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Abstract

To what extent have weather fluctuations in Africa affected in-

fant mortality over the last fifty years? We investigate this question

by combining individual level data, obtained from retrospective fertil-

ity surveys (DHS) for nearly a million births in 28 African countries,

with data for weather outcomes, obtained from re-analysis with cli-

mate models (ERA-40). The focus is on two mechanisms: malaria

and malnutrition. We find robust statistical evidence of quantita-

tively significant effects. Infants born in areas with epidemic malaria

that experience worse malarious conditions during the time in utero

than the site-specific seasonal means face a higher risk of death, espe-

cially when malaria shocks hit low-exposure geographical areas, or hit

mothers in the first trimester of pregnancy. Infants born in arid areas

who experience droughts when in utero face a higher risk of death,

especially if born in the so-called hungry season just after the start

of the rains. We also uncover heterogeneities in the infant moratility

effects of growing season rainfall and drought shocks, depending on

household occupation or education.

∗We are grateful to participants in seminars at the IIES, Amsterdam, UPF, UCLA,
UBC, Chicago, LSE, Princeton, Berkeley, Oslo, LSHTM, Edinburgh, Nottingham, Hous-

ton, Stockholm School of Economics, Gothenburg, Harvard/MIT, Bristol, Leicester, Umeå,

Zurich, and in the SEA Annual Meeting 2009, a CIFARMeeting, and the 2010 EEA Annual

Congress, Daron Acemoglu, Sandra Black, Robin Burgess, Angus Deaton, Colin Jones,

Ben Smith, Peter Svedberg, and Jakob Svensson, for helpful comments; to Heiner Körnich

and Lars Eklundh for asistance with data; to Pamela Campa for research assistance; and

to Mistra and the ERC for financial support.

1



1 Introduction

To evaluate the desirability of mitigation or adaptation to climate change,

we need comprehensive information about the impact of weather and climate

on central socioeconomic outcomes, like health. While some impact assess-

ments do exist,1 many estimates of large-scale socioeconomic impacts rely on

bold extrapolation, often from case studies in developed nations. Existing

knowledge is particularly incomplete when it comes to developing regions, es-

pecially Africa, which is likely to be hit the hardest by changing weather and

climate because climate is already harsh and societies are already vulnerable.

In this paper, we do not study climate change, but we do evaluate the

health impact of weather shocks in Africa over the last 50 years. The frag-

mented information we have about such impacts mostly comes from clinical

studies in local settings. Large-scale studies are very scant, mostly due to a

lack of relevant data. We try to take some steps towards filling this lacuna

of knowledge.

Specifically, we focus on the effects on infant mortality. The reason is

twofold. On the one hand, alongside HIV, infant death is Africa’s largest

health problem: still today, close to 100 out of 1000 babies born on the

continent die before the age of one year. On the other hand, and unlike

the case of HIV, variations in weather most likely play an important role for

infant death through channels like malaria and malnutrition.

Aside from its substantive objective, the paper also has a methodological

purpose. We show how data from very different sources can be combined to

overcome the lack of comparable African data at a continental scale. These

data come at high resolutions in time and space. For infant death, we use

cross-country retrospective fertility surveys in which the month as well as the

year of birth of children is recorded and a geographic coordinate of the survey

location is collected. For weather variables, we use the data generated from

re-analysis with a global atmospheric weather forecasting model, available at

the six-hour frequency on a 125× 125 degree earth grid. When we examine
nutritional channels of weather impacts, we also use data on growing seasons

from spectral information collected by satellites, available bi-weekly at an

8× 8 km resolution. We merge these datasets spatially by using the latitude
and the longitude, rather than by the name of countries or sub-national

regions.

1See Parry et al. (2007) for an overview.
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Identifying the causal effects of weather variations on health is not straight-

forward. We can think of many reasons why weather and health might be

non-causally correlated, e.g., due to their joint dependence on geography —

places on the coast have different weather than land-locked locations, but

people along the coast often have better economic opportunities, higher in-

comes, and better health. To avoid such statistical pitfalls when analyzing

the effects of specific weather events, we only use the temporal deviation

from the normal monthly pattern within each given location. As the natural

variability of weather over time is, arguably, uncorrelated with any latent

determinants of health, we are in effect using a gigantic set of natural exper-

iments to identify the effects on infant mortality.

We focus on two mechanisms, malaria and malnutrition, and uncover

statistically and quantitatively significant effects through both of them. In-

fants born in areas with epidemic malaria, who in utero experience worse

malarious conditions than the site-specific seasonal means face a higher risk

of death, especially in areas with very low average exposure to malaria, or

when malaria shocks hit mothers around the time of conception. Infants

born in arid-climate regions of Africa who in utero experience droughts face

a much higher risk of death than other babies, especially if born in the so-

called hungry season around the start of the rains. We also find marked

heterogeneities in the effects of rainfall and drought on infant mortality, de-

pending on household occupation and education.

The results are not only robust to a number of statistical pitfalls. They

are also quantitatively important. For example, we estimate that a six-month

malaria epidemic in a place with little average exposure to malaria can raise

infant mortality by more than 3.5 percentage points. The effect of a drought

in an arid area is of similar magnitude and doubles for infants born in the

so-called hungry season.

While we are not aware of any studies with a similar scope and method-

ology for Africa, there are some recent reminiscent studies by economists.

Deschenes and Greenstone (2007b) estimate the effect of weather shocks on

overall mortality in the United States, but they rely on county-level rather

than individual-level data and focus on cardiovascular disease. Burgess et

al (2010) look at weather-induced mortality in India, but they too look at

overall mortality and mostly rely on district-level data. References to other

related work are given in context below.2

2Artadi (2006) estimates the impact of being born in rainy seasons and hungry seasons
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In the following, Section 2 of the paper gives general background on our

data. Sections 3 and 4 look separately at the effects of malaria and malnutri-

tion, respectively, while Section 5 combines the analysis of the two channels.

Section 6 summarizes our findings and discusses possible extensions.

2 Data — General Overview

Our most important data for this study come from two sources. We use

individual data on health and demography outcomes assembled from DHS

surveys, and spatially disaggregated data on weather outcomes obtained from

ERA-40 re-analysis. In this section, we give some background on these data

and how we put them together.

DHS surveys Demographic and Health Surveys (DHS) have been carried

out with a similar methodology in many developing countries since 1984 with

financial support from USAID. Each survey is carried out to collect informa-

tion on life and health outcomes by interviews of a nationally representative

sample of women in child-bearing age. Because of a standardized survey

format, data from different surveys can easily be combined. DHS data have

been used in a growing number of microeconomic papers on various topics

in economic development.3

Each DHS survey employs a two-stage sampling, first selecting clusters —

i.e., villages and town districts — and then selecting households within each

cluster. In this study, we use a total of 51 DHS surveys, from 28 African

countries — all the available surveys in which the geographic coordinate of

each cluster is collected by a GPS receiver. These 51 surveys comprise in-

formation from a total of 17,772 clusters, located in both rural and urban

settings. Figure 1 plots these clusters on a map of Africa. The data cover a

pretty large part of the continent, including countries in the North (Morocco

and Egypt), many in West Africa (from Senegal to Cameroon) and the Sahel,

on infant mortality in African countries. But her interest is to measure the impact of

average monthly weather patterns while our focus is to estimate the weather impact of

deviations from the average seasonal pattern.
3Detailed information on the DHS surveys and the underlying methodology can be

obtained from the website:

www.measuredhs.com
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and countries in the East of Africa (from Ethiopia to Tanzania), as well in

the South (ranging from Namibia to Madagascar).

In the retrospective fertility module of any DHS survey, women of age

15 to 49 in the sampled households are asked about the month and year of

birth for each of their children, whether the child died after birth and, if so,

in which month. If either the month or the year of birth is not reported

or inconsistent, the date of the birth is imputed from auxiliary information.

The surveys we exploit contain information about 1.2 million births by about

300,000 mothers that occurred at least 12 months before the survey date,

in the period (1957-2002) covered by our weather data (to be described).

Dropping all the births with an imputed birth date leaves us with 975,800

births by more than 270,000 mothers.

For each of these births, we construct a binary variable indicating whether

the child died as an infant. i.e., at the age of 12 months or less.4 This is our

major dependent variable in the paper. Infant mortality varies quite a bit

both across time and place. For the full sample of births, the overall mean

is 100.4 deaths per 1000 births, with a standard deviation across clusters of

69.2. But the mean masks a general decline from levels of mortality about

143 in 1970 to about 86 in 2002. Inspection of the data shows that infant

mortality also varies quite a bit from year to year in addition to generally

declining trends, as well as across groups of clusters (e.g., rural and urban

areas) within the same country.

The fact that the surveys are retrospective gives us some causes of con-

cern. While the birth and death of one’s children are certainly life-defining

events, we cannot rule out measurement error (perhaps more about the year

than the month of birth or death). However, our results do not change sig-

nificantly when we drop all reported births more than 10 years before the

survey. Assuming that events nearer in time are more easily recollected,

this is encouraging, and suggests that measurement error owing to imperfect

recall is not a major problem in practice.

Another cause of concern is that mothers might migrate, so the mother’s

location at the time of the survey may not coincide with her location when

her children were born. Using weather information pertaining to the surveyed

cluster may thus attribute incorrect weather conditions to the time around

birth. The surveys allow us to drop all births taking place before migrating

4The results are robust to excluding death at the age of 12 months from the definition

of infant death.
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mothers moved to the survey location, and this robustness check does not

materially affect the results. Thus, the prospective downward bias of using

weather data from the wrong place appears to be small (see further below).

