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Abstract
Linear cointegration is known to have the important property of invariance un-

der temporal translation. The same property is shown not to apply for nonlinear
cointegration. The requisite limit theory involves sample covariances of integrable
transformations of non-stationary sequences and time translated sequences, allowing
for the presence of a bandwidth parameter so as to accommodate kernel regression.
The theory is an extension of Wang and Phillips (2009a) and is useful for the analysis
of nonparametric regression models with a misspeci�ed lag structure and in situations
where temporal aggregation issues arise. The limit properties of the Nadaraya-Watson
(NW) estimator for cointegrating regression under misspeci�ed lag structure are de-
rived, showing the NW estimator to be inconsistent, in general, with a �pseudo-true
function�limit that is a local average of the true regression function. In this respect
nonlinear cointegrating regression di¤ers importantly from conventional linear coin-
tegration which is invariant to time translation. When centred on the pseudo-true
function and appropriately scaled, the NW estimator still has a mixed Gaussian limit
distribution. The convergence rates are the same as those obtained under correct
speci�cation but the variance of the limit distribution is larger. Moreover, we show
that when dynamic misspeci�cation is severe, convergence to some pseudo-true func-
tion may not hold. The estimator can be divergent or vanishing in this case. Some
applications of the limit theory to non-linear distributed lag cointegrating regres-
sion are given and the practical import of the results for index models, functional
regression models, and temporal aggregation are discussed.
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1 Introduction

Arguably, any econometric model is an abstraction of reality rather than a true data gen-
erating mechanism. Hence, any econometric model is potentially misspeci�ed. Even if
observed economic data were generated by the econometric models used in practice, there
is a myriad of ways one could depart from the true data generating mechanism. There-
fore, it is important to know the limit properties of various estimators, when the underling
model is misspeci�ed. A series of papers in the econometric and statistics literature at-
tempts to cast light on this problem. See for example Berk (1966, 1970), Huber (1967),
White (1981, 1982), Domowitz andWhite (1982), Gourieroux, Monfort and Trognon (1984)
inter alia. Some of the questions raised by the aforementioned papers are summarised by
White (1982):

�If one does not assume that the probability model is correctly speci�ed, it is natural to
ask what happens to the properties of the [maximum likelihood ] estimator. Does it still con-
verge to some limit asymptotically, and does this limit have any meaning? If the estimator
is somehow consistent, is it also asymptotically normal?�

It is well known that, under certain conditions, parametric estimators of stationary
misspeci�ed models have a well de�ned limit referred to in the econometric literature as
�pseudo-true value�. The pseudo-true value can be di¤erent than the parameter of in-
terest and is determined by the value that optimises certain limit criterion function. For
instance, when NLS is the relevant estimation procedure, the pseudo-true value is the ar-
gument that minimises the asymptotic mean square error between the true and the �tted
objective functions (see for example White, 1981; Bierens, 1984). For maximum likelihood
estimation, the pseudo-true value is the argument that maximises the Kullback-Leibler
Information Criterion (KLIC) (see for example Huber 1967; Akaike, 1973; White 1982).
Further, it is known that estimators of misspeci�ed stationary models are

p
n-convergent

and have Gaussian limit distribution. The asymptotic analysis of misspeci�ed models is not
only of theoretical interest. To obtain asymptotic power rates for various speci�cation tests
e.g. Ramsey (1969), Bierens (1990) (tests without speci�c alternative) knowledge about
the asymptotic behaviour of the estimator under misspecication is necessary. Moreover,
to determine the limit distribution of certain model selection statistics under the null hy-
pothesis, e.g. Cox (1961, 1962), Davidson and MacKinnon (1981) and Vuong (1989) (tests
with speci�c alternative), the estimator�s limit distribution about the pseudo-true value, is
required.
The aforementioned literature focuses on stationary parametric misspeci�ed models.

Misspeci�ed nonstationary models have received less attention. The analysis of nonstation-
ary misspeci�ed models became possible after recent theoretical developments. Although
limit theory for linear models with unit roots was provided about twenty �ve years ago (e.g.
Phillips, 1986, 1987; Chan and Wei, 1987) limit theory for nonlinear models with integrated
variables is a relatively recent development. Park and Phillips (1999, 2001) developed a
limit theory for nonlinear transformations of unit root processes that provides a theoret-
ical base for modeling nonlinear long-run relations in a parametric framework (see also
Chang, Park and Phillips, 2001). Other subsequent work (Guerre, 2004; Karlsen, Mykel-
bust and Tjøstheim, 2007; Schienle, 2008; Wang and Phillips, 2009a,b,c;) has developed a
limit theory for nonparametric cointegrating regression using Markov chain and local time
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asymptotics. In a recent paper Kasparis (2009) provides asymptotic analysis of parametric
misspeci�ed models, utilising the Park and Phillips (2001) framework. It shown that the
asymptotic behaviour of estimators relating to nonstationary misspeci�ed models can be
drastically di¤erent than that known for stationary misspeci�ed models. In many cases es-
timators converge to boundary points of the parameter space. When the parameter space
in unbounded, convergence to pseudo-true value does not always hold. Estimators can be
divergent. Phillips (2009) provides limit theory for spurious non-parametric regression. In
particular, Phillips (2009) considers the case where a nonstationary process is regressed on
a possibly irrelevant integrated process by kernel methods. When the regression is spurious,
the resultant estimator is

p
n-divergent. The current paper takes the Wang and Phillips

(2009a; hereafter WP) framework and analyses the e¤ects of misspeci�cation relating to
the lag structure of the model. This kind of misspeci�cation is potentially relevant in a va-
riety of contexts and can be especially relevant in situations in which temporal aggregation
issues arise.
The current work shows that the consequences of dynamic misspeci�cation in a non-

stationary framework, largely depend on the nature of the regression function and on the
nature of the functions involved in the estimation procedure. As shown in Park and Phillips
(1999, 2000, 2001), the limit theory for nonlinear transformations of integrated processes
can be quite di¤erent than that which is well known for linear models. Park and Phillips
consider two families of nonlinear functions of unit root processes: locally integrable (LI )
functions and integrable (I ) functions. The linear cointegrating model, for instance, is
locally integrable and well studied. Correspondingly, the limit theory for smooth locally
integrable models tends to be similar to that of standard cointegrating models. On the
other hand the limit theory for integrable models is very di¤erent. Sample averages of
integrable transformations of unit root time series exhibit a form of weak intensity �even
weaker than that of an i.i.d. or stationary time series, which typically carry a signal that is
of the same order of magnitude as the sample size n. The explanation for this reduction in
intensity is that integrable functions attenuate the e¤ects of large deviations of the process
from the origin. Since nonstationary time series like random walks spend much of their time
away from the origin, this attenuation leads to an overall reduction in the sample intensity
of such functions. In addition, for integrable functions, the limit theory is determined by
the local time of the limit process of the standardized time series at some point like the
origin, and not by the local time averaged over the whole real line, as in the case of sample
functions in the LI family. A typical example of the latter is the sample variance of a unit
root process whose limit behavior takes the form of a quadratic functional of Brownian
motion which can be rewritten as a spatial integral (a spatial sample variance, in fact)
over the whole real line weighted by the local time density process, as explained in Phillips
(2001).
In this paper we stress another di¤erence between the two families. LI models are

typically invariant to �nite lags, at least as far as asymptotic properties are concerned. In
other words, cointegrating relations persist across �nite temporal shifts in the observations
and consistent estimation of these relations applies in the usual way. On the other hand
I transformations are not invariant to �nite lags. This fact has the following important
implication. Contrary to LI models, misspecifying the lag structure in an I regression, can
lead to inconsistent estimation. For instance, suppose that the true model is the simple
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linear in parameters nonlinear cointegrated system

yt = �fo(xt) + ut, (1)

where � is an unknown parameter, fo some regression function, �xt is iid (0; �2x) and ut is
some independent iid (0; �2u) error. In place of (1), suppose that the following dynamically
misspeci�ed model is estimated by least squares (LS):

yt = �̂fo(xt�1) + ût:

If the regression function fo is continuous and locally integrable it can be shown easily (see,
for example, Kasparis 2008, Lemma A1(b)) that the LS estimator in this case

�̂ = �

nX
t=1

fo(xt)fo(xt�1)

nX
t=1

fo(xt�1)2
+ op(1) = �

nX
t=1

fo(xt�1)
2

nX
t=1

fo(xt�1)2
+ op(1) = � + op(1);

and so �̂ is consistent for � in spite of the lag misspeci�cation, just as in conventional linear
cointegrating regression. On the other hand, if the regression function fo is integrable then
it follows directly from our limit theory (Theorem 1 below) that

�̂ = �

nX
t=1

fo(xt)fo(xt�1)

nX
t=1

fo(xt�1)2
+ op(1) = �

E
R1
�1 fo(s)fo(s+�xt)dsR1

�1 fo(s)
2ds

+ op(1);

and �̂ is inconsistent. Thus, small issues of lag speci�cation and timing do matter in
nonlinear nonstationary regression.
One of the main results of the present paper is to show that the Nadaraya-Watson (NW)

kernel estimator f̂(x) of f(x) = �fo(x) exhibits this kind of inconsistency due to the use of
integrable functions in the construction of the kernel regression function. In fact, it will be
shown that, under certain regularity conditions and this type of dynamic mistiming, the
NW estimator converges to a pseudo-true function of the following form

f̂(x)
p! Ef(x+�xt);

involving a functional of f (Theorem 2 and (9) below). Thus, the e¤ect of the lag misspeci-
�cation is to induce a shift in the limit, based on a local average of the function around the
regression point x: In addition, the NW estimator, when centred on the pseudo-true func-
tion and appropriately scaled, has a mixed Gaussian limit distribution. The convergence
rates are the same as those reported by WP. Nevertheless, the variance of the limit distri-
bution is larger than that obtained under correct speci�cation. We also consider the case
of severe dynamic misspeci�cation i.e. the lag di¤erential between the true and the �tted
models is large. For badly misspeci�ed models, limit theory is substantially di¤erent. In
this case, the NW estimator may be divergent, vanishing or converging to some stochastic
integral.
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This kind of dynamic induced inconsistency arises in many other cases where the model
and estimation procedure involves integrable functions and timing issues are relevant in
speci�cation. For example, the maximum likelihood estimator of discrete choice models
involves integrable functions (see Park and Phillips, 2000) and will be similarly subject
to the e¤ects of dynamic speci�cation error. Issues of timing in dynamic speci�cation are
likely to be particularly important in market intervention models of the type studied in Hu
and Phillips (2004).
We start the analysis (Section 2) by providing a basic limit result, useful for the analysis

of misspeci�ed non-parametric models. We consider sample covariances of functions of non-
stationary sequences and non-contemporaneous integrable functions of such sequences. A
bandwidth parameter is permitted in the integrable functions, thereby making the resultant
limit theory relevant in non parametric estimation. The limit result given here extends some
of the theory of WP and makes substantial use of that framework. WP consider sample
sums of integrable tranformations of non-stationary time series that involve a bandwidth
sequence and apply their theory to nonparametric nonstationary regression with correctly
speci�ed lag structure. This limit theory is also useful for parametric models. For instance,
the basic limit result we provide extends earlier work on parametric models (e.g. Park
and Phillips, 1999; Marmer, 2007; Kasparis, 2009) to a dynamic framework. Moreover, the
limit theory of Section 2 is utilised by Kasparis and Phillips (2009a) who provide robust
inference in cointegrated systems, when exact integration properties of the covariates are
unknown. Our work is also related to Kasparis, Phillips and Magdalinos (2008), who
consider parametric IV estimation of models with integrable functions where no bandwidth
elements are involved.
The WP limit theory has also been extended by Phillips (2009) in a di¤erent direction

where the focus is spurious non-parametric regression. That work provides a limit theory
for the sample covariance of a non-stationary sequence and a kernel function of another
(and possibly unrelated) nonstationary sequence. It is indirectly related to the current
paper because some similar sample covariances arise in the limit theory.
The remainder of the paper is organized as follows. Section 2 provides the model

framework, assumptions and some preliminary theory. Section 3 gives the main results.
Section 4 provides some applications in contexts of interest for applied work, and Section
5 concludes. Technical results and proofs are given in the Appendices. Before proceeding
to the next section, we introduce some notation. For any two real numbers a and b, a _ b
(a^ b) denotes their maximum (minimum). As usual, =d stands for distributional equality.

