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If by the truth of Newtonian mechanics we mean that it is approximately true

in some appropriate well defined sense we could obtain strong evidence that it

is true; but if we mean by its truth that it is exactly true then it has already

been refuted. I.J. Good (1981)

1 Introduction

A rather common objective in econometric or statistical modeling is to assess that some

restrictions hold. For instance, practitioners often test whether a parametric model is

correctly specified by embedding their model in one involving more parameters and testing

for the significance of the extra coefficients. While in a test of significance, the researcher

is typically hoping that the null hypothesis of insignificance will be rejected, in the case of

a specification error test, the researcher often hopes the null will be accepted. Specification

testing is by no means an atypical situation, and there are many instances where we would

like to obtain evidence in favor of restrictions that appear as (i) an economic hypothesis, for

instance constant returns to scale in an aggregate production function; (ii) a consequence

of economic theory, for instance homogeneity of demand in prices and income as implied

by consumer rationality; (iii) a key assumption to estimate a structural model, such as

exogeneity.

It has been early acknowledged that applied researchers are often looking for evidence

in favor of a particular hypothesis. For instance, Berkson (1942) argues that the P-value

of a significance test can be used as evidential measure in favor of the null hypothesis.

This however has been strongly criticized, see e.g. the discussion of Berger and Sellke

(1987) and the references cited therein. Some argue in favor of Bayes factors as intro-

duced by Jeffreys (1961), see Kass and Raftery (1995) and the references therein. Others,

such as Good (1983, 1992), advocates for a compromise of Bayesian and non Bayesian

approaches. Andrews (1994) points out under certain asymptotics there exists a corre-

spondence between P-values and Bayesian posterior odds.

The goal of this work is to develop a testing procedure for assessing the approximate
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validity of restrictions in parametric models. The interest of approximate hypotheses

has been long recognized in statistics, see e.g. Hodges and Lehmann (1954). Leamer

(1988) argues that “genuinely interesting hypotheses are neighborhoods, not points. No

parameter is exactly equal to zero; many may be so close that we can act as if they were

zero,” see also Good (1981) in statistics or McCloskey (2001) in economics among others.

We consider the approximate validity of the restrictions of interest as the alternative

hypothesis to reflect where the burden of proof is placed. This is known in biostatistics

as equivalence testing, where the practitioner wants to assess that a parameter, usually

the difference in bio-effect between two formulations of the same molecule, is close to

zero, see Lehman and Romano (2005), Wellek’s (2003) monograph, and Senn’s (2001)

review. Another application of this principle is provided by Dette and Munk (1998)

for specification testing. Finally, our approximate alternative hypothesis concentrates

around the sharp restrictions of interest as the sample size increases to formalize that we

are interested in showing that our restriction is as close to be fulfilled as made possible

by our data, see Rosenblatt (1962) for an early example. An approach closely related to

ours is proposed by Romano (2005) for equivalence testing, see also Borovkov (1998) for

related results. For testing an univariate restriction on parameters of the form g(θ) = 0,

Romano considers

Hn : |g(θ)| ≥ δ/
√
n against Kn : |g(θ)| < δ/

√
n .

The alternative hypothesis of interest Kn is then a neighborhood of the hypothesis of

interest that becomes narrower as sample size, and thus information, increases. The

related test yields a decision of whether a set of parameter values that are close to the

restrictions is consistent with the data at hand.

By contrast to the latter approach, our framework does not directly focus on the

restricted parameters themselves, but on the consequences of imposing these restrictions.

Following Akaike (1973) and Vuong (1989), among others, we focus on the effect of the

restrictions as measured by the Kullback Leibler Information Criterion (KLIC), which is

a natural discrepancy measure between the unrestricted model and the restricted one.
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Hence the alternative hypothesis of interest states that the KLIC is less than a small

quantity that decreases when the sample size increases. This allows in particular to

consider multivariate restrictions on parameters, which has not been dealt with in previous

work. For our approximate shrinking alternative hypothesis, we derive a test based on the

usual likelihood-ratio (LR) statistic, but that uses a decision rule different from that of

a significance test: the alternative hypothesis is accepted for small values of the statistic,

and the critical value is not derived under the assumption that the restrictions perfectly

hold. We label this approach model equivalence testing.

While our main model equivalence test is based on the LR statistic, it seems natural

to investigate whether equivalent procedures can be derived, as is the case in significance

testing. We show indeed that one can consider different asymptotically equivalent formu-

lations of the testing problem. The first one relies on a Hausman-Wald approach, following

the terminology of Gourieroux and Monfort (1989), and evaluates how the restrictions af-

fect the whole parameter vector. The second relies on a score approach and evaluates

whether the expected score of the restricted model is close to zero. The third relies on

a Wald approach and is similar to Romano’s equivalence test in the case of univariate

restrictions. To each set of hypotheses correspond a different test. We show that the four

tests are locally asymptotically maximin and locally most powerful against the hypothesis

that the restrictions perfectly hold. They are also locally asymptotically most powerful in

the class of tests invariant to orthogonal transformations of the parameter. For testing an

univariate restriction, the proposed tests are equivalent to the tests proposed by Romano

(2005), and thus are locally asymptotically uniformly most powerful.

One may wonder whether and why a new approach is needed. The pervasive obser-

vation that practitioners commonly use significance tests when they actually intend to

accept the insignificance hypothesis should be enough motivation for a new look at this

issue. A significance test entertained at usual nominal levels can never accept the null

and thus cannot assess the validity of restrictions, even in an approximate sense. This

is because it tunes the odds of falsely rejecting a null hypothesis, but does not control

the probability of falsely not rejecting it. Do confidence intervals or region could provide
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such information? These are defined as sets of parameters values that cannot be rejected

by a significance test, so they do not provide a suitable answer either. Within the sig-

nificance testing approach, Andrews (1989) proposes approximations of the asymptotic

inverse power function as an aid to interpret non significant outcomes. Andrews’ inverse

power approximations are based on the Wald test and are thus not invariant to nonlinear

transformations of restrictions under scrutiny, see e.g. Gregory and Veall (1985). More

crucially, several issues surround power calculations, as summarized by Hoenig and Heisey

(2001).1 Finally, evaluating the asymptotic power of a significance test of given level does

not directly provide positive evidence in favor of the restrictions under consideration. Our

proposal instead can be viewed as controlling the asymptotic power of a significance test

for a set of parameters values, so as to obtain reliable evidence in favor of the approximate

restrictions.