The DHS surveys also give basic information at the moment of the in-

terview about each child’s gender and birth-order, their mother’s weight,

stature, years of education, and occupation, her husband’s years of educa-

tion and occupation, and the household’s asset ownership, etc. We exploit

some of these variables to investigate if the impact of weather shocks on

infant mortality is heterogenous.

ERA-40 re-analysis Development economics research has increasingly re-

lied on shocks to weather, such as rainfall, as a way of isolating exogenous

variation in variables like income. The bulk of this research relies on data

from weather stations together with various interpolation methods to fill out

the missing data.

A well-known weather data set based on weather station observations is

the one supplied by the Climate Research Unit (CRU) at the University of

East Anglia.5 The CRU data set indeed includes data at a high temporal and

spatial resolution (monthly data at down to 05× 05 degree resolution) for
much of Africa. But its interpolation method is problematic for exploiting

variation within location over time.6 Since weather stations with consistent

time-series observations in most African countries are few and far in between,

and their precise location is not even public information, the CRU data is

not appropriate for our purpose.

Miguel et al. (2004) use rainfall data from the Global Precipitation Cli-

matology Project (GPCP), which relies on satellite images of cloud cover to

estimate rainfall. However, for our study the GPCP is unsatisfactory: the

spatial resolution of the rainfall data is rather coarse at 25 × 25 degrees,
and we need temperature data to predict malaria transmission risk (see the

next section).7

For this reason, we have decided to rely on weather data produced by what

5See the webpage at www.cru.uea.ac.uk/cru/data/
6First, changes in the weather outcomes in a given location may be due to the avail-

ability of nearby weather station data over time. Second, if the closest weather station

with available data is too far, a long-term average value is used. See Climate Research

Unit (undated) for details.
7The higher resolution data of the GPCP (1.0×1.0 degree) is available only after Oc-

tober 1996.
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meteorologists call re-analysis. Specifically, we use a data archive known as

ERA-40 supplied by the European Centre for Medium-Term Weather Fore-

casting (ECMWF).8 This re-analysis relies on historical data from a variety of

sources: weather stations, ships, aircraft, weather balloons, radiosondes, and

most importantly — from the late 1970s — satellites orbiting the Earth. Such

observations are fed into the ECMWF’s large-scale atmospheric circulation

model (known as IFS CY23r4) to produce a string of grid-specific forecasts

for every six hours. These are statistically combined with available obser-

vations to produce a set of weather outcomes for every six hours, over the

period from September 1957 through August 2002, on a global grid of quadri-

lateral cells defined by parallels and meridians at a resolution of 125× 125
degrees (approximately 139 × 139 kilometers around the equator).9 We ex-
pect this data set to contain among the very best available weather data

for Africa, particularly since the poor observations are supplemented with

frequent global satellite data, as this becomes available from 1979; in fact,

about 88% of the births in our sample occurred 1979 or later.

Each DHS cluster is matched to the ERA-40 grid cell that contains it,

by using ArcGIS 9.3’s Spatial Join tool. These matched ERA-40 cells and

DHS clusters are illustrated in Figure 2. With 17,772 clusters and 743 grid

cells, there are almost 24 clusters on average per grid cell. For each grid

cell, we extract 6-hourly data on rainfall and temperatures from the ERA-40

archive, and aggregate these data to the monthly frequency. Effectively, this

gives us a large, balanced panel data set of rainfall and temperature, with 743

cross-sectional units and 540 (12 × 45) monthly observations for each unit.
Summary statistics for infant mortality and weather outcomes, by clusters

and various subgroups, are reported in Table 1.

3 Malaria

In this section, we focus on malaria during pregnancy as the important chan-

nel through which weather affects the survival of infants.10 We start by a

8The data were downloaded from ECMWF’s Meteorological Archival and Retrieval

System. We are grateful for Heiner Körnich for help in this process.
9See Uppala et al (2006) for an overview and details on the methodology behind the

ERA-40 archive, as well as a (partial) validation of the data.
10By malaria, we mean the infection in humans caused by Plasmodium falciparum, the

most deadly species of malaria parasites, which is the most prevalent in Africa.
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brief and selective overview of the epidemiology, immunology and pathology

literatures on malaria and infant death. This suggests that large risks are

associated with malaria infected mothers when the child is in utero, and that

these risks may differ by malaria prevalence and type of baby. Next, we

describe the index that we use to measure the weather conditions suitable

for malaria transmission and infection, and how this index can be used to

classify different DHS clusters for which we have data into different zones

of malaria risk. Then, we present and discuss our econometric methodol-

ogy and some results for the full sample and different malaria zones within

a simple model where the number of malaria months enter linearly. These

basic results clearly indicate that site-specific shocks to malarious conditions

only have an effect on infant death in African areas with epidemic malaria,

a result which is robust to a variety of statistical pitfalls. Thus, we look

closer at subsets of these epidemic areas, allowing for a non-linear effect in

the number of malaria months. Finally, we ask whether the risk of infant

mortality varies systematically with household and mother characteristics,

or with the trimester of pregnancy when malaria shocks hit.

Malaria and infant mortality Malaria is one of the major causes of

death for children in Africa. Estimates provided by Murray and Lopez (1996,

Appendix Table 6f) suggest that malaria caused about 15 % of deaths of

children under the age of five in sub-Saharan Africa in 1990. It is estimated

that about 75 % of the estimated malaria death toll of nearly one million

people in sub-Saharan Africa in 1995 is made up of children less than five

years old (Snow et al, 1999). However, infants are known to have a reduced

sensitivity to malaria during the first few months of life, and fatal infections

are believed to be more likely in the latter half of the first year of life and

the first few years of childhood (Maegraith 1984, p. 262).

Malaria in pregnancy11 is known to raise the likelihood of infant death via

low birthweight — a major risk factor for infant death (McCormick, 1985).

Guyatt and Snow (2001) show that the risk of low birthweight doubles if

a baby’s mother is infected with malaria during pregnancy, and that 5.7

% of infant deaths in Africa could be attributed to the low birth weight

induced by maternal malaria.12 The exact mechanism for the association

11See Desai et al. (2007) for a recent and extensive review of the medical literature on

malaria in pregnancy.
12Studies reviewed by Steketee et al. (2001) attribute 3 to 8 % of infant mortality to
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between malaria in pregnancy and low birthweight remains unclear, although

insufficiency of a malaria-infected placenta is thought to lead to intrauterine

growth retardation and premature delivery (Brabin et al. 2004). Placental

infection by malaria parasites in African pregnant women is quite frequent.

For areas where malaria is endemic, the median infection rate in the studies

reviewed by Gyatt and Snow (2004) is 26 %, with a range of 5 to 52 %. Desai

et al. (2007) review studies conducted in low malaria transmission areas of

Africa and report a median prevalence of placental infection amounting to

6.7 %.

On top of a higher likelihood of low birth weight, babies born to mothers

with an infected placenta are reported to be more likely to develop a malaria

infection during the first year of life (Le Hesran et al., 1997) and may become

susceptible to measles earlier than other babies due to reduced placental

transfer of maternal antibody (Owens et al., 2006).13

Given the above-mentioned immunity of infants to malaria during the

first few months of life, malaria in pregnancy may have a more profound

effect on infant survival than infants’ own infection after birth.14 Therefore,

we focus on the effects of weather-induced variation in malaria incidence

while the child is in utero on the subsequent risk of infant death. However,

we discuss exploratory estimates of mortality effects of malarious weather

conditions during the first year of life.

The literature on malaria in pregnancy suggests several factors that raise

the risk of infant death due to maternal malaria. One such factor is en-

demicity of malaria transmission. Where malaria is endemic, adult women

develop partial immunity to malaria after repeated infections since child-

hood and thus avoid symptoms such as fever and anemia during pregnancy.

Where malaria is seasonal or epidemic-prone, however, adult women lack in

immunity against malaria. As a result, once infected with malaria, pregnant

women have fever, which is known to increase the chance of premature de-

livery and of infant death (Luxemburger et al. 2001). We therefore expect

the impact of malaria on infant mortality to be larger in areas where malaria

transmission is low.

Firstborn babies are believed to face a higher risk of death due to malaria

maternal malaria.
13Measles is estimated to account for about 12 % of deaths of children under the age of

five in sub-Saharan Africa in 1990 (Murray and Lopez, 1996, Appendix Table 6f).
14Snow et al. (2004) argue that looking only at the direct cause of death would signifi-

cantly underestimate the impact of malaria on child death.
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in pregnancy than those of higher birth order, although this heterogeneity

appears to be absent in low malaria transmission areas (McGregor 1984).

Rogerson et al. (2000) and Walker-Abbey et al. (2005) find that teenage

women are more likely to be infected with malaria during pregnancy in

Malawi and in Cameroon, respectively. Infants born to mothers infected

with HIV as well as malaria face higher risks of low birth weight (ter Kuile

et al., 2004). In general, firstborn babies, female babies, and babies born by

stunted mothers, face a particular risk of low birthweight (Kramer, 1987),

which makes it plausible that such babies might be particularly at risk in the

wake of malaria shocks. We investigate whether these individual-level charac-

teristics result in heterogeneous impacts of malaria-prone weather conditions.

How to measure malarious weather conditions? The incidence and

prevalence of malaria in a given area and time depend on a host of factors, in-

cluding climatic, biological, geographic, and socioeconomic conditions. Based

on clinical measurements of malaria prevalence, researchers have tried to

combine such information on the spatial distribution of malaria in so-called

malaria maps (e.g., Kiezowski et al, 2004, Hay et al, 2009). In this study, we

are interested in the weather-induced variability of malaria-prone conditions

over time within each area for which we have infant mortality data.