2 First results

This section provides asymptotic theory for sample covariances of integrable transforma-
tions of nonstationary sequences and locally integrable transformation of time sequences.
In particular we consider sample covariance terms of the form

Sn(�) :=
cn
n

[n�]X
t=1

f (xt�r) g

�
cn

�
xt�s � xp

n

��
; 0 < � � 1; (2)

where xt is an I(1) or nearly integrated process, r and s are (possibly di¤erent) positive
integers. Moreover, g is some integrable function whereas the function f is locally inte-
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grable. Finally, cn is some deterministic sequence of real numbers. The purpose of cn is to
allow for a bandwidth parameter. The bandwidth parameter, h say, can be obtained by
setting hn =

p
n=cn. Therefore, (2) involves a sample covariance of some locally integrable

transformation and some integrable transformation of time translated time series. The term
under consideration relates to the recent work of WP. Setting f = 1 in (2), we obtain the
sample sum analysed by WP.
The sample term of (2) is relevant to both parametric and non-parametric estimation.

In non-parametric estimation, the integrable function g would typically play the role of
some kernel smoother, whereas the locally integrable function f would correspond to some
regression function. Our limit results for Sn are utilised in the next section, to analyse
the properties of kernel regressions under dynamic misspeci�cation. An application of our
limit theory to correctly speci�ed functional coe¢ cient models with a unit root is also
provided (see Example 5 below). In parametric estimation, g could correspond to some
instrument. For instance, the covariance asymptotic results, provided in this section, are
useful for the analysis of parametric distributed lag models, where the regression function
is an integrable transformation of some integrated covariate (see Example 6 below). Limit
theory for integrable regression functions, of trending variables, was �rst provided by Park
and Phillips (1999, 2001). Marmer (2007) and Kasparis (2009) utilise this earlier work
and develop speci�cation tests for integrable regressions which are subsequently employed
to test for stock returns predictability. The limit theory of this section can be readily
utilised to extend the work of Park and Phillips (1999, 2001), Marmer (2007) and Kasparis
(2009a) to dynamic models. In addition, our covariance asymptotics are exploited by
Kasparis and Phillips (2009) who develop robust inference, free of nuisance parameters,
when the integration properties of the regressor are unknown (see also Kasparis, Phillips
and Magdalinos, 2008). The key idea in the aforementioned work is the utilisation of some
integrable instrument. This approach provides standard inference when the regressor is
I(0), I(1) or nearly integrated. In addition, inference is free of the nuisance local to unity
parameter, when some covariate is a nearly integrated process.
We next specify the proporties of xt, f and g in detail. The variable xt is a nonstationary

process de�ned on some probability space (
;F ;P). For example, in many applications it
will be su¢ cient for fxtgnt=1 to be generated as a unit root process or as a near integrated
array of the commonly used form

xt = �nxt�1 + vt; x0 = 0; (3)

with �n = 1� co
n
for some constant co: To avoid unnecessary triangular array complications

in the development that follows we focus on the unit root generating model for xt, although
our main results continue to hold with minor changes under (3).
Assumptions 2.1 and 2.2 below are largely based on WP. We start by introducing the

following notation used in that work. First, cn is a sequence of real numbers satisfying cn !
1. It is convenient to standardise xt as follows: xt;n = xt=

p
n. Then, xt;n 0 � t � n; n � 1 is

a triangular array and the standardisation ensures that xt;n has a limit distribution. We also
introduce the sequence of real numbers dl;k;n =

p
l � k=

p
n. Note that (xl;n � xk;n) =dl;k;n

has a limit distribution as l�k !1. The sequence cn is a secondary sequence which di¤ers
from

p
n by a bandwidth factor, so that we usually have cn =

p
n=hn for some bandwidth

sequence hn ! 0 arising in the kernel estimation. As in WP, it is convenient also to use
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the set notation.


n (�) = f(l; k) : �n � k � (1� �)n; k + �n � l � ng ; 0 < � < 1:

Assumption 2.1
For all 0 � k < l � n; n � 1, there exist a sequence of �-�elds Fk;n (de�ne F0;n = �f?;


g, the trivial �-�eld) such that,
(a) xk is adapted to Fn;k�1 and conditional on Fn;k�1, (xl;n � xk;n) =dl;k;n has density

function hl;k;n(x) such that
(i) supl;k;n supx hl;k;n(x) = C <1
(ii) for some k0 > 0,

sup
(l;k)2
n(�1=(2k0))

sup
jxj��

jhl;k;n(x)� hl;k;n(0)j = op(1);

when n!1 �rst and then � ! 0.
(b) Conditional on Fn;(r^s)�1, xr � xs has density function pr�s(v), such thatZ 1

�1
jf(x+ v)j pr�s(v)dv <1;

for each x 2 R.

Assumption 2.2
(a) The process x[n�];n := x[n�]=

p
n on the Skorohod space D[0; 1], converges weakly to

a Gaussian process G(�) that has a continuous local time process LG(�; s).
(b) On a suitable probability space there exists a process xot;n such that

�
xot;n; 1 � t � n

�
=d

(xt;n; 1 � t � n) and sup0���1
���xo[n�];n �G(�)��� = op(1).

In some cases it is more convenient to work with the Skorokhod copy xot;n, instead of
xt;n. In the paper, we establish weak convergence of the NW estimator to some well de�ned
deterministic limit (pseudo-true function), when xt is the regression covariate. In addition,
we provide limit distribution theory for the NW about the pseudo-true function. There-
fore, for our purposes, there is no loss of generality if we assume that

�
xot;n; 1 � t � n

�
=

(xt;n; 1 � t � n) instead of
�
xot;n; 1 � t � n

�
=d (xt;n; 1 � t � n). Due to this convention,

p! convergence, for sample functionals of xt, should be interpreted as
d! convergence, unless

the limit is deterministic.

Assumption 2.3 Set 0 < 
 � 1:
(a) limn!1

p
n=cn = 0, where cn satis�es cn !1;

(b) For n large enough,
���f �pncn z + x� v�� f (x� v)��� � (pn=cn)
 f1(z; x; v) withR

v

R
z
f1(z; x; v) jg(z)j p(v)dzdv <1, for each x.

(c)
R
z
jzj jg (z)j dz and

R
v
jf (x� v)jq pr�s(v) jvj dv <1 for all x and some q > 1.

Assumption 2.3� Set 0 < 
 � 1:
(a) limn!1

p
n=cn = m0 > 0,
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(b) for n large enough,
���f �pncn z + x� v�� f (m0z + x� v)

��� � ���pncn �m0

���
 f1(z; x; v)
with

R
v

R
z
f1(z; x; v) jg(z)j p(v)dzdv <1, for each x.

(c)
R
s

R
v
jf (m0z + x� v) g(z)j pr�s(v) (jvj+ jzj) dvdz <1, for each x and m0 � 0.

Assumptions 2.2 (a) and (b) are the same as Assumptions 2.2 and 2.3 in WP, and
Assumption 2.1 (a) is the same as Assumption 2.3 of WP. Note that when xt is given
by (3), Assumption 2.2 is satis�ed. In this case, G(t) is either a Brownian Motion or
an Ornstein-Uhlenbeck process. Assumption 2.1 (c) is a simple convolution integrability
condition, which is clearly satis�ed under suitable majorization, for example whenever
the density pr�s is bounded and f is integrable. When cn =

p
n=h; Assumption 2.3 (a)

requires that the bandwidth sequence h! 0 as n!1: By contrast, Assumption 2.3� (a)
corresponds in this case to �xed h. When m0 = 1; this reduces to a condition relevant to a
parametric estimation problem. The remaining parts of Assumptions 2.3 and 2.3� impose
local Lipschitz and integrability conditions on f; which are useful technical conditions.
The following result provides a limit theory for the term Sn of (2). The result is an

extension of Theorem 1 of WP and relates also to Theorem 1 of Phillips (2009), although
neither of the earlier results involved an additional integrable function f in the sample
function, as occurs in (2). The scale constant � in the limit results (4) and (5), below,
similarly involves the function f; whereas in WP, � is the energy functional � =

R1
�1 g (z) dz

involving only g:
In what follows it will be convenient to use the notation1X

rs

vi = 1 (s > r)
sX

i=r+1

vi � 1 (r > s)
rX

i=s+1

vi:

Theorem 1 Suppose that Assumption 2.1 and the following conditions hold:
(a)
���f �pncn z + x� v���� � f0 (z; x; v) for n large enough, with Rv Rz f0(z; x; v) jg(z)j pr�s(v)dzdv <

1,R
v

�R
z
jf0 (z; x; v)j jg (z)j dz

	2
pr�s(v)dv < 1 and

R
v

R
z
f 20 (z; x; v)g

2(z)pr�s(v)dzdv < 1,
for and each x 2 R, and r; s 2 N;
(b) Assumption 2.3 holds and

� := Ef

 
x+

X
rs

vi

!Z 1

�1
g (z) dz;

or
(c) Assumption 2.3 � holds and

� := E

Z 1

�1
f

 
m0z + x+

X
rs

vi

!
g(z)dz:

1Observe that for s > r we have

xt�r � xt�s =
s�rX
j=1

vt�s+j =d

s�rX
j=1

vj =d

sX
j=r+1

vj ;

by stationarity (similarly xt�r � xt�s =d �
Pr

j=s+1 vj , for s < r).
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We have the following:

(i) If Assumption 2.2(a) holds, then, as n!1

Sn(�)
d! �L(�; 0): (4)

(ii) If Assumption 2.2(b) holds, then, as n!1

sup
0���1

jSn(�)� �L(�; 0)j
p! 0: (5)

When f = 1; Sn reduces to

cn
n

[n�]X
t=1

g

�
cn

�
xt�s;n �

xp
n

��
d!
�Z 1

�1
g (z) dz

�
L(�; 0);

corresponding to theorem 1 in WP. When m0 = 1, x = 0, r = s and cn �
p
n, the sample

function e¤ectively becomes 1p
n

P[n�]
t=1 f (xt�r) g (xt�r) and we have the conventional limit

theory

1p
n

[n�]X
t=1

f (xt�r) g (xt�r)
d!
�Z 1

�1
f (z) g (z) dz

�
L(�; 0)

for integrable fg, as given in Park and Phillips (1999).

