-averse setting.

Focusing exclusively on capital constraints enables me to use a more parsimonious model to analyze

the interaction between limited arbitrage and price informativeness.17

The model presented below studies dynamic risk in a setting with two trading stages. At

stage 1, risk-averse informed traders raise funds from a continuum of clients. They benefit from

their private, heterogeneous information trading against noise traders, sharing profits with clients.

Funding is fragile however, as some clients may withdraw funds at stage 2 depending on their

idiosyncratic liquidity shocks. This forces informed traders to liquidate the corresponding fraction

of positions at a price that can differ from fundamentals due to noise trading at this stage as well.

The unwinding of informed traders’ positions and noise trading at stage 2 is absorbed by

uninformed traders: rational investors who learn information about the fundamental θ from prices.

A key observation is that although the variance of noise trading is an exogenous parameter, its

impact on stage 2 prices –noise trading risk– is endogenous to informed traders’ decisions in stage 1.

The less informed traders react to their private information in stage 1, the less revealing equilibrium

prices are. This increases uncertainty for uninformed traders and reduces their willingness to

provide liquidity at stage 2. The price impact from asset liquidations and noise in stage 2 is

14Chevalier and Ellison (1997); Wermers (1999); Coval and Stafford (2007).
15See Acharya, Gale and and Yorulmazer (2009).
16See Gorton and Metrick (2009).
17Xiong (2001) and Kyle and Xiong (2001) derive limited arbitrage from decreased risk-tolerance of CRRA traders

following wealth losses. Power utility is much less tractable for modeling information aggregation, however. See
Mertens (2009) for a discussion on non-linear methods to overcome this problem.
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thus enhanced, lowering expected returns and increasing risk from early liquidations. Both effects

induce more cautious trades by informed traders in response to private information, creating

a reinforcement between noise trading risk and price informativeness. The impact of funding

fragility is thus amplified through the endogeneity of noise trading risk, and can even lead to

multiple trading equilibria in the asset market.

3.1 Setup

There are three stages: 1, 2 and 3. The single risky asset in the economy pays a liquidation value

of D in stage 3 according to

D = D−1 + θ + µ

where D−1 = D̄ + θ−1 is common knowledge at stage 1, given by a mean D̄ plus the realization

of the lagged dividend innovation θ−1. Both θ−1 and θ are drawn independently from a normal

distribution with zero mean and variance λ−1
θ . Henceforth, I will refer to θ−1 as lagged economic

conditions. The innovation θ+µ becomes common knowledge at stage 3, but part of the uncertainty

about θ will reduced by trading in prior stages. The term µ is a normally distributed white noise

with variance λ−1
µ .

3.1.1 Agents

There are two kinds of agents: traders and clients. Traders can be of three types; informed,

uninformed, or noise traders. Informed traders are a continuum of mass 1 indexed by i ∈ [0, 1].

They are born in stage 1 with CARA preferences (risk-aversion γ) over the consumption of terminal

wealth Wi,3. At stage 1, each observes a private signal about θ given by (1). Uninformed traders

are born in stage 2 in unit mass, and have CARA preferences (with risk-aversion γu) over the

consumption of terminal wealth Wu,3. They have no private information about θ but make rational

inferences from the asset price. Noise traders are born in stages 1 and 2 in masses n1 and n2, which

are drawn independently from a zero-mean normal distribution with variance λ−1
n .

Financial intermediation arises from the need to finance purchases or sales of the risky asset. I

treat long and short positions symmetrically by assuming both require funding the entire price.18

Informed traders have no endowments and cannot borrow at the riskless rate, so they must raise

funding from clients to take asset positions at stage 1. I assume linear contracts: to raise an

amount X, an informed trader receives 1 unit of the consumption good from a continuum (mass

X) of clients, who can choose whether they want to settle their investment at stage 2 through

18Short positions also require capital, since borrowing shares require withholding the proceeds of the sale plus
the margin requirement in deposit accounts. This provides a safeguard for the lender against counterparty risk.
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early withdrawals, or maintain it until stage 3.19 I assume clients are in relatively large mass so

that informed traders can always raise funding from a continuum of them. The informed trader

retains a fraction 1− c of trading profits.

Clients have risk-neutral preferences and can only participate in the asset market through

intermediation by the informed traders. At stage 2, clients receive an endowment which is an

increasing function of lagged economic conditions g (θ−1) plus a client-specific liquidity shock `j ∼
N
(
L, λ−1

`

)
. Liquidity shocks are unknown to all agents in stage 1. In the spirit of Diamond and

Dybvig (1983) and the ensuing the bank-runs literature, clients with low values of the liquidity

shock will withdraw funding from informed traders. In particular, client j withdraws at stage 2

whenever g (θ−1)+`j < 0. I assume (with no loss of generality) a simple function g (θ−1) = θ−1. The

fraction of positions that informed traders will keep until stage 3, which I label funding liquidity

F , is then given by

F (θ−1) = 1− Pr (θ−1 + `j < 0) = Φ
(√

λ` · (L+ θ−1)
)

(8)

while the complement 1−F (·) must be liquidated at stage 2 to meet withdrawals. For tractability,

I assume withdrawal decisions are independent of the price at stage 2, and that informed traders

do not voluntarily change net positions at this stage. Without these assumptions, normality of

conditional wealth breaks down, and the CARA framework is no longer tractable. 20

3.1.2 Asset market

The timing of trades in the financial market are as follows (figure 2). At stage 1, informed

traders submit price-contingent demand schedules. Although individual clients’ liquidity shocks

are unknown at stage 1, with the law of large numbers informed traders can perfectly forecast the

fraction of early withdrawals (1 − F (·)) from the knowledge of θ−1. Demand schedules therefore

depend on private signals si and anticipated funding liquidity: ti = t (si, P1;F (·)).
I assume the average supply of shares in stage 1 is unity, so the economy bears aggregate risk.

In addition, noise traders supply the random amount of n1 shares. A market auctioneer then

selects price P1 at which all price-contingent demands can be executed.

At stage 2 informed traders are forced to unwind a fraction 1 − F (·) of positions to meet

withdrawals. Uninformed traders also bid for the shares at stage 2 submitting demand schedules

19Holmstrom and Milgrom (1987) show that linear contracts are optimal in principal-agent problem with CARA
preferences. Kyle, Ou-Yang and Wei (2010) solve the optimal linear contract in a CARA setup with endogenous
effort choice –the precision of information– by intermediaries.

20Voluntary liquidations at stage 2 would skew stage 2 prices conditional on information at stage 1, breaking
the normality of traders wealth. These assumptions do not compromise the main qualitative results however, since
what matters is that funding constraints place some limits in the positions that traders can take in the future,
affecting their incentives to trade in the present.
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Figure 2: Asset Market Summary 
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to the market auctioneer. For simplicity, I assume they are unconstrained to finance trading

positions at stage 2 (i.e., they can borrow at the risk-free rate). Uninformed traders condition

both on the price at stage 2; P2, as well as on P1 and funding liquidity: tu = t (P1, P2;F ). The

second draw of noise traders supply n2 shares and the auctioneer selects the price P2 at which

uninformed demands can be executed given n2 and informed traders’ early liquidations. At stage

3, θ + µ is revealed and agents consume the dividend according to their net positions.

3.2 Equilibrium

A competitive sequential equilibrium is defined by 1) a sequence of share price functions P1 (θ, n1;F (θ−1)),

P2 (θ, n1, n2;F (θ−1)); 2) demands by informed, ti = t (si, P1;F (θ−1)), and uninformed traders,

tu = t (P1, P2;F (θ−1)); and 3) a set of prior beliefs H (D | D−1) for all agents, posterior beliefs

H (D | D−1; si, P1, F (θ−1)) and H (P2 | D−1; si, P1, F (θ−1)) for informed traders, and

H (D | D−1;P1, P2, F (θ−1)) for uninformed traders such that, ∀ i ∈ [0, 1] and u: (i) Asset demands

are optimal given funding liquidity F (θ−1), and posterior beliefs H (D | ·) and H (P2 | ·), (ii) The

asset price clears the market at each stage, and (iii) Posterior beliefs are updated using Bayes law.

The main object of the equilibrium are the price functions {P1 (·) , P2 (·)}, which depend on the

realization of the shocks up to each stage and funding liquidity F (θ−1) –which is known at stage

1. Under condition (i), informed traders maximize expected utility given funding liquidity and

posterior beliefs about the dividend and price P2, since a fraction 1− F (·) of the positions taken

in stage 1 will pay according to the latter. Condition (ii) imposes market clearing at each trading

round for all realization of the noisy asset supplies. Condition (iii) imposes Bayesian updating

of the conditional distributions of D and P2 on all available information, including prices. I now

briefly sketch the main steps to solve the equilibrium, with details relegated to Appendix B.
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Step 1: Price conjectures and beliefs

Conjecture 1 (Affine prices): (i) There exists an equilibrium where the price in stage 1, P1,

is a linear combination of the dividend’s prior expectation (D−1), the dividend innovation (θ), and

the noise trading shock (n1);

P1 = Ao + A1 ·D−1 + A2 · θ + A3 · n1, (9)

(ii) In this equilibrium, the price in stage 2 is a linear combination of the dividend’s prior expec-

tation (D−1), the shocks {θ, n1, n2}, the share price P1, and its informational content p̃1:

P2 = B0 +B1 ·D−1 +B2 · θ +B3 · n1 +B4 · n2 +B5 · p̃1 +B6 · P1 (10)

According to part (i) of the conjecture, P1(·) is informationally equivalent to a noisy public

signal about θ; p̃1 ≡ θ −∆ · n1, where ∆ = −A3/A2. The noise in the signal depends on the

variance of noise trading and the noise amplifier ∆. Since informed traders must liquidate some

positions at stage 2, they also form beliefs about P2. Part (ii) of the conjecture states that in the

equilibrium the price function P2 (·) is also an affine combination of the underlying shocks up to

stage 2, in addition to the price in stage 1, P1, and its informational content p̃1.

