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Abstract
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1 Introduction

Many empirical studies with financial time series data indicate that the distribution of asset

returns is usually rather leptokurtic, even after controlling for volatility clustering effects. Nev-

ertheless, the Gaussian pseudo-maximum likelihood (PML) estimators advocated by Bollerslev

and Wooldridge (1992) remain consistent for the conditional mean and variance parameters in

those circumstances, so long as those moments are correctly specified.

However, a non-normal distribution may be indispensable when one is interested in features

of the distribution of asset returns beyond its conditional mean and variance. For instance, em-

pirical researchers and financial market practitioners are often interested in the so-called Value

at Risk of an asset, which is the positive threshold value V such that the probability of the asset

suffering a reduction in wealth larger than V equals some pre-specified level κ < 1/2. In addi-

tion, they are sometimes interested in the probability of the joint occurrence of several extreme

events, which is regularly underestimated by the multivariate normal distribution, especially in

larger dimensions. This naturally leads one to specify a parametric leptokurtic distribution for

the standardised innovations, such as the multivariate Student t analysed in Fiorentini, Sentana

and Calzolari (2003) (hereinafter FSC), and to estimate not only the conditional mean and vari-

ance parameters but also the parameters characterising the shape of the assumed distribution.

Elliptical distributions such as the multivariate t are attractive in this context because they

relate mean-variance analysis with expected utility maximisation (see e.g. Chamberlain (1983),

Owen and Rabinovitch (1983) and Berk (1997)). Moreover, they generalise the multivariate

normal distribution, but at the same time they retain its analytical tractability irrespective of

the number of assets, as opposed to e.g. non-parametric methods, which become infeasible when

the number of assets is moderately large.

Despite its attractiveness, though, the multivariate Student t distribution, which is a member

of the elliptical family, rules out platykurtic distribution. Moreover, a multivariate t with ν

degrees of freedom has unbounded moments of order higher or equal to ν, a property that may

not be desirable in some applications. For that reasons, the main purpose of this paper is to

extend the results in FSC in the following dimensions.

First, we consider other elliptical distributions that also nest the normal, including the Kotz

distribution, as well as some flexible families such as scale mixtures of normals and polynomial

expansions of the multivariate normal density. In this sense, we provide numerically reliable

analytical expressions for the score vector, which can be used to obtain numerically accurate

extrema of the objective function, as well as reliable standard errors.
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We also use our analytical expressions to develop score tests for multivariate normality

when a dynamic model for the conditional mean and variance is fully specified, but the model

is estimated under the Gaussianity null. The alternative tests for multivariate normality we

obtain present power properties that differ substantially under different alternative hypotheses.

Moreover, even though ellipticity is a maintained assumption for the aforementioned testing

procedures, it should be noted that they can still be understood as kurtosis tests even if the

distribution under the alternative hypothesis is asymmetric (see Mencía and Sentana (2010)).

The rest of the paper is organised as follows. In section 2, we discuss some relevant properties

of elliptical distributions, and present closed-form expressions for the score vector and condi-

tional information matrix. Then, in section 3 we introduce our proposed tests for multivariate

normality. A Monte Carlo evaluation of the different testing procedures can be found in section

4. Finally, we present our conclusions in section 5. Proofs and auxiliary results are gathered in

appendices.

2 Theoretical background

2.1 Elliptical distributions

A spherically symmetric random vector of dimension N , ε∗t , is fully characterised in Theorem

2.5 (iii) of Fang, Kotz and Ng (1990) as ε∗t = etut, where ut is uniformly distributed on the

unit sphere surface in RN , and et is a non-negative random variable independent of ut, whose

distribution determines the distribution of ε∗t . The variables et and ut are referred to as the

generating variate and the uniform base of the spherical distribution. Assuming that E(e2t ) <∞,

we can standardise ε∗t by setting E(e
2
t ) = N , so that E(ε∗t ) = 0 and V (ε∗t ) = IN . If we further

assume that E(e4t ) < ∞, then the coefficient of multivariate excess kurtosis ε∗t (see Mardia

(1970)), κ, which is given by E(e4t )/[N(N + 2)]− 1, will also be bounded.1

In what follows, we briefly describe the alternative distributions that we consider for the

N × 1 random vector ε∗t :

Gaussian: ε∗t =
√
ςtut is distributed as a standardised multivariate normal if and only if ςt

is an independent chi-square random variable with N degrees of freedom.

Student t : ε∗t =
√
ν − 2 ×

p
ζt/ξtut is distributed as a standardised multivariate Student t

if and only if ζt is a chi-square random variable with N degrees of freedom, and ξt is a Gamma

variate with mean ν and variance 2ν, with ut, ζt and ξt mutually independent.

Kotz: ε∗t =
√
ςtut is distributed as a standardised Kotz if and only if ςt is a gamma random

1In this respect, note that since E(e4t ) ≥ E2(e2t ) = N2 by the Cauchy-Schwarz inequality, with equality if and
only if et =

√
N so that ε∗t is proportional to ut, then κ ≥ −2/(N +2), the minimum value being achieved in the

uniformly distributed case.
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variable with mean N and variance N [(N + 2)κ+ 2].

Discrete scale mixture of normals: ε∗t =
√
ςtut is distributed as a discrete mixture of

normals (DSMN) if and only if

ςt =
st + (1− st)κ
α+ (1− α)κ

ςot

where st is an independent Bernoulli variate with P (st = 1) = α, κ is the variance ratio of the

two components, which for identification purposes we restrict to be in the range (0, 1] and ςot is

an independent chi-square random variable with N degrees of freedom.

Polynomial expansion: ε∗t =
√
ςtut is distributed as a J th order polynomial expansion if

and only if ςt has a density defined by

h(ςt) =
1

2N/2Γ (N/2)
ς
N/2−1
t exp

µ
−1
2
ςt

¶
PJ(ςt)

with

PJ(ςt) =

⎡⎣1 + JX
j=2

cjpN/2−1,j(ςt)

⎤⎦ ,
where pN/2−1,j(.) denotes the generalized Laguerre polynomial of order j and parameterN/2−1.2

For instance, the second and third order standardized Laguerre polynomials are

pN/2−1,2(ς) =

s
2

N (N + 2)

∙
N (N + 2)

4
−
µ
N + 2

2

¶
ς +

1

4
ς2
¸
, and

pN/2−1,3(ς) =

s
12

N (N + 2) (N + 4)

×
∙
N (N + 2) (N + 4)

24
− (N + 2) (N + 4)

8
ς +

N + 4

8
ς2 − 1

24
ς3
¸
.

The problem with polynomial expansions is that PJ(ς) will not be a proper density unless we

restrict the coefficients cj ’s so that it cannot become negative. For that reason, in Appendix B.1

we explain how to obtain restrictions on those coefficients to guarantee the positivity of PJ(ς)

for all ς. Figure 1 describes the region in the (c2, c3) space for which densities of the 3rd order

expansion are well defined for all ς ≥ 0.

Importantly, all these examples nest the Gaussian distribution. In particular, the multi-

variate Student t approaches the multivariate normal as ν →∞, but has generally fatter tails.
2The Rodrigues equation for the generalized Laguerre polynomials is

pαn(x) =
x−αe−x

n!

dn

dxn
(e−xxn+α).

These polynomials are orthogonal to each other with respect to the weighting function

f(x;α) =
xαe−x

Γ(1 + α)
for x > 0, α > −1.
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For that reason, we define η as 1/ν, which will always remain in the finite range [0, 1/2) under

our assumptions. Similarly, the Kotz distribution nests the multivariate normal distribution for

κ = 0, but it can also be either platykurtic (κ < 0) or leptokurtic (κ > 0). Although such a nest-

ing provides an analytically convenient generalisation of the multivariate normal, the density of

a leptokurtic Kotz distribution has a pole at 0, which is a potential drawback from an empirical

point of view. As for the DSMN, it approaches the multivariate normal when κ → 1, α→ 1 or

α→ 0. As can be seen in Figure 2a-c, near the limit, though, the distributions can be radically

different. For instance, given that κ ∈ (0, 1] when α→ 0+ there are very few observations with

very large variance (outliers), while when α → 1− the opposite happens, very few observations

with very small variance (inliers). More generally, ςt will be a two-component scale mixture of

χ20Ns. As all scale mixtures of normals, the distribution of ε
∗
t is leptokurtic. Finally, the polyno-

mial expansion reduces to the spherical normal when cj = 0 for all j ∈ {2, ..., J}. Interestingly,

as can be seen in Figure 1, while the distribution of ε∗t is leptokurtic for a 2
nd order expansion,

it is possible to generate platykurtic random variables with a 3rd order expansion.

Figure 3 plots the densities of a normal, a Student t, a platykurtic Kotz distribution, a

discrete scale mixture of normals and a 3rd order polynomial expansion in the bivariate case.

Although they all have concentric circular contours because we have standardised and orthogo-

nalised the two components, their densities can differ substantially in shape, and in particular,

in the relative importance of the centre and the tails.

They also differ in the degree of cross-sectional “tail dependence” between the components,

the normal being the only example in which lack of correlation is equivalent to stochastic inde-

pendence. Allowing for dependence beyond correlation is particularly important in the context

of multiple financial assets, in which the probability of the joint occurrence of several extreme

events is regularly underestimated by the multivariate normal distribution (see Longin and

Solnik, 2001). Figure 4 plots the so-called exceedance correlation between the uncorrelated mar-

ginal components in Figure 3. It can be noted the flexibility of the distributions we consider to

generate different shapes of exceedance correlation.

For our purposes, it is also convenient to study the higher order moments of elliptical distrib-

utions. In this sense, it is easy to combine the representation of elliptical distributions above with

the higher order moments of a multivariate normal vector in Balestra and Holly (1990) to prove

that the third and fourth moments of a spherically symmetric distribution with V (ε∗t ) = IN are

given by

E(ε∗tε
∗
t
0 ⊗ ε∗t ) = 0,

E(ε∗tε
∗
t
0⊗ε∗tε∗t 0) = E[vec(ε∗tε

∗
t
0)vec0(ε∗tε

∗
t )]= (κ+1)[(IN2+KNN)+vec (IN ) vec

0 (IN)].
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An alternative characterization can be based on the higher order moment parameter of spherical

random variables introduced by Berkane and Bentler (1986), τm(η), which Maruyama and Seo

(2003) relate to higher order moments as

E[ςmt |η] = [1 + τm(η)]E[ς
m
t |0] where E[ςmt |0] = 2m

mY
j=1

(N/2 + j − 1).

For the elliptical examples mentioned above, the 1 + τm(η)’s —which are derived in Appendix

B.2— become:

Student t :

1 + τ tm(η) = (1− 2η)m−1
mY
j=2

1

(1− 2jη) if m <
1

η
.

Kotz:

1 + τkm(κ,N) =

µ
(N + 2)κ+ 2

2

¶m mY
j=1

N/[(N + 2)κ+ 2] + j − 1
N/2 + j − 1 .

Two-component scale mixture of normals:

1 + τdsm(α,κ) =
α+ (1− α)κm

[α+ (1− α)κ]m
.

3rd-order polynomial expansion:

1 + τpem(α,κ) =
N(N + 2)(N + 4) + 2c2m(m− 1)(N + 4)− 4c3m[2 +m(m− 3)]1{m ≥ 3}

N(N + 2)(N + 4)
.

Figure 5 show the different patterns in which these distributions departure from the Gaussian

distribution in terms of τ2(η) and τ3(η). Notice also that with the exception of the Student t, a

noteworthy property of the remaining distributions that we consider is that their moments are

always bounded. In this respect, Appendix B.3 contains the moment generating functions for

the Kotz, the two-component scale mixture of normals and the 3rd order polynomial expansion.

