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find two important results under weak assumptions. First, we show that CSs based on
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size of CSs obtained by using the modified method of moments. Our results are supported
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1 Introduction

In the last couple of years there have been numerous papers in Econometrics on inference

in partially identified models, many of which focused on inference about the identifiable

parameters in models defined by moment inequalities (see, among others, Imbens and Manski

(2004), Chernozhukov, Hong, and Tamer (2007), Romano and Shaikh (2008), Rosen (2008),

Andrews and Guggenberger (2009b)(AG from now on), Fan and Park (2009), Stoye (2009),

Andrews and Soares (2010)(AS from now on), Bugni (2010), and Canay (2010)).1 As a

consequence, there are currently several different testing procedures and methods to construct

confidence sets (CSs) based on test inversion that have been compared in terms of asymptotic

confidence size and asymptotic power properties (e.g. Andrews and Jia (2008), AG, AS, Bugni

(2010), and Canay (2010)). In this paper we are interested in the relative robustness of

CSs with respect to their asymptotic confidence size distortion when moment (in)equalities

are potentially locally violated. Intuition might suggest that CSs that tend to be smaller

under correct model specification are more size distorted under local model misspecification,

that is, less robust to small perturbations of the true model.2 We show that this intuition

holds for CSs based on plug-in asymptotic (PA) critical values compared to subsampling and

generalized moment selection (GMS, see AS), as well as CSs based on the modified methods

of moments (MMM) test statistic compared to the quasi likelihood ratio (QLR) test statistic.

However, the main contribution of this paper are two results that go beyond this intuition.

First, we show that CSs based on subsampling and GMS critical values share the same level

of asymptotic distortion under mild assumptions, despite the fact that the latter can lead to

CSs with smaller expected volume under correct model specification (see AS). Second, we

show that under certain conditions the CSs based on the QLR test statistic have asymptotic

confidence size that can be an arbitrary fraction of the asymptotic confidence size of CSs

obtained by using the MMM test statistic.

The motivation behind the interest in misspecified models stems from the view that most

econometric models are only approximations to the underlying phenomenon of interest and

are therefore intrinsically misspecified. This is, it is typically impossible to do meaningful

inference based on the data alone and therefore the researcher has no choice but to impose

some structure and include some assumptions. The partial identification approach to infer-

1There is a related literature about partially identified models that focuses on inference on the identified
set rather than the identifiable parameters. This includes Pakes, Porter, Ho, and Ishii (2005), Beresteanu
and Molinari (2008), Bontemps, Magnac, and Maurin (2008), Galichon and Henry (2009a,b), Moon and
Schorfheide (2009), and Romano and Shaikh (2010) among others.

2In the context of hypothesis tests, local power is the limit of the rejection probability under a sequence
of parameters that belong to the alternative hypothesis and approach the null hypothesis. Tests with high
local power reject these sequences relatively often. In the context of local misspecification, some of the local
sequences are part of the parameter space that determine the asymptotic size. Consequently, test with high
local power might result in relatively high asymptotic size distortion. However, it is worth noting that the
analysis of robustness conducted in this paper is relatively more complex than the study of local power, as
here an essential part of the analysis is to consider all possible sequences of local parameters and search for
the one that leads to the highest limiting rejection probability.
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ence (in particular, moment inequality models) allows the researcher to conduct inference

on the parameter of interest in a way that is robust to certain fundamental assumptions

(typically related to the behavior of economic agents). However, the researcher has to make

a stand on a second group of less fundamental assumptions (typically related to parametric

functional forms). For example, in a standard simultaneous entry game where firms have

profit functions given by πl = (ul− θlW−l)I(Wl = 1), where Wl denotes the entry decision of

firm l, W−l denotes the entry decision of the other firm, θl is the parameter of interest, I(·)
is the indicator function, and ul the monopoly profits of firm l; moment inequality models

have been used in applied work to deal with the existence of multiple equilibria (e.g. Grieco

(2009) and Ciliberto and Tamer (2010)). However, the linear structure and the parametric

family of distributions for ul are part of the maintained assumptions. One justification for

this asymmetry in the way assumptions are treated lies behind the idea that there are certain

assumptions that directly restrict the behavior of the agents in the structural model (and

partial identification aims to perform robust inference with respect to this group of assump-

tions), while there are other assumptions that are made out of computational and analytical

convenience (i.e., functional forms and distributional assumptions). Here we will not discuss

the nature of a certain assumption,3 but rather we will take the set of moment (in)equalities

as given and study how different inferential methods perform when the maintained set of

assumptions is allowed to be violated (i.e., when we allow the model to be misspecified).

There are two basic approaches to such an analysis that we briefly describe now.

First, if the nature of the misspecification remains constant throughout the sample, we

say that the model is globally misspecified. In this context, the object of interest becomes

a pseudo-true value of the parameter of interest, which is typically defined as the parameter

value associated with the distribution that is closest (according to some metric) to the true

data generating process.4 An extensive discussion of this type of misspecification in the

context of over-identified moment equality models can be found in Hall and Inoue (2003). In

the context of partially identified models, Ponomareva and Tamer (2010) discuss the impact

of global misspecification on the set of identifiable parameters.

Second, if the data do not satisfy the population moment condition for any finite sample

size, but do so in the limit as the sample size goes to infinity, we say that the model is locally

misspecified. By its very nature, the analysis under local misspecification provides guidance

in situations where the true model is just a small perturbation away from the model proposed

by the researcher. Newey (1985) applies this type of analysis in the context of over-identified

moment equality models. More recently Guggenberger (2009) studies the size properties

of hypothesis tests in the linear IV model under local violations of instrument exogeneity

conditions, while Kitamura, Otsu, and Evdokimov (2009) consider local deviations within

3For an extensive discussion on the role of different assumptions and partial identification in general see
Manski (2003) and Tamer (2009).

4For example, in the case of maximum likelihood estimation the pseudo-true value minimizes the Kullback-
Leibler discrepancy between the true model and the incorrect parametric model.
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shrinking topological neighborhoods of point identified moment equality models and propose

an estimator that achieves optimal minimax robust properties. Since the limit of locally

misspecified models equals the correctly specified model, the parameter of interest under

local misspecification and correct specification coincides. This facilitates the interpretation

relative to pseudo-true values in globally misspecified models. Therefore, if the probability

law generating the observations is a small perturbation of the true law, then it is of interest

to seek for an inference procedure whose size is robust against such perturbations. This is

the motivation behind the approach we propose in this paper.

The paper is organized as follows. Section 2 introduces the model, the notation, and

provides two examples that illustrate the nature of misspecification that we capture with our

framework. Section 3 provides asymptotic confidence size distortion results across different

test statistics and critical values. Section 4 presents simulation results that support the main

findings of this paper and the Appendix includes the assumptions, proofs of the results, and

verification of some of the assumptions for the two examples.

Throughout the paper we use the notation h = (h1, h2), where h1 and h2 are allowed to

be vectors or matrices. We use the notation R+ = {x ∈ R : x ≥ 0}, R+,+∞ = R+ ∪ {+∞},
R+∞ = R ∪ {+∞}, R±∞ = R ∪ {±∞}, Kp = K × · · · × K (with p copies) for any set K,

∞p = (+∞, . . . ,+∞) (with p copies), 0p for a p-vector of zeros, and Ip for a p × p identity

matrix.

2 Locally Misspecified Moment Inequality/Equality Models

The moment inequality/equality model assumes the existence of a true parameter vector θ0

(∈ Θ ⊂ Rd) that satisfies the moment restrictions

EF0mj(Wi,θ0) ≥ 0 for j = 1, . . . , p and

EF0mj(Wi,θ0) = 0 for j = p+ 1, . . . , p+ v ≡ k, (2.1)

where {mj(·, θ)}kj=1 are known real-valued functions and {Wi}ni=1 are observed i.i.d. random

vectors with joint distribution F0. We consider confidence sets (CSs) for θ0 obtained by

inverting tests of the hypothesis

H0 : θ0 = θ vs. H1 : θ0 6= θ. (2.2)

This is, if we denote by Tn(θ) a generic test statistic for testing (2.2) and by cn(θ, 1− α) the

critical value of the test at nominal size α, then the (1− α) level CS for θ0 is

CSn = {θ ∈ Θ : Tn(θ) ≤ cn(θ, 1− α)}. (2.3)
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A CS is determined by the choice of test statistic and critical value. Several CSs have been

suggested in the literature whose asymptotic confidence size is at least equal to the nominal

coverage size under mild technical conditions. The test statistics include modified method

of moments (MMM), quasi likelihood ratio (QLR) or generalized empirical likelihood (GEL)

statistics. Critical values include plug-in asymptotic (PA), subsampling, and generalized

moment selection (GMS) implemented via asymptotic approximations or the bootstrap.5

To assess the relative advantages of these procedures the literature has mainly focused

on asymptotic size and power in correctly specified models. Bugni (2010) shows that GMS

tests have more accurate asymptotic size than subsampling tests. AS establish that GMS

tests are as powerful as subsampling tests for all sequences of local alternatives and strictly

more powerful along certain sequences of local alternatives. In turn, subsampling tests are as

powerful as PA tests for all sequences of local alternatives and strictly more powerful along

some sequences of local alternatives. Andrews and Jia (2008) compare different combinations

of tests statistics and critical values and provide a recommended test based on the QLR

statistic and a refined moment selection (RMS) critical value which involves a data-dependent

rule for choosing the GMS tuning parameter. Additional results on power include those in

Canay (2010). In this paper we are interested in ranking the resulting CSs in terms of

asymptotic confidence size distortion when the moment (in)equalities in Equation (2.1) are

potentially locally violated. Consider the following examples as illustrations.

Example 2.1 (Missing Data). Suppose that the economic model indicates that

EF0 (Y |X = x) = G (x, θ0) ,∀x ∈ SX , (2.4)

where θ0 is the true parameter value and SX = {xl}dxl=1 is the (finite) support of X. The

sample is affected by missing data on Y . Denote by Z the binary variable that takes value

of one if Y is observed and zero if Y is missing. Conditional on X = x, Y has logical

lower and upper bounds given by YL (x) and YH (x), respectively. When the observed data

Wi = (YiZi, Zi, Xi) comes from the model in Equation (2.4), the true θ0 satisfies the following

inequalities for l = 1, . . . , dx,

EF0ml,1(Wi, θ0) ≡ EF0 [(Y Z + YH(xl)(1− Z)−G(xl, θ0))I(X = xl)] ≥ 0,

EF0ml,2(Wi, θ0) ≡ EF0 [(G(xl, θ0)− Y Z − YL(xl)(1− Z))I(X = xl)] ≥ 0. (2.5)

Now suppose that in fact the data come from a local perturbation Fn of the hypothesized

model F0 such that

EFn (Y |X = xl) = Gn (xl, θ0) , ∀l = 1, . . . , dx, (2.6)

5The details of the test statistics and critical values are presented in the next section.
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and for a vector r ∈ Rk+

|Gn(xl, θ0)−G(xl, θ0)| ≤ rln−1/2, ∀l = 1, . . . , dx. (2.7)

The last condition says that the true function Gn is not too far from the model G used by

the researcher. After a few manipulations, it follows that

EFnml,1(Wi, θ0) = EFn [(Y Z + YH(xl)(1− Z)−G(xl, θ0))I(X = xl)] ≥ −rln−1/2,

EFnml,2(Wi, θ0) = EFn [(G(xl, θ0))− Y Z − YL(xl)(1− Z))I(X = xl)] ≥ −rln−1/2, (2.8)

for l = 1, . . . , dx. Therefore, under the perturbed distribution of the data the original moment

conditions in Equation (2.5) may be locally violated at θ0. �

Example 2.2 (Entry Game). Suppose firm l ∈ {1, 2} generates profits

πl,i(θl,W−l,i) ≡ ul,i − θlW−l,i (2.9)

when entering market i ∈ {1, . . . , n}. Here Wl,i = 1 or 0 denotes “entering” or “not entering”

market i by firm l, respectively, the subscript −l denotes the decision of the other firm,

the continuous random variable ul,i denotes the monopoly profits of firm l in market i, and

θl ∈ [0, 1] is the profit reduction incurred by firm l if W−l,i = 1. If a firm does not enter

a market, it gets zero profits in that market. Therefore, entering is always profitable for at

least one firm.

Define Wi = (W1,i,W2,i) and θ0 = (θ1, θ2). There are four possible outcomes: (i) Wi =

(1, 1) is the unique Nash Equilibrium (NE) if ul,i > θl for l = 1, 2, (ii) Wi = (1, 0) is the

unique NE if u1,i > θ1 and u2,i < θ2, (iii) Wi = (0, 1) is the unique NE if u1,i < θ1 and

u2,i > θ2, and (iv) there are multiple equilibria if ul,i < θl for l = 1, 2 as both Wi = (1, 0) and

Wi = (0, 1) are NE. Therefore, under the assumption u ∼ G, for some joint distribution G,

the model implies that

Pr(Wi = (1, 0)) ≤ Pr(u2,i < θ2) ≡ G1(θ0),

Pr(Wi = (1, 0)) ≥ Pr(u1,i > θ1 & u2,i < θ2) ≡ G2(θ0),

Pr(Wi = (1, 1)) = Pr(u1,i > θ1 & u2,i > θ2) ≡ G3(θ0), (2.10)

where the notation G1(θ0), G2(θ0), G3(θ0) corresponds to ui ∼ G. The resulting moment

(in)equalities are

EF0m1(Wi, θ0) = EF0 [G1(θ0)−W1,i(1−W2,i)] ≥ 0,

EF0m2(Wi, θ0) = EF0 [W1,i(1−W2,i)−G2(θ0)] ≥ 0,

EF0m3(Wi, θ0) = EF0 [W1,iW2,i −G3(θ0)] = 0, (2.11)
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where F0 denotes the true distribution of Wi that must be compatible with the true joint

distribution of ui.

To do inference on θ0, the researcher assumes G is the joint distribution of the unobserved

random vector ui.
6 Now suppose that the data comes from a local perturbation of the

hypothesized model. More specifically, suppose for example that for some r = (r1, r2, r3)
′ ∈

R3
+

|Gj(θ0)−Gn,j(θ0)| ≤ rjn−1/2, j = 1, 2, 3, (2.12)

where Gn denotes the true distribution of ui for sample size n and Gn,j(θ0) is defined as

Gj(θ0) above when ui ∼ Gn rather than ui ∼ G. Denote by Fn the true distribution of

Wi that must be compatible with the true joint distribution of ui ∼ Gn. Then, combining

Equations (2.10) and (2.11) we obtain

EFnm1(Wi, θ0) = EFn [G1(θ0)−W1,i(1−W2,i)] ≥ −r1n−1/2,

EFnm2(Wi, θ0) = EFn [W1,i(1−W2,i)−G2(θ0)] ≥ −r2n−1/2,

|EFnm3(Wi, θ0)| = |EFn [W1,iW2,i −G3(θ0)]| ≤ −r3n−1/2. (2.13)

Thus, under the distribution Fn the moment conditions may be locally violated at θ0.
7 �

Remark 2.1. Note that in both examples the parameter θ0 has a meaningful interpretation

independent of the potential misspecification of the model of the type considered above.

However, as demonstrated, if the researcher assumes an incorrect parametric structure, the

moment (in)equalities are potentially violated for every given sample size n at the true θ0.

The assumption of correct specification by the researcher of the distribution of ui is very

strong - it is therefore of critical importance to assess how robust in terms of size distortion

competing inference procedures are when the assumption fails.

Examples 2.1 and 2.2 illustrate that local misspecification in moment inequality models

can be represented by a parameter space that allows the moment conditions to be slightly

violated, i.e., slightly negative in the case of inequalities and slightly different from zero

in the case of equalities. We capture this idea in the definition below, where m(Wi, θ) =

(m1(Wi, θ), . . . ,mk(Wi, θ)) and (θ, F ) denote generic values of the parameters.