Informed traders’ posterior beliefs about the dividend D and the price P2 depend on private

information and the endogenous public signal provided by the price in stage 1, p̃1. The projection

theorem gives the first two moments of informed traders’ posterior beliefs about D. Beliefs about

price P2 can be similarly computed from (10) using expression (4).

Uninformed traders also use share prices to form beliefs. Although the equilibrium also implies

an informational role for P2, I assume for simplicity that uninformed traders only make inferences

from P1 through the endogenous signal p̃1 –i.e., uninformed traders process information in prices

with a lag. I relax this assumption in Appendix B, and argue that while adding significant com-

plexity to the solution, an additional public signal in P2 does not change the qualitative results of

the model. Given information Ωu : {D−1;P1} = {D−1; p̃1}, the first two moments of uninformed

traders’ beliefs correspond to

E[D | Ωu] = D−1 + E[θ | Ωu] = D−1 + b1 · p̃1 (11)

V[D | Ωu] = V[θ | Ωu] + V[µ | Ωu] =
[
λθ + λn/∆

2
]−1

+ λ−1
µ ;

Step 2: Optimal demands Since informed traders’ face withdrawals at stage 2, terminal

wealth is given by

Wi,3 = (1− c) ti [F · (D − P1) + (1− F ) · (P2 − P1)]

12



From (10), wealth follows a normal distribution conditional on information at stage 1. Maximizing

CARA expected utility then leads to linear demands:

ti =
F · E [D | Ωi] + (1− F ) · E [P2 | Ωi]− P1

Σ
(12)

where Σ = (1− c) γ
[
F 2V [D | Ωi] + (1− F )2 V [P2 | Ωi] + 2F (1− F )Cov [D,P2 | Ωi]

]
is the risk

aversion-adjusted variance. Asset demands of informed traders depend on expectations about the

dividend and price P2. Importantly, response to private signals is tempered by P2 volatility.21

Uninformed traders participate at stage 2 and choose demands to maximize the expected utility

over the terminal wealth Wu = tu · (D − P2). Normality of wealth conditional on information and

CARA preferences also yields linear demands:

tu =
E [D | Ωu]− P2

Σu

(13)

with risk-aversion adjusted variance Σu = γu · V [D | Ωu]. Uninformed traders’ demands are pro-

portional to the expected profit per share (E [D | Ωu]−P2), tempered by the risk-aversion adjusted

variance; Σu.

Step 3: Market clearing I now solve the coefficients in the price conjectures. Working

backwards, I impose the market-clearing condition at stage 2:

tu − (1− F ) ·
∫
tidi = n2 (14)

where the left hand side is given by uninformed demands plus the unwinding of informed traders’

positions from stage 1, which must equal the second draw of noise trading n2. Solving for P2 gives

the coefficients in part (ii) of Conjecture 1.

Now I impose the market clearing condition at stage 1:∫
tidi = 1 + n1 (15)

where the left hand side contains aggregate demands by informed traders, which must equal the unit

supply of shares plus noise trading. Solving for P1 yields the coefficients in part (i) of Conjecture

1, as a function of the coefficients in part (ii) of the conjecture. I summarize the main properties

of the equilibrium in the following proposition, referring proofs to Appendix B.

21The profit splitting rule acts as a risk-aversion moderator: the lower is the fraction of profits that corresponds
to informed traders (1− c), the more aggressive they trade (see Kyle, Ou-Yang and Wei (2010)
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Proposition 2 (Existence and uniqueness): (i) All linear price equilibria satisfy the system

of equations:22

∆ =
Σ

a0 (F + (1− F )B2)
, (16a)

Σ = (1− c) γ
{
V [θ | s, p̃1] (F + (1− F )B2)2 + (1− F )2 Σ2

uλ
−1
n + F 2λ−1

µ

}
, (16b)

Σu = γu
{
V [θ | p̃1] + λ−1

µ

}
, (16c)

B2 =
−Σu (1− F )F · a0

Σ + Σu (1− F )2 · a0

, (16d)

where F (θ−1) is given by equation (8), V [θ | s, p̃1] and V [θ | p̃1] are functions of ∆ given by (4)

and (11), and a0 = λε · V [θ | s, p̃1]. (ii) A linear equilibrium always exists; and (iii) There exists

δ0 > 0, s.t. whenever the sufficient condition λµ < δ0 holds, the equilibrium is unique. If λµ > δ0,

additional equilibria might exist.

Proposition 2 validates expressions (9) and (10) in Conjecture 1 as equilibrium outcomes: be-

liefs based on the proposed price functions lead to asset demands that sustain such beliefs in

equilibrium. Equilibrium multiplicity is an interesting property of the two-stage trading environ-

ment that arises from higher-order beliefs of informed traders. In order to predict price P2, they

form expectations about uninformed traders’ demands, and thus about uninformed trader’s beliefs

about the dividend.

In one of these equilibria, informed traders respond aggressively to private signals in stage 1,

and the price P1 is nearly revealing. Facing low risk, uninformed traders absorb the supply of the

asset with little effect on price P2. Low P2 volatility, in turn, sustains the optimality of informed

traders’ aggressive response to information in the first stage.

In the other equilbria, informed traders react mildly to private information in stage 1 and

P1 reveals little information about the forthcoming dividend. This reduces uninformed traders’

willingness to absorb supply, increasing P2 volatility. High payoff uncertainty of the positions

liquidated in stage 2 thus sustains the mild response of informed traders to information at stage

1. This leads to an equilibrium with higher noise in prices –the noisy equilibrium.

The inclusion of µ in the dividend equation adds uncertainty which cannot be mitigated through

information aggregation in prices. No matter how precise the price signal is, uninformed traders

conditional variance of D lies strictly above the variance of µ; λ−1
µ . This bounds the volatility of

P2 from below so that aggressive trading of informed traders is not sustained as an equilibrium.

Consequently, the near-revealing equilibrium vanishes for high enough λµ. The noisy equilibrium,

on the other hand, exists for all parameter values. In what follows, I restrict attention to the noisy

22I ignore whether there exist other non-linear equilibria.
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equilibrium.23

I now state the relation between funding liquidity and information aggregation in the asset

price (proven in Appendix B):

Proposition 3 (Liquidity and noise): There exists δ1 > 0, s.t. if the sufficient condition

λµ < δ1 holds, there exists a threshold θ s. t. the noise amplifier ∆ (·) is strictly decreasing in θ−1

for all values of lagged economic conditions θ−1 < θ, where ∂θ/∂γu > 0 and ∂θ/∂λ−1
n > 0.

Proposition 3 is the main result of the model. I discuss in detail the forces at work in generating

this result in the next subsection.

3.3 Illiquidity and the amplification of uncertainty

Figure 3 plots the impact of lagged economic conditions θ−1 on funding liquidity F (·) and the

noise amplifier ∆(·) (Table 1 specifies the benchmark parameters used in all the figures below). As

economic conditions deteriorate and future withdrawals become more pervasive, informed traders

become more cautious when trading at stage 1 in response to private information. In equilibrium,

this reduces the aggregation of private information into the signal provided by the asset price.

To understand the mechanisms involved in the amplification of uncertainty, consider an in-

formed trader who expects a high dividend at stage 3 and must choose her initial trade in stage

1. If she expects a relatively large fraction of withdrawals 1 − F in stage 2, she will respond

moderately to private information for two separate reasons. First, liquidation of positions at stage

2 is risky in the presence of noise trading, so the risk-aversion adjusted variance of returns (Σ)

increases as funding F drops. I call this effect noise trading risk. But a second effect regarding

the conditional mean of returns is also at work: the higher the fraction of withdrawals, the larger

the amount of trades that the trader expects to reverse at stage 2 together with all other informed

traders. This reversal of positions causes an opposite price pressure in P2 which reduces expected

profits. I call this second effect the expected trade reversal.

Equation (16a) can be decomposed to illustrate the impact of each of these effects in the noise

amplifier; ∆. The noise trading risk effect is captured by the term (1− F )2 Σ2
uλ
−1
n in the expression

of Σ (16b). As F drops, informed traders become more exposed to the risk of price fluctuations

in stage 2. Moreover, note that the risk aversion-adjusted variance of uninformed traders Σu

also increases as F falls and the price becomes more noisy. Uninformed traders will only supply

liquidity when uncertainty is higher if expected returns increase as well. Noise trades therefore

23It is worthwhile noting that the impact of funding liquidity F on the noise amplifier ∆ is qualitatively similar
in both equilibria.
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Table 1

Unconditional variance of θ Average dividend

λθ
-1  = 2 Ď = 5

Unconditional variance of µ Liquidity shock
λµ

-1= 0.4 L = 6;   λ l
-1 = 50

Variance of private signals Risk-aversion 

λ
−1 = 2 γ = 1; γu = 2

Noise trading shock variance Profit sharing rule

λn
-1 = 2.5 c = 0.9

Baseline parameters

Figure 3: Liquidity and Noise
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have a larger price impact at stage 2, increasing the risk for intermediaries.24 As an attenuation

of the effect however, note that more noise in the price increases the reliance of informed traders

on their private signals, captured by the coefficient a0. Under the conditions in Proposition 3, the

increase in Σ will dominate the increase in a0. Since the ratio Σ/a0 is proportional to the noise

amplifier, prices become more noisy as liquidity tightens through the noise trading risk effect (left

panel of Figure 4).