A necessary condition for malaria to spread is the growth and survival

of parasites causing the disease and vectors (a certain species of mosquitoes)

transmitting the parasites. The rates of growth and survival are known to

be heavily dependent on temperature and rainfall, and we want to capture

these conditions in a parametric way.

To this end, we follow Tanser, Sharpe, and le Seuer (2003), who propose

a relatively parsimonious weather-based index for malarious conditions for

Africa in their study of malaria and climate change. This index builds on

the comparison of mean long-term (1920-80) monthly rainfall and tempera-

ture with monthly profiles of malaria transmission intensity in 15 different

locations with differing malaria prevalence rates as well as biological ranges

affecting both vector and parasite development. The resulting monthly pre-

dictions of malaria transmission are empirically validated against the malaria

occurrence data from about 3800 parasite surveys in different African loca-

tions. The index correctly predicts 63 % of malaria transmission incidents

and 96 % of the absence of malaria transmission.15

15A high probability of correctly predicting the disease absence is remarkable given

10



Following the approach of Tanser et al (2003), we adopt the following:

Definition 1 We set our binary malaria index for month  in grid cell ,

 = 1 if and only if all of the following four conditions are satisfied:

(a) Average monthly rainfall during the past 3 months ( − 2  − 1 ) is at
least 60mm.

(b) Rainfall in at least one of the past 3 months is at least 80 mm.

(c) No day in the past 12 months ( − 11 to ) has an average temperature
below 5◦C.

(d) The average temperature in the past 3 months ( − 2  − 1 ) exceeds
195◦C+SD(monthly temperature in the past 12 months).

If any one of conditions (a)-(d) fails, we set  = 0.

Conditions (a) and (b) ensure the availability of breeding sites for the vector

and sufficient soil moisture for the vector to survive; (c) is required for the

survival of the vector, as it quickly dies off at lower temperatures; and (d)

allows the parasite to become infectious inside the vector’s body before the

vector dies.16 The required threshold of temperature is higher, the higher

the standard deviation of monthly temperature, because, after a cold winter,

the populations of parasites and vectors need to be quickly regenerated to

the level sufficient for malaria transmission.17

that these parasite survey sites were chosen because of their potential for transmission.

A modest probability of correctly predicting the incidence of malaria is presumably due

to socio-economic factors that prevent malaria transmission despite the suitable weather

conditions.
16The vector obtains a parasite by biting a malaria-infected human being. However, it

takes a while for the parasite to become infectious and thus for the vector to transmit

malaria by biting another human being. Higher temperature shortens the time required

for the parasite to become infectious and helps the vector survive long enough.
17The definition for our binary malaria index is slightly different from that in Tanser et

al (2003). Since these authors have only monthly data, they apply condition (c) to monthly

rather than daily temperature, while we use the latter. Unlike Tanser at al (2003), we also

treat a non-malarious month based on the four conditions as still unsuitable for malaria

transmission even if it is sandwiched by two malarious months. We also tried to implement

the index in exactly the same way as Tanser et al, and found somewhat weaker results.

By dropping separately each of the four conditions, we found conditions (a) and (d) to be

the most relevant ones to predict infant deaths.
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Malaria zones in Africa Climatological conditions play a major role for

prevalence of malaria. In some areas, malaria is endemic, meaning that the

risk of malaria is permanently high, or at least a good part of every year. In

other epidemic areas, malaria spells are more short lived. This can be either

because the transmission is seasonal, i.e., it recurs in a particular season due

to stable variations in rainfall and temperature, or because it is unstable, i.e.,

it is present in some years but not in others. Finally, in non-malarious areas,

the climate is too dry or too cold for malaria to be present or infectious at

all.

As already mentioned, we expect a larger effect on infant mortality of

seasonal weather shocks in epidemic areas, due to lower immunity rates and

more severe malaria infections in such regions. To be able to test this hy-

pothesis empirically, we divide the ERA-40 grid points (and thus DHS clus-

ters) into three different malaria zones. Non-malarious zones have no single

malarious month, as defined by the malaria index   over the entire sample

period; epidemic areas have strictly positive malaria exposure between 0 and

4 months on average; while endemic areas have higher exposure rates. We

have also set the epidemic-endemic split at 6, rather than 4, months with

similar results.

Our classification is illustrated in Figure 3. Non-malarious areas, the

green circles on the map, entail about 20% of the births in our sample and

are found in the very North and South of Africa, and in mountain tracts

(which are too cold), and in desert or near-desert regions (which are too

dry). The remaining 80% of births are split almost equally between endemic

and epidemic areas. The epidemic areas, colored in yellow, are mainly found

in the Sahel, in higher terrain in East Africa, and in dry areas of the South.

Endemic areas, in red, are mainly found in the tropical parts of Africa with

stable warm and humid conditions throughout the year.

The geographical distribution of these three zones, based on weather con-

ditions alone, corresponds reasonably well to the distribution of actual cases

of parasite infection in malaria maps, based on cross-sectional clinical obser-

vations (see e.g., Hay et al, 2009).

Malaria exposure for individual pregnancies As mentioned above, we

focus on the malaria conditions during pregnancy. For each childbirth in our

sample, we thus create a measure of maternal malaria exposure of the 12

months up to the birth month. Specifically, for children born in a cluster

12



within ERA-40 grid cell  and in running month , we define

 =

X
=−11

 . (1)

In words, we gauge during how many months in the year before birth the

child’s mother was exposed to malarious weather conditions. This measure

varies substantially across areas and time. In endemic areas, mothers are on

average exposed to 8.0 months of malarious conditions, with a standard de-

viation of 1.0 months. In epidemic areas, the corresponding numbers are 1.8

and 1.0 months. Mean-adjusted variability is thus much higher in epidemic

areas. (See Table 1, Panel B for summary statistics on ).

Basic econometric specifications In our most basic econometric speci-

fications, we estimate panel regressions that are of the following type:

 =  +  +  +  (2)

The dependent variable, , is a binary infant mortality indicator. It

indicates death at the age of 12 months or less, for child , who is born in

cluster  within grid cell  in country  and in running month  which is

calendar month  of year .18 We multiply this indicator by 1000 so that our

results square with the conventional way of measuring infant mortality.

On the right-hand side, our parameter of interest is , which measures

how many more children per 1,000 die in the first year of life due to one

additional month suitable for malaria transmission during the 12 months

leading up to the birth. Further,  is a fixed effect for cluster  and calendar

month  = 1  12 That is, when we run this regression in the full sample,

we control for 12 monthly means in each of our 17,772 DHS clusters, making

for over 220,000 fixed effects. This way, we are identifying the parameter 

from the deviation within each cluster from its site-specific monthly mean. To

allow for a non-parametrically declining trend of infant mortality throughout

Africa, in line with actual observations,  is a fixed effect for calendar year

18The standard definition of infant mortality is death before turning the age of 12

months. The distribution of age at death in the DHS data, however, has a peak at 12

months, suggesting some of the babies who died before turning 12 months old are reported

to die exactly at the age of 12 months. Using the standard definition of infant mortality,

we find somewhat smaller impacts of weather fluctuations.
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 = 1957  2002 in country . This adds another set of 1288 (46×28) fixed
effects. That is, we allow infant mortality to have trends in national health

systems, policies, or economic conditions, which could conceivably be related

to local weather realizations.19 Finally,  is an error term. We compute

Huber-White robust standard errors, allowing for clustering at the grid level

(encompassing 743 grid cells in the full sample).

Basic results The results we obtain when running versions of (2) in the full

sample are displayed in Columns (1)-(3) of Panel A in Table 2. Column (1)

is the result of a “standard” panel regression, with fixed effects for clusters

and years, thus allowing for different cluster means and a non-parametric

time trend for all of Africa. Column (2) replaces the cluster fixed effects

with cluster-by-month fixed effects, whereas Column (3) estimates equation

(2) by replacing year fixed effects with country-by-year fixed effects so that

non-parametric trends for each country are allowed.

The point estimates of  are all positive, as expected. Evidently, taking

the very local seasonal patterns of infant mortality and weather into account

in Column (2) raises the point estimate at no loss of precision. But the

more general specification in Column (3) cuts the point estimate and renders

it statistically insignificant. This specification absorbs all country-by-year

malaria shocks in the fixed effect. The lower coefficient makes sense, as

country-wide malaria shocks may have more severe consequences than purely

local shocks, e.g., because infections might spread from neighboring areas in

the same country.

However, this basic specification assumes a treatment effect of malaria

shocks that is homogenous across the whole sample — a very strong assump-

tion. To test our prior of a larger effect in epidemic areas, we split the sample

into its endemic and epidemic part, dropping from the sample non-malarious

areas which by definition have no variation in the malaria index from zero.

The corresponding estimates for endemic areas are shown in columns (4)-(6)

of panel A. The point estimates for temporary malaria shocks show a similar

pattern as those in the full sample, but they are never statistically signifi-

cant.20 Note that this does not mean that malaria is not a large risk factor

19For example, Kudamatsu (forthcoming) finds democratization has reduced infant mor-

tality in sub-Saharan Africa while Bruckner and Ciccone (forthcoming) find negative rain-

fall shocks led to democratization in Africa.
20The result is similar if the boundary between epidemic and endemic is instead drawn

at 6 months average exposure.
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for infant death in endemic areas. Our identification of the effect hinges

on the deviation from the average seasonal pattern of malaria transmission.

Year-to-year variation in seasonal malaria transmission for endemic areas is

not very large (see Table 1 Panel B), and the bulk of malaria-induced infant

deaths are likely absorbed by the cluster or cluster-month fixed effects.