2.2 The dynamic econometric model

In a multivariate dynamic regression model with time-varying variances and covariances, the

vector of N dependent variables, yt, is typically assumed to be generated as:

yt = μt(θ0) +Σ
1/2
t (θ0)ε

∗
t ,

μt(θ) = μ(zt, It−1;θ),
Σt(θ) = Σ(zt, It−1;θ),

where μ() and vech [Σ()] are N × 1 and N(N + 1)/2 × 1 vector functions known up to the

p× 1 vector of true parameter values θ0, zt are k contemporaneous conditioning variables, It−1
denotes the information set available at t−1, which contains past values of yt and zt, Σ1/2t (θ) is
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some particular “square root” matrix such that Σ1/2t (θ)Σ
1/20
t (θ) = Σt(θ), and ε∗t is a martingale

difference sequence satisfying E(ε∗t |zt, It−1;θ0) = 0 and V (ε∗t |zt, It−1;θ0) = IN . Hence,

E(yt|zt, It−1;θ0) = μt(θ0)
V (yt|zt, It−1;θ0) = Σt(θ0)

¾
. (1)

To complete the model, we need to specify the conditional distribution of ε∗t . We shall assume

that, conditional on zt and It−1, ε∗t is independent and identically distributed as some particular

member of the elliptical distributions described in the previous subsection, say ε∗t |zt, It−1;θ0,η0 ∼

i.i.d. s(0, IN ,η0) for short, where η are some q additional parameters that determine the shape

of the distribution of ςt = ε∗0t ε
∗
t .

2.3 The log-likelihood function

Let φ = (θ0,η)0 denote the p + q parameters of interest, which we assume variation free.

Ignoring initial conditions, the log-likelihood function of a sample of size T based on a par-

ticular parametric spherical assumption will take the form LT (φ) =
PT

t=1 lt(φ), with lt(φ) =

dt(θ) + c(η) + g [ςt(θ),η], where dt(θ) = −1/2 ln |Σt(θ)| corresponds to the Jacobian, c(η)

to the constant of integration of the assumed density, and g [ςt(θ),η] to its kernel, where

ςt(θ) = ε∗0t (θ)ε
∗
t (θ), ε

∗
t (θ) = Σ

−1/2
t (θ)εt(θ) and εt(θ) = yt −μt(θ).

FSC provide expressions for c(η) and g [ςt(θ), η] in the multivariate Student t case, which

are obviously such that LT (θ, 0) collapses to a conditionally Gaussian log-likelihood. As for the

remaining distributions that we consider, the corresponding expressions are:

Kotz:

c(κ) = lnΓ

µ
N

2

¶
− N

2
lnπ − lnΓ

µ
N

b(κ)

¶
− N

b(κ)
ln b(κ)

g(ςt, κ) = − 1

b(κ)
ςt +N

∙
1

b(κ)
− 1
2

¸
ln ςt,

where b(κ) = 2 + κ(N + 2).

Two-component scale mixtures:

c(α,κ) = −N
2
ln (2'π) ,

g[ς, α,κ] = ln

∙
α exp

µ
− 1

2'
ς

¶
+ (1− α)κ−N/2 exp

µ
− 1

2'κ
ς

¶¸
,

with ' = [α+ κ(1− α)]−1.

3rd order polynomial expansion:

c(η) = −N
2
lnπ,

g[ςt,η] = −1
2
ςt + ln

⎡⎣1 + JX
j=1

cjpN/2−1,j(ζt)

⎤⎦ ,
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with η = (c2, ...cJ)
0.

Given the nonlinear nature of the model, a numerical optimization procedure is usually re-

quired to obtain maximum likelihood (ML) estimates of φ, φ̂T say. Assuming that all of the

elements of μt(θ) and Σt(θ) are twice continuously differentiable functions of θ, we can use a

standard gradient method in which the first derivatives are numerically approximated by re-

evaluating LT (φ), with each parameter in turn shifted by a small amount, with an analogous

procedure for the second derivatives. Unfortunately, such numerical derivatives are sometimes

unstable, and, moreover, their values may be rather sensitive to the size of the finite increments

used. As we will show in the next section, though, it is possible to obtain simple analytical

expressions for the score vector.3 The use of analytical derivatives in the estimation routine,

as opposed to their numerical counterparts, should improve the accuracy of the resulting esti-

mates considerably (McCullough and Vinod (1999)). Moreover, a fast and numerically reliable

procedure for computing the score for any value of η is of paramount importance in the imple-

mentation of the score-based indirect inference procedures introduced by Gallant and Tauchen

(1996). (See Calzolari, Fiorentini, and Sentana (2003) for an application to a discrete-time,

stochastic volatility model.)

2.4 The score vector

Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition it into two blocks, sθt(φ) and

sηt(φ), whose dimensions conform to those of θ and η, respectively. Then, it is straightforward

to show that if Σt(θ) has full rank, and μt(θ), Σt(θ), c(η) and g [ςt(θ),η] are differentiable

sθt(φ) =
∂dt(θ)

∂θ
+

∂g [ςt(θ),η]

∂ς

∂ςt(θ)

∂θ
= [Zlt(θ),Zst(θ)]

∙
elt(φ)
est(φ)

¸
= Zdt(θ)edt(φ), (2)

sηt(φ) = ∂c(η)/∂η + ∂g [ςt(θ),η] /∂η = ert(φ), (3)

where

∂dt(θ)/∂θ = −Zst(θ)vec(IN)

∂ςt(θ)/∂θ = −2{Zlt(θ)ε∗t (θ) + Zst(θ)vec
£
ε∗t (θ)ε

∗0
t (θ)

¤
}, (4)

3Nevertheless, it is important to stress that because both μt(θ) and Σt(θ) are often recursively defined (as in
autoregressive moving average or generalized autoregressive conditional heteroscedasticity (GARCH) models), it
may be necessary to choose some initial values to start up the recursions. As pointed out by Fiorentini, Calzolari,
and Panattoni (1996), this fact should be taken into account in computing the analytic score, to make the results
exactly comparable with those obtained by using numerical derivatives.
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Zlt(θ) = ∂μ0t(θ)/∂θ ·Σ
−1/20
t (θ),

Zst(θ) =
1

2
∂vec0 [Σt(θ)] /∂θ·[Σ−1/20t (θ)⊗Σ−1/20t (θ)],

elt(θ,η) = δ[ςt(θ),η] · ε∗t (θ), (5)

est(θ,η) = vec
©
δ[ςt(θ),η] · ε∗t (θ)ε∗0t (θ)− IN

ª
, (6)

δ[ςt(θ),η] = −2∂g[ςt(θ),η]/∂ς, (7)

and ∂μt(θ)/∂θ
0 and ∂vec [Σt(θ)] /∂θ

0 depend on the particular specification adopted while

δ[ςt(θ),η] and sηt(φ) depend on the specific distribution assumed for estimation purposes.4

As for

δ[ςt(θ),η] = −2∂g[ςt(θ),η]/∂ς,

which can be understood as the damping factor associated that reflects the kurtosis of the specific

distribution assumed for estimation purposes, it reduces to:

Student t :

(Nη + 1)/[1− 2η + ηςt(θ)].

Kotz:

[N(N + 2)κς−1t (θ) + 2]/[(N + 2)κ+ 2].

Two-component mixture:

[π + (1− π)κ] ·
π + (1− π)κ−(N/2+1) exp

h
− [π+(1−π)κ](1−κ)2κ ςt(θ)

i
π + (1− π)κ−N/2 exp

h
− [π+(1−π)κ](1−κ)2κ ςt(θ)

i . (8)

Polynomial expansion

1−
PJ

j=1 cjpN/2,j [ςt(θ)]

1 +
PJ

j=1 cjpN/2−1,j [ςt(θ)]
.

Given that δ[ςt(θ),η] is equal to 1 under Gaussianity, it is straightforward to check that sθt(θ,0)

reduces to the multivariate normal expression in Bollerslev and Wooldridge (1992), in which

case:

edt(θ,0) =

∙
elt(θ,0)
est(θ,0)

¸
=

½
ε∗t (θ)

vec [ε∗t (θ)ε
∗0
t (θ)− IN ]

¾
.

2.5 PML and ML estimators under Gaussianity

If the interest of the researcher lied exclusively in θ, which are the parameters characterising

the conditional mean and variance functions, then one attractive possibility would be to estimate

4Note that while both Zt(θ) and edt(φ) depend on the specific choice of square root matrix Σ
1/2
t (θ), sθt(φ)

does not, a property that inherits from lt(φ). The same result is not generally true for non-elliptical distributions
(see Mencía and Sentana (2010)).
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an equality restricted version of the model in which η is set to zero. Let θ̃T = argmaxθ LT (θ,0)

denote such a PML estimator of θ. As we mentioned in the introduction, θ̃T remains root-T

consistent for θ0 under correct specification of μt(θ) and Σt(θ) even though the conditional

distribution of ε∗t |zt, It−1;φ0 is not Gaussian, provided that it has bounded fourth moments;

and, of course, it is efficient under Gaussian innovations.

Alternately, one could consider an s-based ML estimator of φ, φ̂T , which, in principle would

be more efficient under correct specification of the distributional assumption s. The information

matrix that characterizes the asymptotic variance of the s-based ML estimator of φ under

normality, which is a particular case of Proposition 1 in Fiorentini and Sentana (2010), is stated

in the following result:

Proposition 1 If ε∗t |zt, It−1;θ0 is i.i.d. N(0, IN), then the information matrix of the feasible

ML estimator that assumes ε∗t |zt, It−1;φ is i.i.d. s(0, IN ,η) will be I(φ0) = E[It(φ0)|φ0], with

It(φ) = Zt(θ)M(φ)Z0t(θ),

Zt(θ) =

µ
Zlt(θ) Zst(θ) 0
0 0 Iq

¶
,

and

M(η) =

⎛⎝ IN 0 0
0 (IN2 +KNN ) 0
0 0 V [ ert(φ)| (θ00,00)0]

⎞⎠ , (9)

where Kmn is the commutation matrix of orders m and n.

The block diagonality of I(φ0) between the parameters of the conditional mean and variance

functions, θ, and the shape parameters η under Gaussianity will repeatedly prove useful below.

3 Normality tests

3.1 Student t-based tests

As we mentioned before, FSC derived the Lagrange Multiplier (LM, or efficient score) test

statistic to test multivariate normal versus Student t innovations on the basis of the value of the

score of the log-likelihood function evaluated at the restricted parameter estimates φ0T = (θ
0
T , 0)

0.

The following Proposition summarizes their result.

Proposition 2 The Student t-based LM normality test

LMt(θ̃T ) =
2

N(N + 2)

(√
T

T

X
t

sη(θ̃T , 0)

)2
where

sη(θ,0) =
N(N + 2)

4
− N + 2

2
ςt(θ) +

1

4
ς2t (θ)

9



is asymptotically distributed as a chi-square random variable with one degree of freedom under

the null hypothesis of normality.

The LMt(θ̃T ) can be reinterpreted as a specification test of the restriction on the first two

moments of ςt(θ̃T ) implied by the Laguerre polynomial of second order. In addition, it numer-

ically coincides with the kurtosis component of Mardia’s (1970) test for multivariate normality

in the models he considered.

Mencía and Sentana (2010) show that this score test will retain its optimal power against

certain non-normal alternatives other than the Student t. Specifically, LMt(θ̃T ) is also the score

tests against symmetric Generalized Hyperbolic (GH) distributions. As we shall see below, this

is also the case for certain DSMN, as well as for distributions generated from a fourth order

multivariate Hermite expansion of the normal distribution in which symmetry is assumed.

It is important to mention that the fact that η = 0 lies at the boundary of the parameter

space in the case of the Student t invalidates the usual χ21 distribution of the likelihood ratio

or Wald tests, which under the null will be more concentrated toward the origin (see Andrews

(2001) and references therein, as well as the simulation evidence in Bollerslev (1987)).5 For that

reason FSC recommend the Kuhn-Tucker multiplier test

KTt(θ̃T ) = 1(s̄ηT (θ̃T , 0) > 0) · LMt(θ̃T )

where 1(.) is the indicator function. In this context, we would rejectH0 at the 100τ% significance

level if the average score with respect to η evaluated at the Gaussian PML estimator is positive

and LMt(θ̃T ) exceeds the 100(1− 2τ) percentile of a χ21 distribution.

3.2 Kotz-based LM test

We can easily derive the LM test statistic to test multivariate normal versus Kotz innovations.

To do so, it is necessary to find the value of sκ(θ, 0), i.e. the score with respect to κ when κ = 0

since we can base an LM test for normality on it. But given the previous expressions, it is not

difficult to see that

sκ(θ, 0) =
N(N + 2)

4

½∙
ψ

µ
N

2

¶
+ ln 2− ln ςt(θ)

¸
+

µ
ςt(θ)

N
− 1
¶¾

.

This expression has mean zero under normality since in that case ςt ∼ χ2N ≡Gamma(N/2, 2).