Definition 2.1 (Parameter Space). The parameter space Fn ≡ Fn (r, δ,M,Ψ) for (θ, F ) is

the set of all tuplets (θ, F ) that satisfy

6Note that in order to make inference on θ0 the researcher is forced to make an assumption on G as θ0

and G are not jointly identified. That is, without an assumption on G, θ0 will not even be partially identified.
7For simplicity the true value θ0 was not indexed by n even though our analysis below allows for the true

θ0 to change with n. However, we assume throughout that the distribution G does not depend on n.
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(i) θ ∈ Θ,

(ii) σ−1F,j(θ)EFmj(Wi, θ) ≥ −rjn−1/2, j = 1, . . . , p,

(iii) |σ−1F,j(θ)EFmj(Wi, θ)| ≤ rjn−1/2, j = p+ 1, . . . , k,

(iv) {Wi}ni=1 are i.i.d. under F,

(v) σ2F,j(θ) = V arF (mj(Wi, θ)) ∈ (0,∞), j = 1, . . . , k,

(vi) CorrF (m(Wi, θ)) ∈ Ψ, and,

(vii) EF |mj(Wi, θ)/σF,j(θ)|2+δ ≤M, j = 1, . . . , k, (2.14)

where Ψ is a specified closed set of k × k correlation matrices (that depends on the test

statistic; see below), M <∞ and δ > 0 are fixed constants, and r = (r1, . . . , rk) ∈ Rk+.

As made explicit in the notation, the parameter space depends on n. It also depends on

the number of moment restrictions k and the “upper bound” on the local moment (in)equality

violation r. Conditions (ii)-(iii) are modifications of (3.3) in AG (or (2.2) in AS) to account

for local model misspecification. Finally, we use

r∗ ≡ max{r1, . . . , rk} (2.15)

to measure the amount of misspecification. Notice that the definition of the parameter space

captures the framework in Examples 2.1 and 2.2.

Remark 2.2. The parameter space in (2.14) includes the space F0 ≡ Fn(0k, δ,M, ψ) for all

n ≥ 1, which is the set of correctly specified models. The content of the theorems in the

next section continue to hold if we alternatively define Fn enforcing that at least one moment

(in)equality is strictly locally violated. For example, adding the restriction

(viii) σ−1F,j(θ)EFmj(W, θ) = −rjn−1/2 and rj > 0 for some j = 1, . . . , k, (2.16)

would be one way of doing this.

The asymptotic confidence size of CSn in Equation (2.3) is defined as

AsyCS = lim inf
n→∞

inf
(θ,F )∈Fn

Prθ,F (Tn(θ) ≤ cn(θ, 1− α)), (2.17)

where Prθ,F (·) denotes the probability measure when the true value of the parameter is θ

and the true distribution equals F . This is the limit inferior of the magnitude one aims to

control in finite samples, i.e., the exact confidence size of the CS. The existing literature

on inference in partially identified moment (in)equality models shows that several inference

procedures achieve AsyCS ≥ 1−α when r∗ = 0. In this paper we are interested in comparing

these inference procedures when there is local misspecification (i.e, r∗ > 0). In particular, we

are interested in ranking the procedures according to their level of confidence size distortion,
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defined as

AsyDist ≡ max{1− α−AsyCS, 0}. (2.18)

Before doing this, we present the different test statistics and critical values in the next

subsection.

Remark 2.3. We could alternatively focus on the asymptotic size distortion of the tests for

the null H0 : θ0 = θ. The asymptotic size in that case would be

AsySz(θ) = lim sup
n→∞

sup
F :(θ,F )∈Fn

Prθ,F (Tn(θ) > cn(θ, 1− α)), (2.19)

where the supremum is only with respect to F and θ is fixed. Analytically, studying AsySz(θ)

is less complex than studying AsyCS as in the former case θ is fixed at a particular value

while in the latter case θ may depend on n.

2.1 Test Statistics and Critical Values

We now present several test statistics Tn(θ) and corresponding critical values cn(θ, 1− α) to

test (2.2) or, equivalently, to construct a CS as in (2.3). Define the sample moment functions

m̄n(θ) = (m̄n,1(θ), . . . , m̄n,k(θ)), where

m̄n,j(θ) = n−1
n∑
i=1

mj(Wi, θ) for j = 1, . . . , k. (2.20)

Let Σ̂n(θ) be a consistent estimator of the asymptotic variance matrix of n1/2m̄n(θ). Under

our assumptions, a natural choice for this estimator is

Σ̂n(θ) = n−1
n∑
i=1

(m(Wi, θ)− m̄n(θ))(m(Wi, θ)− m̄n(θ))′. (2.21)

The statistic Tn(θ) is defined to be of the form

Tn(θ) = S(n1/2m̄n(θ), Σ̂n(θ)), (2.22)

where S is a real-valued function on Rp+∞ × Rv × Vk×k that satisfies Assumption A.1 and

Vk×k is the space of k × k variance matrices.

We now describe two popular choices of test functions. The first test function S is the

Modified Method of Moments (MMM) given by

S1(m,Σ) =

p∑
j=1

[mj/σj ]
2
− +

k∑
j=p+1

(mj/σj)
2, (2.23)

where [x]− = xI(x < 0), m = (m1, . . . ,mk), and σ2j = Σ[j,j]. For this function, the parameter
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space Ψ for the correlation matrices in condition (v) of Equation (2.14) is not restricted. That

is, the space in (2.14) holds with Ψ = Ψ1, where Ψ1 contains all k × k correlation matrices.

The function S1 leads to the test statistic

T1,n(θ) = n

p∑
j=1

[m̄n,j(θ)/σ̂n,j(θ)]
2
− + n

k∑
j=p+1

(m̄n,j(θ)/σ̂n,j(θ))
2, (2.24)

where σ̂2n,j(θ) = Σ̂n(θ)[j,j].

The second test function is a Gaussian quasi-likelihood ratio (or minimum distance) func-

tion defined by

S2(m,Σ) = inf
t=(t1,0v):t1∈Rp+,+∞

(m− t)′Σ−1(m− t). (2.25)

This function requires Σ to be non-singular so we take Ψ = Ψ2,ε, where

Ψ2,ε = {Σ ∈ Ψ1 : det(Σ) ≥ ε}, (2.26)

for some ε > 0. The function S2 leads to the test statistic

T2,n(θ) = inf
t=(t1,0v):t1∈Rp+,+∞

(n1/2m̄n(θ)− t)′Σ̂n(θ)−1(n1/2m̄n(θ)− t). (2.27)

The functions S1 and S2 satisfy Assumptions A.1-A.3 that are slight generalizations of

Assumptions 1-4 in AG to our setup.8

We next describe three main choices of critical values. Assuming the limiting correlation

matrix of m(Wi, θ) is given by Ω and that r∗ = 0 in Equation (2.14), it follows from Lemma

B.1 that

Tn(θ)→d S(Ω1/2Z + h1,Ω), (2.28)

where Z ∼ N(0k, Ik), h1 is a k-vector with h1,j = 0 for j > p and h1,j ∈ [0,∞] for j ≤ p (see

Lemma B.1), and Ω1/2 denotes a lower triangular matrix such that Ω = Ω1/2Ω1/2′. Therefore,

ideally one would use the 1−α quantile of S(Ω1/2Z + h1,Ω), denoted by ch1(Ω, 1−α) or, at

least, a consistent estimator of it. This requires knowledge of h1, which cannot be estimated

consistently (see AS and AG), and so some approximation to ch1(Ω, 1− α) is necessary.

Under the assumptions in the Appendix, the asymptotic distribution in Equation (2.28)

is stochastically largest over distributions in F0 (i.e., correctly specified models) when all the

inequalities are binding (i.e., hold as equalities). As a result, the least favorable critical value

can be shown to be c0(Ω, 1−α), the 1−α quantile of S(Ω1/2Z,Ω) (i.e., h1 = 0k).
9 PA critical

values are based on this “worst case” and are defined as consistent estimators of c0(Ω, 1−α).

8Note S1(m,Σ) is increasing in |mj | for j = p + 1, . . . , k, while S2(m,Σ) is not. To see this take p = 0,
k = 2, and Σ with ones in the diagonal and σ12 = 1/2 off-diagonal. Then S2(m,Σ) = (4/3)(m2

1 +m2
2−m1m2)

which is not necessarily increasing in |m1| or |m2|.
9We write c0(Ω, 1− α) rather than c0k (Ω, 1− α) for ease of notation.
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Define

Ω̂n(θ) = D̂−1/2n (θ)Σ̂n(θ)D̂−1/2n (θ), (2.29)

where D̂n(θ) = Diag(Σ̂n(θ)) and Σ̂n(θ) is defined in Equation (2.21). The PA test rejects

H0 if Tn(θ) > c0(Ω̂n(θ), 1− α), where the PA critical value is

c0(Ω̂n(θ), 1− α) ≡ inf{x ∈ R : Pr(S(Ω̂n(θ)1/2Z, Ω̂n(θ)) ≤ x) ≥ 1− α}, (2.30)

and Z ∼ N(0k, Ik) with Z independent of {Wi}ni=1.

We now define the GMS critical value introduced in AS. To this end, let

ξn(θ) = κ−1n D̂−1/2n (θ)n1/2m̄n(θ), (2.31)

for a sequence {κn}∞n=1 of constants such that κn → ∞ as n → ∞ at a suitable rate, e.g.

κn = (2 ln lnn)1/2. For every j = 1, . . . , p, the realization ξn,j(θ) is an indication of whether

the jth inequality is binding or not. A value of ξn,j(θ) that is close to zero (or negative)

indicates that the jth inequality is likely to be binding. On the other hand, a value of ξn,j(θ)

that is positive and large, indicates that the jth inequality may not be binding. As a result,

GMS tests replace the parameter h1 in the limiting distribution with the k-vector

ϕ(ξn(θ), Ω̂n(θ)), (2.32)

where ϕ = (ϕ1, . . . , ϕp, 0v) ∈ Rk[+∞] is a function chosen by the researcher that is assumed to

satisfy Assumption A.4 in the Appendix. Examples include ϕ
(1)
j (ξ,Ω) = ∞I(ξj > 1), where

we use the convention ∞0 = 0, ϕ
(2)
j (ξ,Ω) = ψ(ξj), ϕ

(3)
j (ξ,Ω) = [ξj ]+, and ϕ

(4)
j (ξ,Ω) = ξj

for j = 1, . . . , p, where ψ(·) is a non-decreasing function that satisfies ψ(x) = 0 if x ≤ aL,

ψ(x) ∈ [0,∞] if aL < x < aU , and ψ(x) =∞ if x > aU for some 0 < aL ≤ aU ≤ ∞. See AS

for additional examples. The GMS test rejects H0 if Tn(θ) > ĉn,κn(θ, 1−α), where the GMS

critical value is

ĉn,κn(θ, 1−α) ≡ inf{x ∈ R : Pr(S(Ω̂1/2
n (θ)Z +ϕ(ξn(θ), Ω̂n(θ)), Ω̂n(θ)) ≤ x) ≥ 1−α}, (2.33)

and Z ∼ N(0k, Ik) with Z independent of {Wi}ni=1.

Finally, we define subsampling critical values, see Politis and Romano (1994) and Politis,

Romano, and Wolf (1999). Let bn denote the subsample size when the sample size is n.

Throughout the paper we assume bn →∞ and bn/n→ 0 as n→∞. The number of different

subsamples of size bn is qn (with i.i.d. observations, qn = n!/((n− bn)!bn!)). The subsample

statistics used to construct the subsampling critical value are {Tn,b,s(θ)}qns=1, where Tn,b,s(θ)

is a subsample statistic defined exactly as Tn(θ) is defined but based on the sth subsample of
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size bn rather than the full sample. The empirical distribution function of {Tn,b,s(θ)}qns=1 is

Un,b(θ, x) = q−1n

qn∑
s=1

I(Tn,b,s(θ) ≤ x) for x ∈ R. (2.34)

The subsampling test rejects H0 if Tn(θ) > ĉn,b(θ, 1−α), where the subsampling critical value

is

ĉn,b(θ, 1− α) ≡ inf{x ∈ R : Un,b(θ, x) ≥ 1− α}. (2.35)

Having introduced the different test statistics and critical values typically used in the

literature, we devote the next section to the analysis of the asymptotic properties of the

different CSs under the locally misspecified models introduced in Definition 2.1.

3 Asymptotic Confidence Size Distortions

We divide this section in two parts. First, we take the test function S as given and compare

how the resulting CSs based on PA, GMS, and subsampling critical values perform under

local misspecification. In this case we write AsyCSPA, AsyCSGMS , and AsyCSSS for PA,

GMS, and subsampling CSs, respectively, to make explicit the choice of critical value. Second,

we take the critical value as given and compare how CSs based on the test functions S1 and

S2 perform under local misspecification. In this case we write AsyCS
(1)
l and AsyCS

(2)
l ,

for l ∈ {PA,GMS, SS}, to denote the asymptotic confidence size of the CSs based on test

functions S1 and S2, respectively.

3.1 Comparison across Critical Values

The following Theorem presents the main result of this section, which provides a ranking of

PA, GMS, and subsampling CSs in terms of asymptotic confidence size distortion. In order

to keep the exposition as simple as possible, we present and discuss the assumptions and

technical details in the Appendix.

Theorem 3.1. Assume the parameter space is given by Fn in (2.14), 0 < α < 1/2, and that

S satisfies Assumptions A.1-A.3. For GMS CSs assume that ϕ(ξ,Ω) satisfies Assumption

A.4, and that κn → ∞ and κ−1n n1/2 → ∞. For subsampling CSs suppose bn → ∞ and

bn/n→ 0.

1. It follows that

AsyCSPA ≥ AsyCSSS and AsyCSPA ≥ AsyCSGMS . (3.1)

Therefore, PA CSs are at least as robust as GMS and subsampling CSs under local

violations of the moment (in)equalities.
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2. Suppose that Assumption A.6 holds. Then

AsyCSPA < 1− α. (3.2)

By Equation (3.1) it follows that AsyCSSS < 1− α and AsyCSGMS < 1− α.

3. Suppose that Assumption A.5 holds and κ−1n n1/2/b
1/2
n →∞. Then

AsyCSSS = AsyCSGMS . (3.3)

Therefore, subsampling CSs and GMS CSs are equally robust under local violations of

the moment (in)equalities.

Assumptions A.1-A.4 are slight modifications of the corresponding assumptions in AS and

AG. Assumptions A.5 and A.6 are introduced in this paper and ensure that the parameter

space is rich enough. These two new assumptions are mild and we verify them for the two lead

examples in Section D of the Appendix under the mild primitive conditions of Assumptions

D.1 and D.2. Under a reasonable set of assumptions the theorem implies

AsyCSGMS = AsyCSSS ≤ AsyCSPA < 1− α. (3.4)

This equation summarizes several important results. First, it shows that, under the pres-

ence of local misspecification and relatively mild conditions, all of the inferential methods

are asymptotically distorted, that is, as the sample size grows, CSs under-cover the true

parameter. Second, the equation reveals that PA CSs suffer the least amount of asymptotic

confidence size distortion. This is expected as this CS uses a conservative critical value,

treating each inequality as binding without using information in the data.

Equation (3.4) also shows that the subsampling and GMS CSs share the same amount

of asymptotic distortion. From the results in AS, we know that GMS tests are as powerful

as subsampling tests along any sequence of local alternative models suggesting that the

expected volume of the corresponding GMS CSs are no larger than that of subsampling CSs.

Moreover, AS show that GMS tests are strictly more powerful than subsampling tests along

some sequences of local alternative models. One might then suspect that this result would

translate in the GMS CS having a strictly larger asymptotic distortion than the subsampling

CS in the context of locally misspecified models. Equation (3.4) shows that this is not the

case. Intuitively, even though the GMS and subsampling CSs differ in their asymptotic

behavior along certain sequences of locally misspecified models, these sequences turn out not

to be the relevant ones for the computation of the asymptotic confidence sizes, i.e., the ones

that attain the infimum in Equation (2.17). In particular, along the sequences of locally

misspecified models that minimize their respective limiting coverage probability, the two CSs

share the value of the asymptotic confidence size. When combined with the results regarding

power against local alternatives in AS (and their implication for the expected volume of the
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corresponding CSs), our results indicate that GMS CSs are preferable to subsampling CSs:

there can be a reduction in expected volume under correct specification without worsening

the asymptotic confidence size distortion when the model is locally misspecified.

According to Equation (3.4), PA CSs are the most robust CSs among the procedures

considered in this section. However, PA CSs are conservative in many cases in which GMS

and subsampling CSs are not, and so the price for being robust against local misspecification

can be quite high in terms of expected volume if the model is correctly specified.