The expected trade reversal effect is captured by the term F +(1− F )B2 in (16a) (Right panel

of Figure 4), which corresponds to the increase in expected profits per share for a given increase

in the expected fundamental. Informed traders anticipate that only a fraction F of positions

pay the dividend D, while (1 − F ) pay P2. D also affects P2 through B2 (equation (10)). But

from expression (16d), note that B2 is actually negative: −1 < B2 < 0. This reflects the price

discount required by uninformed traders to absorb the positions unwind by informed traders at

stage 2. Moreover, since uninformed traders’ willingness to provide liquidity depends on price

informativeness, B2 also becomes more negative as F falls. The term F + (1− F )B2 is therefore

lower than one and decreases as F drops, further increasing the noise amplifier ∆.

Figure 5 shows the path of prices after a one-standard deviation positive innovation in θ. The

left panel corresponds to a case where the lagged fundamental θ−1 is relatively low (-1 st. dev.),

while the right panel considers a high value (+1 st. dev.). The solid line in both panels is the

simulated trajectory of prices when both realizations of the noise trading shock are zero. The solid

line thus illustrates the expected trade reversal: if informed traders bought shares in stage 1, they

must sell a fraction of them in stage 2, which lowers P2. The dashed lines plot the price impact

of a positive innovation in noise trading n2. This stochastic fluctuation in the price corresponds

to the noise trading risk. The figure makes clear that both effects become more pervasive when

funding liquidity is low. Moreover, since both effects multiply each other in the denominator of

∆ (θ−1) in expression (16a), the spike in the noise amplifier can be quite marked, as is apparent

from Figure 3.

Both effects can be related to a “fire sales” argument. Early withdrawals force informed traders

to unwind initial positions at stage 2 prices. But this happens precisely when other informed traders

(on average) are also reversing their trades, which causes a reversal in the price in expected terms.

Moreover, the presence of noise makes the fire sale risky as well. The key element added by the

REE framework is that informed traders consider the future effects of the fire sale when choosing

their initial trades. In response to larger future withdrawals, informed traders’ demands become

less sensitive to private information, which reduces the informativeness of the price P1.

24Note that it is not immediate that lower F increases total risk since intermediaries become less exposed to risk
in fundamentals. As the condition in Proposition 3 states, noise trading risk will always dominate for sufficiently
low θ, such that F (θ−1) < F (θ). The threshold value θ depends positively on the variance of noise trading and the
risk aversion of uninformed traders.
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Figure 4: Amplification Effects–Noise Trading Risk and Expected Trade Reversals
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Figure 5: Illiquidity and Dynamic Risk
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Figure 6: Countercyclical Uncertainty
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The anticipation of the aggregate effect on prices of trading decisions in stage 1 does not mean

that informed traders fully internalize the consequences of their actions, however. On the contrary,

the competitive nature of the equilibrium makes each individual informed trader ignore the impact

of their trading choices on the informativeness of the price. This imposes an information externality

to other informed traders as well as to uninformed traders, since all traders learn from prices in

a dispersed information environment. Interestingly, the social inefficiency of private decisions hits

back on informed traders, as heightened uncertainty of uninformed traders increase the returns

they require to absorb supply of the asset at stage 2.

Figure 6 plots the effect of lagged economic conditions on the dividend’s conditional variance,

for both informed and uninformed traders. Better economic conditions improve funding liquidity,

which increases the informativeness of the asset price. The residual variance of fundamentals

conditional on information is then decreasing on θ−1 for both informed and uninformed traders,

since all agents learn from the asset price in an environment with dispersed private information. Of

course, the effect is particularly pronounced for uninformed traders who lack private information.

19



4 Asset pricing implications

Two salient features of asset prices during economic slumps are the increase in expected excess

returns of risky assets–the risk premium– and spikes in the volatility of stock markets. I argue

in this section that countercyclical price informativeness is consistent with both observations.

Moreover, I stress the amplification effects of modeling endogenous informativeness of prices in

a context where both (i) information is heterogeneous across informed agents, and (ii) liquidity

provision by uninformed traders depends endogenously on price informativeness.

4.1 Risk premium

Excess returns of risky assets are predictable at low frequencies. Fama and French (1989) docu-

ment that variables related to business cycle conditions,such as default and term spreads, track

excess returns of corporate bonds and stocks in a similar way as the dividend yield. This suggest

that return predictability reflects cyclical variation in the price of risk. This interpretation is sup-

ported by the literature on volatility tests that cannot otherwise explain the “excess volatility” of

price/dividend ratios.25

Countercyclical price informativeness suggests one possible explanation for time variation in

the risk premium. I view this mechanism as complementary to the existing theories that focus

on cyclical variation in the attitude towards risk (Campbell and Cochrane (1999)), or an exoge-

nous conditional heteroskedastic dividend process (Barsky and Delong (1993); Bansal and Yaron

(2004)). The informational channel stressed in section 3 suggests that financial markets are poor

aggregators of information about the value of future dividends when traders are funding con-

strained. As the resulting risk goes up, the corresponding reward for bearing should move in the

same direction. Importantly, this is true in the model even when the risk aversion of agents as well

as the unconditional variance of dividends are held constant.

I compute the risk premium as the expected return on holding a position on the risky asset

between stages 1 and 3, conditioning on prior information D−1. Conditional on the realization of

the shocks {θ, n1}, the holding period return is given by 26

Ret1,3 ≡
D − P1

D̄
=
θ − A2 · p̃1 − A0

D̄

25See Campbell and Shiller (1988), Campbell (1991), and Cochrane (1992).
26Since prices can be negative with positive probability, I compute expected returns using the unconditional mean

D̄ on the denominator. This understates the cyclical variation in risk premium that would result from using P1

instead.
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The risk premium is just the average of Ret1,3 over the joint normal distribution of {θ, n1}:

RP ≡ E [Ret1,3 | D−1] = −A0

D̄
(17)

=
[
Σ + Σu (1− F )2] /D̄

where A0 is the intercept of the price function in Conjecture 1.

Note that the risk aversion-adjusted variance of uninformed traders; Σu, also appears in ex-

pression (17) although I defined the risk premium as the discount required by informed traders

at stage 1. The intuition is that informed traders will require a high premium when they expect

price P2 to be more volatile. The volatility of P2 will be higher when noise trading in stage 2 has

a large price impact, which is the case when uninformed traders risk aversion-adjusted variance

Σu is large. The next proposition states the conditions under which the risk premium is strictly

decreasing in lagged economic conditions θ−1. I provide all proofs of this section in Appendix C.

Proposition 4 (Risk-premium): Under the parameter restrictions of propositions 2 and 3, the

risk premium is strictly decreasing in lagged economic conditions for all θ−1 < θ.

The left panel of Figure 7 plots the negative relation between the risk premia and θ−1. As θ−1

falls and funding tightens, the rise in the noise amplifier ∆ increases the conditional variance of

fundamentals. Correspondingly, traders will require a higher return for holding the asset. Note

that tighter funding not only increases the risk premium by directly rasing the share of asset

liquidated early on but it also increases the conditional variance of the remaining positions that

pay according to D. This is a direct implication of a dispersed information environment where all

traders learn from prices.

The right panel of Figure 6 plots the Sharpe ratio: the quotient between the risk-premia and

the conditional standard deviation of the dividend return,

SR ≡ RP√
V [D − P1 | Ωi] /D̄2

=
−A0√

V [D | Ωi]
(18)

which is decreasing in θ−1 as well, as made precise by the next proposition:

Proposition 5 (Sharpe ratio): Under the parameter restrictions of propositions 2 and 3, the

Sharpe ratio is strictly decreasing in lagged economic conditions for all θ−1 < θ
′
.

Propositions 4 and 5 follows directly from CARA preferences in the presence of aggregate risk

(positive average asset supply). Market clearing implies that in expected terms, the profit per

share is proportional to the risk aversion-adjusted variance of informed traders Σ. Dividing by
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Figure 7: The Price of Risk
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Left panel- Risk premium: expected return of holding the asset between stage 1 and 3, conditional on prior information (D-1).
Right panel -Sharpe ratio: ratio between the mean and st. dev. of the return, conditional on prior information (D-1).

the standard deviation of D conditional on information at stage 1 gives a Sharpe ratio that is

proportional to the conditional standard deviation of the dividend, and thus decreasing in θ−1.