The paper is organized as follows. In Section 2, I setup the testing framework based

on the KLIC, I derive the model equivalence LR test, as well as alternative formulations

and tests. In Section 3, I study the local asymptotic properties of the tests. In Section 4,

I discuss implementation of these tests through three examples. In Section 5, I conclude

by suggesting directions for extensions and future research.

2 Testing Framework and Procedures

Let us introduce the basic setup considered throughout this paper. To focus on the

main issues, we deal with unconditional models, but all our results can be extended to

conditional models under standard assumptions, such as a fixed or i.i.d. design of the

conditioning variables. We observe a random sample {Xt, t = 1, . . . n} from X, whose

probability density f (·, θ0) belongs to a parametric family of densities {f(·, θ) : θ ∈ Θ}.
1In some applied sciences where they are common practice, the debate surrounding post-experiment

power calculation is quite vivid and seems to be an old one: in his 1958 book, Cox writes “Power is

important in choosing between alternative methods of analyzing data and in deciding on an appropriate

size of experiments. It is quite irrelevant in the actual analysis of data.”
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Denote by Eθ0 the expectation when θ0 is the parameter value. We are interested in

assessing the validity of some multivariate restrictions on parameters of the form g(θ0) = 0,

where g(·) is a function from Rp to Rr, 1 ≤ r < p. Let

θc0 = arg max
θ∈Θ,g(θ)=0

Eθ0 log f(X, θ) . (2.1)

be the pseudo-true value of the maximum-likelihood estimator under the constraint, see

e.g. Sawa (1978), and note that θc0 depends on θ0 only. Denote by ∇θ differentiation with

respect to θ, and by ∇θ,θ′ second differentiation. We make the following assumptions.

Assumption A (a) The densities f(X, θ), θ ∈ Θ are defined with respect to a common

dominating measure ν. (b) The set Θ is an open bounded subspace of Rp. (c) f(·, θ1) ≡
f(·, θ2) implies θ1 = θ2. (d) The densities

√
f(·, θ) are continuously differentiable in θ

almost everywhere. (e) The function l(·, θ) = log f(·, θ) is twice continuously differentiable

in θ almost everywhere. There exists a function l̄(x) such that ‖∇2
θ,θ′l(x, θ)‖ < l̄(x) and

Eθ l̄(X) < ∞ uniformly over a neighborhood of θ0. (f) I(θ) ≡ Eθ [∇θl(X, θ)∇′θl(X, θ)]
exists, is continuous and positive definite uniformly over a neighborhood of θ0.

Assumption B (i) g(·) is continuously differentiable and ∇θg(·) is of full rank r uni-

formly over a neighborhood of θ0. (ii) θc0 is unique.

2.1 KLIC-Based Testing

Following Akaike (1973, 1974), Sawa (1978), and Vuong (1989), among others, we con-

sider as a measure of closeness of a model to the true distribution the Kullback-Leibler

Information Criterion defined as

KLIC = Eθ0
[
log

f(X, θ0)

f(X, θc0)

]
.

This measure is always positive and zero if and only if the restrictions perfectly hold, see

Vuong (1989). We consider as the hypothesis to assess

KLR
n : 2 KLIC < δ2/n .
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This means that imposing the constraint does not affect the expected likelihood by more

than δ2/2n. Our null hypothesis is the complement of the alternative, that is

HLR
n : 2 KLIC ≥ δ2/n .

Though our framework is reminiscent of local power analysis of significance tests, it is

only our inability to confirm a sharp hypothesis, together with our will to be as tight as

possible around this hypothesis, that motivates this formulation. One should also note

that our setup is different from the one envisaged in model selection, where one aims to

choose the unrestricted model if KLIC > 0 and the restricted one if KLIC = 0. In

that aim, the penalty term added to the likelihood-ratio statistic, which estimates the

KLIC, is used only to ensure that the correct and most parsimonious model is chosen

asymptotically, see e.g. Sin and White (1996) for general results on this approach.

Our shrinking hypothesis setup with threshold δ2/n puts us in the most difficult but

manageable situation. Would the threshold go towards zero faster than n−1/2, all distri-

butions in KLR
n would be contiguous to some distributions in HLR

n and then would not

be distinguishable from HLR
n . One may want to consider a fixed alternative hypothesis

instead of a shrinking one, i.e. set the limit at ∆2 instead of δ2/n. From a practical view-

point, the choice of ∆2 in a fixed hypothesis setup would become even more central to the

procedure, and it is unlikely that practitioners could reach a consensus on which value to

consider in specific applications. Moreover, considering a more restrictive hypothesis as

the sample size increases formalizes that our ultimate goal is to assess the validity of some

restrictions, so it makes sense to adopt an asymptotic setup that explicitly acknowledges

our aim. In addition, if one were to devise a good test for a fixed hypothesis but uses in

practice a sample size dependent hypothesis, the resulting test can have very low power,

see Romano (2005) for an example.

Consider the (quasi-)maximum likelihood (ML) estimators of θ0 and θc0

θ̂n = arg sup
Θ
Ln(θ) = arg sup

Θ

n∑
t=1

l(Xt, θ) and θ̂cn = arg sup
Θ,g(θ)=0

Ln(θ) .
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The likelihood-ratio (LR) statistic is 2 LRn = 2
[
Ln(θ̂cn)− Ln(θ̂n)

]
. The LR model equiva-

lence ofHLR
n againstKLR

n is defined as πLRn = I [2 LRn ≤ cα,r,δ2 ], where Pr [χ2
r(δ

2) ≤ cα,r,δ2 ] =

α, that is, the critical value is the α quantile of a noncentral chi-square distribution with r

degrees of freedom and non centrality parameter δ2. This stands in contrast to the critical

value of a significance test, which is the 1−α quantile of a central chi-square distribution.

The choice of δ2 is key because it defines the hypothesis under test. Clearly, the

smaller δ2, the more stringent the equivalence hypothesis. If one accepts the equivalence

hypothesis for a particular value δ2, then the outcome will be unchanged for any model

equivalence 2 KLIC ≤ γ2/n with γ2 > δ2. While its specific value should be tailored to

the specific application at hand, some general guidelines can be offered. From the form of

the equivalence hypothesis, one can interpret δ2 as the maximum value at which we are

ready to declare model equivalence, that is the equivalence hypothesis for n = 1. This

allows us to choose δ2 independently of the sample size at hand. Now it may appear

uneasy to select δ2 on these grounds because the KLIC of a model has no natural upper

bound, but when the distribution of X is discrete. In any application however, it is often

easy to determine such an upper bound by considering a model that has already been

judged, on other grounds, non-equivalent to the unrestricted model. Take for instance the

case of a standard normal regression model then a rough lower bound for Eθ0 log f(X, θ)

is the expected log-likelihood for a base model with no explanatory variable. Hence we

can select δ2 as a fraction of what has been gained by adding explanatory variables to the

base model.2 While this quantity is not known, it can be consistently estimated from the

sample. Formally, using such sample information will not affect the asymptotic properties

of the test. This possibility is illustrated later on in some of our applications in Section 4.