3.2 Comparison across Test Statistics

In this section we analyze the relative performance in terms of asymptotic confidence size

distortion of CSs based on the test functions S1 and S2 defined in Equations (2.23) and (2.25),

respectively. The main result of this section has two parts. First, we show that the AsyCS

of CSs based on the test function S1 is strictly positive for any PA, GMS or subsampling

critical value. Second, we show that the AsyCS of the test function S2 can be arbitrarily

close to zero, again for all critical values. The next theorem states these results formally.

Theorem 3.2. Assume the parameter space is given by Fn in (2.14) and 0 < α < 1/2. For

GMS CSs assume that ϕ(ξ,Ω) satisfies Assumption A.4 and that κn →∞ and κ−1n n1/2 →∞.

For subsampling CSs suppose bn →∞ and bn/n→ 0.

1. There exists B > 0 such that whenever r in the definition of Fn in Equation (2.14)

satisfies r∗ ≤ B
AsyCS

(1)
GMS > 0. (3.5)

2. Suppose that Assumption A.7 holds and that r in the definition of Fn is such that

r∗ > 0. Then, for every η > 0 there exists an ε > 0 in the definition of Ψ2,ε such that

AsyCS
(2)
PA ≤ η. (3.6)

There are several important lessons from Theorem 3.2. First, by Theorems 3.1 and 3.2 it

follows that the asymptotic confidence size of the CSs based on S1 are positive for any critical

value, provided the level of misspecification is not too big, i.e. r∗ ≤ B. Second, by Theorems

3.1 and 3.2 it follows that the test function S2 results in CSs whose asymptotic confidence

size are arbitrarily small when ε in Ψ2,ε is small enough. This is, the asymptotic confidence

size of CSs based on the test function S2 is severely affected by the smallest amount of

misspecification while CSs based on the test function S1 have positive asymptotic confidence

size. Combining these two results we derive the following corollary.

Corollary 3.1. Suppose that all the assumptions in Theorems 3.1 and 3.2 hold. Then, there

exists B > 0 and ε > 0 in Ψ2,ε such that whenever r∗ ∈ (0, B],

AsyCS
(2)
l < AsyCS

(1)
l < 1− α, l ∈ {PA,GMS, SS}. (3.7)

13



The corollary states that the test function S1 results in CSs that are more robust than

those based on the test function S2 for any PA, GMS, and subsampling critical value. It is

known from Andrews and Jia (2008) that tests based on S2 have higher power than tests

based on S1, so intuition suggests that Equation (3.7) should hold. However, Theorem 3.2

quantifies this relationship by showing that the cost of having a smaller expected volume

under correct specification for CSs based on S2 is an arbitrarily low asymptotic confidence

size under local misspecification. The quantitative differences between CSs based on S1 and

S2 can be dramatic, as we illustrate below in Table 1.

Remark 3.1. The generalized empirical likelihood (GEL) test statistics are asymptotically

equivalent to T2,n(θ) up to first order (see AG and Canay (2010)), and so the asymptotic

confidence size distortion of CSs based on GEL is equal to AsyCS
(2)
GMS in Theorem 3.2.

To understand the intuition behind Theorem 3.2 it is enough to consider the case with two

moment inequalities, p = k = 2, together with the limit of the PA critical value c0(Ω, 1− α).

In this simple case, it follows from Lemma B.1 that

AsyCS
(1)
PA ≤ Pr([Z?1 − r1]2− + [−Z?1 ]2− ≤ c0(Ω, 1− α)), (3.8)

where Z? ∼ N(0,Ω) and Ω ∈ Ψ1 is a correlation matrix with off-diagonal elements ρ = −1.

Theorem 3.2 shows that AsyCS
(1)
PA is strictly positive provided the amount of misspecification

is not too big (i.e., r∗ ≤ B). The reason why some condition on r∗ must be placed is evident: if

the amount of misspecification is really big there is no way to bound the asymptotic distortion.

To illustrate this, suppose r1 > (2c0(Ω, 1−α))1/2 and let A ≡ [Z?1 − r1]2− and B ≡ [−Z?1 ]2− so

that the right hand side of Equation (3.8) is Pr(A+B ≤ c0(Ω, 1− α)). On the one hand, if

Z?1 /∈ [0, r1] it follows that either B = 0 and A > c0(Ω, 1−α) or A = 0 and B > c0(Ω, 1−α).

On the other hand, if Z?1 ∈ [0, r1], A+B = (Z?1 − r1)2 + Z?21 ≥ r21/2 > c0(Ω, 1− α). We can

then conclude that

Pr([Z?1 − r1]2− + [−Z?1 ]2− ≤ c0(Ω, 1− α)) = 0, (3.9)

meaning that AsyCS
(1)
PA = 0 when r∗ > (2c0(Ω, 1−α))1/2. For this level of r∗, AsyCS

(2)
PA = 0

as well so both test statistics suffer from the maximum amount of distortion. Therefore, in

order to get non-trivial results we must restrict the magnitude of r∗ as in Theorem 3.2.

In addition, Theorem 3.2 shows that AsyCS
(2)
PA can be arbitrarily close to zero when ε in

the space Ψ2,ε is small. What drives this result is the possibility that at least two inequalities

are violated (or one is violated and the other one is binding) and strongly negatively corre-

lated. To illustrate this, consider again the case where p = k = 2 together with the limit of

the PA critical value c0(Ω, 1− α). By Ω ∈ Ψ2,ε, the off-diagonal element ρ of the correlation

matrix Ω has to lie in [−(1− ε)1/2, (1− ε)1/2]. It follows from Lemma B.1 that

AsyCS
(2)
PA ≤ Pr(S2(Z

?, r1,Ωε) ≤ c0(Ωε, 1− α)), (3.10)
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where Z? ∼ N(0,Ωε), Ωε is a matrix with ρ = −(1− ε)1/2, and

S2(Z
?, r1,Ωε) =

1

ε
inf

t∈R2
+,+∞

{
2∑
j=1

(Z?j −r1−tj)2+2(1−ε)1/2(Z?1−r1−t1)(Z?2−r1−t2)}. (3.11)

The solution to the above optimization problem can be divided in four cases (see Lemma B.3

for details), depending on the value of the realizations (Z?1 , Z
?
2 ). However, there exists a set

A ⊂ R2 such that for all (z1, z2) ∈ A

S2(z, r1,Ωε) ≥ S2(z, 0,Ωε) +
2

ε
[r21 − z1 − z2], (3.12)

with [r21 − z1 − z2] > 0, and Pr(Z? ∈ A)→ 1 as ε→ 0. It is immediate from Equation (3.12)

that small distortions r1 > 0 can produce a value of S2(Z
?, r1,Ωε) that is arbitrarily high

on the set A by allowing ε to be arbitrarily close to 0 (i.e., correlation close to −1). Since

c0(Ωε, 1− α) can be shown to be bounded in Ψ2,ε, it follows that

Pr(S2(Z
?, r1,Ωε) ≤ c0(Ωε, 1− α)|A)→ 0, (3.13)

as ε→ 0. Therefore, Equation (3.10) implies that CSs based on S2 have asymptotic confidence

size arbitrarily close to zero when ε is small.

AsyCS
(1)
PA AsyCS

(2)
PA

p r∗ ε = 0.10 ε = 0.05

0.25 0.888 0.637 0.351
2 0.50 0.800 0.101 0.003

1.00 0.502 0.000 0.000

0.25 0.866 0.588 0.314
4 0.50 0.739 0.071 0.001

1.00 0.256 0.000 0.000

0.25 0.847 0.631 0.347
6 0.50 0.674 0.091 0.002

1.00 0.153 0.000 0.000

0.25 0.830 0.713 0.441
8 0.50 0.617 0.134 0.009

1.00 0.082 0.000 0.000

0.25 0.804 0.720 0.461
10 0.50 0.571 0.124 0.010

1.00 0.050 0.000 0.000

Table 1: Asymptotic Confidence Size for CSs based on the test functions S1 and S2 with a PA
critical value. The numbers above were computed using the explicit formula for AsyCS provided in
Equation B-2 and the infimum with respect to Ω for S1 and S2 was carried out by minimizing over
15000 random correlation matrices in Ψ1 and Ψ2,ε, respectively.

Theorem 3.2 presents a theoretical result regarding the relative amount of confidence size

distortion of different test functions. We now quantify these results by numerically computing

the asymptotic confidence size of the CSs based on S1 and S2 using the formulas provided

in Lemma B.2. Table 1 reports the cases where p ∈ {2, 4, 6, 8, 10}, k = p, ε ∈ {0.10, 0.05},
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and r∗ ∈ {0.25, 0.50, 1.00}. Table 1 shows that S2 is significantly distorted even for relatively

high values of ε (i.e., ε = 0.1). For example, when p = 2 and r∗ = 0.5, the asymptotic

confidence size of the test function S1 is 0.80 while the asymptotic confidence size of S2 is

0.10 at best. The asymptotic confidence size for both test functions decreases as p grows,10

and as predicted by Theorem 3.2, the asymptotic confidence size of S2 is always significantly

below than that of S1 and very close to zero for relatively large values of r∗.

Two aspects related to the second part of Theorem 3.2 are worth mentioning. The first

aspect is that the result still holds if we modify the test function S2 in order to admit any

matrix in the space of all correlation matrices Ψ1 (even singular ones). This is, suppose that

for ε > 0 we define the test function

S̃2(m,Σ) = inf
t=(t1,0v):t1∈Rp+,+∞

(m− t)′Σ̃−1ε (m− t), (3.14)

where

Σ̃ε = Σ + 1{det(Ω) < ε}εD, D = diag(Σ), Ω = D−1/2ΣD−1/2. (3.15)

The function S̃2 is well defined on Ψ1 and leads to the test statistic

T̃2,n(θ) = inf
t=(t1,0v):t1∈Rp+,+∞

(n1/2m̄n(θ)− t)′Σ̃ε,n(θ)−1(n1/2m̄n(θ)− t). (3.16)

where Σ̃ε,n(θ) is a sample analog of Σ̃ε based on Equations (2.21), (2.29), and (3.15). This

new test function is numerically equal to S2 when the determinant of the correlation matrix

is at least ε, but it changes the weighting matrix when Ω is singular or close to singular.

If we let AsyCS(2̃) denote the asymptotic confidence size of CSs based on S̃2, we have the

following corollary to Theorem 3.2.

Corollary 3.2. Suppose all the assumptions in Theorem 3.2 hold and that r in the definition

of Fn is such that r∗ > 0. Then, for every η > 0 there exists an ε > 0 in the definition of S̃2

such that

AsyCS
(2̃)
PA ≤ η. (3.17)

The second aspect is related to the requirement in Assumption A.7 that the parameter

space is sufficiently rich in the following sense. Assumption A.7 requires that at least one

inequality in Equation (2.1) is violated and strongly negatively correlated with another in-

equality that is either violated or equal to zero. This ensures that the relationship illustrated

in Equation (3.12) holds and so the difference between S2(z, r1,Ωε) and S2(z, 0,Ωε) increases

as ε → 0. When p = 2 it can be shown that this is actually a necessary condition to obtain

10Table 1 shows this clearly for S1, but less clearly for S2. The reason is that finding the worst possible
correlation matrix becomes more complicated as the dimension increases, and so for p ≥ 8 the results reported
are relatively optimistic for S2. The random correlation matrices were generated with the method of Marsaglia
and Olkin (1984).
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the second part in Theorem 3.2.11 In the general case, there are alternative ways to make the

parameter space rich enough, but Assumption A.7 has the additional advantage of making

the optimization problem in Equation (2.25) tractable. However, the second part of Theorem

3.2 should be interpreted as a warning message. Unless the researcher is certain that it is

impossible for inequalities that are violated to be negatively correlated with each other or

with other inequalities that are binding, inference based on S2 could be extremely distorted.

4 Numerical Simulations

In this section we perform a small simulation study to analyze whether the result in Theorem

3.1 are relevant in finite samples. We consider the model in Example 2.1 where

EF0 (Y |X = x) = G (x, θ0) ,∀x ∈ SX , (4.1)

θ0 ∈ R2 is the true parameter value, and SX = {xl}dxl=1 ⊂ R2 is the support of X. The

data is simulated according to the following parametrization. Y ∈ {0, 1} is a binary random

variable, SX = {(1, 0), (0, 1)}, θ0 = (0.1,−0.5), G (x, θ0) = Φ(θ′0x) (where Φ(·) denotes the

standard normal cdf so that the model under F0 is a Probit model) and

π(x) = Pr(Z = 1|X) = I(X = (1, 0)) + 1/2I(X = (0, 1)). (4.2)

The observed data is Wi = (YiZi, Zi, Xi). Note that when X = (1, 0), Y is always observed.

The model then results in one equality and two inequalities. We compare PA, GMS, and

subsampling critical values together with the test function S1 from Equation (2.23). The

rest of the parameters are as follows: sample size is n = 1000, number of subsampling/GMS

replications is B = 200, number of simulations is MC = 500, subsampling block sizes are

b = {n1/3, (n1/3 + n1/2)/2, n1/2}, and GMS tuning parameters are κn = {ln lnn, (ln lnn +

lnn)/2, lnn}.
For simplicity, instead of focusing on the asymptotic confidence sizes of the CSs we look

at the asymptotic size distortion of the tests for the null hypothesis H0 : θ0 = (0.1,−0.5).

This simplifies the computations significantly and provides an analogous analysis by Remark

2.3. Under the null hypothesis it follows that

EF0(Y |X = (1, 0)) = 0.54 and EF0(Y |X = (0, 1)) = 0.31. (4.3)

A perturbation F ′ of F0 results in different values of the expectations EF ′(Y |X = x).12 For

the simulation exercise we consider the set of all distributions F ′ such that EF ′(Y |X = x) is

11For instance, in Examples 2.1 and 2.2 there are only two inequalities and the models are restricted in a
way than when one inequality is negative, the other one is necessarily positive. However, in Example 2.2 this
relationship is not present when there are more than two firms and the model includes additional covariates.

12For example, if the model is Logit then EF ′(Y |x = (1, 0)) = Λ(0.1) = 0.53 and EF ′(Y |x = (0, 1)) =
Λ(−0.5) = 0.38, where Λ denotes the logistic cumulative distribution function.
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r∗ PA-non-adj PA SS1 SS2 SS3 GMS1 GMS2 GMS3

0.00 0.05 0.10 0.10 0.10 0.10 0.10 0.10 0.10
0.30 0.06 0.12 0.13 0.11 0.11 0.12 0.12 0.12
0.60 0.10 0.17 0.15 0.15 0.14 0.17 0.17 0.17
0.90 0.19 0.27 0.24 0.28 0.23 0.27 0.27 0.27
1.20 0.28 0.41 0.34 0.37 0.34 0.39 0.39 0.39
1.50 0.61 0.70 0.66 0.67 0.66 0.69 0.69 0.69
1.80 0.70 0.79 0.77 0.76 0.76 0.77 0.77 0.77
2.10 0.79 0.84 0.81 0.83 0.81 0.84 0.84 0.84
2.40 0.94 0.97 0.95 0.96 0.96 0.96 0.96 0.96
2.70 0.94 0.97 0.95 0.96 0.96 0.96 0.96 0.96
3.00 0.99 1.00 0.99 0.99 1.00 1.00 1.00 1.00
3.30 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3.60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2: Adjusted maximum rejection probability over models that are a distance r∗ or less away from
F0 under H0. Simulation parameters: n = 1000, α = 0.10, B = 200, b = {n1/3, (n1/3 +n1/2)/2, n1/2},
κn = {ln lnn, (ln lnn+ lnn)/2, lnn}, and MC = 500.

in a neighborhood of EF0(Y |X = x) = (0.54, 0.31). In particular, the set of models that are

a distance d = r∗n−1/2 ≥ 0 from F0 are defined as

Fr∗ ≡ {F ′ : max{dF ′,1(θ0), dF ′,2(θ0), dF ′,3(θ0)} ≤ r∗n−1/2} (4.4)

where

dF ′,1(θ0) = |EF ′m1(Wi, θ0)/σF ′,1(θ0)| (4.5)

dF ′,2(θ0) = |[EF ′m2(Wi, θ0)/σF ′,2(θ0)]−| (4.6)

dF ′,3(θ0) = |[EF ′m3(Wi, θ0)/σF ′,3(θ0)]−|. (4.7)

Given r∗ ≥ 0 we explore all models that are in the ball and compare the maximum rejection

probabilities across inferential methods. This is, we report

sup
F∈Fr∗

PrF (Tn(θ0) > cn(θ0, 1− α)), (4.8)

for each choice of critical value, which involves simulating data from all F ′ ∈ Fr∗ .
The results are reported in Table 2. The table shows size corrected maximum rejection

probabilities (for α = 0.10). From the table we see that the maximum rejection probability

of subsampling and GMS are extremely close. Results for subsampling are particularly sensi-

tive to the choice of the block size. Overall, the finite sample rejection probabilities of GMS

and subsampling are very similar and the differences are not statistically significant given

the MC = 500 simulations. Finally, the table also shows the non-adjusted maximum rejec-

tion probabilities for PA, as PA is actually conservative for testing H0 in this model. This

illustrates that the robustness of PA is related to the fact that under correct specification

(r∗ = 0) the method is conservative. All these results are in line with Theorem 3.1.
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Appendices

Appendix A Additional Definitions and Assumptions

To determine the asymptotic confidence size in Equation (2.17) we calculate the limiting coverage
probability along a sequence of “worst case parameters” {θn, Fn}n≥1 with (θn, Fn) ∈ Fn,∀n ∈ N. See
also Andrews and Guggenberger (2009a,b,2010a,b). We start with the following definition.