Moreover, the block diagonality of the information matrix under normality stated in Proposition

1 allow us to base our LM test on this moment without need to make any adjustment for the

5The same happens with the class of symmetric Generalized Hyperbolic distributions since they can only
accomodate fatter tails than the normal (see Mencía and Sentana (2010)).
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fact that θ will be replaced by the PML estimator θ̃T , which is estimated on the basis of a

moment condition that depends on ςt/N − 1.

Proposition 3 The Kotz-based LM normality test

LMkotz(θ̃T ) =

∙
ψ0
µ
N

2

¶
− 2

N

¸−1(√T
T

X
t

sκ(θ̃T , 0)

)2
is asymptotically distributed as a chi-square random variable with one degree of freedom under

the null hypothesis of normality.

Interestingly, sκ(θ, 0) is not proportional to any Laguerre polynomial, unlike in the Student

t case. To gain some intuition, we can project sκt(θ, κ) onto Laguerre polynomials and look at

the projection coefficients (see Appendix B.4.1), which for j ≥ 2 are given by:

wk
j (κ) = E[sκt(θ, κ) · pN/2−1,j(ςt(θ))]/E[p2N/2−1,j(ςt(θ))]

=
N + 2

j · [(N + 2)κ+ 2]

jY
i=2

∙
[(N + 2)κ+ 2]i

N + [(N + 2)κ+ 2] (i− 1)

¸
.

Under the null of Gaussianity, the first three coefficients of wk
j (0) are

wk
2(0) =

1

2
, wk

3(0) =
2

N + 4
, and wk

4(0) =
12

(N + 4) (N + 6)
,

which implies that the convergence in J of
PJ

j=0[w
k
j (0)]

2E{p2N/2−1,j [ςt(θ)]} to E[s2κ(θ, 0)] is

quite slow for N small. Therefore, the Kotz distribution behaves approximately as a polynomial

expansion of a relatively high order when it approaches Gaussianity. This could be explained

by the fact that the leading term in sκ(θ, 0) is ln ςt(θ), which requires high number of terms in

the Laguerre expansion in order to obtain a reasonable approximation.

3.3 DSMN-based LM tests

When the innovations are distributed as a discrete scale mixture of normals, we can achieve

normality in three different ways: (i) when α → 0+ or (ii) α → 1− regardless of the value of κ

and (iii) when κ → 1 irrespective of α. Therefore, it is not surprising that the Gaussian scores

with respect to α and κ are 0 when these parameters are not identified. Similarly, the limit of

the score with respect to the mean and variance parameters,

lim
α·(1−α)·(1−κ)→0

sθt(φ),

coincides with the usual Gaussian expressions (see e.g. Bollerslev and Wooldridge (1992)).

Under H0 : κ = 1 we observe that limκ→1− sκt(φ) = 0 for α ∈ (0, 1), so we cannot use the

first-order derivative to derive a normality test. As in Lee and Chesher (1986), though, we find

11



that reparameterising the model appropriately solves the problem. Specifically, if we re-write

the score in terms of υ, which is implicitly defined by κ = 1−√υ, we obtain

lim
υ→0+

s't(θ,α,') =
1

2
α(1− α)

∙
N(N + 2)

4
− N + 2

2
ςt(θ)+

1

4
ς2t (θ)

¸
which again is proportional to the second order Laguerre polynomial. Thus, for any value of

α ∈ (0, 1) LMκ=1(θ̃T ) also coincides with the Lagrange Multiplier test derived in FSC.6

Furthermore, we can show that for fixed κ ∈ (0, 1), the relevant score in the case of “outliers”

is given by

lim
α→0+

sαt(θ,α,κ) = κN/2 exp
µ
1− κ
2

ςt(θ)

¶
− 1− 1− κ

2κ
(ςt(θ)−N)

while in the case of “inliers” it will be given by

lim
α→1−

sαt(θ,α,κ) = 1− κ−N/2 exp
µ
κ − 1
2κ

ςt(θ)

¶
− 1− κ

2
(ςt(θ)−N).

We must study separately these possible ways to achieve normality. For instance, consider the

conditional information matrix when α→ 0+, i.e.

lim
α→0+

V

∙∙
sθt(θ, α,κ)
sαt(θ, α,κ)

¸¯̄̄̄
zt, It−1;φ

¸
,

where we have excluded the term corresponding to κ because sκt(φ) is identically zero in the

limit. As expected, the conditional variance of the component of the score corresponding to the

conditional mean and variance parameters θ coincides with the expression obtained by Bollerslev

and Wooldridge (1992). Importantly, we can show that the conditional information matrix of

the DSMN distribution when α→ 0+ is finite only if κ > 1
2 , in which case it is characterized by

V [sαt(θ, 0
+,κ)] =

µ
κ2

2κ − 1

¶N/2

− N

2

¡
κ−1 − 1

¢2 − 1.
Again, to gain some intuition on the reason why normality tests based on sαt(θ, 0

+, κ̄) are

well defined only for a subset of the nuisance parameter κ, we can project sαt(θ, 0+, κ̄) onto

Laguerre polynomials and look at its coefficients (see Appendix B.4.2):

wds
j (κ, 0) = E[sαt(θ,0

+,κ) · pN/2−1,j(ςt(θ))]/E[p2N/2−1,j(ςt(θ))]

=
1

2

µ
1− κ
κ

¶j

for j ≥ 2.

6Alternately, Neyman and Scott (1966) considered similar problems in the context of the C(α) statistic and
recommend approximating the log-likelihood function using higher order derivatives. In our situation, the limit
of the derivative of the score with respect to κ,

lim
κ→1

∂sκ t(θ,α,κ)
∂κ

= α(1− α)
N(N + 2)

4
− N + 2

2
ςt(θ)+

1

4
ς2t (θ) ,

coincides with lim'→0+ s't(θ,α,').
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As expected, the sequence wds
j (κ, 0) diverges if κ ≤ 1/2.7

On the other hand, we find that

wds
j (κ, 1) = E[sαt(θ,1

−,κ) · pN/2−1,j(ςt(θ))]/E[p2N/2−1,j(ςt(θ))]

=
(−1)j−1
2

(1− κ)j for j ≥ 2,

is convergent for any value of κ ∈ (0, 1]. The reason for the difference in the projections comes

from the fact that when a discrete scale mixture of normals achieve normality when α → 0+

there are very few observations with very large variance (outliers), while when α → 1− the

opposite happens, very few observations with very small variance may (inliers). Because in the

first case V [sαt(θ, 0+,κ)] is only well defined for κ > 1
2 , in what follows we focus on the case

α→ 1−.

As is well known, the relative scale parameter κ becomes underidentified in the limit. One

standard solution in the literature to deal with testing situations with underidentified parame-

ters under the null involves fixing the remaining parameter to some arbitrary value, and then

computing the appropriate test statistic for that given value.

Let θ̃T denote the ML estimator of obtained by maximising the Gaussian log-likelihood

function. For the case in which normality is achieved as α → 1−, we can use the results above

to show that for a given value of κ ∈ (0, 1), the LM test will be the usual quadratic form in

the sample averages of the scores corresponding to θ and α, s̄θT (θ̃T , 1−,κ) and s̄αT (θ̃T , 1
−,κ),

with weighting matrix the inverse of the unconditional information matrix, which can be ob-

tained as the unconditional expected value of the conditional information matrix. But since

s̄θT (θ̃T , 1
−,κ) = 0 by definition of θ̃T , we can show the following result:

Proposition 4 The DSMN1-based LM normality test

LMDSMN1(θ̃T ,κ) =

"µ
1

2κ − κ2
¶N/2

− N

2
(1− κ)2 − 1

#−1(√
T

T

X
t

sα(θ̃T , 1
−,κ)

)2
where

sα(θ, 1
−,κ) = 1− κ−N/2 exp

µ
κ − 1
2κ

ςt(θ)

¶
− 1− κ

2
(ςt(θ)−N)

is asymptotically distributed as a chi-square random variable with one degree of freedom under

the null hypothesis of normality.
7More importantly, under sequences of local alternatives the aforementioned constraint becomes tigther. For

a fixed value of the scale parameter κ̄ (i) the expectation of sαt(θ, 0+, κ̄) is finite only if κ̄ > 1− κ0, where κ0
denotes the true value of the scale parameter κ. Moreover, its second moment E[s2αt(θ, 0+, κ̄) κ0] is finite only
if κ̄ > 1− κ0/2. It can also be shown that under Kotz innovations, E[sαt(θ, 0+, κ̄) κ0] are E[s2αt(θ, 0

+, κ̄) κ0]
are finite if κ̄ > κ0(N + 2)/(2 + 2κ0 + 2N) and κ̄ > (1 + 2κ0 + 2N)/(2 + 2κ0 + 2N), respectively. Finally, under
Student t innovations E[sαt(θ, 0+, κ̄) ν0] diverges.
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The approach described above is plausible in situations where there are values of the under-

identified parameter κ that make sense from an economic or statistical point of view. In other

situations, we could follow a second approach, which consists in computing either the LM test

statistic for the whole range of values of the underidentified parameter, which are then combined

to construct an overall test statistic (see Andrews, 1994).

3.4 Higher order Laguerre polynomials-based tests

Kiefer and Salmon (1983) proposed a simple test normality based on an Edgeworth expan-

sion for the null hypothesis that the errors in an univariate econometric model follow a normal

distribution (see also Bontemps and Meddahi (2005)). In the same spirit, under the alternative

of a non Gaussian elliptical distribution, we can expand the density of ςt in terms of Laguerre

polynomials around a Gamma variate with parameters N/2 and 2 (see Bontemps and Meddahi

(2010) for related ideas in a univariate context). Orthogonality of Laguerre polynomial-based

moment conditions under the null hypothesis of normality with respect to the mean and variance

parameters follows directly. Moreover, computing the limiting distribution of moment conditions

involving pN/2−1,j(ςt) is straightforward.

Proposition 5 Let pN/2−1,j(ςt) denote the jth order standardised Laguerre polynomial with

parameter N/2− 1. Then

Lj(θ̃T ) =

(√
T

T

X
t

pN/2−1,j(ςt(θ̃T ))

)2
is asymptotically distributed as a chi-square random variable with one degree of freedom under

the null hypothesis of normality.

The asymptotic independence of the successive chi-square variates follows from the orthog-

onality of the Laguerre polynomials under the normal measure. In consequence it can be seen

that multiple order tests against the null of normality could be based just on the sum of the

individual tests, say LΣJ(θ̃T ) =
PJ

j=2 Lj(θ̃T ) which is asymptotically distributed as a chi-square

random variable with J − 1 degrees of freedom under the null hypothesis of normality.

Similarly to the Student t case, Laguerre polynomial-based tests can be understood as nor-

mality tests against polynomial expansion alternatives. Hence, again more powerful versions of

the tests can be obtained by imposing the positivity constraints of the polynomial expansion i.e.

sign(cJ) = (−1)J . A 2nd order expansion yields an analogous result to KTt(θ̃T ). As for the 3rd

order expansion the relevant restriction becomes c3 being non-positive so that we suggest using

KT pe
Σ3(θ̃T ) = 1(pN/2−1,3(ςt(θ̃T )) < 0) · LΣ3(θ̃T ) + 1(pN/2−1,3(ςt(θ̃T )) ≥ 0) · L2(θ̃T )
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which will be distributed as a 50 : 50 mixture of chi-squared distributions with 1 and 2 degrees

of freedom under the null of Gaussianity. In this respect, it is important to mention that when

there is a single restriction, such as in our case, those one-sided tests would be asymptotically

locally more powerful (Andrews 2001).

3.5 Reinterpretation of the multivariate normality tests as univariate tests

As we saw before, the assumption of ellipticity implies that the only difference between the

Gaussian distribution and the other distributions that we are considering lies in the distribution

of ςt. Therefore, a natural way of testing for multivariate normality would be to test the null

that distribution of ςt is a χ2N against the different alternatives. It turns out that this is precisely

what our score tests are doing. More formally,

Proposition 6 Let

hς(ςt;η) =
πN/2

Γ(N/2)
ς
N/2−1
t exp {c(η) + g(ςt,η)}

denote the marginal density of ςt. Then

∂ ln fy(yt)

∂η
=

∂ lnhς(ςt)

∂η
.

To prove this result, it is convenient to use the fact that the density of ut is

fu(ut) =
Γ(N/2)

2πN/2
1{u0tut = 1}.