3 Kernel regression under dynamic misspeci�caion

We now proceed to develop a limit theory for the Nadaraya-Watson kernel regression esti-
mator in the case of dynamic misspeci�cation. It is well known (e.g. White, 1981; White
1982; Domowitz and White, 1982;) that, under certain regularity conditions, parametric
estimators of misspeci�ed models convergence to some well de�ned limit, referred to in the
econometric literature as �pseudo-true value�. The pseudo-true value is typically di¤erent
than the parameter of interest. In the current paper it is demonstrated that, when the �t-
ted model su¤ers from dynamic misspeci�cation, and under certain regularity conditions,
the NW estimator has a well de�ned limit. When the dynamic misspeci�cation is mild
-i.e. the lag di¤erential between the true models is �nite-, the NW has a �pseudo-true
function� limit. The pseudo-true function corresponds to the true regression function as
long as the latter is linear. In general the pseudo-true function di¤ers from the true func-
tion and is determined by some local average of the true regression function. If dynamic
misspeci�cation is severe -i.e. the lag di¤erential between the true and �itted models goes
to in�nity in large samples-, there is no pseudo-true function limit. In this case, the NW
divereges, vanishes or converges to some random limit, depending on the properties of the
true regression function.
Throughout the paper, we assume that the time series fytgnt=1 is generated by the model:

yt = f(xt�r) + ut, for some integer lag r � 0: (6)
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where f is a locally integrable regresson function. The regressor xt is given by (3), whereas
the regression error ut is a martingale di¤erence sequence. Both xt and ut are de�ned on
the probability space (
;F ;P).
We concentrate on the case where a version of (6) is �tted by nonparametric kernel

regression. However, the �tted model involves a lag misspeci�cation resulting from incorrect
timing, so that the �tted model has the (lag misspeci�ed) form

yt = f̂(xt�s) + ût, for some �xed integer lag s � 0, r 6= s; (7)

where f̂ is the NW regression estimator de�ned by

f̂(x) =

Pn
t=sK

�
xt�s�x
h

�
ytPn

t=sK
�
xt�s�x
h

� ; (8)

for some kernel function K. In Subsection 3.1, the integer lags r and s, in (6), (7), are as-
sumed to be �xed. In Subsection 3.2 we consider the case of severe dynamic misspeci�cation
i.e. we assume that the lag di¤erentional jr � sj ! 1, as n!1.

3.1 Mild dynamic misspeci�cation

The limit results of Theorem 1 are utilised in this subsection, for the asymptotic analysis
of f̂ . In particular, the function g of Theorem 1 will play the role of some kernel function
relating to (8). We need to be more speci�c about the components of (6), (7) and (8). We
start with the some regularity conditions on the regression function and the kernel. The
subsequent conditions are similar to those used in WP.

Assumption 3.1 Assume that the following hold:
(a) The regression function f of (6) satis�es Assumption 2.3.
(b) The kernel K of (8) equals the function g of Assumption 2.3 and cn :=

p
n=h. In

addition,
R1
�1K(s)ds = 1 and sups jK(s)j <1.

Assumption 3.2 For given x, there exists a real function f1(s; x) such that, when h is
su¢ cently small, jEf (hy + x+

P
rs vi)� Ef (x+

P
rs vi)j � h
f1(y; x) with 0 < 
 � 1,

for all y 2 R and
R1
�1K(s)f1(s; x)ds <1. Further, Ef (x+

P
rs vi)

2 <1:

Assumption 3.3 (ut; Fn;t) is a martingale di¤erence sequence such that E(u2t jFn;t�1) =
�2u;t ! �2u; a:s: as t!1.

Assumption 3.4. For any m > 0; sup1�t�nE(u
2+m
t jFn;t�1) <1 a.s.

Assumption 3.2 is a technical condition that imposes smoothness on the limit of f̂(x).
Assumption 3.3 is common in the literature of nonlinear models with integrated time series
e.g. Park and Phillips (2000, 2001), Wang and Phillips (2009a). Note that Assumption
2.2(b) and Assumption 3.3 postulate that yt is predetermined i.e. E(ytjFn;t�1) = f(xt�r).
Assumption 3.3 is important for our derivations as it allows the use of martingale conver-
gence methods. Assumption 3.3 has been recently relaxed by Wang and Phillips (2009b)
who consider structural nonparametric regressions with unit roots. Relaxation of the
martingale di¤erence assumption complicates asymptotic theory substantially. Wang and
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Phillips (2009b) develop novel approximate martingale convergence methods. Their ap-
proach is signi�cantly di¤erent than that followed in the current paper. The following
result gives the probability limit and limit distribution of f̂(x); showing the e¤ect of dy-
namic misspeci�cation.

Theorem 2. Suppose that:
(a) Assumptions 2.1, 2.2. and 3.1-3.3 hold.
(b) The bandwidth h satis�es

p
nh!1 and h! 0 as n!1.

Then, as n!1,

f̂(x)
p! Ef

 
x+

X
rs

vi

!
: (9)

In addition, suppose the following hold:
(c) Assumption 3.4 holds.
(d) The component functions ff 2; f4g and the power kernel functions fK2; K4g in the

sample quantities cn
n

Pn
t=1 f

2 (
p
nxt�r;n)K

2
h
cn

�
xt�s;n � xp

n

�i
and

cn
n

Pn
t=1 f

4 (
p
nxt�r;n)K

4
h
cn

�
xt�s;n � xp

n

�i
both satisfy the conditions of Theorem 1.

(e) The bandwidth parameter h satis�es
p
nh1+2
 !1.

Then, as n!1, 
nX
t=1

Kh (xt�s � x)
!1=2 

f̂(x)� Ef
 
x+

X
rs

vi

!!
d! N

�
0; �2

�
; (10)

where �2 = [�2u +Var ff (x+
P

rs vi)g]
R1
�1K(s)

2ds.

The probability limit of the NW kernel estimator f̂(x) is

Ef

 
x+

X
rs

vi

!
=

Z
f (x+ w) pr�s (w) dw; (11)

where
P

rs vi has density pr�s (w) :
2 The limit (11) is an average of f taken around the

value at x with respect to this density. For instance, when s > r we have

xt�r � xt�s =
s�rX
i=1

vt�s+i =d

s�rX
i=1

vi =d

sX
i=r+1

vi;

under stationarity. If r = s then there is no dynamic misspeci�cation in the �tted equation
and the estimate is consistent so that f̂(x)!p f (x) with a limit distribution 

nX
t=1

Kh (xt�s � x)
!1=2 �

f̂(x)� f (x)
�

d! N

�
0; �2u

Z 1

�1
K(s)2ds

�
; (12)

2As in footnote 1 we have X
rs

vi = 1 (s > r)
sX

i=r+1

vi � 1 (r > s)
rX

i=s+1

vi

Then, for s > r; pr�s (w) is the density of xt�r � xt�s =d
Ps

i=r+1 vi; and if s < r; pr�s (w) is the density
of xt�r � xt�s =d �

Pr
i=s+1 vi: So

P
rs vi has density pr�s (w) :

11



as in WP under suitable undersmoothing or choice of h in the regression. Both (12) and
(10) may be adjusted to account for a bias term of O (h2) in the limit theory, as shown in
Wang and Phillips (2009), but in view of the inconsistency already present in (10) there is
little reason to provide that development in the case of misspeci�cation.
The lag misspeci�cation in the �tted nonparametric cointegrating relation (7) produces

both inconsistency and a reduction in precision in the limit theory for the NW estimator.
The limit distributions (10) and (12) di¤er in terms of both centering and variance. The
centering is explained by the inconsistency (9) under mistiming (r 6= s) of the lagged
relationship. The additional variance in the limit distribution (10) occurs due to the term
Varf (x+

P
rs vi), which is non zero whenever r 6= s. After scaling and centering the NW

estimator of (8) on its probability limit we get

�p
nh
�1=2 h

f̂(x)� p lim f̂(x)
i
=

"�p
nh
��1 nX

t=s

Kh (xt�s � x)
#�1

�
�p
nh
��1=2 " nX

t=s

Kh (xt�s � x)ut +
nX
t=s

h
f(xt�r)� p lim f̂(x)

i
Kh (xt�s � x)

#
:(13)

When the �tted model is correctly speci�ed, i.e. r = s, the second term on the last line
of (13) is asymptotically negligible. In fact, the limit distribution of additional term is
determined by the distribution of the increment xt�r � xt�s =

P
rs vi, which is of course

degenerate, when r = s. Under dynamic misspeci�cation however, the limit distribution
of the increment process contributes in the limit variance. The extra component in the
variance is Var ff (x+

P
rs vi)g, which arises as in (4) of Theorem 1 because the limit of

the average conditional variance involves averaging over the distribution of
P

rs vi; just as
it does in the case of the �rst moment. Therefore misspeci�cation in the nonparametric
framework necessarily results in larger limit variance.3

In the special case of linear cointegration with f (xt) = �xt, we have from (9)

Ef

 
x+

X
rs

vi

!
= �x+

X
rs

Evi = �x;

so that kernel regression is consistent under lag misspeci�cation, corresponding to the
temporal invariance of linear cointegrating regression. In this case, (10) becomes 

nX
t=1

Kh (xt�s � x)
!1=2 �

f̂(x)� f (x)
�

d! N
�
0; �2

�
;

3Note misspeci�cation in the parametric framework does not necessarily result in larger asymptotic
variance. For instance denote by �̂ the NLS estimator relating to some misspeci�ed parametric model.
Then the limit distribution of �̂ about its probability limit (i.e. the pseudo-true value) is determined by a
term of the form (e.g. White 1981; Kasparis 2009)

dn

�
�̂ � p lim �̂

�
= �H�1

n � sn;

where dn is some scaling sequence, Hn is the second derivative of the NLS objective function and sn is the
�rst derivative of the NLS objective function. Under misspeci�cation, sn involves additional components.
This is analogous to the nonparametric estimator of (13). Nevertheless, the limit variance of �̂ is not
necessarily larger than that obtained under correct speci�cation. This because, under misspecifcation, Hn
involves additional components as well.