Definition A.1. For a subsequence {ωn}n≥1 of N and h = (h1, h2) ∈ Rk+∞ ×Ψ we denote by

γωn,h = {θωn,h, Fωn,h}n≥1, (A-1)

a sequence that satisfies (i) γωn,h ∈ Fωn for all n, (ii) ω
1/2
n σ−1

Fωn,h,j
(θωn,h)EFωn,hmj(Wi, θωn,h)→ h1,j

for j = 1, . . . , k, and (iii) CorrFωn,h(m(Wi, θωn,h))→ h2 as n→∞, if such a sequence exists. Denote

by H the set of points h = (h1, h2) ∈ Rk+∞ ×Ψ for which sequences {γωn,h}n≥1 exist.
Denote by GH the set of points (g1, h) ∈ Rk+∞ ×H such that there is a subsequence {ωn}n≥1 of

N and a sequence {γωn,h}n≥1 that satisfies13

b1/2ωn σ
−1
Fωn,h,j

(θωn,h)EFωn,hmj(Wi, θωn,h)→ g1,j (A-2)

for j = 1, . . . , k, where g1 = (g1,1, . . . , g1,k). Denote such a sequence by {γωn,g1,h}n≥1.
Denote by ΠH the set of points (π1, h) ∈ Rk+∞ ×H such that there is a subsequence {ωn}n≥1 of

N and a sequence {γωn,h}n≥1 that satisfies

κ−1
ωnω

1/2
n σ−1

Fωn,h,j
(θωn,h)EFωn,hmj(Wi, θωn,h)→ π1,j (A-3)

for j = 1, . . . , k, where π1 = (π1,1, . . . , π1,k). Denote such a sequence by {γωn,π1,h}n≥1.

Our assumptions imply that elements of H satisfy certain properties. For example, for any h ∈ H,
h1 is constrained to satisfy h1,j ≥ −rj for j = 1, . . . , p and |h1,j | ≤ rj for j = p + 1, . . . , k, and h2 is
a correlation matrix. Note that the set H depends on the choice of S through Ψ. Note that b/n→ 0
implies that if (g1, h) ∈ GH and h1,j is finite (j = 1, . . . , k), then g1,j = 0. In particular, g1,j = 0
for j > p by Equation (2.14)(iii). Analogous statements hold for ΠH. Finally, the spaces H, GH,
and ΠH for the case of hypothesis testing (see Remark 2.3) are defined analogously for a sequence
γωn,h = {θ, Fωn,h}n≥1 where θ is fixed.

Lemma B.2 in the next section shows that worst case parameter sequences for PA, GMS, and sub-
sampling CSs are of the type {γn,h}n≥1, {γωn,π1,h}n≥1, and {γωn,g1,h}n≥1, respectively, and provides
explicit formulas for the asymptotic confidence size of various CSs.

Definition A.2. For h = (h1, h2), let

Jh ∼ S(h
1/2
2 Z + h1, h2), (A-4)

where Z = (Z1, . . . , Zk) ∼ N(0k, Ik). The 1− α quantile of Jh is denoted by ch1
(h2, 1− α).

Note that c0(h2, 1−α) is the 1−α quantile of the asymptotic null distribution of Tn(θ) when the
moment inequalities hold as equalities and the moment equalities are satisfied.

The following Assumptions A.1-A.3 are taken from AG with Assumption 2 slightly strengthened.
Assumption A.4(a)-(c) combines Assumptions GMS1 and GMS3 in AS. In the assumptions below,
the set Ψ is as in condition (v) of Equation (2.14). Assumptions A.5-A.7 are new.

13Note that the definitions of the sets H and GH differ somewhat from the ones given in AG. In particular,
in AG, GH is defined as a subset of H × H whereas here h2 is not repeated. Also, the dimension of h2 in
AG is smaller than here as vech∗(h2) is replaced by h2. We adopt this convention in order to simplify the
notation.
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Assumption A.1. The test function S satisfies,

(a) S ((m1,m
∗
1) ,Σ) is non-increasing in m1, ∀(m1,m

∗
1) ∈ Rp × Rv and variance matrices Σ ∈

Rk×k,

(b) S (m,Σ) = S (∆m,∆Σ∆) for all m ∈ Rk, Σ ∈ Rk×k, and positive definite diagonal matrix
∆ ∈ Rk×k,

(c) S (m,Ω) ≥ 0 for all m ∈ Rk and Ω ∈ Ψ, and

(d) S (m,Ω) is continuous at all m ∈ Rp+∞ × Rv and Ω ∈ Ψ.

Assumption A.2. For all h1 ∈ [−rj ,∞]pj=1 × [−rj , rj ]kj=p+1, all Ω ∈ Ψ, and Z ∼ N (0k,Ω) , the
distribution function (df) of S (Z + h1,Ω) at x ∈ R is

(a) continuous for x > 0,

(b) strictly increasing for x > 0 unless p = k and h1 =∞p, and

(c) less than or equal to 1/2 at x = 0 when v ≥ 1 or when v = 0 and h1,j = 0 for some j = 1, . . . , p.

Assumption A.3. S(m,Ω) > 0 if and only if mj < 0 for some j = 1, . . . , p, or mj 6= 0 for some
j = p+ 1, . . . , k, where m = (m1, . . . ,mk) and Ω ∈ Ψ.

Assumption A.4. Let ξ = (ξ1, . . . , ξk). For j = 1, . . . , p we have:

(a) ϕj(ξ,Ω) is continuous at all (ξ,Ω) ∈ (Rp+,+∞ × Rv±∞)×Ψ for which ξj ∈ {0,∞}.

(b) ϕj(ξ,Ω) = 0 for all (ξ,Ω) ∈ (Rp+,+∞ × Rv±∞)×Ψ with ξj = 0.

(c) ϕj(ξ,Ω) =∞ for all (ξ,Ω) ∈ (Rp+,+∞ × Rv±∞)×Ψ with ξj =∞.

(d) ϕj(ξ,Ω) ≥ 0 for all (ξ,Ω) ∈ (Rp+,+∞ × Rv±∞)×Ψ with ξj ≥ 0.

Assumption A.5. For any sequence {γωn,g1,h}n≥1 in Definition A.1 there exists a subsequence
{ω̃n}n≥1 of N and a sequence {γω̃n,g̃1,h}n≥1 such that g̃1 ∈ Rk+∞ satisfies g̃1,j =∞ when h1,j =∞ for
j = 1, . . . , p.

Assumption A.6. There exists h∗ = (h∗1, h
∗
2) ∈ H for which Jh∗(c0(h∗2, 1− α)) < 1− α.

Let Ξl,l′(ε) ∈ Rk×k be an identity matrix except for the (l, l′) and (l′, l) components that are equal
to −

√
1− ε for some l, l′ ∈ {1, . . . , p}.

Assumption A.7. There exists h ∈ H such that h1,l ≤ 0, h1,l′ ≤ 0, min{h1,l, h1,l′} < 0, and
h2 = Ξl,l′(ε) for some l, l′ ∈ {1, . . . , p} with l 6= l′.

Assumption 4 in AG is not imposed because it is implied by the other assumptions in our paper.
More specifically, note that by Assumption A.1(c) c0(Ω, 1 − α) ≥ 0. Also, h1 = 0v and Assumption
A.2(c) imply that the df of S(Z,Ω) is less than 1/2 at x = 0, which implies c0(Ω, 1 − α) > 0 for
α < 1/2. Then, Assumption A.2(a) implies Assumption 4(a) in AG. Regarding Assumption 4(b) in
AG, note that it is enough to establish pointwise continuity of c0(Ω, 1 − α) because by assumption
Ψ is a closed set and trivially bounded. In fact, we can prove pointwise continuity of ch1

(Ω, 1 − α)
even for a vector h1 with h1,j = 0 for at last one j = 1, . . . , k. To do so, consider a sequence {Ωn}n≥1

such that Ωn → Ω for a Ω ∈ Ψ and a vector h1 with h1,j = 0 for at last one j = 1, . . . , k. We
need to show that ch1

(Ωn, 1 − α) → ch1
(Ω, 1 − α). Let Zn and Z be normal zero mean random

vectors with covariance matrix equal to Ωn and Ω, respectively. By Assumption A.1(d) and the
continuous mapping theorem we have S(Zn + h1,Ωn) →d S(Z + h1,Ω). The latter implies that
Pr(S(Zn + h1,Ωn) ≤ x) → Pr(S(Z + h1,Ω) ≤ x) for all continuity points x ∈ R of the function
f(x) ≡ Pr(S(Z + h1,Ω) ≤ x). The convergence therefore certainly holds for all x > 0 by Assumption
A.2(a). Furthermore, by Assumption A.2(b) f is strictly increasing for x > 0. By Assumption A.2(c)
and α < 1/2 it follows that ch1

(Ω, 1 − α) > 0. By an argument as for Lemma 5(a) in AG, it then
follows that ch1

(Ωn, 1− α)→ ch1
(Ω, 1− α).
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Note that S1 and S2 satisfy Assumption A.2 which is a strengthened version of Assumption 2
from AG using the same proof as in AG. Assumption A.3 implies that S(∞p,Ω) = 0 when v =
0. Assumption A.5 makes sure the parameter space is sufficiently rich. Assumption A.6 holds by
Assumption A.2(a) if there exists h∗ ∈ H such that Jh∗(c0(h∗2, 1 − α)) < J(0,h∗2)(c0(h∗2, 1 − α)). Also
note that by Assumption A.1(a), a h∗ ∈ H as in Assumption A.6 needs to have h∗1,j < 0 for some
j ≤ p or h∗1,j 6= 0 for some j > p. Assumptions A.5 and A.6 are verified for the two lead example in
Appendix D. Assumption A.7 guarantees two things. First, it guarantees that at least two inequalities
in Equation (2.1) are violated (or at least, one is violated and the other one is binding) and negatively
correlated. Second, it guarantees that there are correlation matrices with zeros outside the diagonal
except at two spots. This part of the assumption simplifies the proof significantly but it could be
replaced with alternative forms of correlation matrices.

Appendix B Auxiliary Lemmas

Lemma B.1. Assume the parameter space is given by Fn in Equation (2.14) and S satisfies As-
sumption A.1. Under any sequence {γωn,h}n≥1 = {θωn,h, Fωn,h}n≥1 defined in definition A.1 for a
subsequence {ωn}n≥1 and h = (h1, h2), it follows

Tωn(θωn,h)→d Jh ∼ S(h
1/2
2 Z + h1, h2), (B-1)

where Tn(·) is the test statistic associated with S and Z = (Z1, . . . , Zk) ∼ N(0k, Ik).

Lemma B.2. Consider CSs with nominal confidence size 1 − α for 0 < α < 1/2. Assume the
nonempty parameter space is given by Fn in Equation (2.14) for some r ∈ Rk+, δ > 0, and M < ∞.
Assume S satisfies Assumptions A.1-A.3. For GMS CSs assume that ϕ(ξ,Ω) satisfies Assumption
A.4 and that κn → ∞ and κ−1

n n1/2 → ∞. For subsampling CSs suppose bn → ∞ and bn/n → 0. It
follows that

AsyCSPA = inf
h=(h1,h2)∈H

Jh(c0(h2, 1− α)),

AsyCSGMS ∈
[

inf
(π1,h)∈ΠH

Jh(cπ∗1 (h2, 1− α)), inf
(π1,h)∈ΠH

Jh(cπ∗∗1 (h2, 1− α))

]
, and

AsyCSSS = inf
(g1,h)∈GH

Jh(cg1(h2, 1− α)), (B-2)

where Jh(x) = P (Jh ≤ x) and π∗1 , π∗∗1 ∈ Rk+∞ with jth element defined by

π∗1,j =∞I(π1,j > 0) and π∗∗1,j =∞I(π1,j =∞), j = 1, . . . , k. (B-3)

Lemma B.3. For any a ∈ (0, 1) and ρ ∈ [−1 + a, 1− a] define

f(z1, z2, ρ) ≡ (1− ρ2)−1 min
(u1,u2)∈R2

+,∞

{
(z1 − u1)2 + (z2 − u2)2 − 2ρ(z1 − u1)(z2 − u2)

}
. (B-4)

Then f(z1, z2, ρ) takes values according to the following four cases:

1. Let z1 ≥ 0 and z2 ≥ 0. Then, f(z1, z2, ρ) = 0.

2. Let z1 ≥ 0 and z2 < 0. If ρ ≤ z1/z2, then

f(z1, z2, ρ) = (1− ρ2)−1[z2
1 + z2

2 − 2ρz1z2]. (B-5)

If ρ > z1/z2, then f(z1, z2, ρ) = z2
2 .

3. Let z1 < 0 and z2 ≥ 0. If ρ ≤ z2/z1, then Equation (B-5) holds. Otherwise f(z1, z2, ρ) = z2
1 .

4. Let z1 < 0 and z2 < 0. If ρ ≤ min{z1/z2, z2/z1}, then Equation (B-5) holds. Otherwise
f(z1, z2, ρ) = max{z2

1 , z
2
2}.
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Lemma B.4. Suppose that k = p = 2. For β > 0 define

H̄β ≡
{

(h1, h2) ∈ R2 ×Ψ1 : h1,1 ≤ −β, h1,2 ≤ 0, h2 =

[
1 ρ
ρ 1

]
, ρ ≤ −β

}
. (B-6)

Also, define the set Ah1,ρ ≡ Aah1,ρ
∪Abh1,ρ

∪Ach1,ρ
⊆ R2, where

Aah1,ρ ≡{z ∈ R2 : z1 ≥ 0, z2 < 0, 0 < z1 − ρz2 ≤ −h1,1 + ρh1,2}, (B-7)

Abh1,ρ ≡{z ∈ R2 : z1 < 0, z2 ≥ 0, 0 < z2 − ρz1 ≤ −h1,2 + ρh1,1}, (B-8)

Ac1h1,ρ ≡{z ∈ R2 : z1 ≥ 0, z2 < 0, z1 − ρz2 ≤ 0}, (B-9)

Ac2h1,ρ ≡{z ∈ R2 : z1 < 0, z2 ≥ 0, z2 − ρz1 ≤ 0}, (B-10)

and Ach1,ρ
≡ Ac1h1,ρ

∪Ac2h1,ρ
. Letting Zh2 ∼ N(0, h2) we have

1. ∀η > 0, ∃ρ̄ > −1 such that inf(h1,h2=h̄2)∈H̄β Pr(Zh̄2
∈ Ah1,ρ̄) ≥ 1− η, where h̄2 =

[
1 ρ̄
ρ̄ 1

]
.