Hence, we can write8

fy|ς(yt|ςt;θ,η) =
2

|Σt(θ)|1/2 ςN/2−1t

Γ(N/2)

2πN/2
1
n
[yt−μt(θ)]Σ

−1
t (θ)[yt−μt(θ)] = ςt

o
On this basis, we can formally write the density of yt as follows

fy(yt;θ,η) =

Z
fy|ς(yt|ςt)hς(ςt)dςt =

Z
fy|√ς(yt|

√
ςt)h√ς(

√
ςt)d
√
ςt

whence we obtain the required result by noticing that fy|ς(yt|ςt;θ,η) has nonzero density only

for the yot ’s that satisfy [y
o
t−μt(θ)]Σ

−1
t (θ)[y

o
t−μt(θ)] = ςot , and therefore those y

o
t ’s ca be

summarized through ςot .

Finally, note that we can use the same expression to write

∂ ln fy(yt)

∂θ
=

∂ ln fy|ς(yt|ςt)
∂θ

+
∂ ln fy|ς(yt|ςt)

∂ςt

∂ςt
∂θ

+
∂ lnhς(ςt)

∂θ
.

8Equivalently,

fy|√ς(yt|
√
ςt) =

1

|Σt(θ)|1/2 (
√
ςt)N−1

Γ(N/2)

2πN/2
1 [yt − μt(θ)]Σ

−1
t (θ)[yt −μt(θ)] = (

√
ςt)

2 ;

and

h√ς(
√
ςt) =

2πN/2

Γ(N/2)
(
√
ςt)

N−1 exp c(η) + g (
√
ςt)

2,η .

15



3.6 Power of the normality tests

Although we shall investigate the finite sample properties of the different multivariate nor-

mality tests in section 6, it is interesting to study their asymptotic power properties. But given

that the block-diagonality of the information matrix is generally lost under the alternative of

η 6= 0, and its exact form is unknown, we can get only closed-form expressions for the case in

which the standardized innovations, ε∗t , are directly observed. In more realistic cases, though,

the results are likely to be qualitatively similar.

In this section we exploit asymptotic expressions for the non-centrality parameters of:

• LM normality test against Student t

• LM normality test against Kotz

• LM normality test against DSMN

• Higher order Laguerre polynomial normality tests,

under each of the following alternative hypotheses:

• ε∗t |zt, It−1 ∼ t(0, IN , ν0)

• ε∗t |zt, It−1 ∼ Kotz(0, IN , κ0)

• ε∗t |zt, It−1 ∼ DSMN(0, IN , α0,κ0), and

• ε∗t |zt, It−1 ∼ p.e.(0, IN , c20, c30).

The relevant asymptotic expressions are reported in Appendix C. Specifically, Proposition

C.1 extends Proposition 3 in FSC to the case in which the true distribution is either Kotz,

discrete scale mixture of normals or polynomial expansion. The asymptotic distribution of the

Kotz-based LM test under the same hypotheses of Proposition 3 is provided in Proposition C.2;

while Proposition C.3 and Proposition C.4 do the same for the DSMN1-based LM test and the

3rd order standardized Laguerre polynomial-based LM test, respectively.

On the basis of these Propositions, we can obtain the asymptotic power of the several normal-

ity tests described above for any possible significance level k under the alternative distributions.

The results at the usual 5% level for a sample size T = 1, 000 are plotted in Figure 6. Panel

6a reports departures from normality towards a Student t, for η0 in the range 0 ≤ η0 ≤ 0.015.

Not surprisingly, the power of the several tests uniformly increases as we depart from the null

for a given sample size. As expected, the one-sided KTt(θ̃T ) test is the most powerful. The
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increase of degrees of freedom when higher order Laguerre expansions are considered seem to

generate some decrease in power.

Departures from normality towards a Kotz distribution are plotted in Panel 6b. The Kotz

LM-based test dominates the tests that consider not only the 2nd but also the 3rd Laguerre

polynomial as well as the DSMN-based LM test. Interestingly, LΣ3(θ̃T ) outperforms the 2nd

Laguerre polynomial-based test, which is in line with the observation that the Kotz distribution

behaves approximately as a polynomial expansion of a relatively high order when it approaches

Gaussianity.

As for the discrete mixture of normals alternative, from Panel 6c is clear that the ranking

becomes:

LMDSMN1(θ̃T ,κ) Â LMkotz(θ̃T ) Â LΣ3(θ̃T ) Â LMt(θ̃T ) Â L2(θ̃T ).

Finally, Panel 6d reports departures from normality towards a 3rd oder polynomial expansion

distribution with c2 = 0. In this case, LΣ3(θ̃T ) and LMDSMN1(θ̃T ,κ) are the most powerful.

Not surprisingly, both the 2nd order Laguerre polynomial-based test and the KTt(θ̃T ) have no

power since c2 = 0 implies the kurtosis of the normal for the polynomial expansion distribution.

To investigate how the several distributions approach the normal distribution along local

alternatives we could compare the higher order moment parameters of spherical random variables

introduced in section 2.1, τ s(η), when they achieve normality. To do so, we compare the limiting

behavior of E[ςmt |η] for m > 2 when τm(η) → 0 but with the kurtosis, τ2(η), being the same

for any pair of distributions. Setting the Student t as benchmark, we find that for the Kotz

distribution,9

lim
κ→0

τkm+1(κ)

τkm(κ)
<

m+ 1

m− 1 = lim
η→0+

τ tm+1(η
◦(κ))

τ tm(η
◦(κ))

,

which implies that τkm(κ) < τkm(η
◦(κ)), where η◦(κ) is found by solving τ t2(η

◦(κ)) = τk2(κ).

As for the discrete scale mixture of normals, for fixed κ ∈ (0, 1) we have

lim
α→0+

τdsm(α,κ)
τ tm [η

◦(α,κ)]
=

2

κ(m−2)m (m− 1)

m−1X
j=1

jκj−1

and

lim
α→1−

τdsm(α,κ)
τ tm [η

◦(α,κ)]
=

2

m (m− 1)

m−1X
j=1

(m− j)κj−1,

which implies that when κ → 1−, then τdsm(α,κ) = τ tm [η
◦(α,κ)] for all m and that when

α → 0+ (α → 1−), then τdsm(α,κ) > τ tm [η
◦(α,κ)] (τdsm(α,κ) < τ tm [η

◦(α,κ)]) for m > 2. Then
9In fact, one can show that

lim
N→∞

lim
κ→0

τkm+1(κ,N)

τkm(κ,N)
=

m+ 1

m− 1 ,

which is consistent with the fact that the coefficients of the projection of sκ(θ, κ) onto Laguerre polynomials
converge to zero as N →∞, except for the second polynomial.
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it is not surprising that LMDSMN1(θ̃T ,κ) does a good job when the true distribution is Kotz

and similarly, LMkotz(θ̃T ) outperforms the LMt(θ̃T ) when the true distribution is a discrete

mixture of normals, since the higher order moments of those distributions grow at a lower than

the Student t rate when they approach normality.

4 Monte Carlo Evidence

In this section, we assess the finite sample performance of the different estimators and testing

procedures discussed above by means of several extensive Monte Carlo exercises. Since our

focus is on distributional assumptions, in these excercises we treat θ as known and focus on the

performance of the alternative tests as if the ε∗t ’s were observed.

We sample Gaussian, Student t, Kotz innovations, and discrete scale mixture of normals

exploiting the decomposition presented in section 2.1. Specifically, we simulate standardised

versions of all these distributions by appropriately mixing a N -dimensional spherical normal

vector with a univariate gamma random variable, and, in the case of discrete scale mixture

of normals, a draw from a scalar uniform, which we obtain from the IMSL library routines

DRNNOR, DRNGAM and DRNUN, respectively. To draw polynomial expansion innovations

we again use the same decomposition first and then the probability integral transform in order

to obtain a simulated ς since we can easily obtain its cdf, which is given by

F (ς, c2, c3, N) = 1− Γ(N/2, ς/2)

Γ(N/2)
− c2 ×

ςN/2e−ς/2

2N/2+2Γ(N/2 + 2)
(ς − 2−N)

+c3 ×
ςN/2e−ς/2

2N/2+3Γ(N/2 + 3)

£
ς2 − 2d(N + 4) + (N + 2)(N + 4)

¤
.

To do so, we sample a gamma random variable with parameters N/2 and 2, d say, that we used

as starting value to find the solution to F (ς, c2, c3,N) = Fχ2N
(d).

Figures 7 summarises our findings for the different multivariate normality tests by means of

Davidson and MacKinnon’s (1998) p-value discrepancy plots, which show the difference between

actual and nominal test sizes for every possible nominal size. It can be noted that the higher

order Laguerre polynomials-based tests, and in particular, their Kuhn-Tucker versions, seem to

be too conservative in general, especially for large nominal sizes. As for the remaining tests, the

actual finite sample sizes seem to be fairly close to their nominal levels.

Table 1 reports actual Power at the usual 5% and 1% level under the following alternative

hypotheses:

1. Student-t with 100 degrees of freedom

2. Kotz with the same kurtosis
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3. DSMN with the same kurtosis and α = 0.5 and same kurtosis

4. Polynomial expansion with zero excess kurtosis and c3 = −0.1.

The results indicate that the LM and KT tests based on the true distribution are the most

powerful, with the exception of the LM based on the score of discrete scale mixture of normals.

It is worth mentioning that, consistent with the projection coefficients of the score of the true

distribution onto Laguerre polynomials, 2nd Laguerre dominates the higher order ones when the

distribution is Student t but not when is either Kotz or discrete mixture of normals.

5 Conclusions

In the context of a general multivariate dynamic regression model with time-varying variances

and covariances considered in Bollerslev and Wooldridge (1992), we provide numerically reliable

analytical expressions for the score vector when the distribution of the innovations is assumed

to be elliptical, paying special attention not only to the Student t and Kotz distributions, but

also to flexible families such as discrete scale mixtures of normals and polynomial expansions.

We develop score tests for multivariate normality when a dynamic model for the conditional

mean and variance is fully specified, but the model is estimated under the Gaussianity null. The

limiting null distribution of our proposed tests is correct regardless of the model used and the

additional computational cost is negligible We find that the alternative tests for multivariate

normality we obtain present power properties that differ substantially under different alternative

hypotheses. Finally, our Monte Carlo study suggest that the actual finite sample sizes seem to

be fairly close to their nominal levels. For all those reasons, we recommend their use.
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Appendix

A Proofs

Lemmata

Lemma 1 Let ς be distributed as Gamma random variable with parameters k and λ and let

b < 1/λ, then

E [ςa exp (bς)] =
Γ(k + a)

Γ(k)

µ
1

1− λb

¶k+a

λa.

Proof. Write

E [ςa exp (bς)] =

Z ∞

0
ςa exp (bς)

1

Γ(k)λk
ςk−1 exp (−ς/λ) dς

=
Γ(k + a)

Γ(k)λk

µ
λ

1− λb

¶k+a

×
Z ∞

0

1

Γ(k + a)

µ
1− λb

λ

¶k+a

ςk−1+a exp

µ
− ς

λ/(1− λb)

¶
dς.

The result follows from noting that the integrand in the above equation is the probability density

function of a Gamma variate with parameters k + a and λ/(1− λb).

Lemma 2 Let ς be distributed as a Gamma random variate with parameters k and λ, then

E [ln ς] = ψ (k) + lnλ,

E
£
ln2 ς

¤
= ψ0 (k) + ψ2 (k) + 2ψ (k) lnλ+ ln2 λ,

E
£
ςj ln ς

¤
= [ψ (k + j) + lnλ] ·

jY
i=1

[kλ+ λ (i− 1)] ;

and, provided k > 1,

E

∙
1

ς
ln ς

¸
=
1

λ

∙
Γ(k − 1)
Γ(k)

ψ (k − 1) + 1

k − 1 lnλ
¸
,

where ψ (x) = ∂ lnΓ(x)/∂x is the so-called Digamma function, or the Gauss’ psi function (see

Abramowitz and Stegun 1964.)

Proof. If ς ∼Gamma(k, λ) , then t = 1
λ ς ∼Gamma(k, 1). Next, from

dnΓ(x)

dxn
=

Z ∞

0
lnn t · tk−1e−tdt,

and the definition of the polygamma function, we know that

E[ln t] =
1

Γ(k)

Z ∞

0
ln t · tk−1e−tdt = ψ (k) ,
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E[ln2 t] =
1

Γ(k)

Z ∞

0
ln2 t · tk−1e−tdt = ψ0 (k) + ψ2 (k) ,

and, for k > −j,

E[tj ln t] =
Γ(k + j)

Γ(k)

1

Γ(k + j)

Z ∞

0
ln t · tk+j−1e−tdt

=
Γ(k + j)

Γ(k)
ψ (k + j) .