Panel B shows the results in epidemic areas. The estimated coefficients in

Columns (1)-(3) follow the same pattern as in Panel A, but now the coefficient

in the most general specification with national non-parametric trends is just

below one and significantly different from zero at the 10% level. Mothers who

face three months higher malaria exposure than normal have a raised infant

mortality risk in the average epidemic cluster by just below 3 per thousand

(close to the total infant mortality rate for Sweden).

In two remaining specifications in Panel B, we show the results of some

robustness analysis for epidemic areas. Clustering of the standard errors at

the grid-cell level, as in Column (3), allows for arbitrary serial correlation

of infant mortality and weather in each grid cell. While such local serial

correlation certainly exists, weather and the survival of babies are likely

to be correlated across grid cells and also between a particular cell in a

certain month and its neighboring cells in the following months. To allow

for simultaneous spatial and temporal correlations, we try an alternative

clustering scheme by 5 year-period and average malaria exposure (specifically,

we split epidemic areas in those above and below 2 months of exposure north

and south of the equator, respectively), giving a total of 36 clusters. As

Column (4) shows, this yields standard errors for  which are slightly lower

than those with grid-level clustering.

While the specification looks at the linear effect of different number of

malaria months, the definition of a malaria month is highly non-linear in

temperature and precipitation. Perhaps this specification really picks up

some other non-linear effect of weather on infant mortality. To check for

this possibility, in Column (5) we include cubic polynomials in rainfall and

in temperature during the 12 months preceding each specific birth.21 This

21Specifically, we include the following terms to the right hand side of equation (2):

3 
3
 + 2 

2
 + 1  + 3 

3
 + 2 

2
 + 1 

where  and  are the average temperature and the total rainfall, respectively, in grid

cell  over the months − 11 to . In subsequent analysis, we always refer to these terms
as cubic polynomials in rainfall and in temperature.
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is like adding a control function to the specification in equation (2). The

resulting estimate of  is a bit above 1 with a slightly higher standard error

than in Column (3).

Non-linear effects in epidemic areas? All specifications in Table 2 as-

sume that the impact of malaria shocks is linear in the number of months

of malaria exposure. But infant mortality is an extreme outcome, so per-

haps it is more closely related to extreme weather events. Table 3 shows

estimates that relax the functional-form assumptions. We first disaggregate

the epidemic area into two subgroups, above and below 2 months of average

exposure per year. This further classification is illustrated in Figure 4. Based

on an immunity argument, one could presume that weather shocks increasing

the susceptibility to malaria may have their most pronounced effect where

malaria occurs the most rarely. Columns (1) and (2) of Table 3 display the

results when the linear specification in equation (2) is estimated on the two

separate epidemic subsamples. As the estimates show, however, the linear

model does not produce very different estimates in the two samples.

To get further, we allow for a more general non-linear response within

each subsample, by allowing for five bins of malaria exposure, setting the

omitted default bin at average exposure. In Column (3), we look at the 0-2

month exposure sample, the cream-colored regions in Figure 4. The sign

and size pattern of the point estimates is exactly what one might expect:

exposure above the average is associated with a positive point estimate, even

though the estimates are quite noisy. The most striking finding is the com-

parison of those pregnancies that have more than 6 vs. 1-2 (or 0) months of

malaria exposure. A temporary weather pattern exposing a set of mothers

to a potential more-than-six-months malaria epidemic raises infant mortality

by about 38 per 1000, compared to a control group of pregnancies with no or

little exposure at all. This is a huge effect, given an average infant mortality

rate of about 100 per 1000 in the sample. Column (4) shows that these results

are robust to including cubic polynomials in rainfall and in temperature dur-

ing each pregnancy. Interestingly, the impact on infant mortality of reducing

exposure from 6 to 0 (or 1-2) malaria months is similar in magnitude to the

impact of the protection by insecticide-treated bed nets on the reduction in

infant mortality, which is 31 per 1000 according to a randomized controlled

trial conducted in endemic areas of western Kenya by Phillips-Howard et al.

(2003).

16



In Columns (5) and (6), we show analogous estimates for DHS clusters

with 2-4 months average exposure, the orange regions in Figure 4. The sign

pattern is similar to that in Column (3). That is, zero or very little exposure

is associated with much lower infant mortality rates than above 6 months

exposure, even though the difference between the highest and lowest bin is

smaller than in the 0-2 month sample — about 28 or 19 per 1000, depending

on whether the cubic polynomials are included or not. Unlike in the earlier

specifications, Column (6) rejects that both cubic polynomials in temperature

and in rainfall are insignificant (see the F-statistic at the foot of the table),

but the implied effect on infant mortality is larger than in the specification

omitting the polynomials in Column (5).

We have also tried to distinguish areas with seasonal and unstable malaria,

based on the standard deviation of the number of annual malaria months,

within the epidemic sample. But this has not produced any stark differences

in the estimated effect of malaria shocks.

The findings on non-linear effects are potentially very important for the

consequences of future climate change. Projections of future climate indicate

that Africa will get significantly warmer.22 This means that areas which are

hitherto non-malarious due to cold temperature — mountainous regions in

Ethiopia, Kenya, Madagascar, and Zimbabwe close to the yellow dots in

Figure 4 — are likely to become new marginal epidemic areas, where mothers

will have little immunity and infants will be very vulnerable to temporary

malaria epidemics. Moreover, if future climate change leads to more dramatic

variations in the annual fluctuations of rainfall in the dry parts of Africa, then

malaria epidemics may become more frequent in low-prevalence areas, with

potentially large effects on infant mortality.

Heterogeneity by individual characteristics Following the medical lit-

erature discussed at the beginning of this section, we have also investigated

if the impact of maternal malaria exposure is heterogeneous across different

types of babies, mothers, or households. In particular, we have estimated

extensions of our basic econometric specification in equation (2), where all

right-hand side variables are interacted with indicators for female babies,

firstborn babies, young mothers (under 18), stunted mothers (2 standard de-

viations below the median stature of the WHO Child Growth Standard by

22By the end of the 21st century, the average temperature in Africa is predicted to go

up by 2.6 to 5.3 degrees Centigrade (Tanser et al. 2003, Table 2).
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WHO Multicenter Growth Reference Study Group, 2006), and households

living in regions with high HIV prevalence rate (10 % or higher according to

the DHS HIV test results conducted in the 2000s). We have also investigated

the heterogeneous impact by the education level of the household (whether

both the baby’s mother and her husband went to school for more than 8

years) and by affluence of the household (owning a majority of the consumer

durables listed in the survey questionnaire). In these regressions, we always

split the sample between endemic and epidemic areas. However, we find no

significant patterns of heterogeneity in the data, while we always continue to

find a significant effect of malaria shocks in epidemic areas but no such effects

in endemic areas. This lack of heterogeneity across mothers and households

is a bit surprising given the clinical evidence cited above.23

Heterogeneity by timing of malaria shocks Our findings above relate

to the number of malaria months during the entire year preceding each birth.

It is also of interest to gauge whether and how the exposure to malaria shocks

at different times in pregnancy might matter. To this end, we split up the

malaria-exposure index  above into four parts — one for each trimester of

pregnancy, and one for the quarter just before conception. In addition, we

calculate the number of malaria months during 12 to 14 months before the

birth. We then estimate a regression analogous to our basic formulation for

epidemic areas, in Column (3) of Panel B in Table 2, except that the months

of exposure in each of the five quarters preceding the birth enter as separate

regressors.

Figure 5 plots the estimated coefficients on these quarterly exposure vari-

ables and their 95% confidence intervals. The message is pretty clear: an

additional month with malarious conditions in the quarter before pregnancy,

or the first trimester of pregnancy, is associated with a substantial increase

in infant mortality. But there is no such effect for malaria shocks, neither in

the second or third trimester, nor in the second-to-last quarter before preg-

nancy. Each of the two significant coefficients has a value around 2.5, more

than double the estimate in Table 2. Quantitatively, this would mean that

a six-month spell of malarious conditions, relative to the complete absence

23Our failure to find heterogeneous impacts of malaria in pregnancy across parities in

endemic areas, however, is consistent with Guyatt and Snow (2001), who report malaria

in pregnancy doubles the risk of low birthweight across all parities as well as for first

pregnancies. Mutabingwa et al. (2005) also find that infants born to women with malaria-

infected placenta are susceptible to malaria infection even if they are of higher birth order.
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of malarious weather, in the two critical quarters raises infant mortality by

about 15 per 1000.

These findings are interesting in that epidemiological research has pro-

duced few findings on the effects of malaria in the early part of pregnancy

(Desai et al, 2007). However, the findings appear to be consistent with clini-

cal studies showing that malaria infection in pregnant women tends to peak

at the end of the first trimester (Brabin, 1983).

Malaria shocks in the first year of life For each child, we have focused

on malaria shocks during the year before birth and we have seen that these

shocks in utero have a significant effect on the likelihood of survival. Do

malaria shocks after birth affect the probability that a child dies before age

one, directly or indirectly through the health of the mother? To analyze this

question, we have run regressions where malaria exposure during the first year

of life — either month by month or the cumulated number of months with a

positive malaria index — is added as its own term and as its interaction term

with  to the right hand side of equation (2).
24 We find no significant effects

on infant mortality of in-life shocks neither in epidemic areas, nor in endemic

areas. On the other hand, in-utero malaria exposure continues to exercise a

significant effect on infant death in epidemic areas of similar magnitude as

in our earlier estimates.

Summary To summarize, we find that weather shocks which raise exposure

to malaria, as measured by the Tanser et al (2003) malaria index, significantly

raise the incidence of infant death. The largest effects arise from exposure

for more than six months in areas where malarious conditions are otherwise

rare, and from exposure just before conception or in the first trimester of

pregnancy.