2. There exists a real valued function τ(z, h1, h2) such that

Pr(inf(h1,h2)∈H̄βτ(Zh2
, h1, h2) > 0|Zh2

∈ Ah1,ρ) = 1 (B-11)

and, for the function S2 defined in Equation (2.25),

S2(z + h1, h2) = S2(z, h2) +
1

1− ρ2
τ(z, h1, h2), ∀z ∈ Ah1,ρ, ∀(h1, h2) ∈ H̄β . (B-12)

Appendix C Proof of Lemmas and Theorems

Proof of Lemma B.1. The proof follows along the lines of the proof of Theorem 1 in AG. By
Lemma 1 in AG we have for any s ∈ N

Ts(θs) = S
(
D̂−1/2
s (θs)s

1/2m̄s(θs), D̂
−1/2
s (θs)Σ̂s(θs)D̂

−1/2
s (θs)

)
. (C-1)

For j = 1, . . . , k, define As,j = s1/2(m̄s,j(θs)−EFsm̄s,j(θs))/σFs,j(θs). As in Lemma 2 in AG, applied
to Assumption (A.3)(x) in that paper, we have that

(i) Aωn = (Aωn,1, . . . , Aωn,k)′ →d Zh2 = (Zh2,1, . . . , Zh2,k)′ ∼ N(0k, h2) as n→∞,
(ii) σ̂ωn,j(θωn,h)/σFωn,h,j(θωn,h)→p 1 as n→∞ for j = 1, . . . , k,

(iii) D̂−1/2
ωn (θωn,h)Σ̂ωn(θωn,h)D̂−1/2

ωn (θωn,h)→p h2 as n→∞. (C-2)

under any sequence γωn,h = {θωn,h, Fωn,h}n≥1. These results follow after completing the subsequence
γωn,h = {θωn,h, Fωn,h}n≥1. For s ∈ N define the sequence {θs, Fs}s≥1 as follows. For any s ≤ ω1,
(θs, Fs) = (θω1,h, Fω1,h). For any s > ω1 and since {ωn}n≥1 is a subsequence of N, there exists a
unique m ∈ N such that ωm−1 < s ≤ ωm. For every such s, set (θs, Fs) = (θωm,h, Fωm,h). Now
let {Wi}i≤n be i.i.d. under Fs. By construction, ∀s ∈ N, (θs, Fs) ∈ Fωm for some m ∈ N and
CorrFs(m(Wi, θs)) → h2. Then, the results (i)-(iii) of Equation (C-2) hold by standard CLT and
LLN with ωn, θωn,h, and Fωn,h replaced by s, θs, and Fs respectively. But the convergence results
along {θs, Fs}s≥1 then imply convergence along the subsequence {θωn,h, Fωn,h}n≥1 as by construction
the latter coincides with the former on indices s = ωn.

From Equation (C-2), the jth element of D̂
−1/2
ωn (θωn,h)ω

1/2
n m̄ωn(θωn,h) equals (Aωn,j +

ω
1/2
n EFωn,hm̄ωn,j(θωn,h)/σFωn,h,j(θωn,h)) ×(1 + op(1)). We next consider a k-vector-valued function

of D̂
−1/2
ωn (θωn,h)ω

1/2
n m̄ωn(θωn,h) that converges in distribution whether or not some elements of h1

equal ∞. Write the right-hand side of Equation (C-1) as a continuous function of this k-vector and
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apply the continuous mapping theorem. Let G(·) be a strictly increasing continuous df on R, such as
the standard normal df, and let G(∞) = 1. For j = 1, . . . , k, we have

Gωn,j ≡ G
(
σ̂−1
ωn,j

(θωn,h)ω1/2
n m̄ωn,j(θωn,h)

)
= G

(
σ̂−1
ωn,j

(θωn,h)σFωn,h,j(θωn,h)
[
Aωn,j + ω1/2

n EFωn,hm̄ωn,j(θωn,h)/σFωn,h,j(θωn,h)
])
. (C-3)

If h1,j <∞ then
Gωn,j →d G (Zh2,j + h1,j) (C-4)

by Equations (C-3), (C-2), the definition of γωn,h, and the continuous mapping theorem. If h1,j =∞
(which can only happen for j = 1, . . . , p), then

Gωn,j = G
(
σ̂−1
ωn,j

(θωn,h)ω1/2
n m̄ωn,j(θωn,h)

)
→p 1 (C-5)

by Equation (C-3), Aωn,j = Op(1), and G(x) → 1 as x → ∞. The results in Equations (C-4)-(C-5)
hold jointly and combine to give

Gωn ≡ (Gωn,1, . . . , Gωn,k)′ →d (G(Zh2,1 + h1,1), . . . , G(Zh2,k + h1,k))′ ≡ G∞, (C-6)

where G(Zh2,j + h1,j) = 1 by definition when h1,j = ∞. Let G−1 denote the inverse of G. For x =
(x1, . . . , xk)′ ∈ Rp+∞×Rv, let G(k)(x) = (G(x1), . . . , G(xk))′ ∈ (0, 1]p× (0, 1)v. For y = (y1, . . . , yk)′ ∈
(0, 1]p × (0, 1)v, let G−1

(k)(y) = (G−1(y1), . . . , G−1(yk))′ ∈ Rp+∞ × Rv. Define S∗(y,Ω) = S(G−1
(k)(y),Ω)

for y ∈ (0, 1]p × (0, 1)v and Ω ∈ Ψ. By Assumption A.1(d) S∗(y,Ω) is continuous at all (y,Ω) for
y ∈ (0, 1]p × (0, 1)v and Ω ∈ Ψ. We now have

Tωn(θωn,h) = S
(
G−1

(k)(Gωn), D̂−1/2
ωn (θωn,h)Σ̂ωn(θωn,h)D̂−1/2

ωn (θωn,h)
)

= S∗
(
Gωn , D̂

−1/2
ωn (θωn,h)Σ̂ωn(θωn,h)D̂−1/2

ωn (θωn,h)
)

→d S∗(G∞, h2)

= S(G−1
(k)(G∞), h2)

= S(Zh2
+ h1, h2) ∼ Jh, (C-7)

where the convergence holds by Equations (C-2), (C-6), and the continuous mapping theorem, the
last equality holds by the definitions of G−1

(k) and G∞ and the last line hold by definition of Jh.

Proof of Lemma B.2. For any of the CSs considered in Section 2.1, there is a sequence {θn, Fn}n≥1

with (θn, Fn) ∈ Fn, ∀n ∈ N such that AsyCS = lim infn→∞ Prθn,Fn(Tn(θn) ≤ cn(θn, 1− α)). We can
then find a subsequence {ωn}n≥1 of N such that

AsyCS = lim
n→∞

Prθωn ,Fωn (Tωn(θωn) ≤ cωn(θωn , 1− α)) (C-8)

and condition (i) in Definition A.1 holds. Conditions (ii)-(iii) in Definition A.1 also hold for
{θωn , Fωn}n≥1 by possibly taking a further subsequence. That is, {θωn , Fωn}n≥1 is a sequence of
type {γωn,h}n≥1 = {θωn,h, Fωn,h}n≥1 for a certain h = (h1, h2) ∈ Rk+∞×Ψ. For GMS and SS CSs, we
can find subsequences {ωn}n≥1 (potentially different for GMS and SS CSs) such that the worst case
sequence {θωn , Fωn}n≥1 is of the type {γωn,π1,h}n≥1 or {γωn,g1,h}n≥1.

This proves that in order to determine the asymptotic confidence size of the CSs, we only have
to be concerned about the limiting coverage probabilities under sequences of the type {γωn,h}n≥1 for
PA, {γωn,π1,h}n≥1 for GMS, and {γωn,g1,h}n≥1 for SS. From Lemma B.1 we know that the limiting
distribution of the test statistic under a sequence {γωn,h}n≥1 is Jh ∼ S(Zh2

+h1, h2). By Assumption
A.1(a) it follows that for given h2 the 1 − α quantiles of Jh do not decrease as h1,j decreases (for
j = 1, . . . , p).
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PA critical value: The PA critical value is given by c0(ĥ2,ωn , 1− α), where

ĥ2,ωn = Ω̂ωn(θωn,h) (C-9)

and Ω̂s(θ) = (D̂s(θ))
−1/2Σ̂s(θ)(D̂s(θ))

−1/2. From Equation (C-2)(iii) we know that un-

der {θωn,h, Fωn,h}n≥1, we have ĥ2,ωn →p h2. This together with Assumption A.1 implies

c0(ĥ2,ωn , 1 − α) →p c0(h2, 1 − α). Furthermore, by Assumption A.2(c), c0(h2, 1 − α) > 0 and
by Assumption A.2(a), Jh is continuous for x > 0. Using the proof of Lemma 5(ii) and the comment

to Lemma 5 in AG, we have Prγωn,h(Tωn(θωn) ≤ c0(ĥ2,ωn , 1 − α)) → Jh(c0(h2, 1 − α)) and therefore

also limn→∞ Prγωn,h(Tωn(θωn) ≤ c0(ĥ2,ωn , 1 − α)) = Jh(c0(h2, 1 − α)). As a result, AsyCSPA =
Jh(c0(h2, 1 − α)) for some h ∈ H, which implies AsyCSPA ≥ infh∈H Jh(c0(h2, 1 − α)). However,

Equation (C-8) implies that AsyCSPA = infh∈H limn→∞ Prγωn,h(Tωn(θωn) ≤ c0(ĥ2,ωn , 1 − α)). This
expression equals infh=(h1,h2)∈H Jh(c0(h2, 1− α)), completing the proof.

GMS critical value: To simplify notation, we write {γωn} = {θωn , Fωn} instead of
{γωn,π1,h}n≥1 = {θωn,π1,h, Fωn,π1,h}n≥1. Recall that the GMS critical value ĉωn,κωn (θωn , 1 − α) is

the 1 − α quantile of S(ĥ
1/2
2,ωn

Z + ϕ(ξωn(θωn , ĥ2,ωn)), ĥ2,ωn) for Z ∼ N(0k, Ik). We first show the
existence of random variables c∗ωn and c∗∗ωn such that under {γωn}

ĉωn,κωn (θωn , 1− α) ≥ c∗ωn →p cπ∗1 (h2, 1− α),

ĉωn,κωn (θωn , 1− α) ≤ c∗∗ωn →p cπ∗∗1 (h2, 1− α). (C-10)

We begin by showing the first line in Equation (C-10). Suppose cπ∗1 (h2, 1 − α) = 0, then,
ĉωn,κωn (θωn , 1 − α) ≥ 0 = cπ∗1 (h2, 1 − α) under {γωn}n≥1 by Assumption A.1(c). Now suppose

cπ∗1 (h2, 1−α) > 0. For given π1 ∈ Rk+,∞ and for (ξ,Ω) ∈ Rk ×Ψ let ϕ∗(ξ,Ω) be the k-vector with jth
component given by

ϕ∗j (ξ,Ω) =

 ϕj(ξ,Ω) if π1,j = 0 and j ≤ p,
∞ if π1,j > 0 and j ≤ p,
0 if j = p+ 1, . . . , k.

(C-11)

Define c∗ωn as the 1−α quantile of S(ĥ
1/2
2,ωn

Z +ϕ∗(ξωn(θωn , ĥ2,ωn)), ĥ2,ωn). As ϕ∗j ≥ ϕj it follows from
Assumption A.1(a) that c∗ωn ≤ ĉωn,κωn (θωn , 1− α) a.s. [Z] under {γωn}n≥1. Furthermore, by Lemma
2(a) in the Supplementary Appendix of AS we have c∗ωn →p cπ∗1 (h2, 1 − α) under {γωn}n≥1. This
completes the proof of the first line in Equation (C-10).

Next consider the second line in Equation (C-10). Suppose that either v ≥ 1 or v = 0 and
π∗∗1 6=∞p. Define

ϕ∗∗j (ξ,Ω) =

 min{0, ϕj(ξ,Ω)} if π1,j <∞ and j ≤ p,
ϕj(ξ,Ω) if π1,j =∞ and j ≤ p,

0 if j = p+ 1, . . . , k,
(C-12)

and define c∗∗ωn as the 1−α quantile of S(ĥ
1/2
2,ωn

Z+ϕ∗∗(ξωn(θωn , ĥ2,ωn)), ĥ2,ωn). Note that the definition
of ϕ∗∗j (ξ,Ω) implies that ϕ∗∗j ≤ ϕj . The same steps as in the proof of Lemma 2(a) of AS can be used
to prove the second line of Equation (C-10). In particular, note that by Assumption A.4 ϕ∗∗(ξ,Ω)→
ϕ∗∗(π1,Ω0) for any sequence (ξ,Ω) ∈ Rk+∞ ×Ψ for which (ξ,Ω)→ (π1,Ω0) and Ω0 ∈ Ψ.

Suppose now that v = 0 and π∗∗1 = ∞p. It follows that cπ∗∗1 (h2, 1 − α) = 0 by Assumption
A.3 and that π1 = ∞p. In that case define c∗∗ωn = ĉωn,κωn (θωn , 1 − α) which converges to zero

in probability because by Assumption A.3, π1 = ∞p, and by Assumption A.4, 0 ≤ S(ĥ
1/2
2,ωn

Z +

ϕ(ξωn(θωn , ĥ2,ωn)), ĥ2,ωn)→p 0 . This implies the second line in Equation (C-10).
Having proven Equation (C-10), we now prove the second line in Equation (B-2). Consider first

the case (π1, h) ∈ ΠH such that cπ∗1 (h2, 1− α) > 0. In this case, it follows from Equation (C-10) and
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Lemma 5 in AG that

lim inf
n→∞

Prγωn,h(Tωn(θωn) ≤ ĉωn,κωn (θωn , 1− α)) ≤ lim inf
n→∞

Prγωn,h(Tωn(θωn) ≤ c∗∗ωn)

= Jh(cπ∗∗1 (h2, 1− α)). (C-13)

Likewise lim infn→∞ Prγωn,h(Tωn(θωn) ≤ ĉωn,κωn (θωn , 1− α)) ≥ Jh(cπ∗1 (h2, 1− α)).
Next consider the case (π1, h) ∈ ΠH such that cπ∗1 (h2, 1 − α) = 0. By Assumption A.2(c) and

α < 0.5, this implies v = 0 and π∗1,j > 0 for all j = 1, . . . , p. By definition of π∗1 , it follows that π1,j > 0
for all j = 1, . . . , p and, since κn →∞, this implies h1 =∞p. Under any sequence {γωn,π1,h}n≥1 with
h = (∞p, h2) we have

1 ≥ lim inf
n→∞

Prγωn (Tωn(θωn) ≤ ĉωn,κωn (θωn , 1− α)) ≥ lim inf
n→∞

Prγωn (Tωn(θωn) ≤ 0) = Jh(0) = 1,

(C-14)
where we apply the argument in (A.12) of AG for the first equality and use Assumption A.3 for the
second equality. Therefore, lim infn→∞ Prγωn (Tωn(θωn) ≤ ĉωn,κωn (θωn , 1 − α)) = 1. Note that when
h1 = ∞p, Jh(c) = 1 for any c ≥ 0. The last statement and Equations (C-8), (C-13), and (C-14)
complete the proof of the lemma.

Subsampling critical value: Instead of {γωn,g1,h}n≥1 = {θωn,g1,h, Fωn,g1,h}n≥1 we write
{γωn} = {θωn , Fωn} to simplify notation. We first verify Assumptions A0, B0, C, D, E0, F, and
G0 in AG. Following AG, define a vector of (nuisance) parameters γ = (γ1, γ2, γ3) where γ3 = (θ, F ),
γ1 = (σ−1

F,j(θ)EFmj(Wi, θ))
k
j=1 ∈ Rk, and γ2 = CorrF (m(Wi, θ)) ∈ Rk×k for (θ, F ) introduced in the

model defined in (2.14). Then, Assumption A0 in AG clearly holds. With {γωn,h}n≥1 and H defined
in definition A.1, Assumption B0 then holds by Lemma B.1. Assumption C holds by assumption on
the subsample blocksize b. Assumptions D, E0, F, and G0 hold by the same argument as in AG using
the strengthened version of Assumption A.2(b) and (c) for the argument used to verify Assumption
F. Therefore, Theorem 3(ii) in AG applies with their GH replaced by our GH and their GH∗ (defined
on top of (9.4) in AG) which is the set of points (g1, h) ∈ GH such that for all sequences {γwn,g1,h}n≥1

lim inf
n→∞

Prγwn,g1,h(Twn(θwn,g1,h) ≤ cwn,bwn (θwn,g1,h, 1− α)) ≥ Jh(cg1(h2, 1− α)). (C-15)

By Theorem 3(ii) in AG and continuity of Jh at positive arguments, it is then enough to show that the
set {(g1, h) ∈ GH\GH∗; cg1(h2, 1− α) = 0} is empty. To show this, note that by Assumption A.2(c)
cg1(h2, 1 − α) = 0 implies that v = 0 and by Assumption A.1(a) it follows that ch1

(h2, 1 − α) = 0.
Using the same argument as in AG, namely the paragraph including (A.12) with their LBh equal to
0, shows that any (g1, h) ∈ GH with cg1(h2, 1− α) = 0 is also in GH∗.