The benchmark parameters in Table 1 imply a mean expected excess return on equity of

5.2%. Of course, this figure depends on an arbitrary choice of parameters, mainly the value of

the average dividend D̄. What is less arbitrary from the figure is the considerable variation of the

equity premium, which oscillates by a factor of 8 within 3 standard deviations around the mean

of lagged economic conditions. Importantly, the Sharpe ratio follows a similar countercyclical

behavior, so that the slope of the mean-variance frontier is higher in contractions as documented

in the data.27

These results are only meant to be interpreted qualitatively, since a three-period CARA pref-

erences framework is hardly suited for a quantitative asset pricing discussion. Within these lim-

itations however, it is worth noting that the model has the potential to generate an interesting

time-variation in the forecastability of returns and the price of risk.

4.2 Price volatility

I now discuss the impact of funding liquidity on the volatility of price P1 conditional on prior

information; V [P1 | D−1]. I focus on P1 because P2 behaves much like P1 except for scale effects.

27See Harvey (1989), and Ferson and Harvey (1991).
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Figure 8: Price Volatility
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The left panel in Figure 8 shows the relation between funding liquidity, and price volatility. As

funding liquidity tightens, volatility spikes considerably. The key driver of the increase in the

conditional variance of both informed and uninformed traders. Since in equilibrium the supply of

shares unloaded by noise traders must always be absorbed, higher risk premium translates into a

larger price response to noise n1.

The right panel of figure 8 decomposes price variability into its two sources. In the absence of

noise, price volatility is driven exclusively by dividend innovations and is therefore given by the

unconditional variance of θ; λ−1
θ . The interaction between noise and risk-aversion prevents full

revelation from the observation of the price, introducing non-fundamental volatility coming from

noisy supply innovations. For relatively low values of θ−1, this second source of volatility becomes

dominant and price volatility drops as economic conditions improve. But as the price becomes

increasingly more informative for higher θ−1, traders also weight less the prior belief E [θ] = 0 and

the price becomes more sensitive to innovations in fundamentals. The latter effect can dominate

for large enough θ−1 depending on parameter choices.28

As a digression, statements about price volatility must be weighted by the limitations inherent

in a three-period model, as in a fully dynamic context the mapping between endogenous uncertainty

and volatility is more involved. Since prices must eventually reflect dividend innovations at some

28This depends mainly on the variance of noise trading λ−1
n and risk aversion (γ and γU ). An increase in either

parameter will expand to the region in which volatility is strictly decreasing in θ−1.
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frequency in the data, varying price informativeness is likely to affect the timing of price movements

in anticipation of dividends, but not price volatility defined over low enough frequencies.29 The

analysis above is probably best suited to make predictions about relatively high frequency stock

market fluctuations closely tied to the presence of noise. Interestingly, this suggests that spikes in

volatility during recessions should coincide with increased forecastability at high frequencies due

to return reversals, a testable prediction I expand further on below.

Wang (1993) studies an intertemporal equilibrium model of asymmetric information where price

fluctuations are driven by dividend innovations and noise. He finds that increasing information

asymmetry (or the uncertainty about fundamentals averaged across agents) can indeed generate

spikes in price volatility when noise trading is important. 30 His conclusions are confirmed in the

three-period analysis provided here as volatility is indeed decreasing in price informativeness.

4.3 Amplification effects

Two important elements contributing to the amplification of uncertainty in financial markets under

funding constraints are the heterogeneity (dispersion) of private information, and the endogenous

nature of noise trading risk in a dynamic setup. To illustrate the importance of each element in

generating the results, I consider two modifications to the benchmark model of section 3. First, I

fix the uncertainty of informed traders by assuming they receive common private signals (so they

don’t learn from the price). As a second modification, I fix the uncertainty of uninformed traders

by assuming they behave like naive investors who don’t learn from the price. This amounts to

fixing the elasticity of their demand for shares to an exogenous constant independent of economic

conditions.

4.3.1 A common information setup

I now consider an economy identical to that in section 3, except informed traders observe the same

private signal s about the dividend innovation θ:

si = sj = s = θ + ε, ∀i ∈ [0, 1] ; with ε ∼ N
(
0, λ−1

ε

)
I solve for the equilibrium of this economy in Appendix C, limiting the discussion here to the main

contrasts with the dispersed information benchmark.

With common private signals, informed traders learn nothing from the asset price. As economic

conditions worsen and funding tightens, informed traders are subject to higher risk from early

29I thank Jeremy Stein pointing this out.
30Campbell and Kyle (1993) also provide an intertemporal model of asymmetric information in which uncertainty

about asset returns and price volatility are countercyclical, but they consider an exogenous information structure.
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Figure 9: Dispersed vs. Common Private Information
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Left panel- Risk premium: endogenous uncertainty (solid line) vs. exogenous uncertainty of informed traders (dashed). 
Right panel -Sharpe ratio: endogenous uncertainty (solid line) vs. exogenous uncertainty of informed traders (dashed). 

liquidations, but not from the portion of their portfolios that pay according to the dividend.

Figure 9 compares the resulting risk premium and Sharpe ratio between the benchmark model of

dispersed information and the common private signal case. It is apparent that the effect of funding

liquidity in the price of risk is less pronounced when informed traders do not learn from prices.

Since price volatility is intimately tied to required returns, the results also extends to the variance

of P1 (not shown).

Naturally, this contrast depends on the assumed parameters. If the dispersion of private signals

(λ−1
ε ) is very low, or the variance of noise trading shocks (λ−1

n ) is very large, both cases will exhibit

roughly similar asset pricing sensitivity to changes in economic conditions. Intuitively, when private

information is very precise informed traders have little to learn from prices. When noise trading

shocks are too volatile on the other hand, the market mechanism is unable to provide valuable

information about fundamentals to begin with.

4.3.2 Exogenous liquidity provision

As explained in section 3, dynamic risk considerations for informed traders are especially important

in the presence of uninformed traders which learn from the share price. The endogenous uncertainty

of uninformed traders affects the terms at which they are willing to supply liquidity at stage 2,

absorbing the net supply from intermediaries’ liquidations and noise trading. When the price at

stage 1 is noisy, required returns by uninformed traders increase making the noise trading risk and
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Figure 10: Endogenous vs. Exogenous Uninformed Trader’s Uncertainty
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Right panel -Sharpe ratio: endogenous uncertainty (solid line) vs. exogenous uncertainty of uninformed traders (dashed). 

trade reversal effect more pronounced. This further reduces informed trading in stage 1 creating

an amplification effect between a given decrease in funding liquidity F and the resulting noise in

asset prices.

Figure 10 compares the risk premium and Sharpe ratio between the benchmark model and

a fictitious economy where uninformed traders do not learn from the price. The figure fixes the

uncertainty of uninformed traders at the level attained in the benchmark model at +1.5 standard

deviations of lagged fundamentals θ−1. As funding F drops, intermediaries are still more exposed

to the price fluctuations and lower expected returns described by the noise trading risk and trade

reversal effects. However, since the required return per share by uninformed traders is insensitive

to F , the volatility of P2 and the expected return on shares liquidated at stage 2 remain constant.

The increase in risk for intermediaries is therefore more modest in this alternative setup.

5 Real investment implications

Countercyclical uncertainty not only matters for understanding the behavior of asset prices, but

it is likely to play an important role in real allocations decisions through its impact on aggregate

investment. Several authors have pointed out that higher risk premia directly reduces investment

by raising firms’ cost of capital.31 In this section I explore a different channel by considering

31See Lettau and Ludvigson (2002), and more recently Hassan and Mertens (2009).
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the investment problem of a firm that learns information about its productivity –more broadly

interpreted as future demand conditions for its products, or the likely success of an investment

project– from the price of its shares in the stock market. This learning channel is usually referred

to as the feedback 32 literature: firms learn information about the likely success of projects by

observing their share prices (or an industrial average, or even aggregate indexes) to the extent

that prices aggregate information which can be of value to the firm, but is originally dispersed

across agents in the economy. Although recent empirical work documents a link between asset

prices and investment working through information flows (Chen, Goldstein, and Jiang (2007)), the

relevance of this channel is far from being settled (Morck, Shleifer, and Vishny (1990)).

Another view which fits more naturally with the single asset framework in this paper is to

interpret “fundamentals” as aggregate demand in the economy, and aggregate investment as the

representative firm’s investment decision. The asset market then plays a coordination role be-

tween households and firms, conveying information about consumption plans of the former into

production decisions of the latter.

I capture the impact of uncertainty on investment decisions following the literature on in-

vestment irreversibilities.33 This literature highlights how partial irreversibilities generate a “real

option value” on investment decisions that create a wedge between the marginal product of capital

which justifies investment and disinvestment. This wedge generates a region of inaction in which

investment is fixed for some range of the underlying state variables. When uncertainty increases,

the option value of delaying decisions is raised, expanding the inaction region. In simple terms,

firms prefer to wait until the dust settles before undertaking investment decisions that will later

be regretted.

Below I present a tractable model which exhibits the feature that a spike in uncertainty coming

from a noisier asset price increases the expected losses from investment, which leads to a reduction

in the scale of investment with respect to the level attained in a deterministic environment. This

reduction is increasing in the variance of fundamentals, conditional on information.

5.1 Setup

Technology I consider a single period. A firm produces a consumption good using capital

k ≥ 0. Investment translates into units of the consumption good given the realization of a random

32See Dow and Gorton (1997), Subrahmanayam and Titman (1999), Dow and Rahi (2003), and Goldstein and
Guembel (2008).