2This precludes application to the case where the restrictions of interest are that all the parameters

but the constant are zero. However, I cannot think of an application where it would be of interest to

assess that such restrictions hold. Testing that these do not hold is clearly useful and can be done through

a significance test.
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2.2 Alternative Formulations

As is well known, the validity of the restrictions g(θ0) = 0 can be formulated in different

ways, and these different formulations yield different significance tests. We now show

that there also exist different asymptotically equivalent formulations of our approximate

hypothesis KLR
n .

Lemma 2.1 Under Assumptions A and B, if 2 KLIC = O(n−1), then 2 KLIC is equal

to any of

(θ0 − θc0)′ I(θ0) (θ0 − θc0) (1 + o(1)) , (2.2)

E0∇′θl(X, θc0)I−1(θ0)E0∇θl(X, θ
c
0) (1 + o(1)) (2.3)

g′(θ0)
[
∇′θg(θ0)I−1(θ0)∇θg(θ0)

]−1
g(θ0) (1 + o(1)) . (2.4)

The three asymptotic approximations of 2 KLIC in Lemma 2.1 yield three alternative

formulations of the testing problem as well as the corresponding tests. The Hausman-

Wald approach considers the hypotheses

HH
n : (θ0 − θc0)′ I(θ0) (θ0 − θc0) ≥ δ2/n against KH

n : (θ0 − θc0)′ I(θ0) (θ0 − θc0) < δ2/n .

The alternative hypothesis here involves a norm of the difference between the true and

pseudo-true values. This norm is defined defined through the information contained in

the model. Such a standardization amount to a change of units and make the differ-

ent components comparable, which is useful when considering parameters with possibly

different units: even in a standard linear regression, the parameter vector includes the

intercept, the different slopes, and the error’s variance. In considering a t-test about

a mean, Arrow (1960) consider that the “economically significant difference” should be

measured in standard deviations units. It is therefore interesting to note that such a stan-

dardization (through the asymptotic variance of the ML estimator) appears naturally in

our approach. This formulation also suggest that δ2 should be relatively small. In our

applications of Section 4, sensible values for δ2 appear to be within a pretty tight range.
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Finally, the above formulation makes clear that the model equivalence hypothesis allows

for local misspecification of the restricted model.

The score approach is based on

HS
n : E0∇′θl(X, θc0)I−1(θ0)E0∇θl(X, θ

c
0) ≥ δ2/n

against KS
n : E0∇′θl(X, θc0)I−1(θ0)E0∇θl(X, θ

c
0) < δ2/n .

The alternative of interest thus focuses on whether the expected score vector of the re-

stricted model is close to zero in the metric defined by I−1(θ0). Finally, the Wald approach

considers

HW
n : g′(θ0)

[
∇′θg(θ0)I−1(θ0)∇θg(θ0)

]−1
g(θ0) ≥ δ2/n

against KW
n : g′(θ0)

[
∇′θg(θ0)I−1(θ0)∇θg(θ0)

]−1
g(θ0) < δ2/n .

Here the hypotheses focus on the restrictions themselves and have a clear intuitive content.

In particular, it provide further insight on the choice of δ2. Relying on this formulation,

we can interpret the model equivalence hypothesis as a region of the parameters values

“centered” around the restrictions of interest. Take for example a univariate restriction

of the form θ01 = 0. Model equivalence is then declared if the parameter belongs to

(−δσ01/
√
n ; δσ01/

√
n ), where σ01/

√
n is the standard deviation of θ̂01. That is the value

θ01 should be within δ standard deviations of zero. For interpretation’s sake, this interval

can be approximated by using the standard error of θ̂01. The Wald formulation thus

allows to recast the equivalence hypothesis in terms of parameter values and the inherent

variability in estimation. Such an equivalence interval can guide our choice and ease the

interpretation of the test’s results by providing direct information on the set of parameter

values that is accepted by the test. The intuition extends to an equivalence hypothesis

about a multidimensional parameter when testing a multidimensional hypothesis of the

form θ01 = 0.
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To each alternative sets of hypotheses corresponds a different model equivalence test.

Define the Hausman-Wald, score, and Wald statistic, respectively as

Hn = n
(
θ̂n − θ̂cn

)′
I(θ̂n)

(
θ̂n − θ̂cn

)
Sn = n∇′θLn(θ̂cn)I−1(θ̂n)∇θLn(θ̂cn)

Wn = ng′(θ̂n)
[
∇′θg(θ̂n)I−1(θ̂n)∇θg(θ̂n)

]
g(θ̂n) .

Then each test πJn , J = H,S,W is similarly defined as πJn = I [Jn ≤ cα,r,δ2 ]. Alternatively,

the information matrix could be approximated by

In(θ) = n−1

n∑
t=1

∇θ ln f(Xt; θ)∇′θ ln f(Xt; θ) or − n−1

n∑
t=1

∇2
θθ′ ln f(Xt; θ) ,

without altering the asymptotic properties of each test, which is useful for conditional

models. However, it is well known that use of the last formula can yield non positive

definite estimates, so this should not be recommended in practice.

All alternative formulations involve the whole parameter vector in general, even when

the restrictions concern only a subset of them. All tests are invariant to linear transforma-

tions of the parameter space, but only the LR test is invariant to nonlinear reparametriza-

tion. The LR and Hausman-Wald are invariant to nonlinear transformation of the restric-

tions, as well as the score test that uses the outer product of gradient estimator of the

information matrix, while the Wald test is invariant to linear transformations only.

2.3 Critical Values

While critical values are non-standard, they can be readily obtained from most statistical

softwares. Tables 1 to 6 gives critical values for the test at 10% and 5% for δ2 varying

from 0.1 to 10 and r =1 to 6. It is seen that the critical values increase at a much

slower rate than δ2 and are generally below δ2 (except for low values of δ2). Figure 1

depicts the asymptotic power curves of the test for values of r, α, and δ2, selected to

illustrate their influence on the tests’ power. It is seen that the power is always maximum

when KLIC = 0, that is when the restrictions perfectly hold, but never attains one.
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However, as we will show, no test can achieve a larger power at zero. In nature, the test is

“tough” with the restrictions to be assessed. This is the price that we pay for controlling

the probability of falsely confirming an hypothesis that narrows with the sample size.