Proof of Lemma B.3. The FOC associated with the minimizers u1 and u2 in Equation (B-4) are

−(z1 − u1) + ρ(z2 − u2) ≥ 0, u1[−(z1 − u1) + ρ(z2 − u2)] = 0, u1 ≥ 0, (C-16)

−(z2 − u2) + ρ(z1 − u1) ≥ 0, u2[−(z2 − u2) + ρ(z1 − u1)] = 0, u2 ≥ 0. (C-17)

The SOC are immediately satisfied as the function on the RHS of Equation (B-4) is strictly convex
for ρ ∈ [−1 + a, 1− a].

Consider Case 1. In this case, u1 = z1 and u2 = z2 satisfies Equations (C-16) and (C-17) and
f(z1, z2, ρ) = 0 regardless of the value of ρ.

Now consider Case 2. First we note that u1 ≥ 0, u2 > 0 is not a feasible solution as this results in
u2 = z2 < 0 which is contradictory. The solution must then be of the form u1 ≥ 0 and u2 = 0. Then,
it follows from the conditions in Equation (C-16) that u1 ≥ z1 − ρz2, so that u1 = max{z1 − ρz2, 0}
and u2 = 0 is the solution. This is a strictly convex optimization problem and so the solution exists
and is unique. Then, if ρ ≤ z1/z2, the unique solution is (u1, u2) = (0, 0) and the objective function
is given by Equation (B-5). On the other hand, if ρ < z1/z2, (u1, u2) = (z1 − ρz2, 0) is the unique
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solution and

f(z1, z2, ρ) = (1− ρ2)−1
{

(z1 − z1 + ρz2)2 + z2
2 − 2ρ(z1 − z1 + ρz2)(z2)

}
= z2

2 . (C-18)

Case 3 is exactly analogous to Case 2 by exchanging the subindices 1 and 2.
Consider Case 4 then. First, we note again that u1 > 0 and u2 > 0 is not a feasible solution

by the same arguments as before. Second, we note that (u1, u2) = (0, 0) is a solution provided
ρ ≤ min{z1/z2, z2/z1}, as this condition implies the correct sign of the derivatives in Equations
(C-16) and (C-17). The remaining case is either ρ > z1/z2 or ρ > z2/z1. By similar steps as those
used in Case 2 it follows that the solution for these cases are (u1, u2) = (z1 − ρz2, 0), f(z1, z2, ρ) = z2

2

and (u1, u2) = (0, z2 − ρz1), f(z1, z2, ρ) = z2
1 , respectively. This completes the proof.

Proof of Lemma B.4. We begin by proving (1). Define the set Aac1h1,ρ
≡ Aah1,ρ

∪Ac1h1,ρ
. Note that we

can always write Zh2,1 − ρZh2,2 =
√

1− ρ2W for Zh2,2 ⊥ W ∼ N(0, 1). Then, since −h1,1 + ρh1,2 ≥
β > 0 for (h1, h2) ∈ H̄β , it follows that

Pr(Zh2 ∈ A
ac1
h1,ρ) = Pr

(
Zh2,2 ≤ min{0,

√
1− ρ2W

−ρ },W ≤ −h1,1 + ρh1,2√
1− ρ2

)
→ 1/2, as ρ→ −1. (C-19)

The same applies for the set Abc2h1,ρ
≡ Abh1,ρ

∪Ac2h1,ρ
and the result follows by continuity in ρ.

We now prove (2). Note that

S2(z + h1, h2) = (1− ρ2)−1 min
t∈R2

+,∞

{
(z̄1 − t1)2 + (z̄2 − t2)2 − 2ρ(z̄1 − t1)(z̄2 − t2)

}
(C-20)

is the same optimization problem as the one in Lemma B.3 by letting z̄j = zj + h1,j , j = 1, 2. It
follows from Lemma B.3 that the solution of Equation (C-20) for z ∈ Ah1,ρ and (h1, h2) ∈ H̄β is

S2(z + h1, h2) = (1− ρ2)−1[(z1 + h1,1 − z2 − h1,2)2 + 2(1− ρ)(z1 + h1,1)(z2 + h1,2)]. (C-21)

In addition, it follows from Lemma B.3 that the solution when h1,1 = h1,2 = 0 is given by S2(z, h2) = z2
2

for z ∈ Aah1,ρ
, S2(z, h2) = z2

1 for z ∈ Abh1,ρ
, and S2(z, h2) = z2

1 + (z2 − ρz1)2/(1− ρ2) for z ∈ Ach1,ρ
≡

Ac1h1,ρ
∪Ac2h1,ρ

. After doing some algebraic manipulations it follows that

S2(z + h1, h2) = S2(z, h2) +
1

1− ρ2
τl(z, h1, h2) ∀z ∈ Alh1,ρ, l ∈ {a, b, c}, (C-22)

where

τa(z, h1, h2) = (z1 + h1,1 − ρ(z2 + h1,2))2 + (1− ρ2)(h2
1,2 + 2z2h1,2), (C-23)

τb(z, h1, h2) = (z2 + h1,2 − ρ(z1 + h1,1))2 + (1− ρ2)(h2
1,1 + 2z1h1,1), (C-24)

τc(z, h1, h2) = (h1,1 − h1,2)2 + 2((z2 − ρz1)(h1,2 − ρh1,1) + h1,1z1(1− ρ2) + (1− ρ)h1,1h1,2). (C-25)

Note that τa(z, h1, h2) = 0 on Aah1,ρ
×H̄β if and only if h1,2 = 0 and h1,1 = ρz2−z1, while τb(z, h1, h2) >

0 on Abh1,ρ
× H̄β and τc(z, h1, h2) > 0 on Ach1,ρ

× H̄β . Thus, letting

τ(z, h1, h2) ≡
∑

l∈{a,b,c}

τl(z, h1, h2)I(z ∈ Alh1,ρ), (C-26)

it follows immediately that

Pr(inf(h1,h2)∈H̄βτ(Zh2
, h1, h2) > 0|Zh2

∈ Ah1,ρ) = 1. (C-27)

This completes the proof.
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Proof of Theorem 3.1. The proof makes use of the results in Lemma B.2. We first prove (1). Note
that for h ∈ H and κn → ∞, there exists a subsequence {ωn}n≥1 and a sequence {γωn,π1,h}n≥1 for
some π1 ∈ Rk∞ with π1,j ≥ 0 for j = 1, . . . , p and π1,j = 0 for j = p+ 1, . . . , k. By definition π∗∗1 ≥ 0.
Assumption A.1(a) then implies that c0(h2, 1−α) ≥ cπ∗∗1 (h2, 1−α) and so AsyCSPA ≥ AsyCSGMS .
The result for subsampling CSs is verified analogously.

We now prove (2). Note that AsyCSPA = infh=(h1,h2)∈H Jh(c0(h2, 1−α)) ≤ Jh∗(c0(h∗2, 1−α)) <
1− α.

Finally, we prove (3). First, assume (g1, h) ∈ GH. To show AsyCSSS ≥ AsyCSGMS , by Assump-
tion A.1(a), it is enough to show that there exists a (π1, h) ∈ ΠH with π∗∗1,j ≥ g1,j for all j = 1, . . . , p.
We have g1,j ≥ 0 for j = 1, . . . , p and g1,j = 0 for j = p + 1, . . . , k. By definition, there exists a

subsequence {ωn}n≥1 and a sequence {γωn,g1,h}n≥1. Because κ−1
n n1/2/b

1/2
n →∞ it follows that there

exists a subsequence {vn}n≥1 of {ωn}n≥1 such that under {γvn,g1,h}n≥1

κ−1
vn v

1/2
n σ−1

Fvn,h,j
(θvn,h)EFvn,hmj(Wi, θvn,h)→ π1,j , (C-28)

for some π1,j such that for j = 1, . . . , p, π1,j = ∞ if g1,j > 0 and π1,j ≥ 0 if g1,j = 0 and π1,j = 0
for j = p+ 1, . . . , k. We have just shown the existence of a sequence {γvn,π1,h}n≥1. For j = 1, . . . , k,
if π1,j = ∞ then by definition π∗∗1,j = ∞ and if π1,j ≥ 0 then π∗∗1,j ≥ 0. Therefore, π∗∗1,j ≥ g1,j for all
j = 1, . . . , p and therefore AsyCSSS ≥ AsyCSGMS .

Second, assume (π1, h) ∈ ΠH so that {γωn,π1,h}n≥1 exists. To show AsyCSSS ≤ AsyCSGMS

it is enough to show that there exists {γω̃n,g̃1,h}n≥1 such that π∗1,j ≤ g̃1,j for j = 1, . . . , k. Note
that it is possible to take a further subsequence {vn}n≥1 of {ωn}n≥1 such that on {vn}n≥1 the
sequence {γωn,π1,h}n≥1 is a sequence {γvn,g1,h}n≥1 for some g1 ∈ Rk. By Assumption A.5 there
then exists a sequence {γω̃n,g̃1,h}n≥1 for some subsequence {ω̃n}n≥1 of N and a g̃1 that satisfies
g̃1,j = ∞ when h1,j = ∞ and g̃1,j ≥ 0 for j = 1, . . . , k. Clearly, for all j = 1, . . . , p for which
h1,j = ∞ this implies π∗1,j ≤ g̃1,j = ∞. In addition, if h1,j < ∞ it follows that π1,j = 0 and thus,
by definition, π∗1,j = 0 ≤ g̃1,j . This is, for j = 1, . . . , k we have that π∗1,j ≤ g̃1,j and, as a result,
AsyCSSS ≤ AsyCSGMS . This completes the proof.

Proof of Theorem 3.2. Part 1. By Lemma B.2

AsyCS
(1)
GMS ≥ inf

(π1,h)∈ΠH
Pr
(
S1(h

1/2
2 Z + h1, h2) ≤ cπ∗1 (h2, 1− α)

)
, (C-29)

where Z ∼ N(0k, Ik), h2 ∈ Ψ1, cπ∗1 (h2, 1 − α) is the 1 − α quantile of S1(h
1/2
2 Z + π∗1 , h2), and π∗1 is

defined in Lemma B.2. Recall that

S1(h
1/2
2 Z + h1, h2) =

p∑
j=1

[h
1/2
2 (j)Z + h1,j ]

2
− +

k∑
j=p+1

(h
1/2
2 (j)Z + h1,j)

2, (C-30)

where h
1/2
2 (j) ∈ Rk denotes the jth row of h

1/2
2 . If we denote by h

1/2
2 (j, s) the sth element of the

vector h
1/2
2 (j), the following properties hold for all j ≥ 1

k∑
s=1

(h
1/2
2 (j, s))2 = 1, h

1/2
2 (j, s) = 0, ∀s > j, |h1/2

2 (j, s)| ≤ 1, ∀s ≥ 1. (C-31)

The properties in Equation (C-31) follow by h2 having ones in the main diagonal and h
1/2
2 being lower

triangular. We use Equation (C-31) and the Cauchy-Schwarz inequality to derive the following three
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useful inequalities. For any z ∈ Rk and j = 1, . . . , k,

(h
1/2
2 (j)z + h1,j)

2 =

(
j∑
s=1

h
1/2
2 (j, s)zs +

j∑
s=1

(h
1/2
2 (j, s))2h1,j

)2

≤
j∑

m=1

(h
1/2
2 (j,m))2

j∑
s=1

(zs + h
1/2
2 (j, s)h1,j)

2 =

j∑
s=1

(zs + h
1/2
2 (j, s)h1,j)

2, (C-32)

[h
1/2
2 (j)z + h1,j ]

2
− ≤

j∑
s=1

(zs + h
1/2
2 (j, s)h1,j)

2, and (C-33)

[h
1/2
2 (j)z + h1,j ]

2
− ≤ [h

1/2
2 (j)z]2− ≤

j∑
s=1

z2
s , provided h1,j ∈ (0,∞). (C-34)

Therefore, for every z ∈ Rk and h ∈ H define

S̃1(z, h) =

p∑
j=1

j∑
s=1

z2
sI(h1,j ∈ (0,∞)) +

p∑
j=1

j∑
s=1

(zs + h
1/2
2 (j, s)h1,j)

2I(h1,j ≤ 0)

+

k∑
j=p+1

j∑
s=1

(zs + h
1/2
2 (j, s)h1,j)

2, (C-35)

and it follows from Equations (C-32), (C-33), and (C-34) that S̃1(z, h) ≥ S1(h
1/2
2 z + h1, h2) for all

z ∈ Rk. Therefore, for all h ∈ H and x ∈ R

Pr(S1(h
1/2
2 Z + h1, h2) ≤ x) ≥ Pr(S̃1(Z, h) ≤ x). (C-36)

Let B > 0 and

AB ≡ {z ∈ R : |z| ≤ B} and AkB = AB × · · · ×AB (with k copies). (C-37)

Since AB has positive length on R, it follows that for Z ∼ N(0k, Ik),

Pr(Z ∈ AkB) =

k∏
s=1

Pr(Zs ∈ AB) > 0. (C-38)

Let {π1,l, hl}l≥1 be a sequence such that hl = (h1,l, h2,l), (π1,l, hl) ∈ ΠH for all l ∈ N and

inf
(π,h)∈ΠH

Pr(S1(h
1/2
2 Z + h1, h2) ≤ cπ∗1 (h2, 1−α)) = lim

l→∞
Pr(S1(h

1/2
2,l Z + h1,l, h2,l) ≤ cπ∗

1,l
(h2,l, 1−α)), (C-39)

and define the sequence {Bl}l≥1 as Bl = (cπ∗1,l(h2,l, 1− α)/2k(k + 1))1/2.

We now consider two cases. In the first case lim inf l→∞ cπ∗1,l(h2,l, 1−α) > 0 and in the second case

lim inf l→∞ cπ∗1,l(h2,l, 1 − α) = 0. To deal with the first case, let B = lim inf l→∞Bl > 0 and assume

r∗ ≤ B. Then, there exists a subsequence {ωl}l≥1 such that Bωl ≥ B for all ωl and thus r∗ ≤ Bωl
along the subsequence. By multiplying out, it follows that for all zs ∈ ABωl and j = 1, . . . , k

(zs + h
1/2
2 (j, s)h1,j)

2 ≤ B2
ωl

+ r∗2 + 2Bωlr
∗, (C-40)

when |h1,j | ≤ rj . Then, for all z ∈ AkBωl

S̃1(z, hl) ≤
k∑
j=1

j∑
s=1

4B2
ωl

= 2k(k + 1)B2
ωl

= cπ∗1,ωl
(h2,ωl , 1− α). (C-41)
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As a result, when r∗ ≤ B

Pr(S̃1(Z, hωl) ≤ cπ∗1,ωl (h2,ωl , 1− α)) ≥ Pr(Z ∈ AkBωl ) > 0. (C-42)

It follows from Equations (C-29), (C-36), (C-38), (C-39), and (C-42) that

AsyCS
(1)
GMS ≥ inf

(π,h)∈ΠH
Pr(S1(h

1/2
2 Z + h1, h2) ≤ cπ∗1 (h2, 1− α))

= lim
l→∞

Pr(S1(h
1/2
2,l Z + h1,l, h2,l) ≤ cπ∗1,l(h2,l, 1− α))

≥ lim inf
l→∞

Pr(S̃1(Z, hωl) ≤ cπ∗1,ωl (h2,ωl , 1− α))

≥ lim inf
l→∞

Pr(Z ∈ AkBωl ) > 0. (C-43)

Now consider the second case. It follows that there exists a subsequence {ωl}l≥1 of N such that
liml→∞ cπ∗1,ωl

(h2,ωl , 1 − α) = 0. Let π∗1,j,ωl denote the jth element of π∗1,ωl . Since π∗1,j,ωl ∈ {0,∞}
for j = 1, . . . , p and π∗1,j,ωl = 0 for j = p + 1, . . . , k, there exists a further subsequence {ω̃l}l≥1

such that π∗1,ω̃l = π̄∗1 for some vector π̄∗1 ∈ Rk+,+∞ whose first p components are all in {0,∞} and
h2,ω̃l → h2. Assume that π̄∗1,j = 0 for some j = 1, . . . , k. By Assumption A.2(c) and α < 1/2, it
follows that cπ̄∗1 (h2, 1 − α) > 0. Also, by pointwise continuity of cπ̄∗1 (h2, 1 − α) in h2 it follows that
liml→∞ cπ̄∗1 (h2,ω̃l , 1 − α) = cπ̄∗1 (h2, 1 − α) > 0, which is a contradiction. Therefore, it must be that

π̄∗1 =∞p. It then follows that h1,ω̃l =∞p and S1(h
1/2
2,ω̃l

Z+h1,ω̃l , h2,ω̃l) = 0 a.s. along the subsequence.
This completes the proof.