33See Bernanke (1993), Dixit and Pindyck (1994), Bertola and Caballero (1994) and the recent evidence in Bloom,
Bond, and Van Reenen (2007) and Bloom (2009).
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productivity parameter θ through the profit function Π (θ, k):

Π (θ; k) = θ · k − 1

2
k2 − L (θ; k) , with (19)

L (θ; k) =
[a

2
(θ − k)2

]
k

where θ is normally distributed with mean of zero and variance λ−1
θ .

Profits are adapted from a standard quadratic costs of investment function modified to include

the loss function L (θ; k) which is quadratic in the difference (θ − k). This term captures the cost of

investment being ”out of line” with respect to the ex-post optimal investment which, as I will show

in a moment, is given by θ. The term is multiplied by k, making losses proportional to investment

–a given deviation from the ex-post optimum should be more costly for a larger investment scale.

The asset market and investment Modeling feedback effects between asset prices and

investment is a complex task. A rigorous approach needs to deal with the fact that prices simulta-

neously reflect dispersed information about fundamentals and the reaction of investment to prices,

since investment affects expected dividends. Albagli, Hellwig and Tsyvinski (2010) explicitly con-

sider such interaction in an environment that allows for differential information observed by the

firm and traders, but where the firm still learns valuable information from its share price. In this

paper I follow the simpler route of assuming a separation between the profits of the firm in (19),

and the dividend paid out to shareholders (see for instance Subrahmanayam and Titman (1999)).

In particular, shares pay the terminal dividend θ so that the asset price will aggregate information

about θ and affect the investment decision, but the latter will not be incorporated in traders beliefs

about dividend value.

I consider the simple trading environment of section 2 where only a fraction F of traders

participate in the asset market. I focus on characterizing the firm’s investment decision given the

information about θ contained in the share price of expression (2), with the noise amplifier given

by expression (7).

5.2 The investment problem

The firm maximizes expected profits in (19), given its posterior beliefs H (θ | Ωf ). To keep the

analysis simple, I assume the firm only learns information about θ from its share price, so that

Ωf : {p̃1}, where p̃1 is given by equation (3). It is straightforward to include private information

in the firm’s beliefs, but this will not change the qualitative results discussed here. The firm’s
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problem then reduces to

max
k

E [Π | Ωf ] = k · E [θ | p̃1]− 1

2
k2 − a

2
k · E

[
(θ − k)2 | p̃1

]
The f.o.c. of this problem is derived in Appendix D, and leads to an optimal investment of

k∗ =
2

3
E [θ | p̃1]− 1

3a
+

√(
1

3a
+

E [θ | p̃1]

3

)2

− 1

3
V [θ | p̃1] (20)

The original problem is a polynomial of order three in k, with a negative coefficient next to the

cubic term. The global solution of this problem is therefore always at k = −∞, which is ruled out

by the requirement k ≥ 0. The positive root in the f.o.c., when real, is the local maximum of the

problem. But note that for some values of E [θ | p̃1], the squared term inside the square root can

fall below 1/3 · V [θ | p̃1]. The complex root then indicates the inexistence of a local maximum for

k ≥ 0, leading to the corner solution k = 0.

5.3 Market illiquidity and real investment

To understand the impact of varying price informativeness on investment decisions, consider for

a moment a perfect information benchmark in which V [θ | p̃1] → 0. From expression (20), this

yields the simple investment decision k∗ = θ. An analogous result obtains in the standard quadratic

problem with uncertainty, but no loss term: k∗ = E [θ | p̃1]. In contrast, the loss function L (θ; k)

introduces an additional cost of investment “mistakes” –my proxy for partial irreversibilities in

a static model–which holds back investment in a more uncertain environment (higher V [θ | p̃1]).

Figure 10 plots the implications of uncertainty in the underinvestment of the firm relative to its

expectations about fundamentals. For each value of the expected productivity θ (dotted line), the

firm chooses a lower investment level (solid line), a gap that widens as funding in the asset market

tightens through its impact on price informativeness.

Modeling the reaction of investment to changes in both the first and second moments of produc-

tivity is important for explaining the growth rate or steepness asymmetry– the empirical regularity

that investment tends to contract sharply at the outset of a slump but builds up only gradually

when growth resumes. In the model above, investment asymmetry results from endogenous infor-

mation aggregation in asset prices: when a boom turns into a bust, investment will be lower not

only because the conditional first moment E [θ | p̃1] is likely to be lower but also because uncer-

tainty about it is larger when traders in the asset market face tighter constraints. Investment thus

falls sharply, contributing to the steep fall on GDP that characterize economic contractions.

Two theoretical papers bear a similar prediction about investment dynamics. Van Niewer-
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Figure 11: Uncertainty and Underinvestment
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burgh and Veldkamp (2006) use a DSGE real business cycle model where capital and labor amplify

the effect of unobserved productivity in total output, which is also affected by an unobservable

disturbance. This creates asymmetric learning dynamics as larger hiring of inputs during expan-

sions raises the signal-to-noise ratio of observable output, improving inferences about productivity.

Chamley and Gale (1994) build a model where investment generates positive information exter-

nalities between players introducing a motive for strategic delay that is consistent with investment

data. However, neither paper discusses the role of asset markets in generating endogenous uncer-

tainty about fundamentals.

The above analysis suggests endogenous uncertainty about fundamentals can have welfare

effects that go beyond redistribution of wealth between asset market participants. To the extent

that real resources are guided by asset prices, funding liquidity affects economic efficiency by

reducing the precision of investment. Moreover, as the model shows in convenient closed form,

the first moment of investment falls below the expected value of fundamentals as a precautionary

measure.

The next proposition states these welfare results formally. The appropriate concept of firm value

is the ex-ante expectation of firm’s profits, since the interest here is how production outcomes will

be affected by investment decisions over all possible realizations of p̃1.

Proposition 6 (firm value): The unconditional expected profit of the firm is strictly increasing
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in funding liquidity F ;
∂E [Π (θ, k)]

∂F
> 0

Proof. In Appendix D.

The intuition of the result follows directly from decomposing the impact of F into its effect on

average profits per unit of capital (the intensive margin), and its effect on total investment (the

extensive margin). The proof shows that the reduction in uncertainty brought along by a higher

level of F increases expected average profits as the firm’s decision becomes more accurate -the

intensive margin of profits increases. Moreover, as the level of investment increases with F the

extensive margin also contributes in raising the value of the firm, since average expected profits

are positive, conditional on k∗ > 0.

6 Testable predictions and policy implications

6.1 Testable predictions

The model offered advances some new asset pricing predictions. First, it predicts that the au-

tocorrelation of stock returns in high-frequency data associated with high trading volume should

decline (or become more negative) when funding conditions are tight. As Campbell, Grossman and

Wang (1993) and Wang (1994) argue, returns explained by noise trading tend to reverse at high

frequencies, which is supported empirically using high trading volume days as a proxy for noise

trading. The analysis above implies that such reversals should be stronger during contractions,

since noisy trading has a larger impact on asset prices when uncertainty is higher.

Pastor and Stambaugh (2003) find an analogous pattern for the cross-section of stocks returns.

Stocks with higher “liquidity betas” exhibit larger return reversal associated with trading volume.

An interesting extension would be to test for differential impacts across the business cycle, or

conditional on institutional investors’ funding restrictions.

The analysis also suggests models of information aggregation may have some bite in explaining

certain asset pricing anomalies, such as the post-earnings announcements drift (PEAD). A learning

approach to this anomaly (Hong, Lim and Stein (2000)) suggests drifts could reflect the slow dif-

fusion of information. It follows that PEAD should be more pronounced when funding constraints

limit information aggregation. A finding in this direction is provided by Chordia and Shivakumar

(2006), who document that the profitability of PEAD strategies are significant negative predictors

of future economic activity. While this result challenges the interpretation of PEAD excess returns

as compensation for risk–since they actually provide hedges according to this evidence–it is con-

sistent with this alternative interpretation in which high PEAD returns reflect slow incorporation
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of information into prices during periods of financial turmoil.

Finally, the model has direct implications on the precision and relative dispersion of professional

forecasts. If forecasters follow Bayesian updating rules when making predictions (about either

macroeconomic aggregates, or individual firms’ profits), they will tend to base those predictions less

in information inferred from asset markets during contractions, when prices become less reliable.

One should expect a shift towards private sources of information, and therefore an increase in the

cross-sectional dispersion of forecasts. Since overall uncertainty is higher, one should also expect

higher mean prediction errors. Both predictions seem to hold in the data (See Veronesi (1999) and

Van Niewerburgh and Veldkamp (2006)).

6.2 Policy implications

The funding problems of banks and financial institutions in the midst of the sub-prime crisis

underscores the importance of prompt public liquidity provision. The model suggest that the

success of interventions, however, will depends on how liquidity is distributed across players.

The argument developed above explains uncertainty and non-fundamental volatility as the joint

product of funding constraints and dispersed information. In models that considers only the former,

the size of the liquidity pool is a sufficient statistic for the success of the policy, since knowledge

about the environment is not the element driving the gap between prices and fundamentals.

Things change dramatically if information is dispersed. Indeed, risk-averse traders who hap-

pen to find themselves sitting on a pile of cash may have little use for it when uncertainty is an

endogenous state-variable. If the problem is a group problem –the failure of the market in aggre-

gating disseminated pieces of information though trading– it is intuitively very appealing that the

solution should be a group solution.

A second issue relates to the optimal taxation of dividends vs. capital gains from trading.