The power is increasing in, and pretty sensitive to, δ2 and α. As previously discussed,

the choice of δ2 determines the limit of model equivalence and should be tailored to

the particular application, see also Section 4. The level corresponds to the probability

of falsely accepting model equivalence. It might also be tuned to obtain a test with

reasonable power at zero, keeping in mind that the smaller the level the higher evidence

we obtain in favor of model equivalence.

Since the test statistic is the same as in a significance test, we can interpret a model

equivalence test as a significance test in reverse that controls the power for some values

of the parameters space, as recommended for instance by Lehmann (1958) and Arrow

(1960). If Λ(·) is the power function of the model equivalence test, then 1 − Λ(·) is the

power function of a significance test that tests g(θ0) = 0 for which the level is chosen

so that the power has some predetermined value when 2KLIC = δ2/n. In this sense,

it is the inverse problem that of the one analyzed by Andrews (1989), who considers a

significance test of given level and determines at which points of the parameter space the

test has some predetermined power. Alternatively, we can interpret the non-significant

outcome of a significance test by looking at the corresponding model equivalence test. For

instance, if a significance test does not reject the sharp hypothesis g(θ0) = 0 at 5% level,

this corresponds to accepting model equivalence at 5% level with δ2 = 13 for r = 1, 15.44

for r = 2, or 18.57, for r = 4 respectively. As argued above and illustrated below by our

examples, such values appear to be extremely liberal.

3 Practical Applications

We here illustrate how our tests can be implemented in specific applications. In so doing,

we also exemplify how our general guidelines for the choice of δ2 can be put in action.
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Example 1: Testing an Economic Hypothesis. We consider here a cross-country

regression in the spirit of Mankiw and al. (1992), using pooled data on 86 countries

averaged over the 1960s, 1970s and 1980s from King and Levine (1986), as analyzed by

Stengos and Liu (1999). Explanatory variables include GDP60, the 1960 level of GDP;

POP, population growth (to which 0.05 is added to account for depreciation rate and

technological change); SEC, the enrollment rate in secondary schools; INV, the share of

output allocated to investment; two dummy variables D70 and D80, acting as fixed effects

for the seventies and the eighties. The model is estimated by OLS and yields

Growth = 0.0299 − 0.0117 D70 − 0.0300 D80 + 0.0286 log(INV )

(0.0285) (0.0032) (0.0033) (0.0041)

− 0.0324 log(POP ) + 0.0037 log(SEC) − 0.0037 log(GDP60)

(0.0110) (0.0019) (0.0024)

The Solow model assumes constant returns to scale, that is the coefficients of log(INV ),

log(POP ), and log(SEC) should sum to zero. To choose δ, let us evaluate the gain of

introducing the explanatory variables. Twice the estimated KLIC between our model and

the one without regressors (but the intercept) divided by the sample size, is about 0.5.

Fix δ2 at 5% of this difference, that is 0.025. The LR test statistic has a value of 3 10
−5,

and the P-value is 0.45%.3 Hence for any larger significance level the test concludes that

the restriction is approximately valid. We also computed each of the three alternative

test statistics H, S, and W. They agree with the LR statistic up to the tenth decimal.

Hence all tests yield the same conclusion. In particular, the Wald model equivalence test

asserts that the sum of the estimated coefficients of log(INV ), log(POP ), and log(SEC)

is within 0.158 standard deviations of zero. Given a standard error of 0.011, this means

that this sum is less than 0.0017 in absolute value.

Example 2: Testing a Consequence of Economic Theory. Anderson and Blun-

dell (1983) estimates a flexible dynamic demand system on annual aggregate Canadian

data by full information ML. They note that more restrictive models, as an autoregressive

3Matlab code to obtain the P-value of a model equivalence test is available from the author upon

request.
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model, a partial adjustment model, or a static model, are strongly rejected by significance

tests. They also note that while homogeneity and symmetry restrictions are rejected

within the static model, they are not within their dynamic setup. Their testing results

are based on LR tests at 1% level and summarized in their Table 5. I focus on the results

relative to their model “Dynamic: Price Index (4).” To choose the value of δ2, I consider

as a base model the static model.4 The gain of modeling dynamics, as measured by twice

the estimated KLIC between the dynamic and static models divided by the sample size, is

5.51. Consider testing for homogeneity, that is four restrictions, and choose δ2 liberally as

4, that is about 73% of the gain of modeling dynamics. The test statistic is 10.2 and the

corresponding P-value 72.4%. Hence one should allow the test to accept falsely homogene-

ity in almost three fourth of the cases to accept model equivalence. Therefore, the test

does not confirm that homogeneity approximately holds. We note that the equivalence

LR test would yield the same outcome at 10% level for any δ2 smaller than 16.43, that

is three times the gain of modeling dynamics. When simultaneously testing homogeneity

and symmetry (ten restrictions), and assuming we also chose δ2 = 4, the test statistic

equals 23.2 and the P-value is 92.3%. So, while significance tests at 1% level fail to reject

either sets of restrictions, model equivalence tests fail short to accept that homogeneity

and symmetry approximately hold.

Example 3 : Testing Exogeneity. Lillard and Aigner’s (1984) analysis of time-

of-day electricity demand rely on a two-equations triangular system in which the first

equation explains air conditioning appliance ownership and the second explains electricity

demand. The appliance ownership variables enter the second equation as explanatory

variables and are exogenous if the first equation error ε is uncorrelated with each of the

two components k and r of the second equation error. These correlations are denoted by

ρkε and ρrε respectively. The system is estimated by full information ML. This application

is also considered by Andrews (1989), which allows to compare his findings with ours. As

4One could also consider as an inadequate model the autoregressive or the partial adjustment model

that are both judged inadequate by the authors. This would only strengthen our conclusions.
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Andrews, I focus on the “Rate B all customers” results. Lillard and Aigner used a LR

significance test to argue that the correlation coefficients are jointly insignificant at the

5% error level. Andrews argue that this conclusion does not seem warranted based on the

estimated inverse power measures of the two univariate significance Wald tests. Based on

the implied standard errors, choosing δ2 = 1 implies that model equivalence is declared

here whenever |ρkε| ≤ 0.207 and |ρrε| ≤ 0.246 respectively, which are relatively large

correlations.5 The Wald statistics are 1.976 and 1.527 and the corresponding P-values

for model equivalence tests are respectively 65% and 58.1%. Thus we conclude that each

restriction is not approximately valid. If we consider the LR model equivalence test of

the joint restrictions with δ2 = 1, the test statistic equals 1.8 and the P-value is 43.4%.