12



with

�2 =
�
�2u + js� rj�2v

� Z 1

�1
K(s)2ds > �2u

Z 1

�1
K(s)2ds;

since Varf
P

rs vig = js� rj�2v: Hence, lag shifts in a linear cointegrating regression do
impact the variance of the limit distribution in kernel regression. The same is true, of
course, for linear parametric cointegrating regression.
It is interesting to compare the limit results given in Theorem 2 with those of a stationary

time series regression. Suppose model (6) is the true model and (7) is the �tted model, as
above, but that xt is a stationary time series satisfying certain asymptotic dependence or
mixing conditions that validate nonparametric regression (see for example Li and Racine,
2007). This type of situation seems not to have been analyzed in the literature. However,
it is readily shown by conventional methods for stationary nonparametric regression that
under suitable regularity and mixing conditions

f̂(x)
p! Ef (xt�rjxt�s = x) ; (14)

which is the analogue for the stationary time series xt of the inconsistency shown in (9).
For when xt follows a unit root process, we have xt�r = xt�s+

Ps�r
i=1 vt�s+i for s > r: Then,

when we condition on xt�s = x for this nonstationary data generating process, the right
side of (14) may be written in the form

Ef

 
xt�s +

s�rX
i=1

vt�s+ijxt�s = x
!
= Ef

 
x+

sX
i=r+1

vi

!
;

which corresponds precisely to the limit in (9) because
P

rs vi =
Ps

i=r+1 vi when s > r by
de�nition. Thus, the e¤ect of dynamic misspeci�cation on inconsistency in nonparametric
regression is the same for nonstationary time series as it is for stationary time series.
For speci�cation testing purposes it is useful to have an error variance estimator. We

consider the following estimator

�̂2 =

Pn
t=1

h
yt � f̂(x)

i2
Kh(xt�s � x)Pn

t=1Kh(xt�s � x)

Under correct speci�cation and a constant error variance �2u; we know from Wang and
Phillips (2009b) that �̂2 = �2u+op(1): Under dynamic misspeci�cation, it turns out that �̂

2

estimates consistently the component that determines the limit variance under misspeci�-
cation. This is demonstrated in the following result.

Theorem 3. Suppose that the conditions of Theorem 2 hold. Then, as n!1,

�̂2
p! �2u +Var

(
f

 
x+

X
rs

vi

!)
:

Moreover, under linearity where f(x) = �x we have

t̂(x; �) :=

 Pn
t=1Kh (xt�s � x)
�̂2
R1
�1K(s)

2ds

!1=2 �
f̂(x)� �x

�
d! N (0; 1) ;

13



as n!1.

Remarks.

(a) Theorem 3 shows that under linearity the t statistic t̂(x; �) d! N (0; 1) under both
correct and incorrect dynamic speci�cation. The statistic may therefore form the
basis of a linearity test that is robust to dynamic misspeci�cation, as we now discuss.

(b) Let �̂ be the least squares estimator �̂ =
Pn

t=1 xtyt=
Pn

t=1 x
2
t : Since �̂ isO (n) consistent

for � under linearity, we have

t̂(x; �̂)
d! N (0; 1) : (15)

Under the alternative speci�cation of (smooth) non-linear asymptotically homoge-
neous f(x) we �nd that

t̂(x; �̂) �
�p
nh
�1=2(

Ef

 
x+

X
rs

vi

!
+
�f (
p
n)
R1
�1 sHf (s)LG(1; s)dsp

n
R1
�1 s

2LG(1; s)ds
x

)
; (16)

where Hf and �f are the limit homogeneous function and asymptotic order of f
respectively (see Park and Phillips, 2001, for full de�nitions). Under the alternative
speci�cation of integrable f(x) (and xf(x)) we �nd that

t̂(x; �̂) �
�p
nh
�1=2(

Ef

 
x+

X
rs

vi

!
+

R1
�1 sf(s)dsLG(1; 0)

n3=2
R1
�1 s

2LG(1; s)ds
x

)
: (17)

Results (16) and (17) show that the simple linearity test statistic t̂(x; �̂) in (15) has
power against both homogeneous and integrable nonlinear functions and is robust to
dynamic speci�cation.

3.2 Severe dynamic misspeci�cation

Next, we consider the consequences of severe dynamic misspeci�cation. Suppose that the
true model is given by (6) and the �tted is

yt = f̂(xt�sn) + ût, (18)

where the sequence sn := [cn] with 0 < c < 1. Consider the processes
�
x[n�]�r; x[n�]�sn

�
=
p
n

on D[0; 1]. Then under (3) and the assumptions of Section 2 we have the following weak
convergence result on D[0; 1]�

x[n�]�r; x[n�]�sn
�
=
p
n)

�
G(�); ~G(�)

�
;

where ~G(�) = G(� � c)1 (1 � � � c).

The NW estimator of (18) does not have a pseudo-true function limit. In particular,
f̂ diverges when f is unbounded locally integrable. For bounded locally integrable f , the
estimator f̂ has a stochastic integral limit. Finally, if f is integrable, f̂ vanishes. The limit
properties of the NW estimator are demonstrated by the following result.
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Theorem 4. Suppose that:
(a) The true model is given by (6) and the �tted model by (18).
(b) Assumptions 2.1, 2.2. and 3.1-3.3 hold.
(c) The bandwidth h satis�es

p
nh!1 and h! 0 as n!1.

(i) Suppose that f is asymptotically homogeneous with homogeneous function Hf and as-
ymptotic order �f i.e. f(�x) = �f (�)Hf (x) + �(x; �) with supx j�(x; �)j = o(�f (�)) as
�!1. In addition, �f (

p
n)
p
h
p
n!1. Then, as n!1,

�f
�p
n
��1

f̂(x)
d! 1

LG(1� c; 0)

Z 1

c

Hf (G(�)) dLG(� � c; 0):

(ii) Suppose that f is integrable with jf (hp1 + p2)j � f0 (p1; p2) for n large enough, withR
p1

R
p1
f0(p1; p2)K(p1)dp1dp2 <1. Then, as n!1,

p
n1=2hf̂(x)

d!MN

�
0; �2u

Z 1

�1
K (s)2 dsL�1G (1� c; 0)

�

Remarks.

(a) For asymptotically homogeneous f the estimator can be divergent. In particular, if
the regression is unbounded, f̂ diverges. The divergence rate is determined by the
asymptotic order function �f . For bounded asymptotically homogeneous functions,
�f is �xed. In this case f̂ has a stochastic integral limit.

(b) Unlike the mild misspeci�cation case, f̂ is inconsistent even if f is linear. In fact, f̂ isp
n-divergent, when the true regression function is a linear one. The consequences of

dynamic misspecifation in this case are analogous to those of spurious nonparanetric
regression (see Phillips, 2009).

(c) For integrable f , f̂ converges in probability to zero at rate
p
n1=2h. The limit dis-

tribution about the estimator�s limit is mixed normal, just like the mild misspeci-
�cation case. In addition, limit variance is larger in this case as well. Note that
L�1G (1� c; 0) > L�1G (1; 0), when 1 > c > 0.

Examples.

(a) Suppose that the regression function f is f(x) = ex=(1+ex) or similar to the Michaelis-
Menten model: f(x) = x(1 + x)�11 (x � 0) (see Bates and Watts, 1998). In both
cases, Hf (x) = 1 (x � 0) and � (�) = 1. Therefore, by virtue of Theorem 4 we get

the stochastic integral limit f̂(x) d! 1
LG(1�c;0)

R 1
c
1 (G(�) > c) dLG(� � c; 0).

(b) Suppose that f(x) = ln jxj. Note that f is asymptotically homogenous with Hf (x) =
1 and � (�) = ln(�). For this regression function the NW diverges. In particular,
ln(
p
n)f̂(x)

p! 1.
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4 Some Practical Applications

Example 1. (Single index model) Suppose that yt is generated by the single index model:

yt = f(�xt + (1� �)xt�1) + ut, 0 � � � 1;

where the regressor xt satis�es Assumptions 2.1 and 2.2 and ut is a martingale di¤erence
sequence satisfying Assumptions 3.3 and 3.4. The �tted model takes the following form

yt = f̂(xt) + ût,

omitting the indexed regressor and therefore misspecifying the lagged dependence in the
relationship. When xt is an integrated process,

�xt + (1� �)xt�1 = xt�1 + �vt = xt � (1� �)vt;

and then
f̂(x)

p! Ef(x� (1� �)vt);
as in Theorem 2 (b). Thus, indexing e¤ects are important in nonlinear models of cointegra-
tion, in contrast to linear models where the temporal invariance of long run linear relations
means that they can be safely ignored.

Example 2. (Temporal aggregation) When a regressor xt is sampled (two times) more
frequently than yt, Ghysels, Santa-Clara and Valkanov (2004, 2006) propose mixed data
sampling (MIDAS) regression models in which the conditional expectation of the dependent
variable yt is a distributed lag of the regressor, which may be recorded at a higher frequency.
A simple example of such a regression arises in the case of temporal aggregation where the
model takes the form

yt = �f(xt) + (1� �)f(xt�1) + ut, 0 � � � 1; (19)

and where xt and ut are as in Example 1. If the �tted model ignores the temporal aggre-
gation in (19) and is a simple nonparametric regression of the form

yt = f̂(xt) + ût,

then Theorem 2 shows that

f̂(x)
p! �f(x) + (1� �)Ef(x� vt):

Thus, in the same way as indexing, temporal aggregation has important e¤ects in nonlinear
cointegration models.