In the model, prices become less informative because funding constraints shorten the effective

trading horizon of informed traders, exposing them to additional risk. A marginal decrease in

tax rates applied to dividends–with the corresponding increase in capital gains if one wishes to

maintain fiscal neutrality–would tend to increase the incentives to react to private information

about fundamentals, and could potentially reduce equilibrium uncertainty. This insight applies

more generally to models that stress other reasons for the short trading horizons, such as ?.

7 Conclusion

I develop a tractable model in which the diminished capacity of distressed financial markets to

aggregate information explains countercyclical uncertainty. Building on a standard noisy REE
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model with dispersed information, I incorporate funding constraints on informed traders that are

more likely to bind in periods of financial distress. Countercyclical risk premia, Sharpe ratios, and

stock price volatility follow directly from this mechanism even when preferences towards risk and

the unconditional volatility of fundamentals remain constant.

I argue that adding dispersed information and dynamic risk considerations into the analysis

delivers strong internal amplification mechanisms. Moreover, dispersed information and the en-

dogenous aggregation capacity of financial markets is the appropriate conceptual benchmark for

understanding the impact of uncertainty in real investment decisions and for guiding policy actions.

Future work may proceed in several directions. First, a quantitative assessment about the con-

tribution of the informational mechanism for asset pricing and real investment phenomena seems

in order. This is likely to be a complicated task, since the appropriate benchmark of CRRA util-

ity (or even Epstein-Zin preferences) calls for the use of nonlinear methods to tract information

aggregation—but one that should be tackled nonetheless to gauge the relevance of endogenous

price informativeness. Second, extending the framework to multiple assets and allowing traders

to learn from a richer set of signals can provide answers regarding the comovement of individual

stocks and aggregate market indexes. As Morck, Yeung and Yu (2000) argue, comovement seems

to increase during volatile markets in the time-series, and it is also higher in countries with less

developed financial systems. Finally, the model can easily fit additional information about eco-

nomic conditions –such as public news– whose impact on stock prices might endogenously depend

on the business cycle.
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8 Appendix

8.1 Appendix A

Signal extraction problem: projection theorem The inference problem analyzed in

sections 2 and 3, generally speaking, amounts to forecasting a Nx1 vector X (with unconditional

mean E [X]) from the observation of a Mx1 vector of correlated signals Ω (with unconditional mean

E [Ω]). If X and Ω are jointly normally distributed, and ΣXX , ΣΩΩ and ΣXΩ are the variance-

covariance matrices of X, Ω and between X and Ω respectively, then the projection theorem gives

the following results for the conditional moments of X | Ω:

E [X | Ω] = E [X] + ΣXΩ [ΣΩΩ]−1 (Ω− E [Ω]),

V [X | Ω] = ΣXΩ [ΣΩΩ]−1 (ΣXΩ)′

Applied to the specific problem analyzed in the text, X corresponds to θ (with E [θ] = 0), and

the vector of signals becomes Ωi = {si, p̃1} = {θ + si, θ −∆ · n1} for informed traders, and Ωu =

{p̃1} = {θ + si} for the uninformed, where p̃1 is an object of equivalent informational content as

P1. The Bayesian weights of informed traders {a0, a1} and uninformed traders {b1} are given by

a0 = λε · V[θ | Ωi]; a1 = λn∆
−2 · V[θ | Ωi],

b1 = λn∆
−2 · V[θ | Ωu]

where

V[θ | Ωi] =
[
λθ + λε + λn/∆

2
]−1

, V[θ | Ωu] =
[
λθ + λn/∆

2
]−1

Note that the conditional second moments of θ do not depend on the trader-specific private signal

si, and are therefore common across traders of the same type.

For proving Proposition 2, it will be of use to state the conditional expectation of the noise

trading shock, n1. Applying the theorem once again, we find

E [n1 | si, p̃1] = (a0/∆) · si − ((1− a1) /∆) · p̃1 (21)

Proof of Proposition 1: To solve the proposed linear equilibrium of section 2, I replace

informed traders beliefs computed in (4) in demands from (5). This allows to write the market-
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clearing condition (6) as

n = F ·
(∫

a0 · si + a1 · p̃1 − P1

Σ
di− 1

)
, or

F + n = F · a0 · θ + a1 · p̃1 − P1

Σ

where the second line follows from the zero mean of idiosyncratic noise εi. This gives price P1 as

P1 = −Σ + a0 · θ + a1 · p̃1 − Σ/F · n

= −Σ + (a0 + a1) · θ + (A3/A2 · a1 − Σ/F ) · n

Comparing with the price conjecture in 2 (method of undetermined coefficients) yields the results

in the proposition. QED.

8.2 Appendix B

Proof of Proposition 2: Part (i)

To solve the proposed linear equilibrium of section 3, I replace informed traders beliefs about

θ and P2 using (4) and (10), and uninformed beliefs about D using (11), in the market-clearing

condition at stage 2:

n2 =
D−1 + b1 · p̃1 − P2

Σu

− (1− F )

Σ
·

[

∫ {
F (D−1 + E [θ | s, p̃1]) + (1− F )

(
B0 +B1D−1 +B2E [θ | s, p̃1]

+B3E [n1 | s, p̃1] +B5p̃1 +B6P1

)}
di− P1]

where E [θ | s, p̃1] = a0 ·si+a1 · p̃1, and E [n1 | s, p̃1] is given by 21. This given price P2 as a function

of the variables {θ, n1, n2, p̃1, P1}, which can be compared to the price conjecture in (10) to obtain

(through the method of undetermined coefficients)

B0 = B3 = 0; (22)

B1 =
Σ− Σu (1− F )F

Σ + Σu (1− F )2 ; B2 =
−Σu · a0 (1− F ) · F
Σ + Σua0 (1− F )2 ; B4 = −Σu;

B5 =
Σb1 − Σua1 (1− F ) (F + (1− F )B2)

Σ + Σu (1− F )2 ; B6 =
(1− F ) Σu

Σ + Σu (1− F )2

Similarly, the market-clearing conditions at stage 1 implies a price P1 as a function of {D−1, θ, n1, p̃1}.
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Regrouping the observed terms in P1 into the left hand side allows to solve for p̃1;

P1 +
[
Σ + Σu (1− F )2]−D−1 − p̃1 (a1(F + (1− F )B2) + (1− F )b1)[

Σ+Σu(1−F )2

Σ

]
a0 · (F + (1− F )B2)

= θ − n1
Σ

a0 · (F + (1− F )B2)

≡ p̃1

which implies that the noise amplifier ∆ is given by equation (16a), as stated in the proposition.

To compute the risk-aversion adjusted variance of informed traders; Σ, note that the conditional

covariance between P2 and D is B2V [θ | s, p̃1]. From the definition of Σ in the text, this gives

equation (16b). The expression for Σu comes from (11). This completes the four equations in the

proposition that any linear equilibrium must satisfy, in the unknowns {∆,Σ,Σu, B2} .
Part (ii)

The system of equations in Proposition 2 can be reduced to two equations in the unknowns

{∆,Σ}:

Σ (Σ,∆) = (1− c) γ (1− F )2 γ2
u

[[
λθ + λn/∆

2
]−1

+ λ−1
µ

]2

λ−1
n (23)

+ (1− c) γF 2

{
Σ2 · [λθ + λε + λn/∆

2]
−1[

Σ + γu
(
[λθ + λn/∆2]−1 + λ−1

µ

)
(1− F )2 λε [λθ + λε + λn/∆2]−1]2 + λ−1

µ

}

∆ (Σ,∆) =
Σ + γu

(
[λθ + λn/∆

2]
−1

+ λ−1
µ

)
(1− F )2 λε [λθ + λε + λn/∆

2]
−1

[λθ + λε + λn/∆2]−1 (24)

Proving existence of equilibria amounts to showing that the loci of combinations (Σ,∆) that satisfy

each equation intersects at least once, for all parameter values. I provide figure A1 as a graphical

intuition of the proof below. I begin with the loci Σ = Σ̂ (Σ,∆) that satisfies equation (23), for

a given value of ∆. First, note that the derivative of the RHS of (23) w.r.t. Σ is less than unity,

and that Σ̂ (0,∆) > 0. Since the derivative of the left hand side (23) is one, there is a unique value

Σ∗ (∆) that satisfies (23), for each ∆. To characterize the loci Σ = Σ̂ (Σ,∆) in the (∆,Σ) space,

note that its intercept is given by

Σ̂ (Σ, 0) ≡ Σ = (1− c) γλ−1
µ

[
(1− F )2 γ2

uλ
−1
µ λ−1

n + F 2
]

(25)

and the limit Σ̂ (Σ,∆ −→∞) ≡ Σ solves

Σ = (1− c) γ · (26){
(1− F )2 γ2

u

[
λ−1
θ + λ−1

µ

]2
λ−1
n + F 2

[
λ−1
µ +

Σ
2[

Σ + γu
(
λ−1
θ + λ−1

µ

)
(1− F )2 λε [λθ + λε]

−1]2
]}
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Figure 12: Uniqueness vs. Multiplicity
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with Σ > Σ. This upper limit Σ ensures that the implicit function Σ∗ (∆) becomes concave in ∆,

for ∆ > ∆1. Without imposing any parameter restrictions, these results imply the function Σ∗ (∆)

always has a solution ∀∆ ∈ R+, and that Σ∗ (∆) < Σ.