Hence, because ς = λt we have

E [ln ς] = E [ln t] + lnλ,

E
£
ln2 ς

¤
= E

£
ln2 t

¤
+ 2 lnλE [ln t] + ln2 λ,

and, since E(tj) = Γ(k + j)/Γ(k),

E
£
ςj ln ς

¤
= λj

½
E
£
tj ln t

¤
+
Γ(k + j)

Γ(k)
lnλ

¾
,

from where the first three results follow directly. Finally, as

E

∙
1

ς
ln ς

¸
=
1

λ
E

∙
1

t
ln t

¸
+
lnλ

λ
E

∙
1

t

¸
,

the last result follows from E[t−1] = (k − 1)−1 (see Cressie, N.A.C., A.S. Davis, J.L. Folks and

G.E. Policello (1981)).

Lemma 3 Let ς be distributed as N(ν − 2)/ν times an F variate with N and ν degrees of

freedom and let b < 0; then

E [exp (bς)] =
Γ[(N + ν)/2]

Γ(ν/2)
U

∙
N

2
, 1− ν

2
,−b(ν − 2)

¸

E [ς exp (bς)] = N
ν − 2
2

Γ[(N + ν)/2]

Γ(ν/2)
U

∙
N

2
+ 1, 2− ν

2
,−b(ν − 2)

¸
E
£
ς2 exp (bς)

¤
= N(N + 2)

(ν − 2)2
2

Γ[(N + ν)/2]

Γ(ν/2)
U

∙
N

2
+ 2, 3− ν

2
,−b(ν − 2)

¸
E
£
ςj exp (bς)

¤
=
Γ[(N + ν)/2]

Γ(ν/2)

Γ(N/2 + j)

Γ(N/2)
(ν − 2)jU

∙
N

2
+ j, j + 1− ν

2
,−b(ν − 2)

¸
where U denotes Confluent Hypergeometric Function of the Second Kind (see Abramowitz and

Stegun (1964)).

Proof. Let ς = N(ν−2)
ν x where x is FN,ν variate so that its probability density function can be

written as

fX(x) =
Γ[(N + ν)/2]

Γ(N/2)Γ(ν/2)

1

x

µ
x

x+ ν/N

¶N/2µ ν/N

x+ ν/N

¶ν/2

.
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Hence,

E
£
ςj exp (bς)

¤
= E

(∙
N(ν − 2)

ν
x

¸j
exp

∙
N(ν − 2)

ν
x

¸)

=
Γ[(N + ν)/2]

Γ(N/2)Γ(ν/2)

∙
(ν − 2)N

ν

¸j
×
Z ∞

0
xj exp

∙
b
(ν − 2)N

ν
x

¸
1

x

µ
x

x+ ν/N

¶N/2µ ν/N

x+ ν/N

¶ν/2

dx

=
Γ[(N + ν)/2]

Γ(N/2)Γ(ν/2)

∙
(ν − 2)N

ν

¸j ³ ν

N

´j−1
×
Z ∞

0
exp

∙
b
(ν − 2)N

ν
x

¸µ
x

ν/N

¶N/2+j−1µ x

ν/N
+ 1

¶−(N+ν)/2−j+1
dx.

Then, making the change of variable t = xN/ν (with dx = ν/N · dt),

E
£
ςj exp (bς)

¤
=
Γ[(N + ν)/2]

Γ(ν/2)

Γ(N/2 + j)

Γ(N/2)
(ν − 2)j

×
Z ∞

0

exp [b(ν − 2)t]
Γ(N/2 + j)

tN/2+j−1 (t+ 1)−(N+ν)/2−j+1 dt

we can recognize that

U

∙
N

2
+ j; 1 + j − ν

2
;−b(ν − 2)

¸
=

Z ∞

0

1

Γ(N/2 + j)
exp [b(ν − 2)t] tN/2+j−1 (t+ 1)−(N+ν)/2−j+1 dt

is the Confluent Hypergeometric Function of the Second Kind; and the result follows directly.

Proposition 1

See Fiorentini and Sentana (2010).

Proposition 2

See FSC.

Proposition 3

We can easily compute the hessian

hκκ(κ) =
∂2c(κ)

∂κ2
+

∂2g[ςt;κ]

∂κ2

where

∂2c(κ)

∂κ2
=

N(N + 2)2

b3(κ)

½∙
−ψ0

µ
N

b(κ)

¶
N

b(κ)
+ 1

¸
− 2

∙
ψ

µ
N

b(κ)

¶
+ ln b(κ)− 1

¸¾
and

∂2g[ςt;κ]

∂κ2
=
2(N + 2)2

b3(κ)
[N ln ςt − ςt] .
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Then, as

E

∙
∂2g[ςt;κ]

∂κ2

¯̄̄̄
κ = 0

¸
=
2N(N + 2)2

b3(κ)

∙
ψ

µ
N

b(κ)

¶
+ ln b(κ)− 1

¸
we have that

E [−hκκ(κ)] =
N(N + 2)

b2(κ)

∙
ψ0
µ

N

b(κ)

¶
Nb0(κ)

b2(κ)
− b0(κ)

b(κ)

¸
=

N(N + 2)2

b3(κ)

∙
N

b(κ)
ψ0
µ

N

b(κ)

¶
− 1
¸
.

Finally, when the innovations are Gaussian b(κ) = 2 so that

E [−hκκ(0)] =
N(N + 2)2

8

∙
N

2
ψ0
µ
N

2

¶
− 1
¸
.

Proposition 4

Since

lim
α→1−

sαt(φ) =

∙
κ−N/2 exp

µ
κ − 1
2κ

ς

¶
− 1
¸
+
1− κ
2

(ς −N)

we have that

lim
α→1−

s2αt(φ) =
(1− κ)2

4
(ς −N)2 + 1− 2κ−N/2 exp

µ
κ − 1
2κ

ς

¶
+ κ−N exp

µ
κ − 1
κ

ς

¶
+2

∙
κ−N/2 exp

µ
κ − 1
2κ

ς

¶
− 1
¸
1− κ
2

(ς −N).

To obtain the variance of sαt(φ) we can use Lemma 1 to obtain

E

∙
exp

µ
κ − 1
2κ

ς

¶¸
= κN/2, E

∙
exp

µ
κ − 1
κ

ς

¶¸
=

µ
κ

2− κ

¶N/2

and

E

∙
ς exp

µ
κ − 1
2κ

ς

¶¸
= NκN/2+1.

Rearranging terms yields the desired result.

Proposition 5

Trivial.

Proposition 6

It is in the body of the paper.

23



B Auxiliar results

B.1 Positivity of Laguerre expansions

To identify the region in the η-hyperplane for which PJ(ς) = 1 +
PJ

j=2 cj(j) · pj(t, N) ≥ 0

consider a given value of t ∈RJ−2. For each such value the equation PJ(ς) = 0 defines a straight

line in the η-hyperplane. To determine the envelope i.e. set of η, as a function of t, such that

PJ(ς) remains zero for small variations of t, we should also impose ∂PJ(ς)/∂ς = 0 by solving(
1 +

PJ
j=2 cj · pj(t, N) = 0PJ

j=2 cj · ∂pj(t, N)/∂t = 0.

The first equation defines a straight line in the η-space such that in any neighbourhood of the

solution we will find positive and negative densities. In contrast, the second equation guarantees

that we remain on the frontier as we move in the η-space. Once this bound is found it remains

to determine the subregion in which PJ(ς) ≥ 0 holds.

B.1.1 Second order expansion

In the simplest case 1 + c2 · p2(t,N) ≥ 0 we can obtain the region in R directly: it is

determined by those values of c2 for which the polynomial 1 + c2 · p2(t,N) has either complex

roots or a doble root.

B.1.2 Third order expansion

For a given ς, the 3rd order polynomial frontier that guarantees positivity must satisfy the

following two equations P3(ς) = 0 and ∂P3(ς)/∂ς = 0; specifically,½
c2 · p2(t,N) + c3 · p3(t,N) + 1 = 0

c2 · ∂p2(t,N)/∂t− c3 · ∂p3(t,N)/∂t = 0

involves a system of two equations in two unknowns so that

c2(t) =
8 + 6N +N2 − 8t− 2Nt+ t2

8A(N, t)
and c3(t) =

N + 2− t

2A(N, t)

with

A(N, t) =
N3t+Nt3 − 5N2

24
+

t3 −N3

12
− N4 + t4

96

+
Nt− 2N

3
+

N2t−Nt2 − t2

4
− N2t2

16
.

Nevertheless, these conditions are overly restrictive because they do not take into account the

non-negativity of ς, and hence we have to focus on the envelope defined by ς taking values on

the positive real line.
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B.2 Higher order moments

The higher order moment parameter of spherical random variables, τm(η), which satisfy

E[ςmt |η] = [1 + τm(η)]E[ς
m
t |0] where E[ςmt |0] = 2m

mY
j=1

(N/2 + j − 1),

are given as follows.

(a) Student t distribution with ν = 1/η degrees of freedom:

1 + τ tm(η) = (1− 2η)m−1
mY
j=2

1

(1− 2jη) when η < (2m)−1.

(b) Kotz distribution with excess kurtosis κ:

1 + τkm(κ,N) =

µ
(N + 2)κ+ 2

2

¶m mY
j=1

N/[(N + 2)κ+ 2] + j − 1
N/2 + j − 1 .

(c) DSMN distribution with mixing probability α and variance ratio κ:

1 + τdsm(α,κ) =
α+ (1− α)κm

[α+ (1− α)κ]m
.

(d) 3rd-order polynomial expansion distribution with parameters c2 and c3:

1 + τpem(α,κ) = 1 +
2m(m− 1)
N(N + 2)

c2 −
4m(m− 1)(m− 2)1{m ≥ 3}

N(N + 2)(N + 4)
c3.

Derivation of the results:

(a) If ζt is a chi-square random variable with N degrees of freedom, and ξt is a Gamma

variate with mean ν and variance 2ν, with ζt and ξt mutually independent, then the uncentered

moments of integer order r of (ν/N)× (ζt/ξt) are given by

E

∙µ
ζt/N

ξt/ν

¶r¸
=
³ ν

N

´r r − 1 +N/2

−1 + ν/2

r − 2 +N/2

−2 + ν/2
× · · · × 1 +N/2

−(r − 1) + ν/2

N/2

−r + ν/2

(Mood, Graybill and Boes, 1974). Given that ςt = (ν − 2)ζt/ξt, it is straightforward to see that

E

∙µ
(ν − 2)ζt

ξt

¶m¸
=

N

2

∙
2(ν − 2)

ν

¸m−1 mY
j=2

(N/2 + j − 1)ν
ν − 2j

from where the result follows directly.

(b) The result follows from the higher order moments of the Gamma distribution, which are

given in Lemma 1 when b = 0. Then, using the fact that when ε∗t is distributed as a standardised

Kotz ςt is a gamma random variable with mean N and variance N [(N +2)κ+2], we obtain the

desired result.

(c) When ε∗t is distributed as a discrete mixture of normals, ςt is a two-component scale

mixture of χ20Ns, so that conditioning on the mixing variate s,

E[ςmt |s = 1] =
µ

1

α+ (1− α)κ

¶m

E[(ς0t )
m] and E[ςmt |s = 0] =

µ
κ

α+ (1− α)κ

¶m

E[(ς0t )
m]
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where ς0t is a χ
2
N variate. Then, the result follows directly.

(d) Since E[ςmt pN/2−1,j(ςt)|0] = 0 for m < j, we only need to compute E[ςmt pN/2−1,j(ςt)|0]

for for m ≥ j, which can be written in terms of the higher order moments of the Gaussian

distribution. For the 2nd-order Laguerre polynomial we have

E[ςmt pN/2−1,2(ςt)|0] =
1

2
E[ςmt |0]−

1

N
E[ςm+1t |0] + 1

2N (N + 2)
E[ςm+2t |0]

=

∙
1

2
− 2(N/2 +m+ 1)

N
+
4(N/2 +m+ 1)(N/2 +m+ 2)

2N (N + 2)

¸
E[ςmt |0]

=
2m(m− 1)
N(N + 2)

E[ςmt |0].