24Malaria exposure in the -th month after birth does not affect the survival of babies

who died before turning  months. Therefore, including the 12-month exposure to malaria

infection during the first year of life as a regressor to the whole sample will bias the

estimated effects towards zero. To deal with this problem, for each  from 1 to 12, we

restrict the sample to babies who survive at least the first  months after birth and use

how many months are malarious during the  months after birth as a regressor.
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4 Malnutrition

In this section, we continue to explore how past weather events in our ERA-

40 data impact on infant death in our DHS data. But here, we focus on

the prospective mechanism through malnutriton. Following a brief literature

review, we discuss how to measure weather-induced crop-yield fluctuations

in agricultural societies highly dependent on rainfall during a limited grow-

ing season, and how to partition the African continent into different climate

zones. Next, we describe our measure of weather conditions conducive to

more or less malnutrition during a child’s period in utero and validate it

against the data on crop prices in a subset of the countries in the infant

mortality sample. Our econometric estimates show that a simple measure of

rainfall during the growing season(s) tied to each childbirth are significantly

related to infant mortality. In addition, we find a large effect of extreme

events in the form of droughts (but not of floods), in Africa’s arid climate

zone. When we allow for heterogenous effects for different types of house-

holds, we uncover a significant linear effect of rainfall among agricultural

households in tropical and temperate climate zones; we also find drought

effects in the arid areas to be weaker in households dependent on agricul-

ture and in well-educated households. Finally, the data suggest that babies

born in the hungry season — the time just after the start of the rains — are

particularly sensitive to malnutrition in utero.

Infant mortality and malnutrition Maternal and child malnutrition

poses a major risk for child health, particularly in poor countries — for a

recent review see Black et al. (2008). Because maternal intake is the sole

source for fetal energy requirements, a lack of food during pregnancy nega-

tively affects the growth of fetus in utero due to deficiencies of calories and

important micro-nutrients. As a result, maternal malnutrition increases the

risk of low birth weight, which in turn raises the risk of infant death through

birth asphyxia and infections (McCormick, 1985, Black et al., 2008). The

medical literature finds that low weight gain during pregnancy increases the

chance of low birth weight (Kramer 1987 for a review). This effect is found to

be stronger for women whose nutritional status is already poor before preg-

nancy (Krasovec and Anderson, 1991 for a review) and during the second

and third trimesters (Strauss and Dietz, 1999).

Most African children are breast-fed during the period after birth, which

is known to lower mortality risk compared to children who obtain non-breast
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milk liquid or solid food during the first six months of life (see e.g., Black et

al. 2008, Table 4)25 Consequently, and in analogy to the previous section on

malaria, we do not focus on variations in food supply after birth, but rather

on weather-induced variations in the risk of maternal malnutrition during

pregnancy and their subsequent effects on infant survival.

Crop yield and growing seasons Most African countries are agricultural

economies — in 2004, some 55% of people on the continent are employed in

agriculture (Frenken 2005, Table 2), and many more depend on agriculture

in other ways. In addition, transportation infrastructure in Africa is poorly

developed.26 Most people are thus largely dependent on the local yields of

subsistence crops for nutritional intake (or of cash crops for earning income

to buy foods). Moreover, irrigation of land plays a minor role in crop pro-

duction, especially in Sub-Saharan Africa — only 6.4% of cultivated land was

irrigated in 2004 (Frenken, 2005, Table 12). These stylized facts about Africa

suggest that maternal nutritional intake largely depends on local rainfall.

While predictably rich throughout the year in tropical Africa, rainfall in

many arid and semi-arid areas is much more erratic. General African rain-

fall patterns are largely governed by the so-called Inter Tropical Convergence

Zone (ITCZ), in which the trade winds from the northeast and the southeast

converge (Griffiths, 1972). As a result of the low pressures along the ITCZ,

convectional thunderstorms form daily and dump large amounts of precipi-

tation in scattered afternoon rains. Over land, the ITCZ moves north and

south with the seasons, following the hottest part of the continent, which

causes large variations in rainfall between dry and wet periods in a typical

year. This is illustrated in Figure 6, which shows the average amount of

rainfall across Africa in four different months. On top of this regular sea-

sonal cycle, however, one finds considerable fluctuations across years in the

precise timing and amount of rainfall. These are more marked in the areas

that receive little rain owing to the unpredictable movements of the ITCZ

from one year to the next.

In many non-tropical areas of Africa, crop yields are thus crucially depen-

25One might think that food availability after the birth of a child is important for his

or her mother to produce breast milk. However, as long as it is not very severe, maternal

malnutrition is known to have little impact on the volume and composition of breast milk

(see Brown and Dewey, 1992 for a review).
26Herbst (2000, Table 5.3) reports that the road density for the median African country

around the year of 1997 is merely 0.07 kilometers per square kilometers of land.
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dent on the seasonal rains falling in the growing season — i.e., the rainy period

of the year. We therefore use the total amount of rainfall during the growing

season as a proxy for the amount of nutrition available for pregnant women

in the analysis below. We have also experimented with various measures of

temperature during the growing season, but with little success.27

The literature on agriculture and rural poverty in sub-Saharan Africa and

elsewhere in the developing world stresses the concept of the “hungry sea-

son”, the period just after the start of the annual rains, when food stocks

from the previous harvest are on the decline at the same time as the calorie

expenditures are peaking due to extensive agricultural work (see e.g., the

contributions in Chambers, Longhurst and Pacey, 1981 and in Sahn, 1989).

Low birth weights are found to be more likely to happen during rainy sea-

sons than during dry seasons (Bantje, 1983 and Kinabo, 1993 for Tanzania,

Fallis and Hilditch, 1989 for Zaire). This suggests that annual fluctuations

in weather-induced nutritional availability may have heterogeneous impacts

on infant survival across which season babies are born in.

How to measure the growing season? The growing season in a par-

ticular location is likely to depend on many other factors than the extent of

rainfall, including soil qualities, crop types and the use of fertilizers. While

some gridded information on these other factors exists, we take a convenient

short cut to determine the relevant growing season for each of our DHS clus-

ters, by employing the data measuring photosynthetic activity from remote

sensing by satellite.

Photosynthesis is identifiable from a long distance, because growing plants

reflect light at the infrared part of the spectrum and absorb light at the near-

red part of the spectrum. Therefore, ecologists often use data collected by

satellites to measure plant growth through ongoing photosynthesis. We use

such satellite data made available through the Global Inventory of Modeling

and Mapping Studies or GIMMS (Tucker et al. 2005), namely the so-called

normalized difference vegetation index (NDVI). The NDVI index is globally

available as bi-weekly series from 1982 and onwards on a resolution of 8 ×
8 kilometers. In the ecology and biology literature, the integral of NDVI

27We are certainly not the first to use growing season rainfall as a proxy for crop yields.

Lobell et al. (2008) use the growing season rainfall (and temperature) to predict crop

yields in developing countries under the future climate change scenarios. Deschenes and

Greenstone (2007a) also use growing season rainfall to predict agricultural profits in the

United States.
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values over the growing season is often used as a proxy for crop yields (e.g.

Rasmussen, 1992 for millet yields in Burkina Faso, Rasmussen, 1997 and

Rasmussen, 1998 for millet yields in Senegal).

The map in Figure 7 shows the distribution of the average annual in-

tegrated NDVI across Africa, with bluer areas denoting areas with a low

value — little photosynthetic activity over the year — and redder areas a high

value. The two graphs in Figure 7 plot observed NDVI values as the jagged

thin curves over two years, 1982 and 1983, in two locations: one in Burkina

Faso just at the boundary to Niger, and one in Tanzania just south of the

Victoria Lake. In these graphs, the horizontal axis shows time measured

in two-week periods; the vertical axis shows the NDVI value (multiplied by

10,000). Clearly, the peaks are much lower (note the different scales) for the

Burkina Faso location than the Tanzania location, reflecting a lower amount

of rainfall.

To obtain the growing season from this time-series NDVI data, we use

the TIMESAT program (Jonsson and Eklundh, 2004).28 The two graphs in

Figure 7 demonstrate how this program works. The TIMESAT program first

produces smoothed (filtered) values of NDVI (shown as the thick curve in

the graphs), where the smoothing is meant to eliminate temporary random

fluctuations, for example, due to variations in cloud cover. Following the

common practice among ecologists (e.g. Heumann et al., 2007), the program

then produces the times for the start and the end of the growing season

defined as the time period in between 20% above one trough to 20 % above

the next, as shown by the points on the smooth curves in Figure 7. Notice

that the duration of the growing season is much shorter in Burkina Faso than

in Tanzania. Finally, to deal with the potential endogeneity of the observed

annual growing seasons, we average the start and end dates over the 25 years

available for each location, and use the calendar months between these two

average dates as our measure of the fixed growing season.29

Climate zones Because the seasonality of weather and agriculture differs

so much, crop types, cultivating practices, and lifestyles have most likely

adapted to the local conditions in different parts of Africa. We would there-

28We are grateful to Lars Eklundh, Department of Earth and Ecosystem Sciences, Lund

University for his assistance with this program and the data.
29In areas where there are two growing seasons per year, we use every odd growing

season in our calculation of the fixed growing season.
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fore like to allow the effects of weather on nutrition and health to depend on

the prevailing climate. A straightforward way of making such conditioning

operational is to follow the approach originating with German climatologist

Wladimir Köppen, who was the first to classify different areas on Earth into

different climate zones.

The well-known Köppen climate classification system distinguishes be-

tween different climate types based on annual and monthly temperature and

precipitation, as well as the seasonality of precipitation (see, e.g., Peel et

al., 2007 for more details). Using the Köppen classification criteria and our

ERA-40 weather data, we subdivide all the DHS clusters in our sample into

two climate zones: rainy areas, which include rainforest, monsoon, savannah

and temperate climates, and arid areas, which include steppe and desert cli-

mates. The resulting classification of our DHS clusters is shown in Figure

8.