Hence we conclude that approximate exogeneity does not hold.

4 Asymptotics

We now turn to the formal properties of our test. It is well known that in general there

is no asymptotically uniformly most powerful tests in parametric models. It is then nec-

essary to adopt a local approach in the search of optimal tests, see e.g. Lehmann and

Romano (2005) for the local analysis of two-sided significance tests and equivalence tests

of univariate restrictions. That is, for an arbitrary θ̄ such that g(θ̄) = 0, we analyse the

asymptotic properties of our tests on the restricted set
{
θ̄ + hn−1/2, h ∈ Rp, ‖h‖ ≤M

}
.

We adopt two criteria for evaluating our model equivalence tests, local maximin optimal-

ity and local power in the class of tests invariant to orthogonal transformations. Local

maximin optimality is used to characterize the classical trinity of significance tests in

parametric models with multivariate parameters, see e.g. Borovkov (1998) and Lehmann

and Romano (2005). The latters note that the maximin property may not be compelling

for multiparameter significance hypotheses because the distant hypothesis can be defined

through different norms. In the model equivalence framework however, the form of the

5Since Lillard and Aigner used the parametrization tan(ρkεπ/2) and tan(ρrεπ/2), stating results in

terms of the correlations themselves requires a nonlinear transformation.
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distant hypothesis is dictated by the considered hypotheses. Asymptotic invariance to lin-

ear trandformations is asuumed by Choi, Hall, and Schick (1998) to show local asymptotic

optimality of two-sided significance tests of multivariate parameters. Here we also restrict

to the class of tests invariant to orthogonal transformations of the parameter space, which

is a mild requirement fulfilled even by the Wald test. We found that the model equivalence

tests are locally asymptotically maximin, and as a consequence are locally asymptotically

unbiased and most powerful against g(θ0) = 0. They also are locally asymptotically UMP

invariant. In the case of univariate restrictions, the local asymptotic UMP property holds

without invariance restriction.

Since model equivalence tests and significance tests are based on the same statistics,

one may think that such results can be derived easily from existing ones. This is however

not true. A first difficulty comes from the fact that avalaible results on significance tests

assume that the parametrization of θ0 = (θ01, θ02) is such that the restrictions completely

determine the value of θ01, see e.g. Lehmann and Romano (2005) and Choi, Hall, and

Schick (1998). While such a local (possibly nonlinear) reparametrization is always feasible,

it is at odds with the invariance principle we want to invoke. Moreover, in the study of

significance tests, the components of θ02 are treated as “nuisance parameters,” because

they are unconstrained under the null hypothesis. This leads authors to base their analysis

on the “effective score,” see e.g. Choi, Hall, and Schick (1998). By contrast, the model

equivalence hypotheses involve the whole parameter vector, and there is strictly speaking

no nuisance parameters. As a result, instead of considering the score test, we focus on

the Hausman-Wald formulation in our theoretical analysis, which is extremely tractable

because it directly involves the parameter vector.

To study the properties of our tests, we define KLR
n (γ) = {θ0 : 2 KLIC ≤ γ2/n} for

any γ > 0 and ∂KLR
n (γ) = {θ0 : 2 KLIC = γ2/n}. For J = H,S,W , we define similarly

KJ
n (γ) and ∂KJ

n (γ) as the similar sets based on the different formulations detailed above.

Theorem 4.1 Suppose X1, . . . , Xn are i.i.d. according to Pθ0, θ0 ∈ Θ, and that Assump-

tions A and B hold.
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(A) Let ϕn be a pointwise asymptotically level α tests sequence, that is

lim sup
n→∞

Eθϕn ≤ α ∀ θ ∈ HJ
n , J = LR,H, S, or W.

Let θ̄ ∈ Θ be an arbitrary parameter such g(θ̄) = 0, M > 0 arbitrary large, and N (θ̄,M) ={
θ̄ + hn−1/2, h ∈ Rp, ‖h‖ ≤M

}
.

1. For γ2 < δ2, J = LR,H, S, or W ,

lim sup
n→∞

inf
θ0∈KJ

n (γ)∩N (θ̄,M)
Eθ0ϕn ≤ Pr

[
χ2
r(γ

2) ≤ cα,r,δ2
]
. (4.5)

2. Assume ϕn is invariant to orthogonal transformations of the parameter space. Then

for all γ2 < δ2 and all θ0 ∈ ∂KJ
n (γ) ∩N (θ̄,M), J = LR,H, S, or W ,

lim sup
n→∞

Eθ0ϕn ≤ Pr
[
χ2
r(γ

2) ≤ cα,r,δ2
]
. (4.6)

(B) Each tests sequence πJn , J = LR,H, S, or W ,

1. is pointwise asymptotically level α,

2. is locally asymptotically maximin, in the sense that Inequality (4.5) is an equality.

As a consequence, each tests sequence is locally asymptotically unbiased and locally

most powerful against θ0 = θ̄.

3. is locally asymptotically UMP among tests invariant to orthogonal transformations,

i.e. Inequality (4.6) is an equality.

In our analysis, we rely on the local asymptotic normality of the likelihood ratio and the

asymptotic equivalent experiments setting, see Le Cam and Lo Yang (2000) and Van der

Vaart (1998). This reduces the problem to one of finding an optimal test in a normal

experiment when we observe a sample of size one from Z ∼ N(µ,Σ) and want to test

H : µ′Σ−1/2PΣ−1/2µ ≥ δ2 against K : µ′Σ−1/2PΣ−1/2µ < δ2 ,
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where P is a known orthogonal projection matrix of rank r. Because this is of independent

interest, we state here the result that characterizes the maximin test of H against

K(γ) : µ′Σ−1/2PΣ−1/2µ ≤ γ2 < δ2

in the limiting normal experiment. The test π(z) rejects H when z′Σ−1/2PΣ−1/2z <

cα,r,δ2 , where cα,r,δ2 is the α quantile of a χ2
r(δ

2) distribution. Since the test is maximin,

it is necessarily admissible and unbiased. Moreover, since it is independent of γ2, it

must be most powerful against µ = 0. Finally, since it is also invariant to orthogonal

transformations of the parameter space, it must be UMP invariant. These properties

directly translate in equivalent local asymptotic properties for our tests.