Part 2. By Lemma B.2

AsyCS
(2)
PA = inf

h∈H
Pr
(
S2(h

1/2
2 Z + h1, h2) ≤ c0(h2, 1− α)

)
, (C-44)

where h
1/2
2 Z ∼ N(0k, h2), c0(h2, 1 − α) is the 1 − α quantile of S2(h

1/2
2 Z, h2), and H is the space

defined in Definition A.1. Let h∗2,ε = Ξ1,2(ε), where Ξ1,2(ε) ∈ Rk×k is an identity matrix except

for the (1, 2) and (2, 1) components that are equal to −
√

1− ε. By Assumption A.7 and without
loss of generality, there exists h1 ∈ Rk with h1,1 ≤ 0, h1,2 ≤ 0, and min{h1,1, h1,2} < 0 such that
(h1, h

∗
2,ε) ∈ H. It follows that det(h∗2,ε) = ε and

(h∗2,ε)
−1 =

[
A−1 02×(k−2)

0(k−2)×2 Ik−2

]
, where A−1 =

1

1− ρ2

[
1 −ρ
−ρ 1

]
, (C-45)

0l,s denotes a l × s matrix of zeros, and ρ ≡ −
√

1− ε. Let Z? ∼ N(0k, h
∗
2,ε). Then

S2(Z? + h1, h
?
2,ε) = inf

t∈Rp+,+∞

{
(1− ρ2)−1[(Z?1 + h1,1 − t1)2 + (Z?2 + h1,2 − t2)2

− 2ρ(Z?1 + h1,1 − t1)(Z?2 + h1,2 − t2)] +

p∑
j=3

(Z?j + h1,j − tj)2}+

k∑
j=p+1

(Z?j + h1,j)
2. (C-46)

At the infimum, tj = max{Z?j + h1,j , 0} for j = 3, . . . , p and so

S2(Z? + h1, h
?
2,ε) = inf

t∈R2
+,+∞

{
(1− ρ2)−1[(Z?1 + h1,1 − t1)2 + (Z?2 + h1,2 − t2)2

−2ρ(Z?1 + h1,1 − t1)(Z?2 + h1,2 − t2)]
}

+

p∑
j=3

[Z?j + h1,j ]
2
− +

k∑
j=p+1

(Z?j + h1,j)
2. (C-47)

The optimization problem in the RHS of Equation (C-47) is the same as the one in Lemma B.3 and,
by that lemma, the solution can be divided into four cases depending on whether Z?1 and Z?2 are
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positive or negative. We will show that the solution described in Equation (B-5) in Lemma B.3 holds
with probability approaching one as ε → 0. To do this let r∗ > 0 be given. By Assumption A.7
min{h1,1, h1,2} < 0 so without loss of generality let h1,1 < 0. For small β > 0 let

H̄β,ε ≡ {h1 ∈ Rk : (h1, h
?
2,ε) ∈ H, h1,1 ≤ −β, h1,2 ≤ 0}. (C-48)

Define subsets of Rk by letting Ãh1,ρ ≡ Ah1,ρ × Rk−2 for Ah1,ρ defined in Lemma B.4. The set Ah1,ρ

only depends on (h1,1, h1,2) but we use Ah1,ρ instead of A(h1,1,h1,2),ρ to simplify the notation. Note

that Ãh1,ρ does not restrict zj for j = 3, . . . , k. It follows from Lemma B.4 that ∀η > 0, ∃ε > 0 such
that

inf
h1∈H̄β,ε

Pr(Z? ∈ Ãh1,ρ) = inf
h1∈H̄β,ε

Pr((Z?1 , Z
?
2 ) ∈ Ah1,ρ) ≥ 1− η. (C-49)

For the next step define the function

S2(z, ρ) = inf
t∈R2

+,+∞

{
(1− ρ2)−1[(z1 − t1)2 + (z2 − t2)2 − 2ρ(z1 − t1)(z2 − t2)]

}
, (C-50)

and note that by Equation (C-47) and Lemma B.4, there exists a function τ(z, h1, h
∗
2,ε) that is positive

with probability 1 such that

S2(z + h1, h
?
2,ε) ≥ S2(z, ρ) +

1

1− ρ2
τ(z, h1, h

?
2,ε), for all z ∈ Ãh1,ρ. (C-51)

We wish to show that ∀η > 0, ∃ε > 0 such that

Pr

(
inf

h1∈H̄β,ε
[c0(h?2,ε, 1− α)− 1

1− ρ2
τ(Z?, h1, h

?
2,ε)] ≤ −η|Z? ∈ Ãh1,ρ

)
= 1. (C-52)

To this end, note that by Lemma B.3 it follows that with probability one

S2(Z?, h?2,ε) =

p∑
j=3

[Z?j ]2−+

k∑
j=p+1

(Z?j )2 + f(Z?1 , Z
?
2 , ρ) ≤

p∑
j=3

[Z?j ]2−+

k∑
j=p+1

(Z?j )2 + (Z?1 )2 +W 2, (C-53)

where f(·) is defined in Lemma B.3 (Equation (B-5)) and satisfies f(Z?1 , Z
?
2 , ρ) ≤ (Z?1 )2 + W 2 with

probability one for all ε > 0, and Z?1 ⊥ W ∼ N(0, 1). As a result, the 1− α quantile of S2(Z?, h?2,ε),
denoted by c0(h∗2,ε, 1 − α), is bounded above by the 1 − α quantile of the RHS of Equation (C-53),
denoted by c̃0(1−α). Note that c̃0(1−α) does not depend on ε. It then follows that c0(h∗2,ε, 1−α) ≤
c̃0(1− α) <∞ and Equation (C-52) follows immediately from

Pr

(
inf

h1∈H̄β,ε
[c̃0(1− α)− 1

1− ρ2
τ(Z?, h1, h

?
2,ε)] < 0|Z? ∈ Ãh1,ρ

)
= 1 (C-54)

for ε > 0 small enough by Lemma B.4. Finally, to further simplify the notation below let Pr(Ãh1,ρ) ≡
Pr(Z? ∈ Ãh1,ρ) and note that for every η > 0, ∃ε > 0 such that

AsyCS
(2)
PA ≤ inf

h1∈H̄β,ε
Pr
(
S2(Z? + h1, h

?
2,ε) ≤ c0(h?2,ε, 1− α)

)
= 1− sup

h1∈H̄β,ε
Pr
(
S2(Z? + h1, h

?
2,ε) > c0(h?2,ε, 1− α)

)
≤ 1− sup

h1∈H̄β,ε
Pr
(
S2(Z? + h1, h

?
2,ε) > c0(h?2,ε, 1− α)|Ãh1,ρ

)
Pr(Ãh1,ρ)

≤ 1− sup
h1∈H̄β,ε

Pr

(
S2(Z?, ρ) > c0(h?2,ε, 1− α)− 1

1− ρ2
τ(Z?, h1, h

?
2,ε)|Ãh1,ρ

)
Pr(Ãh1,ρ)

≤ η, (C-55)
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where the first inequality follows from H̄β,ε × h?2,ε ⊆ H, the second inequality from Ãh1,ρ ⊆ Rk, the

third one from Equation (C-51), and the last one from Equations (C-49), (C-52) and S2(z, ρ) ≥ 0,

∀z ∈ Rk.

Proof of Corollary 3.1. By Theorem 3.2.1 there exists B > 0 such that for all r∗ ≤ B,

AsyCS
(1)
GMS > 0. Pick η = AsyCS

(1)
GMS/2 > 0. By Theorem 3.2.2 there exists ε such that

AsyCS
(2)
PA ≤ η = AsyCS

(1)
GMS/2. Therefore, by Theorem 3.1

AsyCS
(2)
GMS = AsyCS

(2)
SS ≤ AsyCS

(2)
PA < AsyCS

(1)
GMS = AsyCS

(1)
SS ≤ AsyCS

(1)
PA. (C-56)

Appendix D Verification of Assumptions in the Examples

D.1 Example 2.1

We start by writing the example using the notation in Definition 2.1 and using the following primitive
assumption. For the assumption we use the following notation. Prn denotes the probability with
respect to the distribution Fn, Il ≡ I(X = xl), pl,n = Prn(X = xl), πl,n = Prn(Z = 1|X = xl),
El,n = EFn (Y |Z = 1, X = xl), Hl,n = EFn

(
Y 2|Z = 1, X = xl

)
, and Gl,n = G (xl, θn).

Assumption D.1. Assume that for c1, c2, c3, c4 ∈ R: (i) pl,n ≥ c1 > 0, (ii) Hn,l ≤ c2 < ∞,
Hn,l − E2

n,l ≥ c3 > 0, and πl,n ≥ c4 > 0 for all n ≥ 1 and l = 1, . . . , dx.

For simplicity assume YL(xl) and YH(xl) are both finite for all l = 1, . . . , dx. Without loss of
generality, assume that YL(xl) = 0 and YH(xl) = 1 so that

γ1,l,1,n ≡ σ−1
Fn,l,1

EFnm1,l (Wi, θn) = σ−1
Fn,l,1

EFn [(Y Z −G(xl, θn) + 1− Z)Il], (D-1)

= σ−1
Fn,l,1

(πl,nEl,n −Gl,n + (1− πl,n)) pl,n ≥ −rl,1n−1/2, (D-2)

γ1,l,2,n ≡ σ−1
Fn,l,2

EFnm2,l (Wi, θn) = σ−1
Fn,l,2

EFn [(G(xl, θn)− Y Z)Il], (D-3)

= σ−1
Fn,l,2

(Gl,n − El,nπl,n) pl,n ≥ −rl,2n−1/2, (D-4)

where σ2
Fn,l,j

≡ VFn (mj,l (Wi, θn)) for j = 1, 2 and l = 1, . . . , dx is given by

σ2
Fn,l,1 = pl,nπl,n

[(
Hl,n − E2

l,n

)
+ (1− πl,n) (1− El,n)

2
]
, (D-5)

σ2
Fn,l,2 = pl,nπl,n

[(
Hl,n − E2

l,n

)
+ (1− πl,n) (El,n − 2Gl,n)

2
]
. (D-6)

Also, for l = 1, . . . , dx

ρ12,l,n ≡ EFn (m1,l (Wi, θn)m2,l (Wi, θn)) = EFn [(Y Z −Gl,n + 1− Z)(Gl,n − Y Z)Il] (D-7)

= (1− πl,n)pl,n[Gl,n(1− pl,n) + El,nπl,npl,n]− σ2
Fn,l,2. (D-8)

This model satisfies the following relationship

ml,1(Wi, θn) +ml,2(Wi, θn) = (1− Z)Il, (D-9)

for l = 1, . . . , dx, so that

γ1,l,1,n = σ−1
Fn,l,1

(1− πl,n)pl,n − σ−1
Fn,l,1

σFn,l,2γ1,l,2,n. (D-10)

31



D.1.1 On Assumption A.5

We begin with the case dx = 1 and cover the case dx > 1 afterwards. By Definition A.1, γωn,g1,h

denotes a sequence of parameter vectors θωn and distributions Fωn for Wi such that ω
1/2
n γ1,j,ωn → h1,j

and b
1/2
ωn γ1,j,ωn → g1,j for j ∈ {1, 2}.

For a given γωn,g1,h denote by J the set of j ∈ {1, 2} that satisfy h1,j = ∞ and g1,j < ∞. By
Assumption D.1, there are constants 0 < B1 < B2 < ∞ such that σFn,j ∈ [B1, B2] for all j ∈ {1, 2}
and n ∈ N, which implies that EFnmj (Wi, θn) = o (1) for all j ∈ J . When J is empty, there is
nothing to show. We are therefore left with cases (I) J = {1}, (II) J = {2}, and (III) J = {1, 2}.
We start with the case J = {1} and consider two subcases. In Case (a) h1,2 < ∞ while in Case
(b) we have h1,2 =∞ and g1,2 =∞. To simplify notation we write n rather than ω̃n and b instead of bn.

Case (I)(a): Since h1,2 <∞, it follows by previous arguments that EFnm2 (Wi, θn) = o (1). By
Equation (D-9), (1− πn) = o (1) and En = Gn + o (1). It then follows that ρ12,n → −1. Consider an
alternative sequence of parameters {θ′n, F ′n}n≥1 such that θ′n = θn (so G′n = Gn), H ′n = Hn, π

′
n and

E′n given by

π′n =
(

1− (ln b)b−1/2
)
→ 1, (D-11)

E′n =
(
Gn + h1,2σFn,2n

−1/2 − (ln b)b−1/2
)(

1− (ln b)b−1/2
)−1

= En + o (1) . (D-12)

This implies

(1− π′n) = (ln b)b−1/2 = o (1) , (D-13)

(G′n − π′nE′n) = −h1,2σFn,2n
−1/2 + (ln b)b−1/2 = o (1) , (D-14)

and σF ′n,jσ
−1
Fn,j

= 1 + o (1) for j = 1, 2. As a result

b1/2σ−1
F ′n,1

EF ′nm1 (Wi, θ
′
n) = σ−1

F ′n,1

(
−b1/2 (h1,2σFn,1)n−1/2 + ln b

)
→∞, (D-15)

n1/2σ−1
F ′n,2

EF ′nm2 (Wi, θ
′
n) = σ−1

F ′n,2
(h1,2σFn,1)→ h1,2. (D-16)

Finally, by π′n → 1 and Assumption D.1, ρ′12,n ≡ CorrF ′n (m1 (Wi, θ
′
n) ,m2 (Wi, θ

′
n))→ −1.

Case (I)(b): Since σFn,2 ∈ [B1, B2], it follows that limEFnm2 (Wi, θn) ∈ [0,∞]. In this case
lim (1− πn) ∈ [0, 1]. Consider an alternative sequence of parameters {θ′n, F ′n}n≥1 such that θ′n = θn
(so G′n = Gn), H ′n = Hn, π

′
n and E′n given by

π′n = πn − 2(ln b)b−1/2 = πn + o (1) , (D-17)

E′n =
(
πnEn − (ln b)b−1/2

)(
πn − 2(ln b)b−1/2

)−1

= En + o (1) , (D-18)

where we used πn ≥ c4 > 0. This implies σF ′n,jσ
−1
Fn,j

= 1 + o (1) for j = 1, 2. It then follows that

b1/2σ−1
F ′n,1

EF ′nm1 (Wi, θ
′
n) = b1/2σ−1

Fn,1
EFnm1 (Wi, θn) + σ−1

F ′n,1
ln b+ o (1)→∞, (D-19)

b1/2σ−1
F ′n,2

EF ′nm2 (Wi, θ
′
n) = b1/2σ−1

Fn,2
EFnm2 (Wi, θn) + σ−1

F ′n,2
ln b+ o (1)→∞. (D-20)

Finally, Assumption D.1 and Equation (D-8) imply

ρ′12,n ≡ CorrF ′n (m1 (Wi, θ
′
n) ,m2 (Wi, θ

′
n)) = ρ12,n + o(1). (D-21)

Case (II): This case is analogous to Case (I) and is therefore omitted.