Malnutrition exposure for individual pregnancies We want to deter-

mine how weather affects each mother’s nutritional intake for the 12 months

before her child is born. When doing so, we focus on effects through lo-

cal crop yields driven by variations in rainfall during the relevant growing

seasons, as summarized by a simple index.

The relevant growing season(s) of an individual birth depends on its tim-

ing relative to local harvest time. As an example, suppose a child is born in

September 2000, one month after the last harvest in this location (August

2000). In the last year before giving birth, the mother has consumed food for

one month from that harvest and for eleven months from last year’s harvest.

In general, the mother’s nutritional intake during the year before giving birth

depends on the two last harvests. We weight these by the number of months

the mother had the ability to consume from each harvest. In the example,

our rainfall exposure index weights rainfall during the growing seasons of

2000 and 1999 by the weights 1/12 and 11/12, respectively.

To be more precise, we define a simple rainfall exposure index, proxying

for the nutritional dependence during the 12-month period up to birth as

follows.

Definition 2 Consider babies born in location  in running month . Let 

1

and 

2 be the total rainfall during the last and second-to-last (respectively)

completed growing seasons preceding date  for location . Further, let 

be the running month of the last harvest preceding date  in location . We
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proxy the nutritional dependence on weather during the 12-month period up

to the birth date  in location  by the rainfall exposure index, defined as

 = 

1 + (1− ) 


2 , (3)

where weight  is given by  =
−
12



Underlying this index are three simplifying assumptions that we wish to

highlight. First, the construction of the index assumes that all crop yield in

location  becomes available at the final month of the growing season, and

this harvest month, , is the same calendar month every year. Second, it

assumes that yields harvested in months  and −12 depend directly only
on the cumulated rainfalls during the growing seasons that ended in those

months (

1 and 


2 , respectively). Third, it assumes that the marginal

effect of weather variation on nutritional intake is constant across the year

of exposure.

Below we will compare the performance of our rainfall exposure index

with a simpler measure — the past 12-month rainfall — to provide suggestive

evidence for the validity of the first two assumptions. We will also relax the

third assumption and investigate whether the marginal impact of harvested

crop yields on children’s health is larger during the hungry season as discussed

above.

The mean rainfall exposure index in the sample is 72.3 centimeters (cm)

of rainfall, while the average grid-level standard deviation is 19.2 cm. The

corresponding statistics for the rainy climate zone sample are 126.2 and 28.4

while they are 17.4 and 5.9 for the arid climate zone. As mentioned above,

mean-adjusted variability is much larger for the arid climate zone. See Table

1, Panel C for summary statistics.

Validation of the rainfall exposure index How can we make sure that

this index based on growing season rainfall that we have just defined is a

relevant measure of the scarcity of local crop yield? One way is to relate it to

observed crop prices. In doing so, we exploit monthly crop price data between

1970 and 2002 for six major African crops in 424 local markets located in eight

of the countries where we measure infant mortality. These data are compiled

from the data in the USAID Famine EarlyWarning Systems Network (FEWS

NET).
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We then relate these local crop prices to local rainfall and drought in-

cidence (to be defined in the next subsection), exploiting only the within-

market monthly deviations from the local seasonal mean, relying on an em-

pirical strategy that is fully analogous to our infant-mortality analysis. See

the Appendix for more on the data construction and the econometric speci-

fication.

Table 4 reports the estimation results. Column (1) shows that in rainy ar-

eas the crop price significantly goes down by 2.1 percent with a one standard

deviation increase in rainfall during the previous completed growing season,

i.e., 

1 in equation (3). A drought incident significantly increases the crop

price by 6.7 percent. Column (2) shows that in arid areas the linear impact of

growing-season rainfall on crop prices is insignificant, but a drought incident

significantly raises crop prices by 9.5 percent. These results give support to

our assumption that local rainfall affects the availability of foods due to the

lack of irrigation and transportation infrastructure.

Basic results In Table 5, we report estimates from running panel regres-

sions with specifications like (2) in Section 3, except that we replace the

malaria exposure index  with the rainfall exposure index . Columns

(1)-(3) show the estimates of the coefficient of interest in the full sample,

with only cluster fixed effects or cluster-by-month fixed effects included, and

with different treatment of trends. The point estimates always have the ex-

pected negative sign — i.e., more rainfall in the growing seasons before birth

cuts the risk of infant mortality. In the most conservative specification with

country-specific non-parametric trends in Column (3), the coefficient is the

highest in absolute value and is significantly different from zero at the 10%

level.

Column (4) shows that the point estimate is lower in absolute value and

not significantly different from 0, if we replace  with the cumulated rainfall

over the 12 months preceding birth, with no allowance for the location-specific

growing seasons. This indicates that our rainfall exposure index, following

from the first two assumptions underlying Definition 2, captures the mothers’

nutritional intake better than 12-month average rainfall. .

Columns (5) and (6) report corresponding estimates when the same spec-

ification is estimated on the subsamples of babies born in rainy and arid

climate zones, respectively. In both areas, the point estimates have the same

negative sign as in the full sample, but both estimates are too noisy to be
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statistically significant.

Non-linear effects: droughts and floods Since infant death is an ex-

treme health outcome, we might think that it is closely related to extreme

precipitation events, such as droughts or floods — in analogy with the malaria

epidemics discussed in Section 3. The linear specifications estimated in Table

4 do not allow for disproportional effects of extreme events, however.

We use a drought index based on extreme growing season rainfall out-

comes, which is defined as follows.

Definition 3 In each grid cell, we first compute the average value of our

rainfall exposure index,  as well as its standard deviation,  using the

full 45 years of ERA-40 data from 1957 to 2002 (irrespective of whether

we observe child births or not). We then define a binary drought indicator

variable for babies born in location  and running month  by

 = [   − 2] . (4)

That is, the birth is associated with a drought indicator of unity if its

rainfall exposure index falls two standard deviations below the local mean.

For convenience, we define a flood symmetrically, as an extreme event in the

opposite direction.30

Table 6 displays the results from adding the drought and flood indexes

defined above to the econometric specification used in Column (3) of Table

5. The full-sample estimates in Column (1) — in the most conservative speci-

fication with cluster-month plus country-year fixed effects — show a positive,

albeit statistically insignificant, point estimate for drought and an insignifi-

cant, negative estimate for floods. The results for rainy areas in Column (2)

are similar.

When we restrict the sample to arid areas in Column (3), the results are

different. While the rainfall coefficient is insignificant, as in Table 5, the

estimated coefficient on drought is positive and precisely estimated. The

30Our drought measure is similar to the Standardized Precipitation Index (McKee et

al., 1993), but is based on our rainfall exposure index rather than just average rainfall. For

a discussion of drought indices and their application to Africa, see Ntale and Gan (2003).

We also interacted our drought index with the indicator of vulnerability to drought and

flood from Dilley et al. (2005). However, this interaction variable did not significantly

affect infant mortality.
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effect of a drought is now estimated to be quite powerful: it raises infant

mortality by 23.4 per 1000, an amount equal to nearly a quarter of the

sample mean. But we do not find any effect of extreme positive amounts of

rainfall.

The remaining two columns in Table 6 check the robustness of the result in

Column (3) in an analogous way to Columns (4) to (5) in Panel B of Table 2.

Column (4) shows that these estimates for arid areas are robust to clustering

the standard errors at climate zones by 5-year periods.31 In Column (5), we

add cubic polynomials in the past 12-month temperature and rainfall to the

regression, and obtain a point estimate for droughts almost identical to that

in Column (3).

Our results suggest that, in arid areas, extreme shortfalls of rain have

large effects while more piecemeal variations in precipitation do not have

any measurable effects on infant mortality. These results are consistent with

Susser (1991), who reviews studies on the relationship between maternal

nutrition and birth weight and concludes that nutritional intake by mothers

significantly affects birth weight only in famine conditions.

As in Section 3, these results appear to have important implications for

climate change. When it comes to the effects on infant mortality, the main

threat seems to be associated with future extreme events in the form of

droughts in the arid areas of Africa, such as those bordering to the Sahara

and the Kalahari deserts and some regions in East Africa. To the extent that

climate change increases extreme weather events, these areas are expected to

be hit the hardest. Note also that the arid areas and the areas where malaria

is epidemic largely overlap, as can be seen by comparing Figures 3 and 8.

Heterogeneity by household characteristics? The specifications in Ta-

bles 5 and 6 do not allow for any heterogeneous effects across households,

mothers and babies (beyond a difference across climate zones). We now

turn to these issues. It is natural to believe that the vulnerability of the

offspring to maternal malnutrition might differ with mother or household

characteristics, such as occupation, income, or education. Table 7 presents

some estimates relevant to this hypothesis. We focus on two specific sources

of heterogeneity, which appear important a priori and reasonably measur-

able in the DHS data at our disposal. One is occupation: we call a baby’s

31The arid areas are divided into 4 zones by northern versus southern hemispheres and

by steppe versus desert climate zones, as defined by the Köppen climate classification.
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household agricultural, when parents of this baby earn a living only from agri-

culture at the time of the survey. In the full sample, about 42% of all children,

excluding those with missing information on their parents’ occupation, are

born in agricultural households. Measurement error in the classification of

agricultural households is inevitable: parents may have changed the job since

the baby’s birth, and the definition of agriculture in the DHS data also in-

cludes forestry and fishery. These factors, however, would bias our results

against finding heterogeneous effects of weather fluctuations.