Example 3 (Nonparametric unit root autoregression) Suppose that the true model is given
by the autoregression

xt = f(xt�1) + ut; (20)

with f(x) = x; although the linear form of the autoregression is unknown to the econo-
metrician, and where ut is iid (0; �2). The �tted model involves a longer lag and has the
form

xt = f̂(xt�2) + ût: (21)
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Under the true model (20) Assumption 2.2 holds with x[n�];n = 1p
n

P[n�]�2
t=3 ut

d! G(�),
where G(�) is Brownian motion. In view of Theorem 2 we get 

nX
t=1

Kh (xt�2 � x)
!1=2 �

f̂(x)� x
�

d! N

�
0; 2�2u

Z 1

�1
K(s)2ds

�
:

Note that the NW nonparametric estimator is consistent because f(x) is a linear function.
Nevertheless, there is a reduction in accuracy of f̂(x) due to the additional component �2u
in the asymptotic variance. Similar e¤ects occur in the case of linear unit root estimation.
In particular, if (21) is estimated by linear regression in the form

xt = �̂xt�2 + ût;

then conventional weak convergence methods show that

n (�̂� 1) d! 2

�Z 1

0

W 2

��1 Z 1

0

WdW;

so that the limit distribution of the parametric estimator is rescaled by 2:

Example 4. (Misspeci�ed functional coe¢ cient models) Cai, Li and Park (2009, hereafter
CLP) recently considered functional coe¢ cient regression models with possibly nonstation-
ary covariates that determine the functional regression coe¢ cients. The model in CLP has
the form

yt = � (zt)
0 xt + ut; t = 1; :::; n (22)

where yt and zt are scalar, zt is an I(1) process, xt is stationary, and ut is a martingale
di¤erence sequence with constant conditional variance �2 and �nite fourth moments. The
functional coe¢ cient �(:) is the object of nonparametric estimation interest. CLP consider
the local linear nonparametric estimator �̂ (z) of � (z) : Under regularity conditions and
using methods closely related to those of Wang and Phillips (2008), CLP showed that for
any �xed z �̂ (z) is consistent with mixed normal distribution. If (22) is estimated when
the true response function is � (zt�1) ; the methods of the present paper may be used to
show that the nonparametric estimate �̂ (z) has the following limit theory

p
n1=2h

�
�̂ (z)� E f� (z ��zt)g

�
d!MN

�
0;
f�2u +Var [� (z ��zt)]g �0

LWz (1; 0)
[E (xtx

0
t)]
�1
�
:

where h ! 0, �0 =
R
K (s)2 ds and LWz (1; 0) is the local time of some Brownian motion

process. Misspeci�cation of functional regression therefore leads to inconsistency and an in-
crease in limiting variance. The extra component in the variance term is Var [� (z ��zt)].
These results hold for local level and local linear nonparametric regression procedures. Sim-
ilar results also apply in the case of functional coe¢ cient cointegrating regressions, which
have recently been investigated by Xiao (2009) in the case of stationary covariates. A
detailed analysis of these models will be reported elsewhere.

Example 5. (Functional coe¢ cient model with a unit root) Consider the model

yt = � (xt)xt + ut; t = 1; :::; n;
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where xt is an integrated process. Unlike to the functional coe¢ cient model of CLP, the
speci�cation shown above does not involve any stationary regressor. Consider the local
linear estimator" b�(x)

�̂
(1)
(x)

#
= arg min

�0; �1

nX
t=1

[yt � �0xt � �1xt(xt � x)]2Kh (xt � x) ;

where �(1)(x) is the �rst derivative of � (x). The asymptotic analysis of the local linear
estimator involves sample covariance terms like those that appear in (2), with r = s. Set
Dn = diag(1; h). Under certain regularity conditions, a repeated application of Theorem 1
together with the martingale CLT give

p
n1=2hDn

(" b�(x)
�̂
(1)
(x)

#
�
�
�(x)

�(1)(x)

�)
d!MN

�
0; �2u�

�
LG(1; 0)x

2
��1�

;

where

� =

�R1
�1

�
1 s
s s2

�
K(s)ds

��1�R1
�1

�
1 s
s s2

�
K(s)2ds

��R1
�1

�
1 s
s s2

�
K(s)ds

��1
.

Example 6. (Parametric distributed lag cointegrating regression) Suppose that f1 and f2
are integrable functions and that a nonlinear cointegrating relationship between yt and an
integrated process xt takes the following distributed lag form

yt = �1f1(xt) + �2f2(xt�1) + ut; (23)

where xt and ut are again as in Example 1. Let ft = (f1(xt); f2(xt�1))
0, � = (�1; �2)

0 and �̂
be the least squares estimator of � in (23). Applying Theorem 1 gives

1p
n

nX
t=1

ftf
0
t
d! L(1; 0)V;

where

V :=

� R1
�1 f1(s)

2ds E
R1
�1 f1(s+ vt)f2(s)ds

E
R1
�1 f1(s+ vt)f2(s)ds

R1
�1 f2(s)

2ds

�
:

Since V is positive de�nite in general, there is no asymptotic collinearity among the
regressors in (23) at this level of intensity, which contrasts with the linear case where xt
and xt�1 are, of course, trivially cointegrated. In view of the above and the martingale
central limit theorem (e.g. Kasparis, Phillips and Magdalinos, 2008) we have the following
limit theory in this case:

4
p
n
�
�̂ � �

�
d! �uLG(1; 0)

�1=2V �1=2Z; (24)

where Z is standard bivariate normal. Thus, �̂ is consistent and asymptotically mixed
normally distributed with the usual n1=4 rate of convergence that applies for regressors that
are integrable functions of a unit root process (Park and Phillips, 1999, 2001). Unlike the
linear case where the regressors are trivially cointegrated and the limit theory is degenerate,
there is no degeneracy in the limit distribution (24).
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5 Concluding Discussion

The results presented here show that the temporal invariance of linear cointegrating rela-
tions fails in the nonlinear case and mistiming of the regression function results in incon-
sistency in kernel regresion. In consequence, correct dynamic speci�cation takes on new
signi�cance in nonlinear cointegrating systems. Speci�cation tests for nonlinear cointegra-
ton therefore need to take lag distribution and timing e¤ects speci�cally into account.
The nonlinear setting clearly opens up many new possibilities for speci�cation testing,

including testing functional form in a particular locality corresponding to the kernel re-
gression, allowance for short memory in the regression equation errors and endogeneity
in the regressors. The di¤ering e¤ect on nonstationarity of various nonlinear functional
forms in regression also means that simple residual based tests for stationarity, such as
KPSS (1992) tests, may be misleading in the nonlinear context. Indeed, the long run and
memory properties of the regressor may be substantially altered through nonlinear �lter-
ing. Since nonlinear functionals can change the integration order, the dependent variable
in a nonlinear model may well have less memory than the regressor, meaning that mis-
speci�cation may be harder to detect than it is in linear models. Speci�cation tests for
cointegration models where there is nonlinearity of unknown form are therefore likely to
present far greater challenges than in the case of parametric linear cointegration.

6 Appendix A: Supporting Results

The following �ve lemmas extend the WP framework as needed to accommodate sample
covariances of convolution integrable functions (f) and integrable kernels (g) involving xt: It
will be convenient to use notation ��(x) = (2��

2)
�1=2

exp (�x2=2�2) and �(x) = �1(x). We
also often write the density p1 (v) as p (v). Moreover, we introduce the following notation
for conditional expectation and conditional probability respectively: Et (:) = E(: j Fn;t)
and Pt (:) = P(: j Fn;t). In the following proofs, we use A as a generic constant whose
value may change in each location.

Lemma 1. Suppose that
(a) Assumption 2.1 holds.

(b)
���f �pncn z + x� v���� � f0 (z; x; v), for n large enough and

(i)
R
v

R
z
f0(z; x; v) jg(z)j pr�s(v)dzdv <1,

(ii)
R
v

�R
z
jf0 (z; x; v)j jg (z)j dz

	2
pr�s(v)dv <1 and

(iii)
R
v

R
z
f 20 (z; x; v)g

2(z)pr�s(v)dzdv <1,
for r; s 2 N and x 2 R.

Let

Ln;�(�) :=
cn
n

[n�]X
t=1

Z 1

�1
f
�p
n (xt�r;n + z�)

�
g

�
cn

�
xt�s;n �

xp
n
+ z�

��
� (z) dz

Then

Ln;�(�) =
cn
n

[n�]X
t=1

Et�(r_s)�1

Z 1

�1
f
�p
n (xt�r;n + z�)

�
g

�
cn

�
xt�s;n �

xp
n
+ z�

��
� (z) dz+op(1),
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uniformly in �.

Proof of Lemma 1: Without loss of generality, we shall assume that r = 1 and s = 0. The
proof for the general case is identical but requires more complicated notation. Consider

Ln;�(�) =
cn
n

[n�]X
t=1

Z 1

�1
f
�p
n (xt�1;n + z�)

�
g

�
cn

�
xt;n �

xp
n
+ z�

��
� (z) dz| {z }

:=zt

=
cn
n

[n�]X
t=1

Et�2zt +
cn
n

[n�]X
t=1

(zt � Et�2zt) : (25)

We show that the second term in (25) is op (1) : Notice that f(zt � Et�2zt) ;Fn;t�1g is a
martingale di¤erence sequence. Hence,

EEt�2

0@cn
n

[n�]X
t=1

(zt � Et�2zt)

1A2

=
�cn
n

�2
E

8<:
[n�]X
t=1

Et�2z
2
t �

[n�]X
t=1

(Et�2zt)
2

9=; : (26)

The �rst term on right hand side of (26) equals

�cn
n

�2 [n�]X
t=1

EEt�2

�Z 1

�1
f
�p
n (xt�1;n + z�)

�
g

�
cn

�
xt;n �

xp
n
+ z�

��
� (z) dz

�2

=
�cn
n

�2 [n�]X
t=1

E

Z
v

�Z
l

f
�p
nl + x� v

�
g (cnl)��

�
l � xt�1;n �

vp
n
+

xp
n

�
dl

�2
p(v)dv

� �2� (0)
c2n
n

Z
v

�Z
l

f
�p
nl + x� v

�
g (cnl) dl

�2
p(v)dv

� Acn
n

Z
v

�Z
m

����f �pncn m+ x� v
����� jg (m)j dm�2 p(v)dv

� Acn
n

Z
v

�Z
m

jf0 (m;x; v)j jg (m)j dm
�2
p(v)dv ! 0;

where the last inequality holds for n large enough. The second term on the R.H.S of (26)
equals

�cn
n

�2
E

[n�]X
t=1

�
Et�2

Z 1

�1
f
�p
n (xt�1;n + z�)

�
g

�
cn

�
xt;n �

xp
n
+ z�

��
� (z) dz

�2

=
�cn
n

�2 [n�]X
t=1

E

�Z
v

Z
z

f
�p
n (xt�1;n + z�)

�
g

�
cn

�
xt�1;n +

vp
n
� xp

n
+ z�

��
� (z) p(v)dzdv

�2

� �2� (0)

n

�Z
v

Z
l

����f �pncn l + x� v
�
g (l)

���� p(v)dvdl�2 � A

n

�Z
v

Z
l

f0 (l; x; v) jg (l)j p(v)dvdl
�2
! 0;
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as required. �

Lemma 2. Suppose that:
(a) Assumption 2.1 holds.
(b) Assumption 2.3 or Assumption 2.3 � holds.