Lemma 4.2 Consider testing H against K from one observation z from Z ∈ Rp which

is multivariate normal N(µ,Σ) with unknown mean µ and known nonsingular covariance

matrix Σ. Then π(z) is of level α, and among level α tests, π is maximin against K(γ)

with guaranteed power Pr [χ2
r(γ

2) ≤ cα,r,δ2 ].

We now consider the particular case of univariate restrictions, for which stronger

results hold. Assume that g(·) is real-valued and can take positive and negative values. In

that situation, our model equivalence tests are equivalent to the score and Wald procedures

proposed by Romano (2004). His main test πRn rejects |g(θ)| ≥ δ̃/
√
n in favor of |g(θ)| <

δ̃/
√
n if n1/2|g(θ̂n)| ≤ C(α, δ̃, σ̂n), where σ̂2

n = ∇′θg(θ̂n)I−1(θ̂n)∇θg(θ̂n) = σ2 + op(1) and

σ2 = ∇′θg(θ0)I−1(θ0)∇θg(θ0). Here C = C(α, δ, σ) is defined as the solution of

Φ

(
C − δ
σ

)
− Φ

(
−C − δ

σ

)
= α ,

Φ(·) being the cumulative distribution function of a standard Gaussian real random vari-

able. As

n1/2|g(θ̂n)| ≤ C(α, δ̃, σ̂n)⇐⇒ n
g2(θ̂n)

σ̂2
n

≤ C2(α, δ̃, σ̂n)

σ̂2
n

= C2(α,
δ̃

σ̂n
, 1) ,

see Equation (6) in Romano (2005), and C(α, δ, 1) is continuous in δ for any α,

C(α,
δ̃

σ̂n
, 1) = C(α,

δ̃

σ
, 1) + op(1) .
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Romano’s test is then asymptotically equivalent to the one which rejects if

n
g2(θ̂n)

σ̂2
n

≤ C2(α,
δ̃

σ
, 1) .

Now it is clear that C2(α, δ̃
σ
, 1) = cα,1,δ̃2/σ2 , so our Wald model equivalence test is asymp-

totically equivalent to πRn if we set δ2 = δ̃2/σ2. Since our other model equivalence tests

are also asymptotically equivalent the Wlad model equivalence test, the local asymptotic

UMP property of Romano’s test extends to each of our tests sequences. We here state

this result without proof.

Corollary 4.3 Assume that g(·) takes value in R and g(Θ) includes positive as well as

negative values. Under the assumptions of Theorem 4.1, let ϕn be a pointwise asymptoti-

cally level α tests sequence, that is

lim sup
n→∞

Eθϕn ≤ α ∀ θ ∈ HJ
n , J = LR,H, S, or W.

Then for all γ2 < δ2 and all θ0 ∈ ∂KJ
n (γ) ∩N (θ̄,M), J = LR,H, S, or W ,

lim sup
n→∞

Eθ0ϕn ≤ Pr
[
χ2

1(γ2) ≤ cα,1,δ2
]
. (4.7)

Moreover, each tests sequence πJn , J = LR,H, S, or W , is pointwise asymptotically level

α and is locally asymptotically UMP, i.e. Inequality (4.7) is an equality.

5 Conclusion

We have proposed a theoretical framework to test whether some parameters restrictions

are approximately valid in a parametric model. The framework is based on the Kullback-

Leibler Information Criterion discrepancy, as is the standard LR significance test. The

model equivalence hypothesis under test states that the discrepancy between the restricted

and unrestricted model is smaller than some threshold that goes to zero as the sample size

increases. We also investigated alternative formulation of this hypothesis. Of particular

interest are the Hausman-Wald formulation, which evaluates the effect of the restrictions
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on the whole parameter vector, and the Wald formulation, whose intuitive content yields

equivalence intervals or regions that provide useful information on the parameters values

that define the model equivalence hypothesis. Our likelihood-ratio model equivalence

test, as well as its variants derived from alternative formulations of the hypothesis, have

desirable optimality properties. Moreover we have shown through several examples that

these tests are easy to apply and can prove useful in practical applications.

We focused on purpose on a parametric model which is well specified, i.e. contains the

true data generating process, while the restrictions are not supposed to hold perfectly.

This allowed us to obtain pretty strong theoretical results. Clearly one would like to

extend the framework and model equivalence tests to contexts where the complete model

could be misspecified. More crucially, extension to semiparametric models would be

extremely useful in econometrics, and would allow in particular to propose equivalence

tests for overidentification restrictions. The theoretical and practical properties of such

tests will be explored in future research.

6 Proofs

Proof of Lemma 2.1. Assumption A implies that Eθ0l(X, θ) is continuous in θ and

attains its unique maximum at θ0. Hence 2 KLIC = O(n−1) implies that ‖θ0−θc0‖ = o(1).

From a Taylor expansion and the information matrix equality,

Eθ0l(X, θc0) = Eθ0l(X, θ0) + (1/2) (θ0 − θc0)′ I(θ0) (θ0 − θc0) (1 + o(1)) .

Hence ‖θ0 − θc0‖ = O(n−1/2) when KLIC = O(n−1) since I(θ0) is positive definite, and

2 KLIC = (θ0 − θc0)′ I(θ0) (θ0 − θc0) (1 + o(1)) .

Similarly,

Eθ0∇θl(X, θ
c
0) = I(θ0) (θ0 − θc0) (1 + o(1)) (6.8)

⇒ Eθ0 [∇′θl(X, θc0)] I−1(θ0)Eθ0 [∇θl(X, θ
c
0)] = (θ0 − θc0)′ I(θ0) (θ0 − θc0) (1 + o(1)) ,
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as I−1(θ0) exists by Assumption A(e). From Assumption B,

0 = g(θc0) = g(θ0) +∇′θg(θ0) (θ0 − θc0) (1 + o(1)) .

Let P0 be the orthogonal projection matrix on I−1/2(θ0)∇θg(θ0). Then

g′(θ0)
[
∇′θg(θ0)I−1(θ0)∇θg(θ0)

]−1
g(θ0)

= (θ0 − θc0)′ I1/2(θ0)P0I
1/2(θ0) (θ0 − θc0)′ (1 + o(1)) .

The constrained optimization problem for θc0 yields∇θEθ0l(X, θc0) = ∇θg(θc0)λ for some λ ∈
Rr, so that I−1/2(θ0)∇θg(θc0)λ = I1/2(θ0) (θ0 − θc0) (1 + o(1)) from (6.8). From Assumption

B, ∇θg(θc0) = ∇θg(θ0) (1 + o(1)) and both matrices have the same rank. Combine these

facts to obtain

(θ0 − θc0)′ I1/2(θ0)P0I
1/2(θ0) (θ0 − θc0) = (θ0 − θc0)′ I(θ0) (θ0 − θc0) (1 + o(1)) .