We also consider education, and define a baby’s household as well-educated

if both the baby’s mother and her husband (if relevant) have more than eight

years of education. Eight years is chosen as the cutoff because we see a

marked drop in the cross-sectional distribution of infant mortality above this

level of education. In the DHS sample, only slightly more than 8% of the

babies are born to well-educated households. The retrospective nature of the

survey is unlikely to be a major source of mismeasurment when it comes to

education. See Table 1, Panel A for summary statistics by subgroup.

We then run the following regression:

 =  +  ·  +  +  ·  (5)

+  + 
 ·  +  + 

 ·  +  ,

where  is an indicator of baby ’s household type (agricultural or well-

educated). Note that this specification allows cluster-by-month and country-

by-year fixed effects to differ across different household types. Table 7 reports

the estimated coefficients: ,  , , and  .

Column (1) shows the estimates for the occupational breakdown in the

rainy sample. In contrast to the results in Tables 5 and 6, the results suggest

that rainfall exerts a significant negative linear effect on infant mortality if we

look at agricultural households. The sum of the two coefficients on rainfall

( + ) — the total linear effect of rainfall for agricultural households — is

statistically significant at the 5 percent level. The non-interacted coefficient

() shows that the effect is statistically insignificant and close to zero for

non-agricultural households. To the contrary, droughts have no effect on

infant mortality in either groups in rainy areas.

In arid areas, the results in Column (2) show something close to the op-

posite. There is no linear effect of rainfall on infant mortality in either group.

But a drought has a large effect in non-agricultural households, whereas it

has no significant effect in agricultural households (the sum of  and  is

not significantly different from zero).
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A reasonable interpretation of these results is that normal variations in

rainfall tend to make agricultural households in rainy areas better off nutri-

tionally. On the other hand, in arid areas such households have better access

to whatever little crop yield there may be at the time of drought, when the

main burden is borne by non-agricultural households.

Columns (3) and (4) repeat the same exercise for the breakdown of house-

hold type by education. The main result here is two-fold. It is primarily the

non-educated that benefit from more rainfall in rainy areas. And — as might

be expected — the well-educated appear to be protected from the high in-

fant mortality effects of a drought shock in arid areas, perhaps as a result of

higher purchasing power or better opportunities.

As in the malaria section, we have also experimented with conditioning on

various baby and mother characteristics (gender, birth order of child, age or

stature of mother, etc.), on the notion that some types of babies or mothers

may be more vulnerable to malnutrition shocks than others. But this has

produced no robust results.

Heterogeneity by timing of birth As mentioned after Definition 2, our

simple rainfall and drought exposure indexes implicitly assume that the mar-

ginal effects on infant mortality are constant across time. We now relax this

assumption by conditioning the effects of shocks on the time of birth relative

to the beginning of the growing season. Given the earlier results, we focus

on the drought effects in arid areas and run the regression:

 =

3X
=0

 ·  +
3X

=0

 ·  +  +  +  , (6)

where  is a dummy that equals one if calendar month  of date  falls

within the th quarter since the beginning of the growing season in grid 

( = 0 for the quarter immediately before the growing season starts).

Figure 9 plots estimated coefficients of the s and their 95% confidence

intervals. The vertical line in the figure indicates the beginning of the growing

season — recall Figure 7 and our definition of this as the time when the NDVI

value is 20% above its last trough. The babies born in the quarters around

the beginning of the growing season, marked 0 and 1 in Figure 9, seem to

fare much worse in the wake of a drought shock than the babies born closer
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to the harvest. The estimated hike in death rates for these babies — on the

order of 60 per 1000 births — is a stunning number indeed.

These results are interesting in view of the notion of a “hungry season”,

which is discussed in the literature on food availability and poverty. The

average length of the growing season in arid areas is about 6 months in our

sample, and the actual harvest may start before the end of the fixed growing

season we use in the analysis. Therefore, food is the least available in the

period around (in particular, after) the beginning of the growing season. On

top of that, the beginning of the growing season is the time when energy

expenditure of people — including pregnant women — reaches its peak over

the year owing to the need for clearing the land and planting the seeds.

A study on pregnant women in a Gambian village shows that pregnancy,

even in the last month before giving birth, does not reduce the time women

spend at their farms (Roberts et al., 1982). Studying the same rural area

in Gambia, Rayco-Solon et al. (2005) find that the incidence of premature

birth (a major cause of low birth weight) significantly increases during the

first few months of the rainy season, which suggests a possible causation

from increased amount of workload for pregnant women to low birth weight.

Moreover, randomized controlled trials in the same area show that the impact

of dietary supplements to pregnant women on the incidence of low birth

weight and early infant death are both significantly larger for babies born in

the hungry season (Ceesay et al., 1997). Our empirical findings suggest that

these results from particular Gambian villages may be applicable to other

arid areas of Africa.

Summary Let us briefly summarize. Extreme negative rainfall shocks

(droughts) have a powerful effect on infant death in areas with steppe and

desert climates. Rainfall above the site-specific seasonal mean in the rel-

evant growing season diminishes infant mortality only for babies born in

agricultural households in the rainy parts of Africa. Drought shocks impinge

especially hard on babies to parents that do not work in agriculture, are not

well educated, and on babies born around the start of the rains.

5 Malaria and Malnutrition

In the two previous sections, we have investigated separately two channels

— malaria and malnutrition — whereby local seasonal weather shocks affect
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infant mortality rates in Africa. We have taken care to define these weather

shocks according to the mechanism under investigation, but ultimately all

the shock measures emanate from the same weather data. It is thus legiti-

mate to ask if the main results hold up when we allow both types of shocks

to occur simultaneously. For example, more rainfall can potentially have

two opposite effects on infant mortality: more rain may be good through

increased nutrition but bad through increased malaria. For the babies in our

sample, the malaria exposure index  is indeed positively correlated with

the rainfall exposure index  with a correlation coefficient in the full sample

of 0.77.32

Table 8 revisits the two main results above: the effect of malaria shocks

in epidemic areas and the effect of droughts in arid areas. Comparing the

epidemic malaria zone in Figure 3 with the arid climate zone in Figure 8, we

see that these zones spatially overlap but not perfectly so. In Column (1),

we reproduce the malaria results from Column (3) of Panel B in Table 2. In

Column (2), we add  and  as regressors. Column (3) further adds the

cubic polynomials in the past 12-month temperature and rainfall. As the

estimates show, the malaria result is essentially the same, while we find no

significant effects of rainfall exposure in the growing season(s).

In Column (4), we estimate the effect of drought in arid areas in the

same specification as in Column (3) of Table 6 except that we now drop

the flood indicator. In Column (5), we add  as a regressor. Here, we

find a positive and large effect of malaria shocks, 40% higher than in the

epidemic areas, while the coefficient on the linear rainfall term increases its

size in absolute terms by about 75% of its previous value (still insignificant,

though). The coefficient on the drought indicator does not change while

its precision increases. Column (6) further adds the cubic polynomials and

shows these results are robust. This change in the coefficient is natural,

given the positive correlation between the rainfall exposure and the malaria

exposure indexes: in Tables 5 and 6 we were most likely under-estimating the

(absolute value of the) negative effect of rainfall, thereby falsely attributing

some infant deaths caused by malaria to a weaker nutritional channel.

32If we drop duplicated observations (multiple babies are assigned the same values of

 and  if they are born in the same grid cell in the same month), we still obtain the

correlation coefficient of 0.74.

32



A memento for economists The result in the last part of Table 8 can

perhaps also serve as a memento for development economists, who have in-

creasingly relied on research designs in which rainfall is used as an instru-

ment/indicator of income or poverty shocks. Take, for example, Miguel et

al. (2004), who use rainfall as an instrument for national income as a deter-

minant of civil conflicts in sub-Saharan Africa. Because malaria is common

in many war-ridden states, its dependence on rainfall calls into question the

exclusion restriction underlying the IV strategy to the extent that a higher

disease burden has a separate effect on conflict, beyond its effects on income.

Another example might be the recent study by Maccini and Yang (2009),

who use negative rainfall shocks as an indicator of negative early-life nutri-

tion shocks in Indonesia. Since malaria is common in Indonesia, failing to

account for the effect of rain on malaria infection might lead the authors to

underestimate the effect of early life shocks on adult outcomes.

6 Final Remarks

We believe this paper makes substantive as well as methodological contri-

butions. In terms of substance, we uncover two channels whereby weather

might impact on infant mortality in African countries. Weather shocks that

raise malaria exposure of pregnant mothers have a large impact on infant

death, especially when they strike early in pregnancy and when they sow the

seeds of a malaria epidemic in areas where malaria is rare. Rainfall shocks in

the growing seasons that affect maternal nutrition when the child is in utero

only appear to affect babies born to agricultural households in Africa’s rainy

climate zones. Drought shocks have a pronounced effect on infant death in

arid areas, especially for babies whose parents are not well educated, not

dependent on agriculture, and for babies who are born in the hungry sea-

son. The malaria and drought effects we estimate are statistically robust and

quantitatively large.

These results paint a dismal picture for certain parts of Africa, especially

the areas with scant rainfall that also suffer from epidemic malaria, such as

the Sahel and mountainous areas in East Africa. Due to the erratic move-

ments of the Intertropical Convergence Zone, these areas face large variations

in annual rainfall. When it rains a lot this may cause a malaria epidemic,

when it rains a little this may cause a drought — whichever way with bad

outcomes for infant mortality.
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In terms of methodology, we hope to have outlined a possible research de-

sign for impact research, showing how one may combine very different data

sources for large-scale statistical work, when conventional data sources are

absent or poor. A similar approach and statistical methodology may be used

to study other outcomes of interest in Africa or other regions. For exam-

ple, further research on Africa could use DHS data to look at the weather

dependence of other outcomes, such as child mortality, child health, or fertil-

ity. Perhaps one may also look at more complex issues, such as generational

spillovers, whereby girls with negative weather shocks in early life become

physically or cognitively impaired adults and thus face a larger risk of bad

outcomes when they give birth themselves.