Set

Ln;�(�) =
cn
n

[n�]X
t=1

Et�(r_s)�1

Z 1

�1
f
�p
n (xt�r;n + �z)

�
g

�
cn

�
xt�s;n �

xp
n
+ �z

��
�(z)dz:

Then

lim
n!1

sup
0���1

������Ln;�(�)� �
[n�]X
t=1

��(xt�(r_s);n)

������ = 0;
where � :=

�
Ef (x+

P
rs vi)

R1
�1 g (z) dz, if Assumption 2 :3 holds

E
R1
�1 f (moz + x+

P
rs vi) g(z)dz; if Assumption 2 :3

� holds :

Proof of Lemma 2: Without loss of generality, assume that r = 1 and s = 0.
(a) We �rst show the result under Assumption 2.3. Consider

cn
n

[n�]X
t=1

Et�2

Z 1

�1
f
�p
n fxt�1;n + �zg

�
g

�
cn

�
xt�1;n +

vtp
n
� xp

n
+ �z

��
�(z)dz

=
cn
n

[nr]X
t=1

Z
v

Z
z

f
�p
n fxt�1;n + �zg

�
g

�
cn

�
xt�1;n +

vp
n
� xp

n
+ �z

��
��(z)p(v)dzdv

=
1

n

[n�]X
t=1

Z
v

Z
z

f

�p
n

�
z

cn
+

xp
n
� vp

n

��
g (z)��

�
z

cn
� xt�1;n +

xp
n
� vp

n

�
p(v)dzdu

: = Tn(�)

Notice that by Assumption 2.3(b) and the Lipschitz continuity of �� we get����f �pncn z + x� v
�
��

�
z

cn
� xt�1;n +

vp
n
� xp

n

�
� f (x� v)�� (xt�1;n)

����
� j��(0)j

����f �pncn z + x� v
�
� f (x� v)

����+ jf (x� v)j ������� zcn � xt�1;n + vp
n
� xp

n

�
� �� (xt�1;n)

����
� j��(0)j

�p
n

cn

�

f0(z; v; x) + jf (x� v)jC

���� zcn + vp
n
� xp

n

���� ;
where C is a Lipschitz constant. Therefore,������Tn(�)� 1

n

[n�]X
t=1

Z
v

Z
z

f (x� v)�� (xt�1;n) g(z)p(v)dzdv

������ �
�p

n

cn

�

j�(0)j

Z
u

Z
z

f0(z; v; x) jg(z)j p(v)dzdv
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+C

Z
v

Z
z

jf (x� v)j p(v)
���� zcn + vp

n
� xp

n

���� jg (z)j dzdv ! 0

as required.
(b) Suppose that Assumption 2.3� holds. Consider,����f �pncn z + x� v

�
�

�
z

cn
� xt�1;n +

vp
n
� xp

n

�
� f (moz + x� v)�� (xt�1;n)

����
� j��(0)j

����pncn �mo

����
 f0(z; v; x) + jf (moz + x� v)jC
���� zcn + vp

n
� xp

n

����! 0;

as n ! 1. In view of the above, the result can be shown using the same arguments as
those in part (a). �

Lemma 3. Suppose that
(a) Assumption 2.1 holds.

(b)
���f �pncn z + x� v���� � f0 (z; x; v) for n large enough with Rv Rz f0(z; x; v) jg(z)j pr�s(v)dzdv <

1, for each x 2 R, and r > s 2 N:
(c) sups jg(s)j <1

Let q 2 N with q > 1. We have

lim
n!1

sup
0���1

cn
n
E

�������
[n�]X
t=1

f
�p
nxt�r;n

��
Et�r�1g

�
cn

�
xt�s;n �

xp
n

���q
| {z }

�������
Mn(�)

= 0:

Proof of Lemma 3: Without loss of generality, assume that r = 1 and s = 0. We have

E jMn(�)j =
cn
n

Z
s

������
[n�]X
t=1

Z
l1

:::

Z
lq

f
�p
ndt�1;0;nl

�
g

�
cn

�
dt�1;0;nl +

l1p
n

��
:::g

�
cn

�
dt�1;0;nl +

lqp
n

��
� p(l1)p(lq)dl1:::dlqjht�1;0;n (l) dl

� 1

n

nX
t=1

1

dt�1;0;n

Z
m

Z
l1

:::

Z
lq

����f �pncn m� l1
����� jg (m)j

�����
qY
i=2

g

�
m+

cnp
n
(li � l1)

������
�p(l1):::p(lq)dl1:::dlqdm

� 1

n

nX
t=1

1

dt�1;0;n

Z
m

Z
l1

:::

Z
lq

f0 (m; l1) jg (m)j
�����
qY
i=2

g

�
m+

cnp
n
(li � l1)

������ p(l1):::p(lq)dl1:::dlqdm
� A

Z
m

Z
l1

:::

Z
lq

f0 (m; l1) jg (m)j
�����
qY
i=2

g

�
m+

cnp
n
(li � l1)

������ p(l1):::p(lq)dl1:::dlqdm! 0;

as n ! 1. Note that the second inequality above holds for n large enough. Further,
the limit above holds by dominated convergence since g

�
m+ cnp

n
(li+1 � l1)

�
! 0 almost

everywhere with respect to the Lebesgue measure,
R
l1

R
m
f0 (m; l1) jg (m)j p(l1)dl1dm <1,

and sups jg(s)j <1. �
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Lemma 4. Suppose that
(a) Assumption 2.2 holds.

(b)
���f �pncn z + x� v���� � f0 (z; x; v) for n large enough with Rv Rz f0(z; x; v) jg(z)j pr�s(v)dzdv <

1, for each x 2 R and r > s 2 N:
Set

Mn(�) :=
cn
n

[n�]X
t=1

f
�p
nxt�r;n

�
Et�r�1g

�
cn

�
xt�s;n �

xp
n

��
Then

sup
n
sup
0���1

E jMn(�)j <1:

Proof of Lemma 4: Without loss of generality, assume that r = 1 and s = 0. We have

E jMn(�)j =
�cn
n

�
E

[n�]X
t=1

Z
v

����f �pnxt�1;n� g �cn�xt�1;n + vp
n
� xp

n

������ p(v)dv
=

�cn
n

�
E

[n�]X
t=1

Z
s

Z
v

����f �pndt�1;0;ns)� g �cn�dt�1;0;ns+ vp
n
� xp

n

������ p(v)ht�1;0;n (s) dvds
� 1

n

[n�]X
t=1

1

dt�1;0;n

Z
s

Z
v

����f �pncn m+ x� v)
�
g (m)

���� p(v)dvdm
� A

Z
s

Z
v

jf0 (m; v; x)) g (m)j p(v)dvdm <1;

as required. �

Lemma 5. Suppose that Assumptions 2.1-2.3 and the conditions of Theomem 1 hold. Let
q; r; s 2 N with q > 1 and r < s. Then

sup
0���1

������cnn
[n�]X
t=1

Z 1

�1
fEt�s�1f [(xt�r)]gq g

�
cn

�
xt�s;n �

xp
n

��
� �L(�; 0)

������ p! 0

where � := fEf (x+
P

rs vi)g
q R1

�1 g (z) dz.

Proof of Lemma 5: Set

Ln;�(�) =
cn
n

[n�]X
t=1

Z 1

�1

�
Et�s�1f

�p
n (xt�r;n + �z)

�	q
g

�
cn

�
xt�s;n �

xp
n
+ �z

��
�(z)dz:

and

Ln(�) =
cn
n

[n�]X
t=1

�
Et�s�1f

�p
nxt�r;n

�	q
g

�
cn

�
xt�s;n �

xp
n

��
:

It can be shown along the lines of Lemma 2 that

lim
n!1

sup
0���1

������Ln;�(�; x)� �
[n�]X
t=1

��(xt�s;n)

������ = 0:
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In addition, using arguments similar to those used in the proof of Theorem 1 we get

lim
�!0

lim
n!1

sup
0���1

E jLn(�)� Ln;�(�)j = 0:

�

7 Appendix B: Proofs of the Main Results

Proof of Theorem 1. Set,

Ln(�) =
cn
n

[n�]X
t=1

Z 1

�1
f
�p
nxt�1;n

�
g

�
cn

�
xt;n �

xp
n

��
�(z)dz:

Ln;�(�) =
cn
n

[n�]X
t=1

Z 1

�1
f
�p
n (xt�1;n + �z)

�
g

�
cn

�
xt;n �

xp
n
+ �z

��
�(z)dz:

Then
lim
�!0

lim
n!1

sup
0���1

E jLn(�)� Ln;�(�)j = 0; (27)

and the stated results follow as in WP. We proceed with the proof of (27).
Set

Yt;n(z) = f (dnxt�1;n) g

�
cn

�
xt;n �

x

dn

��
� f

�p
n (xt�1;n + �z)

�
g

�
cn

�
xt;n �

x

dn
+ �z

��
Notice that

sup
0�r�1

E jLn(�)� Ln;�(�)j �
cn
n

Z 1

�1

[n�]X
t=1

E jYt;n(z)j�(z)dz:

Next, we have

cnE jYk;n(z)j

= cnE

����f (dnxk�1;n) g �cn�xk;n � x

dn

��
� f

�p
n (xk�1;n + �z)

�
g

�
cn

�
xk;n �

x

dn
+ �z

������
�

Z
s

Z
v

jf (dndk�1;0;ns� v + x) g (cndk�1;0;ns) �

f
�p
n (dk�1;0;ns+ �z)� v + x

�
g [cn (dk�1;0;ns+ �z)]

�� p (v) dvds
� 2A

dk�1;0;n

Z
s

Z
v

����f �dncn s� v + x
�
g (s)

���� p (v) dvds
� 2A

dk�1;0;n

Z
s

Z
v

f0 (s; v; x) jg (s)j p(v)dvds;

for n large enough. In view of this condition (a) of Theorem 1 and (??) we get

cn
n
sup
0���1

E

������
[n�]X
k=1

Yk;n(z)

������ � A1 1n
nX
k=1

(dk�1;0;n)
�1 <1:
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Set

�n(�) �
�cn
n

�2
sup
0�r�1

E

0@ [nr]X
k=1

Yk;n(z)

1A2

:

In view of the above and dominated convergence, it would su¢ ce to show that for each z

lim
�!0

lim
n!1

�n(�) = 0;

which is what we now set out to do. Notice that

�n(�) �
�cn
n

�2
E

nX
k=1

Y 2k;n(z) +
2c2n
n2

nX
k=1

jEYk;n(z)Yk+1;n(z)j+
2c2n
n2

nX
k=1

nX
l=k+2

jEYk;n(z)Yl;n(z)j

: = �1n(�) + �2n(�) + �3n(�):

Under condition (b) of Theorem 1 and using similar arguments as before it can be shown
that

�1n(�) �
cn
n2

nX
k=1

2A

dk�1;0;n

Z
s

Z
v

f0 (s; v; x)
2 g (s)2 p(v)dvds � Acn

n
! 0:

Similarly, it can be shown that �2n(�) ! 0. Next, we consider �3n(�). Recall that xk;n is
adapted to Fk�1;n and conditional on Fk�1;n, (xl�1;n � xk;n) =dl�1;k;n has density hl�1;k;n(s)
which is uniformly bounded. Write 
n = 
n

�
�1=(2k0)

�
. We have

cndl�1;k;n jEk�1Yl;n(z)j

=

����Ek�1�f (dnxl�1;n) g �cn�xl;n � x

dn

��
� f

�p
n (xl�1;n + �z)