The same procedure applied to the 3rd-order Laguerre polynomial yields the result.

B.3 Moment generating functions

The moment generating function of spherical random variables, Υη(τ) ≡ E[eτς |η], are given

as follows.

(a) Kotz distribution with excess kurtosis κ:

Υk(τ) ≡ E[eτς |κ] = {1− [(N + 2)κ+ 2] τ}−N/[(N+2)κ+2] .

(b) DSMN distribution with mixing probability α and variance ratio κ:

Υds(τ) ≡ E[eτςt |(α,κ)0] = α

∙
1− 2τ

α+ (1− α)κ

¸−N/2
+ (1− α)

∙
1− 2κτ

α+ (1− α)κ

¸−N/2
.

(c) 3rd-order polynomial expansion with parameters c2 and c3:

ΥJ=3
pe (τ) ≡ E[eτςt |(c2, c3)0] = (1− 2τ)−N/2

∙
1 +

2τ2

(1− 2τ)2 c2 −
4τ3

(1− 2τ)3 c3
¸
.

Derivation of the results:

(a) The result follows directly from the moment generating function of the Gamma distrib-

ution.

(b) Since ςt is a two-component scale mixture of χ20Ns, conditioning on s we can compute

E[eτςt |(α,κ)0] from ςt|s = 1 and ςt|s = 0 which are Gamma variates with shape parameter N/2

and scale parameters
2

α+ (1− α)κ
and

2κ
α+ (1− α)κ

respectively.
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(c) The moment generating function of the polynomial expansion distribution can be easily

obtained by applying Lemma 1. For the 2nd-order Laguerre polynomial we have

E[eτςt |(c2, c3)0] = E[eτςtpN/2−1,2(ςt)|0]

=
1

2
E[eτςt |0]− 1

N
E[ςte

τςt |0] + 1

2N (N + 2)
E[ς2t e

τςt |0]

=
1

2

µ
1

1− 2τ

¶N/2

−
µ

1

1− 2τ

¶N/2+1

+
1

2

µ
1

1− 2τ

¶N/2+2

= (1− 2τ)−N/2
∙
(1− 2τ)2 − 2(1− 2t) + 1

2(1− 2τ)2

¸
= (1− 2τ)−N/2 2τ2

(1− 2τ)2 .

The same procedure applied to the 3rd-order Laguerre polynomial yields the result.

B.4 Projection of the score onto Laguerre polynomials

B.4.1 Kotz

The purpose here is to compute the coefficients

wj(κ) =
E[sκ(θ, κ) · pN/2−1,κ,j(ςt(θ))]

E[p2N/2−1,j(ςt(θ))]
.

Obviously, E[sκ(θ, κ) · pN/2−1,κ,0(ςt(θ))] = 0; while E[sκ(θ, κ) · pN/2−1,κ,1(ςt(θ))] = 0 in light of

E

½
ς2t
N
− ςt ln ςt + ςt

∙
ψ

µ
N

b(κ)

¶
+ ln b(κ)− 1

¸¾
= 0.

To obtain E[sκ(θ, κ) · pN/2−1,κ,j(ςt(θ))] for j ≥ 2, we only need to compute E[ςjt ln ςt] and E[ς
j
t ].

The latter is simply

E[ςjt ] =

jY
i=1

[N + b(κ) (i− 1)] ;

as for the first one, from Lemma 2 we have

E[ςjt ln ςt] =

∙
ψ

µ
N

b(κ)
+ j

¶
+ ln b(κ)

¸
·

jY
i=1

[N + b(κ) (i− 1)] .

Hence, we can show that for j ≥ 2,

E[sκ(θ, 0) · pN/2−1,κ,j(ςt(θ))] =
N (N + 2)

j · b(κ) ,

which together with

E[pN/2−1κ,j(ςt(θ))] = b2(κ)

jY
i=1

∙
N + b(κ) (i− 1)

b(κ)i

¸
,
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yield the following weights for j ≥ 2,

wj(κ) =
N (N + 2)

j · b(κ)

Á(
b2(κ)

jY
i=1

∙
N + b(κ) (i− 1)

b(κ)i

¸)

=
N + 2

j · b2(κ)

jY
i=2

∙
b(κ)i

N + b(κ) (i− 1)

¸
.

For instance, the first three coefficients are

w2(κ) =
2 +N

b(κ) [N + b(κ)]
, w3(κ) =

2(2 +N)

[N + b(κ)] [N + 2b(κ)]
, and

w4(κ) =
6b(κ)(2 +N)

[N + b(κ)] [N + 2b(κ)] [N + 3b(κ)]
.

B.4.2 Discrete scale mixture of normals

Similarly, in this subsection, we compute wds
j (κ, I) defined as

wds
j (κ, I) =

E[sαt(φ;α = I) · pN/2−1,j(ςt(θ))]
E[p2N/2−1,j(ςt(θ))]

with I ∈ {0, 1}. As in the Kotz case, we can show that wds
0 (κ, I) = wds

1 (κ, I) = 0. Next, to

obtain E[sαt(φ;α = I) · pN/2−1,j(ςt(θ))] for j ≥ 2, we only need to compute E[ςjt exp (bςt)] and

E[ςjt ]. The latter is simply

E[ςjt ] =

jY
i=1

[N + 2 (i− 1)] ;

as for the first one, we can use Lemma 1, to show that

E[ςjt exp (bςt)] =
Γ(N/2 + j)

Γ(N/2)

µ
1

2

¶N/2

·
µ

2

1− 2b

¶N/2+j

=

µ
1

1− 2b

¶N/2+j jY
i=1

[N + 2 (i− 1)] .

On this basis, we can show that for j ≥ 2,

E[sαt(φ;α = 0) · pN/2−1,j(ςt(θ))] =
µ
1− κ
κ

¶j

2

jY
i=1

∙
N + 2 (i− 1)

2i

¸
and

E[sαt(φ;α = 1) · pN/2−1,j(ςt(θ))] = (−1)j−1 (1− κ)j 2
jY

i=1

∙
N + 2 (i− 1)

2i

¸
,

which together with

E[p2N/2−1,j(ςt(θ))] = 4
jY

i=1

∙
N + 2 (i− 1)

2i

¸
,

yield the following weights wds
j (κ, I) for j ≥ 2,

wds
j (κ, 0) =

1

2

µ
1− κ
κ

¶j

and wds
j (κ, 1) =

(−1)j−1
2

(1− κ)j .
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C Additional Propositions

Proposition C.1 If ε∗t |zt, It−1;φ0 is i.i.d. s(0, IN ,η0), and the regularity conditions A.1

in Bollerslev and Wooldridge (1992) are satisfied, then
√
T

T

X
t

∙
sη(θ0, 0)−E[sη(θ0, 0)|θ0,η0]

V 1/2[sη(θ0, 0)|θ0,η0]

¸
d→ N(0, 1)

where E[sη(θ0, 0)|θ0,η0] and E[s2η(θ0, 0)
¯̄
θ0,η0] are given below.

(a) If ε∗t |zt, It−1 ∼ t(0, IN , ν0) with ν0 > 8 then

E[sη(θ0, 0)|φ0] =
N(N + 2)

4

µ
ν0 − 2
ν0 − 4

− 1
¶

and

E[s2η(θ0, 0)
¯̄
φ0] = −3N

2(N + 2)2

16
+

N(N + 2)2(3N + 4)

8

ν0 − 2
ν0 − 4

−N(N + 2)2(N + 4)

4

(ν0 − 2)2
(ν0 − 4)(ν0 − 6)

+
N(N + 2)(N + 4)(N + 6)

16

(ν0 − 2)3
(ν0 − 4)(ν0 − 6)(ν0 − 8)

.

(b) If ε∗t |zt, It−1 ∼ Kotz(0, IN , κ0), then

E[sη(θ0, 0)|φ0] =
N(N + 2)

4
κ0

and

E[s2η(θ0, 0)
¯̄
φ0] =

N(N + 2)

16

£
8 + 8(N + 3)κ0 + (N + 2)(3N + 20)κ20 + 6(N + 2)2κ30

¤
.

(c) If ε∗t |zt, It−1 ∼ DSMN(0, IN , α0,κ0), then

E[sη(θ0, 0)|φ0] =
N(N + 2)

4

½
α0 + (1− α0)κ20
[α0 + (1− α0)κ0]2

− 1
¾

and

E[s2η(θ0, 0)
¯̄
φ0] = −3N

2(N + 2)2

16
+

N(N + 2)2(3N + 4)

8

α0 + (1− α0)κ20
[α0 + (1− α0)κ0]2

−N(N + 2)2(N + 4)

4

α0 + (1− α0)κ30
[α0 + (1− α0)κ0]3

−N(N + 2)(N + 4)(N + 6)

16

α0 + (1− α0)κ40
[α0 + (1− α0)κ0]4

.

(d) If ε∗t |zt, It−1 ∼ p.e.(0, IN , c20, c30), then

E[sη(θ0, 0)|φ0] = c20

29



and

E[s2η(θ0, 0)
¯̄
φ0] =

N(N + 2)

2
+ 2(N + 8)c20 − 24c30.

Proof. Writing the expectations in terms of the higher order moment parameter of a

spherical random variable ε∗t |zt, It−1 ∼ s(0, IN ,η0), τ
s
m(η0),

E[sη(θ0, 0)|φ0] =
N(N + 2)

4
τ s2(η0)

and

E[s2η(θ0, 0)
¯̄
φ0] = −3N

2(N + 2)2

16
+

N(N + 2)2(3N + 4)

8
[1 + τ s2(η0)]

−N(N + 2)2(N + 4)

4
[1 + τ s3(η0)] +

N(N + 2)(N + 4)(N + 6)

16
[1 + τ s4(η0)],

the results follow from the expressions for τm(η0) given in Appendix B.2.

Proposition C.2 If ε∗t |zt, It−1;φ0 is i.i.d. s(0, IN ,η0), and the regularity conditions A.1 in

Bollerslev and Wooldridge (1992) are satisfied, then
√
T

T

X
t

∙
sκ(θ0, 0)−E[sκ(θ0, 0)|θ0,η0]

V 1/2[sκ(θ0, 0)|θ0,η0]

¸
d→ N(0, 1)

where E[sκ(θ0, 0)|θ0,η0] and E[s2κ(θ0, 0)
¯̄
θ0,η0] are given below.

(a) If ε∗t |zt, It−1 ∼ Kotz(0, IN , κ0), then

E[sκ(θ0, 0)|φ0] =
N(N + 2)

4

∙
ψ

µ
N

2

¶
− ψ

µ
N

b(κ0)

¶
+ ln

µ
2

b(κ0)

¶¸
and

E[s2κ(θ0, 0)
¯̄
φ0] =

N2(N + 2)2

16

∙
ψ0
µ

N

b(κ0)

¶
− b(κ0)

N

¸
+
N2(N + 2)2

16

∙
ψ

µ
N

b(κ0)

¶
− ψ

µ
N

2

¶
+ ln

b(κ0)

2

¸2
.

(b) If ε∗t |zt, It−1 ∼ t(0, IN , ν0), then

E[sκ(θ0, 0)|φ0] =
N(N + 2)

4

∙
ψ
³ν0
2

´
− ln

µ
ν0 − 2
2

¶¸
and

E[s2κ(θ0, 0)
¯̄
φ0] =

N2(N + 2)2

16

½
2(ν0 − 6)(N + ν0 − 2)
N(ν0 − 4)(ν0 − 2)

+ 2 ln 2 [1− ln(ν0 − 2)] + ln2(ν0 − 2)

+ ψ0
µ
N

2

¶
+ ψ0

³ν0
2

´
+ ψ

µ
N

2

¶ ∙
ψ

µ
N

2

¶
− ln

µ
ν0 − 2
2

¶¸¾
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(c) If ε∗t |zt, It−1 ∼ DSMN(0, IN , α0,κ0), then

E[sκ(θ0, 0)|φ0] = −
N(N + 2)

4
{(1− α0) lnκ0 + ln[α0 + (1− α0)κ0]}

and

E[s2κ(θ0, 0)
¯̄
φ0] =

N(N + 2)2

16

½
(N + 2)

α0 + (1− α0)κ20
[α0 + (1− α0)κ0]2

− (N + 4)

¾
+
N2(N + 2)2

16

½
ψ0
µ
N

2

¶
+ ln2[α0 + (1− α0)κ0] + (1− α0) ln

2 κ0
¾

+
N2(N + 2)2

8

α0(1− α0)(1− κ0)
α0 + (1− α0)κ0

lnκ0.