Proof of Lemma 4.2. Because Z can always be pre-multiplied by Σ−1/2 to get an

identity covariance matrix, there is no loss of generality to assume Σ = Ip. Since P is an

orthogonal projection matrix, there exists an orthogonal matrix A, i.e. AA′ = A′A = Ip,

such that

A′PA =

 Ir 0

0 0

 for which X ≡ A′Z ∼ N

A′µ =

 εr

εl

 , Ip

 .

Moreover, µ′Pµ = µ′AA′PAA′µ = ε′rεr, so that the hypotheses write

H : ε′rεr ≥ δ2 against K : ε′rεr < δ2 .

As Xr is sufficient for εr, we can restrict to tests based on it only. We aim to deter-

mine a minimax test of H against K(γ) : ε′rεr ≤ γ2, which is a Bayes test under least

favorable a priori distributions. Since the testing problem is invariant under orthogonal

transformations, these distributions should also be invariant. Moreover, they should be

concentrated on the boundary of the hypotheses. Therefore Qδ, the uniform distribution
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on the hypersphere S(δ) of radius δ, and Qγ, defined similarly, are the least favorable a

priori distributions. The most powerful Bayes test π(x) of level α rejects H iff∫
S(γ)

exp

[
−1

2
(xr − εr)′(xr − εr)

]
dQγ(εr) > C

∫
S(δ)

exp

[
−1

2
(xr − εr)′(xr − εr)

]
dQδ(εr)

for some constant C. The left-hand side term writes

exp

[
−1

2
(x′rxr + γ2)

] ∫
S(γ)

exp [x′rεr]dQγ(εr) .

Denoting ex = xr/‖xr‖, the above integral equals

ψ (γ‖xr‖) =

∫
S(1)

exp [γ‖xr‖exεr]dQ1(εr) =

∫
S(1)

exp [γ‖xr‖εr1]dQ1(εr) ,

where εr1 is the first component of εr. The function ψ(·) is strictly increasing with

ψ(0) = 1 and ψ′(0) = 0. It is also logarithmically strictly convex. Indeed, for t 6= u and

0 < λ < 1

ψ (λt+ (1− λ)u) =

∫
S(1)

[exp (tεr1)]λ [exp (uεr1)]1−λ dQ1(εr)

<

[∫
S(1)

exp (tεr1) dQ1(εr)

]λ [∫
S(1)

exp (uεr1) dQ1(εr)

]1−λ

= ψλ (t)ψ1−λ (u)

⇒ logψ (λt+ (1− λ)u) < λ logψ (t) + (1− λ) logψ (u) .

The rejection region of the test is

Aψ (γ‖xr‖) > ψ (δ‖xr‖)⇔ h (‖xr‖) ≡ logA+ logψ (γ‖xr‖)− logψ (δ‖xr‖) > 0 .

If logA ≤ 0, then h(0) ≤ 0, and since logψ(·) is increasing, h′(t) < 0 for all t > 0, so

that the above inequality holds for all t > 0, which is clearly impossible if α < 1. Then it

should be that logA > 0 and h(0) > 0. Now there should be at least one t0 > 0 such that

h(t0) = 0 (since α < 1), and necessarily h′(t0) < 0. Since ψ(·) is logarithmically strictly

convex and δ > γ, h′′(t) < 0 for all t > 0. Therefore h′(t) < 0 for all t > t0, that is t0 is
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unique. The test is then ‖xr‖2 < c for some constant c, which also writes

x′

 Ir 0

0 0

x = z′Pz < c .

Hence the most powerful Bayes test of level α obtains for c = cα,r,δ2 . Let us check that

this test is minimax of level α. We have

Eµπ(Z) = P [Z ′PZ < c] = P
[
χ2
r(µ
′Pµ) < c

]
.

As this probability is decreasing in µ′Pµ for each c,

Eµπ(Z) = P
[
χ2
r(µ
′Pµ) < c

]
≤ P [χ2

r(δ
2) < c] for µ′Pµ ≥ δ2

Eµπ(Z) = P
[
χ2
r(µ
′Pµ) < c

]
≥ P [χ2

r(γ
2) < c] for µ′Pµ ≤ γ2 ,

which yields

sup
µ∈H

Eµπ(X) = Eµπ(X) ∀µ ∈ Qδ and inf
µ∈K(γ)

Eµπ(X) = Eµπ(X) ∀µ ∈ Qγ .

Hence the test is minimax, see e.g. Borovkov (1998, Theorem 49.1), and is unbiased

by definition of a minimax test. Since it is most powerful for testing H against K (γ)

under Qδ and Qγ and independent of γ, it is the most powerful test of H against K(0).

Moreover, it is also UMP among tests invariant to orthogonal transformations.

Proof of Theorem 4.1. We focus on the Hausman-Wald test, which is more convenient

to deal with because it involves the basic parameter vector. We then explain briefly how

the result extends to the other tests sequences.

Let I0 = I(θ0), P0 be the orthogonal projection matrix on I−1/2(θ0)∇θg(θ0), and define

Ī = I(θ̄) and P̄ similarly.

i. Since Eθ0l(X, θ0) ≥ Eθ0l(X, θc0) ≥ Eθ0l(X, θ̄),

0 ≤ Eθ0l(X, θ0)− Eθ0l(X, θc0) ≤ Eθ0l(X, θ0)− Eθ0l(X, θ̄) . (6.9)

Since ‖θ0 − θ̄‖ = O(n−1/2), a Taylor expansion yields

Eθ0l(X, θ̄)− Eθ0l(X, θ0) = (1/2)
(
θ0 − θ̄

)′
I(θ0)

(
θ0 − θ̄

)
(1 + o(1)) = O(n−1)
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uniformly in θ0 ∈ N (θ̄,M). Hence from (6.9) and another Taylor expansion

2 KLIC = (θ0 − θc0)′ I0 (θ0 − θc0) (1 + o(1)) = O(n−1) (6.10)

uniformly in θ0. This shows that ‖θ0 − θc0‖ = O(n−1/2). From Lemma 2.1’s proof,

(θ0 − θc0)′ I0 (θ0 − θc0) = (θ0 − θc0)′ I
1/2
0 P0I

1/2
0 (θ0 − θc0) (1 + o(1)) .