Similarly, the loci ∆ = ∆̂ (Σ,∆) that characterizes the implicit solution ∆∗ (Σ) in equation (24)

is continuous in Σ ∈ R+, and always has a solution ∆∗ (Σ) > 0. It follows that represented in the

(Σ,∆) space, the loci Σ∗ (∆) from equation one will intersect the loci ∆∗ (Σ) at least once, since

the former is a locally convex (for ∆ > ∆1), continuous correspondence with image ∆ ∈ [0,∞) on

the domain (0,Σ), and the latter is a continuous, positive-valued function ∀Σ ∈ R+. This implies

that, over the interval Σ ∈ [R,Σ), equations (23) and (24) will always be satisfied simultaneously

for at least one pair (Σ∗,∆∗). QED.

Part (iii)

Finding conditions for equilibrium uniqueness amounts to finding the parameter subspace for

which the loci Σ∗ (∆) and ∆∗ (Σ) from equations (23) and (24) intersect only once. For this I must

first restrict ∆∗ (Σ) to be single-valued (since Σ∗ (∆) is single-valued without restrictions, from the

analysis in part (ii)). ∆∗ (Σ) is single-valued whenever the derivative of the right hand side of (24)

w.r.t. ∆ is less than one. It is simple to show that this derivative is actually negative whenever

γuλ
−1
µ

(
2 + λ−1

θ λ−1
µ

)
> 1, or λµ < κ0 (γu, λθ).

To see under what conditions these single-valued functions (assuming λµ < κ0 (·)) cross only

once, its necessary to characterize the intercepts and slopes of the implicit functions Σ∗ (∆) and

∆∗ (Σ), which I do in the (Σ,∆) space. Since both functions are continuous, I can use the implicit
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function theorem for the latter task. Starting with ∆∗ (Σ), its intercept ∆ solves

∆ = γu (1− F )2
[
λ−1
µ +

(
λθ + λn/∆

2
)−1
]

(27)

which is increasing λ−1
µ . To find the slope, I totally differentiate the function

f : ∆− ∆̂ (Σ,∆) = 0,

d∆

dΣ
= −∂f/∂Σ

∂f/∂∆
=

∂∆̂ (·) /∂Σ

1− ∂∆̂ (·) /∂∆

to find d∆/dΣ > 0 under the condition already stated (λµ < κ0 (·)). Moreover, the function is

concave, with a slope that approaches (λε + λθ) /λε as Σ→∞.

Regarding Σ∗ (∆), I already established that Σ∗ (0) = R, so that Σ∗ (∆) does not intercept the

∆ axis (since Σ ≥ 0). With respect to its slope, I totally differentiate the function

f : Σ− Σ̂ (Σ,∆) = 0,

dΣ

d∆
= −∂f/∂∆

∂f/∂Σ
=

∂Σ (·) /∂∆

1− ∂Σ (·) /∂Σ

to find with some algebra that a sufficient condition for a positive slope is

2γ (1− c)
[
F 2λ−1

µ + (1− F )2 γ2
uλ
−1
µ λ−1

n

]
> F 2λn,

or λµ < κ1 (·). Recall as well that this function is concave for ∆ > ∆1, which implies a convex

loci in the (Σ,∆) space, with Σ < Σ. These results together imply one can always find a finite

value λµ = κ2, s.t. ∀λµ < κ2, the concave function ∆∗ (Σ) intersects only once with the (locally)

convex function Σ∗ (∆). This case corresponds to the solid line ∆∗ (Σ) in figure A1. In contrast, if

λµ → 0, then it cannot be granted that the two loci will not intersect more than once (dotted line).

Therefore, whenever λµ ≤ δ0 with δ0 ≡ min (κ0 (·) , κ1 (·) , κ2), the equilibrium in Proposition 2 is

unique. QED.

Proof of Proposition 3: I will follow a similar reasoning as in the previous proof, finding

conditions under which an increase in F moves the loci Σ∗ (∆) and ∆∗ (Σ) in a direction that

implies an unambiguous decrease in ∆(F ). First, note that the intercept of the implicit function

∆∗ (Σ) given by (27) is decreasing in F , which can be shown by totally differentiating

f : ∆− ∆̂ (F,∆) = 0,

d∆

dF
= −∂f/∂F

∂f/∂∆
=

∂∆̂ (·) /∂F
1− ∂∆̂ (·) /∂∆
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which is negative whenever ∂∆̂ (·) /∂∆ < 1. With some algebra, this can be translated into the

sufficient condition 2γu (1− F )2 (λθ + λn/∆
2
)−1

< ∆, which is always satisfied by some λµ ≤ κ3,

with κ3 > 0, since ∆ > λ−1
µ . Regarding the slope of ∆∗ (Σ), I totally differentiate the function

f : ∆− ∆̂ (F,∆) = 0,

d∆

dF
= −∂f/∂F

∂f/∂∆
=

∂∆̂ (·) /∂F
1− ∂∆̂ (·) /∂∆

to find d∆/dF < 0 whenever 1 − ∂∆̂ (·) /∂∆ > 0, or when condition λµ ≤ κ0 (·) in the previous

proof holds.

It remains to find the conditions under which the intercept and the slope of the implicit func-

tion Σ∗ (∆) have a negative w.r.t. F . The derivative of the intercept R in equation (25) is

proportional to F − γ2
u (1− F )λ−1

µ λ−1
n , which is always negative for values of F below F̄1 ≡

γ2
uλ
−1
µ λ−1

n /
(
1 +2

u λ
−1
µ λ−1

n

)
. With respect to the slope of Σ∗ (∆) , I totally differentiate the function

f : Σ− Σ̂ (Σ, F ) = 0,

dΣ

dF
= −∂f/∂F

∂f/∂Σ
=

∂Σ (·) /∂F
1− ∂Σ (·) /∂Σ

which amounts to finding restrictions under which ∂Σ (·) /∂F < 0. But note that there always

exists a value F > 0, s.t. the derivative of the right hand side of equation (23) is negative w.r.t.

F , which can be easily shown by evaluating ∂Σ (·) /∂F at F = 0. Moreover, we can find a lower

bound F̄2 s.t. the derivative is negative at F ≤ F̄2. Taking the partial of equation (23) w.r.t F

gives

∂Σ (·) /∂F ∝ −λ−1
n +

F

1− F

[
V [θ | Ωi] · Γ (F ) + λ−1

µ

]
γu
[
V [θ | Ωu] + λ−1

µ

] + 2
F 2

1− F
Γ (F ) a0V [θ | Ωi]

< −λ−1
n +

F

1− F
1

γu
+ 2

F 2

1− F
[λε + λθ]

−1 ,

where Γ (F ) ≡ Σ2/
[
Σ + γu

[
V [θ | Ωu] + λ−1

µ

]
(1− F )2 a0

]2
< 1, so that F̄2 > F̆ , where F̆ makes

the last term in the inequality equal to zero. It follows that both the derivative of the intercept,

and the slope of Σ∗ (∆, ·) is negative for all F ≤ F̄ ≡ min
(
F̄1, F̄2

)
. Note that both thresholds F̄1

and F̄2 are increasing functions of the variance of noise trading shocks λ−1
n , and the risk aversion

of uninformed traders increase.

Finally, since there is a one-to-one, monotonically increasing relation between θ−1 and F (equa-

tion (8)), it follows that the threshold F̄ can be mapped into a threshold θ̄, s.t., ∆′ (θ−1) < 0,

∀θ−1 ≤ θ̄ ≡ λ
−1/2
` · Φ−1

(
F̄
)
, with ∂θ̄/∂λ−1

n > 0, and ∂θ̄/∂γu. In summary, whenever the sufficient
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conditions λµ < δ1 ≡ min (κ0 (·) , κ3), and θ−1 < θ̄ (λ−1
n , γu) hold, ∆′ (θ−1) < 0. QED.

Equilibrium when uninformed traders learn from P2: From Conjecture ??, uninformed

traders can back out an additional noisy signal about θ;

p̃2 ≡
P2 −B0 −B1 ·D−1 −B5 · p̃1 −B6 · P1

B2

= θ +
B3

B2

n1 +
B4

B2

n2 (28)

The equilibrium solution proceeds in the same steps as before, with the difference that uninformed

traders beliefs’ now correspond to

E [θ | p̃1, p̃2] = b1p̃1 + b2p̃2, (29)

V [θ | p̃1, p̃2] =

λθ + λn

∆−2 +

((
B3

B2

)2

+

(
B4

B2

)2
)−1


which will imply a different solution for the linear coefficients of Conjecture ??. These are now

given by

B0 = B3 = 0; B1 +B5 = 1, (30)

B2 =
b2 − Σu · a0 (1− F ) · F

Σ + Σua0 (1− F )2 ; B4 = Σu

[
b2Σ− Σua0 (1− F ) · F

Σua0 (1− F ) (F + (1− F )b2)

]
;

B6 =
b1Σ− Σua1 (1− F ) (F + (1− F )B2)

Σ + Σu (1− F )2

The equilibrium is now characterized by a system of seven equations: ∆ from 16a; B2 and B4

from (30); b2 given by

b2 =
λn (B2/B4)2

λθ + λn
(
∆−2 + (B2/B4)2)

from the projection theorem; Σ and Σu from (16b) and (29), and a0 = λεV [θ | s, p̃1] as before.