Case (III): By Equation (D-9) (1− πn) = o (1) and En = Gn + o (1). As a consequence of this
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and Assumption D.1, it follows that ρ12,n → −1. Consider an alternative sequence of parameters
{θ′n, F ′n}n≥1 such that θ′n = θn (so G′n = Gn), H ′n = Hn, π

′
n and E′n given by Equations (D-17) and

(D-18). Then, Equations (D-19)-(D-21) follow and this concludes the proof for the case dx = 1.
Now consider the case dx > 1. Notice that in the case with dx = 1, we considered a sequence of

parameters {θ′n, F ′n}n≥1 such that θ′n = θn and

σ−1
F ′n,1

EF ′nm1 (Wi, θ
′
n) = σ−1

Fn,1
EFnm1 (Wi, θn) + o (1) , (D-22)

σ−1
F ′n,2

EF ′nm2 (Wi, θ
′
n) = σ−1

Fn,2
EFnm2 (Wi, θn) + o (1) , (D-23)

limCorrF ′n (m1 (Wi, θ
′
n) ,m2 (Wi, θ

′
n)) = limCorrFn (m1 (Wi, θn) ,m2 (Wi, θn)) . (D-24)

When dx > 1, we consider an alternative sequence of parameters {θ′n, F ′n}n≥1 such that for each
l = 1, . . . , dx, we set p′l,n = pl,n, θ

′
n = θn (so G′l,n = Gl,n), and the rest of the choices of the alternative

distribution would be chosen according to the corresponding case in the previous part. According to
this, it follows that for every l = 1, . . . , dx,

σ−1
F ′n,1,l

EF ′nm1,l (Wi, θ
′
n) = σ−1

Fn,1,l
EFnm1,l (Wi, θn) + o (1) , (D-25)

σ−1
F ′n,2,l

EF ′nm2,l (Wi, θ
′
n) = σ−1

Fn,2,l
EFnm2,l (Wi, θn) + o (1) , (D-26)

limCorrF ′n (m1,l (Wi, θ
′
n) ,m2,l (Wi, θ

′
n)) = limCorrFn (m1,l (Wi, θn) ,m2,l (Wi, θn)) (D-27)

To conclude the proof, we notice that for l, j = 1, . . . , dx with l 6= j and a, b ∈ {1, 2}

CorrF ′n (ma,l (Wi, θ
′
n) ,mb,k (Wi, θ

′
n)) = −σ−1

F ′n,a,l
EF ′nma,l (Wi, θ

′
n)σ−1

F ′n,b,k
EF ′nmb,k (Wi, θ

′
n) + o (1) ,

= −σ−1
Fn,a,l

EFnma,l (Wi, θn)σ−1
Fn,b,k

EFnmb,k (Wi, θn) + o (1) ,

= CorrFn (ma,l (Wi, θn) ,mb,k (Wi, θn)) + o (1) . (D-28)

This verifies all the desired properties and concludes the proof.

D.1.2 On Assumption A.6

We verify Assumption A.6 for r∗ > 0. For simplicity consider the case dx = 1. Choose a sequence of
parameters {θn, Fn}n≥1 with 1 − πn = o(1) and limiting parameter h∗1,1 < 0. By Equation (D-10),
h∗1,2 = −h∗1,1 > 0 and h∗2 is a 2× 2 matrix equal to [1,−1;−1, 1].

First, consider the test function S1. Let c0(h∗2, 1− α) be the 1− α quantile of

S1(Zh∗2 , h
∗
2) = [Z1]2− + [−Z1]2− = Z2

1 , Zh∗2 = (Z1, Z2) ∼ N(0, h∗2). (D-29)

Note that
S1(Zh∗2 + h∗1, h

∗
2) = [Z1 + h∗1,1]2− + [−Z1 − h∗1,1]2− = (Z1 + h∗1,1)2, (D-30)

and since Pr((Z1 + h∗1,1)2 ≤ x) < Pr(Z2
1 ≤ x) for h∗1,1 < 0, Pr((Z1 + h∗1,1)2 ≤ c0(h∗2, 1 − α)) < 1 − α.

Assumption A.6 then holds.
Second, consider the test function S2. We consider the version of S2 in Equation (3.14) as here

the limit correlation matrix are singular and so we need a test function defined on Ψ1. Using the
definition of Σ̃ε in Equation (3.15), it follows that

Ω̃∗ε =

[
1 + ε −1
−1 1 + ε

]
and Ω̃∗,−1

ε = a(ε)

[
1 + ε 1

1 1 + ε

]
, (D-31)
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where a(ε) = [(1 + ε)2 − 1]−1. As a result

S̃2(Zh∗2 , Ω̃
∗
ε) = (1 + ε)a(ε) inf

t1≥0,t2≥0
{(Z1 − t1)2 + (Z2 − t2)2 + 2(1 + ε)−1(Z1 − t1)(Z2 − t2)}

= (1 + ε)a(ε) inf
t1≥0,t2≥0

{(Z1 − t1)2 + (Z1 + t2)2 − 2(1 + ε)−1(Z1 − t1)(Z1 + t2)}

=
1

1 + ε
Z2

1 , (D-32)

where the first equality holds by definition, the second equality holds because Zh∗2 is such that Z2 =
−Z1, and the third equality by solving the optimization. Since Z2 + h∗1,2 = −Z1 − h∗1,1 we also have

S̃2(Zh∗2 + h∗1, Ω̃
∗
ε) =

1

1 + ε
(Z1 + h∗1,1)2, (D-33)

where h∗1,1 < 0. Let c0(h∗2, 1 − α) be the 1 − α quantile of S̃2(Z, Ω̃∗ε) in Equation (D-32). Since
Pr((Z1 + h∗1,1)2 ≤ x) < Pr(Z2

1 ≤ x) for h∗1,1 < 0, Pr((1 + ε)−1(Z1 + h∗1,1)2 ≤ c0(h∗2, 1 − α)) < 1 − α.
Assumption A.6 then holds. The general case where dx > 1 follows by applying the previous argument
to each pair of moment inequalities.

D.2 Example 2.2

We start again by writing the example using the notation in Definition 2.1. For simplicity of the
argument we assume that the distribution G is uniform, as stated below.

Assumption D.2. Under the distribution G, ui = (u1,i, u2,i) is uniformly distributed on [0, 1]2.

Let θn = (θ1,n, θ2,n) be the true parameter vector, Prn(·) the probability with respect to
the distribution Fn of Wi, prs,n ≡ Prn(W1,i = r,W2,i = s) for r, s ∈ {0, 1}, and ρjj′,n ≡
CorrFn [mj(Wi, θn),mj′(Wi, θn)] for j, j′ ∈ {1, 2, 3}. As defined in the text, Gn denotes the true
distribution of ui for sample size n. Under Assumption D.2 we have

γ1,1,n ≡ σ−1
Fn,1

EFn [G1(θn)−W1,i(1−W2,i)] = σ−1
Fn,1

(θ2,n − p10,n),

γ1,2,n ≡ σ−1
Fn,2

EFn [W1,i(1−W2,i)−G2(θn)] = σ−1
Fn,2

(p10,n − (1− θ1,n)θ2,n),

γ1,3,n ≡ σ−1
Fn,3

EFn [W1,iW2,i −G3(θn)] = σ−1
Fn,3

(p11,n − (1− θ1,n)(1− θ2,n)). (D-34)

By simple calculations we have

σ2
Fn,1 = σ2

Fn,2 = V arFn [m1(Wi, θn)] = p10,n(1− p10,n) ∈ (0, 1/4],

σ2
Fn,3 = V arFn [m3(Wi, θn)] = p11,n(1− p11,n) ∈ (0, 1/4],

ρ12,n = −1, ρ13,n =
p10,np11,n

σFn,1σFn,3
, and ρ23,n = −ρ13,n, (D-35)

where zero variances have been ruled out by Definition 2.1(iv). By Definition A.1, γωn,g1,h denotes

a sequence of parameter vectors θωn and distributions Fωn for Wi such that ω
1/2
n γ1,j,ωn → h1,j and

b
1/2
ωn γ1,j,ωn → g1,j for j ∈ {1, 2, 3}. Recall that γωn,g1,h defines θωn = (θ1,ωn , θ2,ωn) and thus defines
G1(θωn), G2(θωn), and G3(θωn).

D.2.1 On Assumption A.5

For a given γωn,g1,h denote by J the set of j ∈ {1, 2} that satisfy h1,j = ∞ and g1,j < ∞. When
J is empty, there is nothing to show. We are therefore left with the cases J = {1}, J = {2}, and
J = {1, 2}. We start with the case J = {1} and consider two subcases. In Case (I) h1,2 < ∞ while
in Case (II) we have h1,2 =∞ and g1,2 =∞. For each subcase we consider two further subcases: In
Case (a) ρ13,n → 0 while in Case (b) ρ13,n → ρ13 ∈ (0, 1]. To simplify notation we write n rather than
ω̃n and b instead of bn.
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Remark D.1. Note that for any positive numbers a10, a01, a11 whose sum equals 1 and θ = (θ1, θ2) ∈
(0, 1)2, there exists a random variable ui = (u1,i, u2,i) on [0, 1]2 with continuous distribution such that
Pr(u1,i > θ1 & u2,i < θ2) = a10, Pr(u1,i < θ1 & u2,i > θ2) = a01, and Pr(u1,i > θ1 & u2,i > θ2) = a11

(and consequently Pr(u1,i < θ1 & u2,i < θ2) = 0).

Letting a10, a01, a11 play the role of p10,n, p01,n, p11,n the Remark D.1 implies that for a given
vector θn = (θ1,n, θ2,n) any desired outcome probabilities p10,n, p01,n, p11,n can be generated by a
random variable ui = (u1,i, u2,i) that has a continuous distribution Gn.

Case (I)(a): We have to produce a sequence γω̃n,g̃1,h for which g̃1,1 =∞, h1,2 is a specific finite
number, and the upper right element of h2 equals 0. Define

p′10,n = b−3/7. (D-36)

Let θ′n = (θ′1,n, θ
′
2,n) for θ′1,n and θ′2,n defined next. Pick θ′2,n ∈ (0, 1) such that

G1(θ′n) = θ′2,n = p′10,n + b−1/2(p′10,n(1− p′10,n))1/2b2/7 (D-37)

and pick θ′1,n ∈ (0, 1) such that

G2(θ′n) = (1− θ′1,n)θ′2,n = p′10,n − n−1/2(p′10,n(1− p′10,n))1/2h1,2. (D-38)

This is clearly possible because p′10,n → 0, |n−1/2(p′10,n(1−p′10,n))1/2h1,2| < p′10,n, and b−1/2(p′10,n(1−
p′10,n))1/2b2/7 → 0. We have G1(θ′n) = θ′2,n = 2b−3/7(1 + o(1)), G2(θ′n) = b−3/7(1 + o(1)). Now

b−3/7(1 + o(1)) = G2(θ′n) = (1− θ′1,n)θ′2,n = 2(1− θ′1,n)b−3/7(1 + o(1)) (D-39)

which implies that θ′1,n cannot converge to 1. Without loss of generality we can therefore assume that
θ′1,n → θ′1 for some θ′1 ∈ [0, 1). We then have

G3(θ′n) = (1− θ′1,n)(1− θ′2,n)→ (1− θ′1). (D-40)

Consider the function
f(x) ≡ x− h1,3n

−1/2(x(1− x))1/2 (D-41)

for x ∈ [0, 1]. The function f is continuous and satisfies f(0) = 0 and f(1) = 1. Therefore, for given
G3(θ′n), the intermediate value theorem implies there exists a value p′11,n such that

G3(θ′n) = p′11,n − h1,3n
−1/2(p′11,n(1− p′11,n))1/2. (D-42)

Define p′11,n to be any value in (0, 1) that satisfies Equation (D-42). It cannot be the case that
p′11,n → 1 as otherwise we would have G3(θ′n)→ 1 contradicting Equation (D-40). Therefore, without
loss of generality p′11,n → p′11 for some p′11 ∈ [0, 1). Note that p′10,n → 0 and p′11 ∈ [0, 1) imply that

ρ′13,n =
p′10,np

′
11,n

σ′Fn,1σ
′
Fn,3

→ 0. (D-43)

For these given choices of p′10,n, p
′
11,n and θ′n = (θ′1,n, θ

′
2,n), and by Remark D.1, there exists a

continuous distribution G′n for the random variable ui = (u1,i, u2,i) such that Pr(u1,i > θ′1,n &
u2,i < θ′2,n) = p′10,n, Pr(u1,i < θ′1,n & u2,i > θ′2,n) = 1 − p′10,n − p′11,n, and Pr(u1,i > θ′1,n &
u2,i > θ′2,n) = p′11,n. By construction all requirements are fulfilled under the sequence θ′n and G′n.

Case (I)(b): We have to produce a sequence γω̃n,g̃1,h for which g̃1,1 = ∞, h1,2 < ∞ and the
upper right element of h2 equals ρ13 ∈ (0, 1]. Assume first that ρ13 ∈ (0, 1). Define

p′10,n = cb−1/7 (D-44)
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for some constant c > 0, and define (θ′1,n, θ
′
2,n) ∈ (0, 1)2 as in Equations (D-37) and (D-38). We then

have θ′2,n = cb−1/7 + c1/2b−2/7(1 + o(1)) and (1− θ′1,n)θ′2,n = cb−1/7 + o(b−2/7) and thus

θ′1,n = 1− cb−1/7 + o(b−2/7)

cb−1/7 + c1/2b−2/7(1 + o(1))
= c−1/2b−1/7(1 + o(1)). (D-45)

Next

G3(θ′n) = (1− θ′1,n)(1− θ′2,n) = (1− c−1/2b−1/7(1 + o(1)))(1− cb−1/7(1 + o(1)))

= 1− (c−1/2 + c)b−1/7(1 + o(1)). (D-46)

Arguing as in Case (I)(a) there is a value p′11,n ∈ (0, 1) such that

G3(θ′n) = p′11,n − h1,3n
−1/2(p′11,n(1− p′11,n))1/2. (D-47)

As G3(θ′n)→ 1 we have p′11,n → 1. More precisely,

p′11,n = G3(θ′n) + h1,3n
−1/2(p′11,n(1− p′11,n))1/2 = 1− (c−1/2 + c)b−1/7(1 + o(1)). (D-48)

Therefore,

ρ′13,n ≡

(
p′10,np

′
11,n

(1− p′10,n)(1− p′11,n)

)1/2

=

(
cb−1/7(1− (c−1/2 + c)b−1/7)

(1− cb−1/7)((c−1/2 + c)b−1/7)

)1/2

(1 + o(1))

→ (c/(c−1/2 + c))1/2. (D-49)

The function (c/(c−1/2 + c))1/2 is continuous for c > 0 and converges to 1 as c → ∞ and to 0 as
c→ 0. There is therefore c > 0 such that (c/(c−1/2 + c))1/2 = ρ13. The proof is then concluded as in
Case (I)(a). If ρ13 = 1, the same proof applies once the constant c in Equation (D-44) is replaced by
the sequence cn = ln b that slowly converges to infinity.

Case (II)(a): We have to produce a sequence γω̃n,g̃1,h for which g̃1,1 = g̃1,2 =∞ and the upper
right element of h2 equals zero. Define

p′10,n = b−3/7. (D-50)

Let θ′n = (θ′1,n, θ
′
2,n) ∈ (0, 1)2 be defined as follows. Let θ′2,n ∈ (0, 1) be such that

G1(θ′n) = θ′2,n = p′10,n + b−1/2(p′10,n(1− p′10,n))1/2b2/7 (D-51)

and pick θ′1,n ∈ (0, 1) such that

G2(θ′n) = (1− θ′1,n)θ′2,n = p′10,n − b−1/2(p′10,n(1− p′10,n))1/2b1/7. (D-52)

As in Case (I)(a) we have G1(θ′n) = 2b−3/7(1+o(1)) and G2(θ′n) = b−3/7(1+o(1)). Using the same steps
as in Case (I)(a) we have θ′1,n → θ′1 for some θ′1 ∈ [0, 1) and thus that G3(θ′n) converges to a number

smaller than 1. Then again, there exists p′11,n such that G3(θ′n) = p′11,n−h1,3n
−1/2(p′11,n(1−p′11,n))1/2

and p′11,n → p′11 for some p′11 ∈ [0, 1). Therefore, we have again that ρ′13,n → 0 and the proof concludes
as in Case (I)(i).

Case (II)(b): We have to produce a sequence γω̃n,g̃1,h for which g̃1,1 = g̃1,2 =∞ and the upper
right element of h2 equals ρ13 ∈ (0, 1]. The proof follows along the same lines as Case (I)(b) with the
one difference that G2(θ′n) is defined as in Equation (D-52).

That concludes the verification of the assumption for the case J = {1}. Regarding the other cases,
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note that the case J = {1, 2} is covered by Cases (II)(a) and (II)(b) above. The verification of the
assumption in case J = {2} is also partially covered by Cases (II)(a) and (II)(b) and the remaining
cases for J = {2} are similar to Cases (I)(a) and (I)(b) above for J = {1} and therefore omitted.

D.2.2 On Assumption A.6

The verification of Assumption A.6 follows almost identical steps to those used in Section D.1.2 and
is therefore omitted.
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