(d) If ε∗t |zt, It−1 ∼ p.e.(0, IN , c20, c30), then

E[sκ(θ0, 0)|φ0] =
1

2
c20 +

2

(N + 4)
c30

and

E[s2κ(θ0, 0)
¯̄
φ0] =

N

32(N + 4)

h
64 + 80N − 8 (N + 2)2 (N + 4) +N3

¡
4 + 24 log2 2− log 16 log 64

¢
+ N2

¡
32 + 48 log2 2− log 64 log 256

¢
+ 2N(N + 2)2(N + 4)ψ(1)

µ
N

2

¶¸
+
1

N
c20.

Proof. (a) Given that E [(ςt/N − 1) |κ0] = 0 regardless of the value of κ0, we can use the

fact that ςt is a gamma random variable with mean N and variance N [(N +2)κ0+2] and apply

the results in Lemma 2 to obtain the first expression. Similarly, expanding s2κ(θ, 0),

s2κ(θ, 0) =
N2(N + 2)2

16

(³ ςt
N
− 1
´2
+

∙
ln ςt −

µ
ψ

µ
N

2

¶
+ ln 2

¶¸2
− 2

³ ςt
N
− 1
´ ∙
ln ςt −

µ
ψ

µ
N

2

¶
+ ln 2

¶¸¾
,

the second expression follows from

E

∙³ ςt
N
− 1
´2 ¯̄̄̄

κ0

¸
=

b(κ0)

N
,

and, again applying Lemma 2, to obtain

E

(∙
ln ςt −

µ
ψ

µ
N

2

¶
+ ln 2

¶¸2 ¯̄̄̄¯κ0
)

= ψ0
µ

N

b(κ0)

¶
+ ψ2

µ
N

b(κ0)

¶
+ 2ψ

µ
N

b(κ0)

¶
ln b(κ0)

+ ln2 b(κ0) +

µ
ψ

µ
N

2

¶
+ ln 2

¶2
−2
∙
ψ

µ
N

2

¶
+ ln 2

¸ ∙
ψ

µ
N

b(κ0)

¶
+ ln b(κ0)

¸
,
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and

E

½³ ςt
N
− 1
´ ∙
ln ςt −

µ
ψ

µ
N

2

¶
+ ln 2

¶¸¯̄̄̄
κ0

¾
= E

n³ ςt
N
− 1
´
ln ςt

¯̄̄
κ0

o
=

b(κ0)

N
.

(b) To obtain the relevant quantities we exploit the fact that the squared Euclidean norm of

the standardized Student t innovations, ςt, is independently and identically distributed as N(ν−

2)/ν times an F variate with N and ν degrees of freedom when ν <∞, say ςt = N(ν−2)
ν

Y1/N
Y2/ν

with

Y1 ∼ χ2N and Y2 ∼ χ2ν . Then, Lemma 2 applied to Y = 2t where t ∼Gamma(m/2, 1) yields

E [ln (Y/m)] = ψ (m/2) + ln (2/m) so that

E[ln ςt|ν0] = ψ

µ
N

2

¶
− ψ

³ν0
2

´
+ ln (ν0 − 2)

and the first expression follows directly. Next, we can again apply Lemma 2 to obtain

E
£
ln2 ςt|ν0

¤
= E

(∙
ln

µ
N(ν0 − 2)

ν0

¶
+ ln

µ
Y1
N

¶
− ln

µ
Y2
ν0

¶¸2)

= ψ0
µ
N

2

¶
+ ψ0

³ν0
2

´
+

∙
ln (ν0 − 2) + ψ

µ
N

2

¶
− ψ

³ν0
2

´¸2
E [ςt ln ςt|ν0] = N

∙
ψ

µ
N

2
+ 1

¶
− ψ0

³ν0
2
− 1
´
+ ln (ν0 − 2)

¸
and

E
n³ ςt

N
− 1
´
ln ςt

¯̄̄
ν0

o
=
2

N
+

2

ν0 − 2
.

Rearranging terms yields the second expression.

(c) Conditioning on the mixing variate s —which determines the scale parameter ξs— Lemma

2 implies

E [ln ξsςt] = ψ

µ
N

2

¶
+ ln(2ξs),

and then

E[ln ςt|(α0,κ0)0] = α0E[ln ςt|s = 1] + (1− α0)E[ln ςt|s = 0]

= ψ

µ
N

2

¶
+ ln

∙
2

α0 + (1− α0)κ0

¸
+ (1− α0) lnκ0,

from where we obtain the first expression. Similarly,

E
£
ln2(ξsςt)

¤
= ψ0

µ
N

2

¶
+ ψ2

µ
N

2

¶
+ 2ψ

µ
N

2

¶
ln(2ξs) + ln

2(2ξs),

so that

E[ln2 ςt|(α0,κ0)0] = α0E[ln
2 ςt|s = 1] + (1− α0)E[ln

2 ςt|s = 0]

= ψ0
µ
N

2

¶
+ ψ2

µ
N

2

¶
+ 2ψ

µ
N

2

¶½
ln

∙
2

α0 + (1− α0)κ0

¸
+ (1− α0) lnκ0

¾
+α0 ln

2

∙
2

α0 + (1− α0)κ0

¸
+ (1− α0) ln

2

∙
2κ0

α0 + (1− α0)κ0

¸
;
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Analogous computations yield E[ςt ln ςt|(α0,κ0)0]. Rearranging terms we obtain the expressions

for E[sκ(θ0, 0)|φ0] and E[s2κ(θ0, 0)
¯̄
φ0].

(d) Expanding the density of the polynomial expansion appropriately, which can be written

in terms of the higher order moments of the Gaussian distribution —or equivalently in terms

of Gamma random variables with different scale parameters— we can again apply Lemma 2 to

obtain E[ςjt ln ςt|0] for j ≥ 0. Then, using the recurrence relation for integer and half-integer

values of the Digamma function (see Abramowitz and Stegun, 1964) we obtain

E[ln ςt|(c20, c30)0] = ψ

µ
N

2

¶
+ ln 2− c20 −

2

3
c30

and

E[ςt ln ςt|(c20, c30)0] = N

∙
ψ

µ
N

2
+ 1

¶
+ 3 ln 2 + c20 +

1

3
c30

¸
.

As for E[ln ς2t |(c20, c30)0], using the recursive relation for integer and half-integer values of the

Trigamma function (see Abramowitz and Stegun, 1964) it is tedious but otherwise straightfor-

ward to show that

E[ln ς2t |(c20, c30)0] = ln2 2 + 2 ln 2ψ

µ
N

2

¶
+ ψ2

µ
N

2

¶
+ ψ0

µ
N

2

¶
+2

∙
1− ln 2− ψ

µ
N

2

¶¸
c20 +

∙
2− 4

3

µ
ln 2 + ψ

µ
N

2

¶¶¸
c30,

from where the results can be easily derived.

Proposition C.3 If ε∗t |zt, It−1;φ0 is i.i.d. s(0, IN ,η0), and the regularity conditions A.1 in

Bollerslev and Wooldridge (1992) are satisfied, then
√
T

T

X
t

∙
sα(θ, 1

−, κ̄)−E[sα(θ, 1
−, κ̄)|θ0,η0]

V 1/2[sα(θ, 1−, κ̄)|θ0,η0]

¸
d→ N(0, 1)

where E[sα(θ, 1
−, κ̄)|θ0, (α0,κ0)0] and E[s2α(θ, 1

−, κ̄)
¯̄
θ0, (α0,κ0)0] are given below.

(a) If ε∗t |zt, It−1 ∼ DSMN(0, IN , α0,κ0), then

E[sα(θ, 1
−, κ̄)

¯̄
φ0] = 1− α0

∙
α0 + (1− α0)κ0

1− (1− α0)(1− κ0)κ

¸N/2
− (1− α0)

∙
α0 + (1− α0)κ0
κ0 + α0(1− κ0)κ

¸N/2
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and

E[s2α(θ, 1
−, κ̄)

¯̄
φ0] = 1 +

N(N + 2)

4

½
α0 + (1− α0)κ20
[(1− κ0)α0 + κ0]2

− N

N + 2

¾
(1− κ)2

−α0
∙

α0 + (1− α0)κ0
1− (1− α0)(1− κ0)κ

¸N/2½ N(1− κ)κ
1− (1− α0)(1− κ0)κ

− [2 +N(1− κ)]
¾

+(1− α0)

∙
α0 + (1− α0)κ0
κ0 + α0(1− κ0)κ

¸N/2½ Nκ0(1− κ)κ
κ0 + α0(1− κ0)κ

− [2 +N(1− κ)]
¾

+
α0
κ

½
α0 + (1− α0)κ0

2(1− κ) + [α0 + (1− α0)κ0]κ

¾N/2

+
1− α0
κ

½
α0 + (1− α0)κ0

2κ0(1− κ) + [α0 + (1− α0)κ0]κ

¾N/2

.

(b) If ε∗t |zt, It−1 ∼ t(0, IN , ν0), then

E[sα(θ, 1
−, κ̄)

¯̄
φ0] = 1−κ−N/2

Γ [(N + ν0)/2]

Γ(ν0/2)
U

µ
N

2
, 1− ν0

2
,
(ν0 − 2)(1− κ)

2κ

¶
and

E[s2α(θ, 1
−, κ̄)

¯̄
φ0] = 1 +

N

2

N + ν0 − 2
ν0 − 4

(1− κ)2

− [2 +N (1− κ)]κ−N/2Γ [(N + ν0)/2]

Γ(ν0/2)
U

µ
N

2
, 1− ν0

2
,
(ν0 − 2)(1− κ)

2κ

¶
+N (1− κ)κ−N/2Γ [(N + ν0)/2]

Γ(ν0/2− 1)
U

µ
N

2
+ 1, 2− ν0

2
,
(ν0 − 2)(1− κ)

2κ

¶
+κ−N

Γ [(N + ν0)/2]

Γ(ν0/2)
U

µ
N

2
, 1− ν0

2
,
(ν0 − 2)(1− κ)

κ

¶
.

(c) If ε∗t |zt, It−1 ∼ Kotz(0, IN , κ0), then

E[sα(θ, 1
−, κ̄)

¯̄
φ0] = 1− κ−N/2

∙
2κ

2− κ0(N + 2)(κ − 1)

¸N/[(N+2)κ0+2]
and

E[s2α(θ, 1
−, κ̄)

¯̄
φ0] = 1 +

N [(N + 2)κ0 + 2]

4
(1− κ) +

∙
2κ

2 + (N + 2)κ0(1− κ)

¸N/[(N+2)κ0+2]
×
½

2Nκ (1− κ)
2 + (N + 2)κ0(1− κ)

− [2 +N (1− κ)]
¾
κN/2

+

∙
κ

2 + (N + 2)κ0(1− κ) + κ

¸N/[(N+2)κ0+2]
κN .

(d) If ε∗t |zt, It−1 ∼ p.e.(0, IN , c20, c30), then

E[sα(θ, 1
−, κ̄)

¯̄
φ0] = −

(1− κ)2
2

[c20 + c30(1− κ)]

and

E[s2α(θ, 1
−, κ̄)

¯̄
φ0] = 1 +

N (N + 2)

4
(1− κ)2

"
4 [(2− κ)κ]−N/2

(2− κ)2
−N (1− κ)2 − 4κ2

#
c20

+
N (N + 2) (N + 4)

24
(1− κ)3

"
8 [(2− κ)κ]−N/2

(2− κ)3
−N (1− κ)2 − 6κ2 − 2

#
c30
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Proof. (a) Given that E [(ςt/N − 1)] = 0 regardless of the value of η0, we can compute the

expectation of the remaining part of sα(θ, 1−,κ) by conditioning on s —which determines the

scale parameter ξs—, for ςt|s = 1 and ςt|s = 0 which are Gamma variates with shape parameter

N/2 and scale parameters

ξ0 =
2

α+ (1− α)κ
and ξ1 =

2κ
α+ (1− α)κ

.