I have not been able to provide an analytically find specific parameter conditions that can

ensure uniqueness. Figure A2 plots one equilibrium simulated for starting values of the iteration

in the neighborhood of the equilibrium in which uninformed traders do not learn from P2. The

results are fairly intuitive: first, since P2 provides additional information, the conditional variance

of uninformed traders is lower in this case (panel B), which increases their willingness to absorb

informed traders’ liquidations and noise. This alleviates to some extent the noise risk and trade

reversal effects discussed in section 3, increasing the incentives for informed traders to react to

information at stage 1. Consequently, the noise amplifier ∆ at stage 1 is lower as well. The

new equilibrium behaves qualitatively very similar to the previous one, and I suspect that similar
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Figure 13: Countercyclical Uncertainty
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restrictions on the variance of µ can lead to equilibrium uniqueness, but the precise characterization

is out of the scope of the present paper.

8.3 Appendix C

Proof of Proposition 4: This proof follows directly from the proof of Proposition 3. Taking

the partial derivative of (17) w.r.t. θ−1 gives

∂RP/∂θ−1 =
[
∂Σ/∂F + ∂Σu/∂F · (1− F )2 − 2Σu (1− F )

]
∂F/∂θ−1

Recall that under the condition F ≤ F̄ , both the intercept and slope of the implicit function

Σ∗ (∆, ·) are decreasing in F . I also showed that the derivative and intercept of the implicit

function ∆∗ (Σ, ·) are decreasing in F under the restriction λµ < δ1. It follows that the solution

Σ∗ (∆, ·) has a negative derivative w.r.t. F under these restrictions, which takes care of the term

∂Σ/∂F . Moreover, since Σu is increasing in the conditional variance V [θ | Ωu] = [λθ + λn/∆
2]
−1

,

it follows that under the same restrictions ∂Σu/∂F < 0. Finally, ∂F/∂θ−1 > 0 from equation (8).

QED.
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Proof of Proposition 5: The derivative of the Sharpe ratio w.r.t. θ−1 is proportional to

−2 (1− F ) γ2
u

(
V [θ | Ωu] + λ−1

µ

)2
λ−1
n(

V [θ | Ωi] + λ−1
µ

)1/2

− (1− F )2 γ2
uλ
−1
n

V [θ | Ωu] + λ−1
µ

∆3
(
V [θ | Ωi] + λ−1

µ

)1/2

[
4V [θ | Ωu]− V [θ | Ωi]

2 V [θ | Ωu] + λ−1
µ

V [θ | Ωi] + λ−1
µ

]
+2F

Γ (F )V [θ | Ωi] + λ−1
µ

V [θ | Ωi] + λ−1
µ

+
F 2

V [θ | Ωi] + λ−1
µ

· {Γ (F ) ∂V [θ | Ωi] /∂∆ ·∆′ (·) + Γ′ (F ) ∂V [θ | Ωi] /∂∆

−1

2

(
V [θ | Ωi] + λ−1

µ

)−1/2 (
Γ (F )V [θ | Ωi] + λ−1

µ

)
∂V [θ | Ωi] /∂∆ ·∆′ (·)}

where the first term is negative, and the second can be shown to be negative under the restriction

λµ < δ. The third term is positive, while the fourth is of ambiguous sign, depending on the value

of F . It follows that it is possible to find a value F̄3 s.t. ∀F < F̄3, the whole expression is negative.

This can be translated into a corresponding threshold for θ−1, such that ∂SΣ/∂θ−1 < 0 ∀θ−1 ≤
θ̄′ ≡ λ

−1/2
` · Φ−1

(
F̄3

)
, as stated in the proposition. QED.

Equilibrium characterization in the common information economy I proceed in sim-

ilar steps as in section 3. First, I conjecture the linear price functions

P1 = Ao + A1 ·D−1 + A2 · (θ + ε) + A3 · n1

P2 = B0 +B1 ·D−1 +B2 · (θ + ε) +

+B4 · n2 +B5 · P1 +B6 · p̃1

where I have already used the fact that the partial effect of n1 on P2 is zero (B3 = 0, as in previous

section). The key difference in this setting is that aggregating across informed traders will not

wash out the common noise ε, so that prices will inherit s = θ + ε. Another distinction is that

informed traders can perfectly infer the noise trading shock n1, since they observe the price as

well as the common signal ε. I use these facts to replace the conditional moments of θ and P2 in

informed traders’ demands.

Using the market-clearing condition at stage 2 allows to solve for the B′s coefficients of the

conjecture about P2, which I then replace in the market-clearing condition at stage 1. From the

resulting P1, I can recover the public signal

p̃1 = (θ + ε)−∆ · n1
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where ∆ is now given by

∆ =
Σ

F · a0 + (1− F ) ·B2

Note that with common information however, uninformed traders are the only agents making

inferences from the asset price P1, which now captures both noise trading shocks and the common

noise ε.

The solution for the coefficients in price P2 are given by

B0 = 0;B1 =
Σ− Σu · (1− F )F

Σ + Σu (1− F )2 ; B2 =
−Σu (1− F )F · a0

Σ + Σu (1− F )2 (31)

B4 = −Σu; B5 =
Σu · (1− F )

Σ + Σu (1− F )2 ;B6 =
b1Σ

Σ + Σu (1− F )2 ;

with b1 = λελn/[λθ
(
λn + λε∆

2
)

+ λελn]

What remains is finding the expressions for the total risk (weighted by risk-aversion) faced by

informed traders; Σ. Note that, conditional on the signal ε, the conditional variance of P2 is just

(Σu)
2 · λ−1

n , which gives

Σ = γ

[
F 2

(
1

λθ + λε
+

1

λµ

)
+ (1− F )2 (Σu)

2 · λ−1
n

]

where Σu = γu

[
(λ−1

ε + λ−1
n ∆2)

−1
+ λ−1

µ

]
. This last expression, together with (31), allows to solve

for ∆.

8.4 Appendix D

First order condition of the investment problem: I can rewrite the investment problem

in the maximand as

E [θ | p̃1]− 1

2
k2 − a

2
k · E

[
θ2 − 2θk + k2 | p̃1

]
= E [θ | p̃1]− 1

2
k2 − a

2
k ·
[
V [θ | p̃1] + (E [θ | p̃1])2 − 2E [θ | p̃1] k + k2

]
taking the derivative w.r.t. k leads to a quadratic equation in k, which can be solved to yield the

result in expression (20).

Proof of Proposition 6: I first show that conditional on p̃1, the firm does weakly better on

average when the precision of information is larger - i.e., the expected profit is increasing in F . I
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can write the firm’s profit expectation as

E [Π (θ, k) | p̃1] = k∗ ·
{
E [Π (θ, k) | p̃1]

k∗

}
and its derivative with respect to F as

∂E [Π (θ, k) | p̃1]

∂F
=
∂k∗

∂F
· E [Π (θ, k) | p̃1]

k∗
+ k∗ · ∂

{
E [Π (θ, k) | p̃1]

k∗

}
/∂k∗

I distinguish two possible cases. First, if either expectations on fundamentals are too low, and/or

the conditional variance of fundamentals is too large, the firm does not invest, and expected profits

do not change with marginal increases in F . In the second situation, investment k∗ is positive,

which is the only case when the firm expects the average profit per unit of k∗ to be positive as

well. This makes the first term of the last expression strictly positive, for k∗ > 0.

The second term requires more analysis. Its partial derivative w.r.t. F can be written as

= −k
∗

2

∂V [θ | p̃1]

∂F

{
∂k∗

∂V [θ | p̃1]
+ a

(
1 + 2 (E [θ | p̃1]− k∗) ∂ (E [θ | p̃1]− k∗)

∂V [θ | p̃1]

)}
Since ∂V [θ | p1] /∂F < 0, it suffices to show that the term in brackets is strictly positive, for

k∗ > 0. We can write

∂k∗

∂V [θ | p̃1]
= −1

6
(SQR)−1/2 , and

∂ (E [θ | p̃1]− k∗)
∂V [θ | p̃1]

=
1

6
(SQR)−1/2

where

SQR =

(
1

3a
+

E [θ | p̃1]

3

)2

− 1

3
V [θ | p̃1]

which is strictly positive under the requirement k∗ > 0. This allows to rewrite the bracket term as

1

6
(SQR)−1/2

[
2E [θ | p̃1]

3
+

2

3a
− 2 (SQR)1/2

]
+ a

which can be further manipulated by replacing the solution k∗ from (20), to yield

k∗ + 3

(
1

3a
− (SQR)1/2

)
+ a = k∗ + 3

(
2E [θ | p̃1]

3
− k∗

)
+ a

= 2 (E [θ | p̃1]− k∗) + a

which is always strictly positive, for any arbitrarily small variance V [θ | p̃1], since E [θ | p̃1]−k∗ > 0.
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It remains to show that F raises the unconditional profit expectation. This can be restated as

the integral of conditional profits, over the distribution of p̃1. Labeling the cdf of p̃1 by G (p̃1), one

can write

∂E [E [Π (θ, k) | p̃1]]

∂F
=

∫ (
∂E [Π (θ, k) | p̃1]

∂F

)
dG (p̃1)

> 0

which follows from the fact that the conditional result ∂E [Π (θ, k) | p̃1] /∂F ≥ 0 holds for any

realization of the price P1. Since at least for some realizations the firm will choose a positive level

of investment, it follows that the impact of F on firm value is strictly positive. QED.
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