�
g

�
cn

�
xl;n �

x

dn
+ �z

�������
=

����Ek�1 Z
v

�
f (dnxl�1;n) g

�
cn

�
xl�1;n +

v

dn
� x

dn

��
� f [dn (xl�1;n + �z)] g

�
cn

�
xl�1;n +

v

dn
� x

dn
+ �z

���
p(v)dv

����
=

����Ek�1 Z
v

�
f [dn (xk;n + (xl�1;n � xk;n))] g

�
cn

�
xk;n + (xl�1;n � xk;n) +

v

dn
� x

dn

��
� f [dn (xk;n + (xl�1;n � xk;n) + �z)] g

�
cn

�
xk;n + (xl�1;n � xk;n) +

v

dn
� x

dn
+ �z

���
p(v)dv

����
=

����Z
s

Z
v

�
f [dn (xk;n + dl;k�1;ns)] g

�
cn

�
xk;n + dl;k�1;ns�

x

dn

��
� f [dn (xk;n + dl;k�1;ns+ �z)] g

�
cn

�
xk;n + dl;k�1;ns�

x

dn
+ �z

���
p(v)hl�1;k;n(s)ds

����
�

Z
y

Z
v

����f �dncn y � v
����� jg(y)j jV (y; cnxk;n; v)j p(v)dvdy

�

8<:
A; for (l � 1; k) =2 
n,
A
R
jyj�pcn

R
v
fo (y; v; x) jg(y)j p(v)dvdy

+
R
jyj<pcn

R
v
f0 (y; v; x) jg(y)j jV (y; cnxk;n; v)j p(v)dvdy; for (l � 1; k) 2 
n
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where

V (y; r; v) = hl�1;k;n

 
y � r + cn x�vdn
cndl�1;k;n

!
� hl�1;k;n

 
y � r + cn x�vdn � cnz�

cndl�1;k;n

!
:

Consider

E jYk;n(z)j jV (y; cnxk;n; v)j

= AE

Z
w

����f [dn (xk�1;n + z�)] g �cn�xk�1;n + w

dn
� x

dn
+ z�

������
�
����V �y; cnxk�1;n + cn

dn
w; v

����� p(w)dw
= A

Z
s

Z
w

����f (dn (dk�1;0;ns+ z�)) g �cn�dk�1;0;ns+ w

dn
� x

dn
+ z�

������
�
����V �y; cndk�1;0;ns+ cn

dn
w

����� p(w)hk�1;0;n(s)dwds
=

A

cndk�1;0;n

Z
l

Z
w

����f �dncn l � w + x
�
g (l)

����
�
�����V �y; l + cn

dn
x� cnz�; v

�����+ ����V �y; l + cn
dn
x; v

������ p(w)dwdl
� A

cndk�1;0;n

"Z
l�pcn

Z
w

f0 (l; w; x) jg (l)j p(w)dwdl + sup
jrj�2C[1+jzj+jvj]�1=2

jhl�1;k;n (r)� hl�1;k;n (0)j
#
;

where the last inequality holds for n large enough, and can be established using similar
arguments to those in WP.
In view of the above, for (l � 1; k) =2 
n

jEYk;n(z)Yl;n(z)j = jEYk;n(z)Ek�1Yl;n(z)j � A (cndl�1;k;n)�1Ek�1 jYl;n(z)j � A1
�
c2ndl�1;k;ndk�1;0;n

��1
:

On the other hand, for (l � 1; k) 2 
n

jEYk;n(z)Yl;n(z)j = jEYk;n(z)Ek�1Yl;n(z)j

� A (cndl�1;k;n)
�1E jYk;n(z)j

Z
jyj�pcn

Z
v

f0 (y; v; x) jg(y)j p(v)dvdy

+A (cndl�1;k;n)
�1
Z
jyj<pcn

Z
v

f0 (y; v; x) jg(y)jE jYk;n(z)j jV (y; cnxk;n; v)j p(v)dvdy

� A1
�
c2ndl�1;k;ndk�1;0;n

��1(Z
jyj�pcn

Z
v

f0 (y; v; x) jg(y)j p(v)dvdy

+

Z
y

Z
v

sup
jrj�2C[1+jzj+jvj]�1=2

jhl�1;k;n (r)� hl�1;k;n (0)j jg(y)j f0 (y; v; x) p(v)dvdy
)
:

Notice that the last term above converges to zero as n!1, due to dominated convergence.
In view of the above we have for � = �1=2=C
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�3n(�) � 2c2n
n2

24 nX
l�1>k;(l�1;k)=2
n

+

nX
(l�1;k)2
n

35 jEYk;n(z)Yl;n(z)j
� A1

n2

nX
k=(1��)n

(dk;0;n)
�1 max

1�k�n�2

nX
l=k+2

(dl�1;k;n)
�1

+
A2
n2

(1��)nX
k=�n

(dk;0;n)
�1 max

0�k�(1��)n

k+�nX
l=k+2

(dl�1;k;n)
�1

+
A3
n2

�nX
k=1

(dk;0;n)
�1 max

0�k�n�2

nX
l=k+2

(dl�1;k;n)
�1

+
A4
n2

nX
k=1

(dk;0;n)
�1 max

0�k�n�2

nX
l=k+2

(dl�1;k;n)
�1

�
(Z

jyj�pcn

Z
v

f0 (y; v; x) jg(y)j p(v)dvdy

+

Z
y

Z
v

sup
jrj�2C[1+jzj+jvj]�1=2

jhl�1;k;n (r)� hl�1;k;n (0)j jg(y)j f0 (y; v; x) p(v)dvdy
)

! 0;

and the result follows. �

Proof of Theorem 2. Equation (9) of Theorem 2 follows easily from Theorem 1. We
shall prove (10). We prove the result for one lag di¤erential (i.e., js� rj = 1) and the result
for the general case follows in the same way.
First, we consider the case r > s. Set � := Ef(x� vt) and Kh(:) = K (:=h). We have

qp
nh
h
f̂(x)� Ef(x� vt)

i
=

:=Rnz }| {
1pp
nh

X
Et�2 f[f(xt�1)� Ef(x� vt)]Kh(xt � x)g

1p
nh

P
Kh(xt � x)

+

1pp
nh

P :=�tz }| {
f(xt�1)Kh(xt � x)� Et�2f(xt�1)Kh(xt � x)

1p
nh

P
Kh(xt � x)

+

1pp
nh

P :=�tz }| {
�Et�2Kh(xt � x)� �Kh(xt � x)

1p
nh

P
Kh(xt � x)

+

1pp
nh

P :=
tz }| {
Kh(xt � x)ut

1p
nh

P
Kh(xt � x)

:=
Rn +Mn

1p
nh

Pn
t=1Kh(xt � x)

:

Notice that

E jRnj = E
�����
�

1p
nh

�1=2 nX
t=1

Et�2

h
(f (xt�1)� Ef(x� vt))K

�xt
h
� x
h

�i�����
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= E

�����
�

1p
nh

�1=2 nX
t=1

Z
u

[f (xt�1)� Ef(x� vt)]K
�p

nxt�1;n
h

+
v

h
� x
h

�
p1(v)dv

�����
�
�

1p
nh

�1=2 nX
t=1

Z
y

����Z
u

�
f
�p
ndt�1;0;ny

�
� Ef(x� vt)

�
K

�p
ndt�1;0;ny

h
+
v

h
� x
h

�
p1(v)dv

����ht�1;0;n(y)dy
=

�
1p
nh

�1=2
hp
n

nX
t=1

(dt�1;0;n)
�1
Z
z

j[Ef(hz + x� vt)� Ef(x� vt)]K (z)jht�1;0;n
�
hz + x� vtp
ndt�1;0;n

�
dz

�
�p
nh1+2


�1=2 1
n

nX
t=1

(dt�1;0;n)
�1
Z
z

f1(z; x)K (z) dz ! 0:

Hence, qp
nh
h
f̂(x)� Ef(x� vt)

i
=

Mn

1p
nh

Pn
t=1Kh(xt � x)

+ op(1): (28)

Next, fMn;Fn;n�1g is a martingale sequence. We shall establish a martingale CLT for
this term. Set

T1;n :=
1p
nh

nX
t=1

Et�2 (�t + �t + 
t)
2 :

First, we shall show that

T1;n
p!
�
Varf(x� vt) + �2u

�
LG(1; 0)

Z 1

�1
K2(s)ds: (29)

We have

T1;n =
1p
nh

nX
t=1

Et�2 f[f(xt�1)Kh(xt � x)� Et�2f(xt�1)Kh(xt � x)]

+� [Et�2Kh(xt � x)�Kh(xt � x)] +Kh(xt � x)utg2

=
1p
nh

nX
t=1

Et�2
�
f 2(xt�1)K

2
h(xt � x)

�
� 1p

nh

nX
t=1

[Et�2f(xt�1)Kh(xt � x)]2

+
1p
nh
� 2

nX
t=1

Et�2K
2
h(xt � x)�

1p
nh
� 2

nX
t=1

[Et�2Kh(xt � x)]2 +
1p
nh

nX
t=1

Et�2K
2
h(xt � x)u2t

� 1p
nh
2�

nX
t=1

f(xt�1)Et�2K
2
h(xt � x)�

1p
nh
2�

nX
t=1

f(xt�1) [Et�2Kh(xt � x)]2

=
1p
nh

nX
t=1

Et�2
�
f 2(xt�1)K

2
h(xt � x)

�
+

1p
nh
� 2

nX
t=1

Et�2K
2
h(xt � x)

+
1p
nh

nX
t=1

K2
h(xt � x)�2t;u �

1p
nh
2�

nX
t=1

f(xt�1)Et�2K
2
h(xt � x) + op(1) (by Lemma 3)

: = T2;n + op(1):
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Next, note that

Ep
nh

nX
t=1

K2
h(xt � x)

���2t;u � �2u�� � 1p
nh

nX
t=1

�
EK2q

h (xt � x)
	1=q �

E
���2t;u � �2u��p	1=p ! 0;

(30)
as n!1 for some p; q > 1 and 1=p+1=q = 1. Equation (30) holds by the Toeplitz lemma.
To see this, notice that by Assumption 3.3

���2t;u � �2u�� = oa:s:(1). Hence, E ���2t;u � �2u��p !
0 by dominated convergence, for E

���2t;u � �2u��p � 2p�1
�
suptE�

2p
t;u + �

2p
u

�
< 1, due to

Assumption 3.4. Moreover, using arguments similar to those used in the proof of Lemma
3, we get EK2q

h (xt � x) ! 0 as n ! 1 and supn (
p
nh)

�1Pn
t=1

�
EK2q

h (xt � x)
	1=q

< 1.
Therefore, (30) holds (e.g. Hall and Heyde, 1980 p.31).
Hence, by (30), Lemma 1 and Theorem 1, we get

T2;n
p!
�
Ef 2(x� vt) + � 2 + �2u � 2� 2

�
LG(1; 0)

Z 1

�1
K2(s)ds

=
�
Varf(x� vt) + �2u

�
LG(1; 0)

Z 1

�1
K2(s)ds:

Next, �x � > 0 and � > 0 and consider

T3;n :=
1p
nh

nX
t=1

Et�2 (�t + �t + 
t)
2 1

(�
1p
nh

�1=2
j�t + �t + 
tj > �

)
:

We shall show that
T3;n = op(1): (31)

We have

T3;n �
Ap
nh

nX
t=1

Et�2
�
�2t + �

2
t + 


2
t

�
1

(�
1p
nh

�1=2
j�t + �t + 
tj > �

)

� Ap
nh

nX
t=1

n
Et�2

�
�2t + �

2
t + 


2
t

�1+�o1=(1+�)(
Pt�2

"�
1p
nh

�1=2
j�t + �t + 
tj > �

#)�=(1+�)

� Ap
nh

nX
t=1

n
Et�2

�
�2t + �

2
t + 


2
t

�1+�o1=(1+�)(� ��2p
nh

�1+�
Et�2

h
(�t + �t + 
t)

2(1+�)
i)�=(1+�)

� Ap
nh

nX
t=1

n
Et�2

�
�
2(1+�)
t + �

2(1+�)
t + 


2(1+�)
t

�o1=(1+�)(� 1p
nh

�1+�
Et�2

h
(�t + �t + 
t)

2(1+�)
i)�=(1+�)

� A
�

1p
nh

�1+� nX
t=1

Et�2

�
�
2(1+�)
t + �

2(1+�)
t + 


2(1+�)
t

�
:

Next, we shall show that
�

1p
nh

�1+�Pn
t=1Et�2�

2(1+�)
t = op(1). Notice that�

1p
nh

�1+� nX
t=1

Et�2�
2(1+�)
t

� A

�
1p
nh

�1+� nX
t=1

h
Et�2f

2(1+�)(xt�1)K
2(1+�)
h (xt � x) + f 2(1+�)(xt�1) fEt�2Kh(xt � x)g2(1+�)

i
:
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By Lemma 1 and Theorem 1,�
1p
nh

�1+� nX
t=1

Et�2f
2(1+�)(xt�1)K

2(1+�)
h (xt � x) = Op

��p
nh
����

;

and by Lemma 3(i),�
1p
nh

�1+� nX
t=1

f 2(1+�)(xt�1) fEt�2Kh(xt � x)g2(1+�) = op
��p

nh
����

:

In view of Assumption 3.4 and using similar arguments to those used above, we also have�
1p
nh

�1+�Pn
t=1Et�2

�
�
2(1+�)
t + 


2(1+�)
t

�
= op(1). Therefore, (31) holds. Finally, in view of

Hall and Heyde (1980, Theorem 3.2), (29) and (31) give

Mn
d!
��
Varf(x+ vt) + �

2
u

�
LG(1; 0)

Z 1

�1
K2(s)ds

�1=2
W :=M;

where W is a standard normal variate independent of LG(1; 0).
Next, the quadratic variation of Mn, is [Mn] := (

p
nh)

�1Pn
t=1 (�t + �t + 
t)

2. The
following condition (see Jacod and Shiryaev, 1986)

sup
n

�p
nh
��1=2

max
0�t�n

E j�t + �t + 
tj <1 (32)

is su¢ cient for
([Mn] ;Mn)

d! ([M ] ;M) : (33)

We shall demonstrate that (32) holds. For any 
 > 2 we have�p
nh
��1=2

max
0�t�n

E j�t + �t + 
tj

�
�p
nh
��1=2

max
0�t�n

fE j�t + �t + 
tj

g

1

 � A

�p
nh
��1=2

max
0�t�n

fE (j�tj
 + j�tj

 + j
tj


)g
1



= A
�p
nh
��1=2�

E max
0�t�n

(j�tj
 + j�tj

 + j
tj


)

� 1



� A
(�p

nh
��
=2

E
nX
t=1

(j�tj
 + j�tj

 + j
tj


)

) 1



:

Consider the �rst summand. We have

�p
nh
��
=2

E
nX
t=1

j�tj
 =
�p
nh
��
=2

E
nX
t=1

jf(xt�1)Kh(xt � x)� Et�2f(xt�1)Kh(xt � x)j


� A
�p
nh
��
=2

E
nX
t=1

jf(xt�1)j
 Et�2 jKh(xt � x)j
 = O
��p

nh
�(2�
)=2�

;

where the last equality is due to Lemma 4. Dealing with the other terms in a similar way,
we get �p

nh
��1=2

max
0�t�n

E j�t + �t + 
tj = O
��p

nh
�(2�
)=2�

= o(1):
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Next, consider the predictable quadratic variation ofMn, hMni := 1p
nh

Pn
t=1Et�2 (�t + �t + 
t)

2.
We shall show that

lim
n!1

E j[Mn]� hMnij = 0: (34)

In view of (33), (34) implies

(hMni ;Mn)
d! ([M ] ;M) : (35)

According to Hall and Heyde (1980, Theorem 2.23), (31) and tightness of hMni are su¢ cient
for (34). Let � > 0 and notice that

lim
�!1

sup
n
P (hMni > �) � lim

�!1

1

�
sup
n
E (hMni) = 0;

for supnE (hMni) <1 due to Lemma 3(ii) and Lemma 4. Therefore, the sequence hMni is
tight.
Finally, it follows from (28) that the NW estimator 

nX
t=1

Kh(xt � x)
!1=2 h

f̂(x)� Ef(x+ vt)
i
=

Mn�
(
p
nh)

�1Pn
t=1Kh(xt � x)

�1=2 + op(1)
=

hMni1=2�
(
p
nh)

�1Pn
t=1Kh(xt � x)

�1=2 Mn

hMni1=2
:= AnBn:

Now by Theorem 1, it can be easily seen that

An
p!

�
(�2u +Varf(x� vt))LG(1; 0)

R1
�1K

2(s)ds
�1=2

�
LG(1; 0)

R1
�1K(s)ds

�1=2 =

��
�2u +Varf(x� vt)

� Z 1

�1
K2(s)ds

�1=2
:

In addition, (35) implies that Bn
d! W; and the result for r > s follows. The proof for

r < s follows from Lemma 5 and arguments similar to those used in the previous part. �

Proof of Theorem 3.

Write(�p
nh
��1 nX

t=1

Kh(xt�s � x)
)
�̂2 =

�p
nh
��1 nX

t=1

h
f(xt�r)� f̂(x)

i2
Kh(xt�s � x)

+
�p
nh
��1 nX

t=1

u2tKh(xt�s�x)+2
�p
nh
��1 nX

t=1

ut

h
f(xt�r)� f̂(x)

i
Kh(xt�s�x) := �n+�n+
n:

It follows directly from Theorem 1 and Theorem 2 that

�n
p! Var

(
f

 
x+

X
rs

vi

!)Z 1

�1
K(s)ds:
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In addition, manipulations similar to those used in the proof of Theorem 2 give

�n + 
n = �
2
u

Z 1

�1
K(s)ds+Op

��p
nh
��1=2�

:

This shows the �rst part of Thorem 3.
In view of the above and Theorem 2, it can be easily seen that t̂(x; �) d! N(0; 1). �

Proof of Theorem 4. (i) For n large enough sn > r and����� �pn��1 f̂(x)�
Pn

t=sn
Kh (xt�sn � x)Hf (xt�r;n)Pn
t=sn

Kh (xt�sn � x)

����
�
��Pn

t=sn
Kh (xt�sn � x)ut

��+ supz2R j� (z; n)jPn
t=sn

Kh (xt�sn � x)
� (
p
n)
Pn

t=sn
Kh (xt�sn � x)

= op(1):

Further, by Theorem 1 of Phillips (2009) we have the following limit resultPn
t=sn

Kh (xt�sn � x)Hf (xt�r;n)Pn
t=sn

Kh (xt�sn � x)
d! 1

L ~G(1; 0)

Z 1

0

Hf (G(�)) dL ~G(�; 0)

=
1

LG(1� c; 0)

Z 1

c

Hf (G(�)) dLG(� � c; 0);

where the last equality follows from the fact that L ~G(�; 0) = LG(� � c; 0)1 (1 � � � c).
(ii) Note that the term

E

�����
�

1p
nh

�1=2 nX
t=sn

[f (xt�r)Kh (xt�sn � x)]
�����

� E
�

1p
nh

�1=2 nX
t=sn

Et�sn jf (xt�sn + xt�r � xt�sn)Kh (xt�sn � x)j

� E
�

1p
nh

�1=2 nX
t=sn

Et�sn
��f �pndt�sn;0;nxt�sn;n +pndt�r;t�sn;n (xt�r;n � xt�sn)�Kh

�p
ndt�sn;0;nxt�sn � x

���
=

�
1p
nh

�1=2 nX
t=sn

Z
l1

Z
l2

��f �pndt�sn;0;nl1 +pndt�r;t�sn;nl2�
� Kh

�p
ndt�sn;0;nl1 � x

���ht�r;t�sn;n (l2)ht�sn;0;n (l1) dl2dl1
� A

�p
nh
��1=2 Z

p1

Z
p2

f (h [p1 + x] + p2)K (p1) dp2dp1
h

n

nX
t=sn

(dt�sn;0;ndt�r;t�sn;n)
�1

� A
�
h=
p
n
�1=2 Z

p1

Z
p1

f0(p1; p2)K(p1)dp1dp2 = o(1):

The last inequality above follows from the fact that n�1
Pn

t=1 (dt�sn;0;ndt�r;t�sn;n)
�1 is

bounded. In vew of this, the result follows from arguments similar to those used in the
proof of Theorem 2. �

32



Proof of Example 5. Consider the local linear estimator

b̂(x) =

" b�(x)
�̂
(1)
(x)

#
= arg min

�0; �1

nX
t=1

[yt � �0xt � �1xt(xt � x)]2Kh (xt � x)

Further, assume that � has a continuous third dericative, the kernel function K(:)
compact support and nh10 = o(1). Then

b̂(x) =

Hnz }| {(
nX
t=1

�
x2t x2t (xt � x)

x2t (xt � x) x2t (xt � x)2
�
Kh (xt � x)

)�1
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�
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�
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n
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�
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�
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)
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n
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(� (xt)xt + ut)

�
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�
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)
Using arguments similar to those of Wang and Phillips (2009c) we get
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xt(xt � x)

��
� (xt)xt �

�
xt
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�
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where the last approximation above is due to Theorem 1 and Dn = diag(1; h). Therefore,
Dn

p
h
p
n jRnj = op(1) because we have assumed nh10 = o(1). Further, by Theorem 1

h�1n�1=2D�1
n HnD

�1
n

p! LG(1; 0)x
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Z 1

�1

�
1 s
s s2

�
K(s)ds (37)

In addition, by Theorem 1 and the martingale CLT

h�1=2n�1=4D�1
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xt(xt � x)

�
Kh (xt � x)

d!MN

�
�2uLG(1; 0)x
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�1

�
1 s
s s2

�
K(s)2ds

�
:

(38)
The result follows from (36)-(38). �
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