Specifically, using Lemma 1,

E

∙
κ−N/2 exp

µ
κ − 1
2κ

ξsςt

¶¯̄̄̄
0

¸
= κ−N/2

µ
1− κ − 1

κ
ξs

¶−N/2
= [κ + (1− κ)ξs]−N/2 ,

taking expectations with respect to s and rearranging yields the first expression. As for the

second expression, we can proceed in the same manner. To do so, it is convenient to expand

s2α(θ, 1
−,κ) into

1

4
[2 +N (1− κ)]2 − 1

2
[2 +N (1− κ)] (1− κ) ςt +

1

4
(1− κ)2 ς2t

whose expectation can be easily computed using the higher order moments of Appendix B.2,

and then, the expected value of the remaining terms, which involve exponentials of ςt, which are

obtained using Lemma 1 as before

(b) The relevant quantities described in (a) can be easily computed using the fact that the

squared Euclidean norm of the standardized Student t innovations, ςt, is independently and

identically distributed as N(ν− 2)/ν times an F variate with N and ν degrees of freedom when

ν < ∞, say ςt =
N(ν−2)

ν
Y1/N
Y2/ν

with Y1 ∼ χ2N and Y2 ∼ χ2ν . Then, use of the results of Lemma 3

and rearranging yield the results.

(c) and (d) follow from direct application of Lemma 1 to the several terms involving sα(θ, 1−, κ̄)

and s2α(θ, 1
−, κ̄), and rearranging appropiately.

Proposition C.4 If ε∗t |zt, It−1;φ0 is i.i.d. s(0, IN ,η0), and the regularity conditions A.1 in

Bollerslev and Wooldridge (1992) are satisfied, then

√
T

T

X
t

"
pN/2−1,3(θ0)−E[pN/2−1,3(θ0)

¯̄
θ0,η0]

V 1/2[pN/2−1,3(θ0)
¯̄
θ0,η0]

#
d→ N(0, 1)

where E[pN/2−1,3(θ0)
¯̄
θ0,η0] and E[p2N/2−1,3(θ0)

¯̄̄
θ0,η0] are given below.

(a) If ε∗t |zt, It−1 ∼ p.e.(0, IN , c20, c30), then

E[pN/2−1,3(θ0)
¯̄
φ0] = c30
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and

E[p2N/2−1,3(θ0)
¯̄̄
φ0] =

N (N + 2) (N + 4)

12
+
(N + 4) (N + 14)

2
c20 − 4(3N + 22)c30.

(b) If ε∗t |zt, It−1 ∼ t(0, IN , ν0) with ν0 > 12, then

E[pN/2−1,3(θ0)
¯̄
φ0] = −

N(N + 2)(N + 4)

3

2

(ν0 − 6)(ν0 − 4)

and

E[p2N/2−1,3(θ0)
¯̄̄
φ0] =

1

72

N(N + 2)(N + 4)

(ν0 − 12) (ν0 − 10) (ν0 − 8) (ν0 − 6) (ν0 − 4)
×
£
−43392− 15536N + 1776N2 + 740N3

+
¡
20352 + 5176N + 3252N2 + 800N3

¢
ν0

+
¡
−4944 + 4548N + 1476N2 + 15N3

¢
ν20

+
¡
2760 + 738N + 27N2

¢
ν30+(12 + 18N) ν

4
0 + 6ν

5
0

¤
.

(c) If ε∗t |zt, It−1 ∼ Kotz(0, IN , κ0), then

E[pN/2−1,3(θ0)
¯̄
φ0] = −

N(N + 2)

12
[(N + 2)κ0 − 2]κ0

and

E[p2N/2−1,3(θ0)
¯̄̄
φ0] =

1

576
N(N + 2)

×{48(N + 4) + 24(3N(N + 8) + 40)κ0

+2(N + 2)(N(27N + 368) + 768)κ20

+(N + 2)2(N(15N + 488) + 1344)κ30

+26(N + 2)3(5N + 24)κ40 + 120(N + 2)4κ50
ª
.

(d) If ε∗t |zt, It−1 ∼ DSMN(0, IN , α0,κ0), then

E[pN/2−1,3(θ0)
¯̄
φ0] =

N(N + 2)(N + 4)

24

[α0(1− α0)(1− 2α0)− 1] (1− κ0)3

[(1− κ0)α0 + κ0]3

and

E[p2N/2−1,3(θ0)
¯̄̄
φ0] =

N (N + 2)2 (N + 4)2

576

½
−5N + 3 (5N + 6)

α0 + (1− α0)κ20
[α0 + (1− α0)κ0]2

−4 (5N + 18)
α0 + (1− α0)κ30
[α0 + (1− α0)κ0]3

+ 3
(N + 6) (5N + 16)

(N + 2)

α0 + (1− α0)κ40
[α0 + (1− α0)κ0]4

+
(N + 6) (N + 8)

(N + 2)

∙
−6 α0 + (1− α0)κ50
[α0 + (1− α0)κ0]5

+
N + 10

N + 4

α0 + (1− α0)κ60
[α0 + (1− α0)κ0]6

¸¾
.
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Proof. Writing the expectations in terms of the higher order moment parameter of a

spherical random variable ε∗t |zt, It−1 ∼ s(0, IN ,η0), τ
s
m(η0),

E[pN/2−1,3(θ0, 0)
¯̄
θ0,η0] =

N(N + 2)

12

½
−(N + 4) +

3N + 12

2
[1 + τ s2(η0)]−

N + 4

2
[1 + τ s3(η0)]

¾
=

N(N + 2)(N + 4)

24
[3τ s2(η0)− τ s3(η0)]

and

E[s2η(θ0, 0)
¯̄
θ0,η0] =

7N2(N + 2)2(N + 4)2

576
+
(N + 2)(N + 4)2(5N + 6)

192
[1 + τ s2(η0)]

−(N + 2)(N + 4)(5N + 18)

144
[1 + τ s3(η0)] +

(N + 4)(5N + 16)

192
[1 + τ s4(η0)]

−(N + 4)

96
[1 + τ s5(η0)] +

1

576
[1 + τ s6(η0)],

the results follow from the expressions for τm(η0) given in Appendix B.2.
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Table 1

Power properties of normality tests in finite samples

Panel A: 5% size-adjusted rejection rates
DGP

DSMN
Test Student-t Kotz κ = 0.5 κ = 0.25 Expansion

Student-t KT 0.386 0.381 0.118 0.336 0.071
2nd Laguerre 0.291 0.279 0.082 0.246 0.068
2nd & 3rd L. 0.269 0.295 0.092 0.324 0.121
2nd & 3rd KT 0.204 0.084 0.091 0.045 0.147
Kotz LM 0.198 0.413 0.060 0.576 0.008
DSMN LMκ=κ0 0.196 0.399 0.059 0.634 0.061

Panel B: 1% size-adjusted rejection rates
DGP

DSMN
Test Student-t Kotz κ = 0.5 κ = 0.25 Expansion

Student-t KT 0.163 0.151 0.029 0.123 0.016
2nd Laguerre 0.137 0.125 0.023 0.098 0.015
2nd & 3rd L. 0.123 0.111 0.035 0.118 0.053
2nd & 3rd KT 0.108 0.040 0.037 0.021 0.061
Kotz LM 0.070 0.206 0.014 0.343 0.010
DSMN LMκ=κ0 0.035 0.169 0.015 0.403 0.001

Notes: Sample: 10.000 replications with T = 1, 000 and N = 5. Alternative hypotheses:
Student t with 100 degrees of freedom, Kotz with the same kurtosis, discrete scale mixture of
normals (DSMN) with the same kurtosis and α = 0.5, and Polynomial expansion with zero
excess kurtosis and c3 = −0.1. Test statistics are described in section 3.



Figure 1: Positivity region of a 3rd order polynomial expansion
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Notes: For a given ς, the 3rd order polynomial frontier that guarantees positivity
must satisfy the following two equations P3(ς) = 0 and ∂P3(ς)/∂ς = 0 where P3(ς) is
defined in section 2. The first equation defines a straight line in (c2, c3) space such that
in any neighbourhood of the solution we will find positive and negative densities. In
contrast, the second equation guarantees that we remain on the frontier as we move in
(c2, c3) space. Nevertheless, these conditions are overly restrictive because they do not
take into account the non-negativity of ς (dashed line versus blue line). Finally, the red
line represents the tangent of P3(0) = 0. The grey area defines the admissible set in the
(c2, c3) space.



Figure 2a: Densities of standardized univariate Discrete scale mixture of normals
with κ = 0.05 and α approaching 0
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Figure 2b: Densities of standardized univariate Discrete scale mixture of normals
with κ = 0.05 and α approaching 1
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Figure 2c: Densities of standardized univariate Discrete scale mixture of normals
with α = 0.5 and κ approaching 1
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Figure 3a: Standardized bivariate normal Figure 3b: Contours of a standardized
density bivariate normal density
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Figure 3c: Standardized bivariate Student t Figure 3d: Contours of a standardized
density with 8 degrees of freedom bivariate Student t density with 8 degrees
(η = 0.125) of freedom (η = 0.125)
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Figure 3e: Standardized bivariate Kotz Figure 3f: Contours of a standardized
density with multivariate excess kurtosis bivariate Kotz density with multivariate
κ = −0.15 excess kurtosis κ = −0.15
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Figure 3g: Standardized bivariate Discrete Figure 3h: Contours of a standardized
scale mixture of normals density with bivariate Discrete scale mixture of normals
multivariate excess kurtosis κ = 0.125 density with multivariate excess kurtosis
(π = 0.5) κ = 0.125 (π = 0.5)

−3 −2 −1 0 1 2 3

−2

0

2

0

0.05

0.1

0.15

0.2

ε
2
*

ε
1
*

0.001

0.001

0.001

0.0
01

0.
01

0.01

0.01

0.
01

0.01
0.01

0.01

0.05

0.05

0.05

0.05

0.1

0.
1

0.1

0.15

0.15

ε
1
*

ε 2*

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 3i: Standardized bivariate 3rd order Figure 3j: Contours of a standardized
polynomial expansion with parameters 3rd order polynomial expansion with
c2 = 0 and c3 = −0.2 parameters c2 = 0 and c3 = −0.2
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Figure 4: Exceedance correlation for alternative distributions
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Notes: The exceedance correlation between two variables ε∗1 and ε∗2 is defined as
corr(ε∗1, ε

∗
2|ε∗1 > (, ε∗2 > () for positive ( and corr(ε∗1, ε

∗
2|ε∗1 > (, ε∗2 > () for negative (

(see Longin and Solnik, 2001). Because all the distributions we consider are elliptical,
we only report results for ( < 0. Student t distribution with 6 degrees of freedom, Kotz
distribution with κ = 1, discrete scale mixture of normals with parameters α = 0.05 and
the same kurtosis and polynomial expansion with the same kurtosis and c3 = −0.5.



Figure 5: Higher order moment parameters
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Notes: The m-moment parameter of spherical random variables, τm(η), is defined
as E[ςmt |η] = [1 + τm(η)]E[ς

m
t |0] where E[ςmt |0] denotes the m-uncentered moment of

a chi-squared random variables with N degrees of freedom. Analytical expressions for
τm(η)’s are provided in section 2.1.



Figure 6: Power of the normality tests

Figure 6a: Student t distribution
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Figure 6b: Kotz distribution
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Notes: Results at the 5% level. T = 1, 000 and N = 5. For t innovations with ν
degrees of freedom, η = 1/ν. For Kotz innovations, κ denotes the coefficient of multivari-
ate excess kurtosis. α is the mixing probability while κ is the variance ratio of the two
components in the Discrete scale mixture of normals. For polynomial expansion innova-
tions, c2 and c3 are the coefficients associated to the 2nd and 33d Laguerre polynomials,
respectively. Test statistics are described in section 3.



Figure 6: Power of the normality tests

Figure 6c: Discrete scale mixture of normals (κ = 0.75)
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Figure 6d: 3rd order polynomial expansion (c2 = 0)
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Notes: Results at the 5% level. T = 1, 000 and N = 5. For t innovations with ν
degrees of freedom, η = 1/ν. For Kotz innovations, κ denotes the coefficient of multivari-
ate excess kurtosis. α is the mixing probability while κ is the variance ratio of the two
components in the Discrete scale mixture of normals. For polynomial expansion innova-
tions, c2 and c3 are the coefficients associated to the 2nd and 33d Laguerre polynomials,
respectively. Test statistics are described in section 3.



Figure 7: p-value discrepancy plot
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Notes: 10,000 replications. T = 1000, N = 5. Vertical lines denote the usual 1% and
5% levels. α is the mixing probability while κ is the variance ratio of the two components in
the Discrete scale mixture of normals. Test statistics for the normality tests are described in
section 3.