From the uniform continuity of I(θ) and ∇θg(θ) in N (θ̄,M),

(θ0 − θc0)′ I0 (θ0 − θc0) = (θ0 − θc0)′ Ī1/2P̄ Ī1/2 (θ0 − θc0) (1 + o(1)) . (6.11)

By another Taylor expansion and the continuity of ∇′θg(·) ,

g(θc0) = 0 = g(θ̄) +∇′θg(θ̄)
(
θc0 − θ̄

)
+ o(‖θc0 − θ̄‖)⇒ P̄ Ī1/2

(
θc0 − θ̄

)
= o(‖θc0 − θ̄‖) .

Expand the right-hand side term of (6.11) to obtain

(θ0 − θc0)′ I0 (θ0 − θc0)′ = n−1h′ĪP̄ Īh (1 + o(1)) , (6.12)

uniformly in θ0 ∈ N (θ̄,M).

ii. Since the sequence of experiments P n
θ̄+hn−1/2 converges to a limiting normal ex-

periment Z with unknown mean h and known covariance matrix Ī−1, it follows that we

can approximate pointwise the power of any test ϕn by the power of a test in the limit

experiment, see Van der Vaart (1998, Theorem 15.1) and Lehman and Romano (2005,

Theorem 13.4.1). Since the limit hypothesis is h′ĪP̄ Īh < δ2, apply Lemma 4.2 to deduce

the bounds (4.5) and (4.6).

iii. Let ∆n = n−1/2
∑n

t=1∇θ log f(Xt; θ̄). Under Assumptions A and B, standard

results on maximum likelihood estimation, see e.g. Gourieroux and Monfort (1989), White

(1994), Van der Vaart (1998), imply that under Pn
θ̄

√
n
(
θ̂n − θ̄

)
= −Ī−1∆n + op(1) ,

√
n
(
θ̂cn − θ̄

)
= Ī−1/2M̄ Ī1/2

√
n
(
θ̂n − θ̄

)
+ op(1) ,

where M̄ = Ip − P̄ . Under Assumption A, the model is differentiable in quadratic mean

over Θ, see van der Vaart (1998, Lemma 7.6), and local asymptotic normality of the
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log-likelihood ratio follows, that is

√
n ln

n∏
t=1

fθ̄+hn−1/2(Xt)

fθ̄(Xt)
= h′∆n − h′Īh/2 + op(1) ∀h ∈ Rp .

Since ∆n
d−→N(0, Ī) under Pn

θ̄
, we obtain by Le Cam’s third Lemma, see e.g. van der

Vaart (1998), that for under Pn
θ̄+hn−1/2 and for any h ∈ Rp

√
n
(
θ̂n − θ̄

)
≡ τn = Z + op(1) , Z ∼ N(h, Ī−1) ,

√
n
(
θ̂cn − θ̄

)
= Ī−1/2M̄ Ī1/2τn + op(1) .

This yields
√
n
(
θ̂n − θ̂cn

)
= Ī−1/2P̄ Ī1/2τn for any h ∈ Rp. Since I(θ̂n) = Ī + op(1), then

for any h ∈ Rp

n
(
θ̂n − θ̂cn

)′
In(θ̂n)

(
θ̂n − θ̂cn

)
= n

(
θ̂n − θ̂cn

)′
Ī
(
θ̂n − θ̂cn

)
+op(1) = τnĪ

1/2P̄ Ī1/2τn+op(1) .

iv. Consider π(τn), where π is the test defined in Lemma 4.2. Then Eθ̄+hn−1/2πHn =

Eθ̄+hn−1/2π(τn) + o(1) pointwise in h ∈ Rp and τnĪ
1/2P̄ Ī1/2τn is for any h ∈ Rp asymptoti-

cally equivalent to a χ2
r(h
′Ī1/2P̄ Ī1/2h), see Rao and Mitra (1971, Lemma 9.12). As π(τn)

test rejects HH
n when τnĪ

1/2P̄ Ī1/2τn < cα,r,δ2 ,

Eθ̄+hn−1/2π(τn) = P
[
τnĪ

1/2P̄ Ī1/2τn < cα,r,δ2
]
→ P

[
χ2
r(h
′Ī1/2P̄ Ī1/2h) < cα,r,δ2

]
.

In particular, π(τn) and thus πHn are locally pointwise asymptotic level α.

Since π is Bayesian of level α for a priori measures Qδ and Qγ and

EQγπ(τn) =

∫
S(γ)

Eθ̄+hn−1/2π(τn) dQγ → EQγπ(Z)

by the Lebesgue dominated convergence theorem, π(τn) and thus πHn are also asymptoti-

cally Bayesian level α for the same a priori measures.

For any other test sequence ϕn of asymptotically Bayesian level α,

lim sup
n→∞

inf
K(γ)

Eθ̄+hn−1/2ϕn ≤ lim sup
n→∞

EQγϕn ≤ lim sup
n→∞

EQγπ(τn) .
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But lim supn→∞ EQγπ(τn) = EQγπ(Z) = infK(γ) Ehπ(Z) = limn→∞ infK(γ) Eθ̄+hn−1/2π(τn).

Gathering results,

lim inf
n→∞

(
inf
K(γ)

Eθ̄+hn−1/2π(τn)− inf
K(γ)

Eθ̄+hn−1/2ϕn

)
≥ 0 ,

which shows that π(τn) and thus πHn are locally asymptotically maximin.

Consider a test sequence ϕn of pointwise asymptotic level α and invariant to orthogonal

transformations. Then for any γ and any h ∈ S(γ)

lim sup
n→∞

Eθ̄+hn−1/2ϕn ≤ lim sup
n→∞

EQγϕn ≤ lim sup
n→∞

EQγπ(τn) = lim
n→∞

Eθ̄+hn−1/2π(τn) ,

so that π(τn) and thus πHn are locally asymptotically UMP among invariant tests.

From (6.12) and the continuity of the power function of π(τn), deduce that the same

local asymptotic properties hold for π(τn), and thus πHn , as tests of HH
n against KH

n (γ).

Finally note that for θ0 such that n1/2 ming(θ)=0 ‖θ0−θ‖ → ∞, n1/2τn →∞ and the power

of both tests tends pointwise to zero.

v. To extend the result to the LR test, use (6.10) to deduce that limits of infima

on KH
n ∩ N (θ̄,M) are equal to limits of infima KLR

n ∩ N (θ̄,M). The local asymptotic

equivalence of the LR test follows easily from the local asymptotic equivalence of the LR

statistic to H, which follows by standard arguments, see e.g. Van der Vaart (1998). The

result extends to the other tests following the same lines.
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