There is certainly scope for improvement on the natural-science side of our

measurement. For example, one could try to use re-analysis from regional

rather than global climate models to obtain more recent and fine-gridded

weather data, so as to better pick up the spatial distribution of rainfall. As

another example, one could try to use structural crop-yield models to get a

better handle on the interplay between temperature and rainfall in producing

local crop yields.

Our results also give some hints on the analysis of future climate change.

Most climate projections suggest that Africa will get a great deal warmer

over time, and that its rainfall patterns will become more erratic especially

in arid areas. Warming means that new parts of Africa, such as mountain-

ous regions, will be subject to weather-induced malaria epidemics. More

erratic rain patterns mean that arid/epidemic areas will be subject to larger

changes in annual rainfall. Our results on the exposure to malaria epidemics

and droughts give a strong hint that both types of change might seriously

threaten infant survival. However, we do not believe that the right way to

obtain clearer results about these risks is to carry out a simple statistical for-

ward projection of the current results. Serious analysis will have to consider

mechanisms of adaptation, like migration or better health protection, as the

climate changes and income grows over time. This task is left for future

research.
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Appendix

Data We use crop-price data compiled by the USAID Famine Early Warn-

ing Systems Network (FEWS NET).33 Specifically, we sample six major crops

in Africa (maize, rice, wheat, cassava, millet, and sorghum) and markets in

eight countries, for which we also have data for infant mortality (Burkina

Faso, Ethiopia, Kenya, Malawi, Mali, Tanzania, Uganda, and Zambia).34

Price data is aggregated to the monthly frequency if the original data is

daily or weekly. The geographic coordinate of each market in the data is

obtained by searching the name of the market in the National Geospatial-

Intelligence Agency’s Geonames Search.35 The ERA-40 weather data used

in our infant-mortality analysis is then matched spatially with each market

in ArcGIS 9.3 (the Spatial Join tool). Figure A1 shows the locations of 424

markets in the sample with the color indicating which climate zone (rainy or

arid) the market belongs to. The sample period is from 1970 to 2002.

Empirical strategy We estimate the following regression equation:

ln 

 = 

 +  + 

1 +  + 




where 

 is the price (in domestic currency units) of crop  in market 

(located within grid cell  and in country ) in running month  (which is

month  of year ), 1 the total amount of rainfall during the previous

completed growing season (corresponding to the first term on the right-hand

side of equation (3)) in grid cell , and  the indicator for 1 being

two standard deviations below the location-specific mean.36 We control for

crop-by-market-by-month fixed effects, 
, so that the impact of weather is

33We downloaded the data from earlywarning.usgs.gov/adds in October 2009. Since

then, the FEWS NET has decided to discontinue the data distribution because, according

to James Rowland at USGS, they are unable to keep the data up-to-date.
34These six major crops account for 57% of calorie availability in Africa in 2000 according

to FAO’s Food Balance Sheets. In the price data, each crop has subcategories (in flour,

dried, fresh, etc.). We treat each subcategory as a single crop when we create fixed effects.

Therefore, there are more than 6 crops in the sample.
35The address is geonames.nga.mil. If the name of the market cannot be found, we

use Global Gazetteer Version 2.1 (www.fallingrain.com/world), Wikipedia and then the

Google search as the final resort.
36Note that  is different from  defined in equation (4). It is defined over 


1 , not

over .

42



identified from year-to-year deviations from the average location-by-crop spe-

cific seasonal pattern. We also control for crop-by-country-by-year fixed ef-

fects, , so as to take into account crop-by-country-specific non-parametric

trends, as well as national price inflation and exchange-rate changes. The co-

efficients of interest,  and , measure the percentage change in price due to

a one-centimeter increase in growing-season rainfall and due to unusually low

growing-season precipitation, respectively. We estimate this equation sepa-

rately for rainy and arid areas with standard errors clustered at the ERA-40

grid-cell level.

The results are displayed in Table 4.
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Figure 1 – DHS Clusters in the Sample 

Notes: Green circles indicate urban clusters; red ones indicate rural clusters 



 
Figure 2 – ERA-40 Grid and DHS Clusters in the Sample 

Notes: Purple squares indicate ERA-40 grid cells; green circles indicate DHS clusters. 



 
Figure 3 – Malaria Exposure Zones in Africa 

Notes: Red, yellow, and green circles indicate DHS clusters in endemic, epidemic, and non-malarious areas, respectively. 



 
Figure 4 – Low and High Epidemic Malaria Exposure 

Notes: Orange and cream-colored circles indicate DHS clusters with the average number of malarious months being 0-2 and 2-4 
months per year, respectively. 



 
Figure 5 – Infant Death and Malaria Shocks by Trimester 

Notes: Plotted are the estimated coefficients on the number of malaria months in each trimester in a regression of the infant death 
indicator (multipled by 1000) on these variables and cluster-by-month fixed effects and country-by-year fixed effects. Dashed lines 
indicate the 95 percent confidence intervals where the standard errors are clustered at the ERA-40 grid cell level. 
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Figure 6 – Total monthly rainfall (in mm) in Africa  

for February, May, August, and November 
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Figure 8 – Arid and Rainy Climate Zones in Africa 

Notes: Blue circles indicate DHS clusters in rainy climate zones (Af, Am, Aw, Cs, Cw, and Cf in Koppen climate classification); 
yellow circles indicate those in arid climate zones (BS and BW). These climate zones are based on the average monthly temperature 
and total rainfall calculated from ERA-40. 



 
Figure 9 – Infant Death and Drought by Birth Quarter relative to the Beginning of 

the Growing Season 
Notes: Plotted are the estimated coefficients of !k’s in equation (6) in the text. Dashed lines indicate the 95% confidence intervals 
where standard errors are clustered at the ERA-40 grid cell level. The vertical line indicates the beginning of the growing season. 
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Table 1 – Summary Statistics 
 

Panel A:  Infant Mortality per 1000 live births 
 Sample 
 mean 

Number of 
clusters 

Number of 
observations 

    
  

S.D. cluster-
level means 

  
Full sample 100.4 69.2 17772 975800 
     
By area     
Endemic 107.6 73.4 7565 401202 
Epidemic 107.2 68.8 6013 378543 
Non-malarious 72.5 56.1 4194 196055 
Rainy 102.5 71.4 9633 493165 
Arid 98.3 66.1 8139 482635 
     
By HH type     
Agricultural 119.4 111.2 12287 392444 
Non-agricultural 85.4 92.1 17027 541187 
Highly educated 46.3 118.4 9113 80079 
Not highly educated 105.4 74.2 17623 891759 
          

Panel B:  Malaria Exposure Index (months) 
 Sample Number 
 mean of grids 

Number of 
observations 

  

Mean  S.D. 
within-grid  

  
Endemic 8.0 1.0 365 401202 
Epidemic 1.8 1.0 275 378543 
          

Panel C: Nutrition Exposure Index (cm of rainfall) 
 Sample Number 
 mean of grids 

Number of 
observations 

  

Mean  S.D. 
within-grid  

  
Rainy 126.2 28.4 439 493165 
Arid 17.4 5.9 304 482635 
          

 



 

Table 2 – Infant Mortality and Malaria: Basic Results 
Dependent Variable: Infant death indicator (multiplied by 1000) 

 
   Panel A    
 (1) (2) (3) (4) (5) (6) 
Sample Full Full Full Endemic Endemic Endemic 
Malaria index in 0.53* 0.75** 0.27 0.06 0.11 -0.28 
year before birth (0.32) (0.34) (0.38) (0.43) (0.45) (0.53) 
       
Fixed effects Cluster, Year Cluster-month, 

Year 
Cluster-month, 
Country-Year 

Cluster, Year Cluster-month, 
Year 

Cluster-month, 
Country-Year 

S.E. clustered at ERA-40 cells ERA-40 cells ERA-40 cells ERA-40 cells ERA-40 cells ERA-40 cells 
# of S.E. clusters 743 743 743 365 365 365 
# of obs. 975800 975800 975800 401202 401202 401202 
       
   Panel B    
 (1) (2) (3) (4) (5) 
Sample Epidemic Epidemic Epidemic Epidemic Epidemic 
Malaria index in 1.17** 1.55*** 0.94* 0.94** 1.22* 
year before birth (0.49) (0.52) (0.53) (0.42) (0.67) 
      
Fixed effects 
 

Cluster, Year Cluster-month, 
Year 

Cluster-month, 
Country-Year 

Cluster-month, 
Country-Year 

Cluster-month, 
Country-Year 

Polynomials No No No No Yes 
S.E. clustered at ERA-40 cells ERA-40 cells ERA-40 cells 5-year by 

exposure 
ERA-40 cells 

# of S.E. clusters 275 275 275 36 275 
# of obs. 378543 378543 378543 378543 378543 

Notes: Robust standard errors in parentheses, clustered as indicated. * significant at the 10 percent level, ** 5 percent, *** 1 percent. Fixed effects 
included as indicated. The row “Polynomials” in Panel B indicates whether the cubic polynomials in the average monthly temperature and total 
precipitation over the 12-month period up to the birth month are included. In Panel B column (4), “exposure” refers to four areas with above or 
below 2 malaria months per year, north and south of the equator, respectively.  
 



Table 3 – Infant Mortality and Epidemic Malaria: Non-linear Effects 
Dependent Variable: Infant death indicator (multiplied by 1000) 

 

 (1) (2) (3) (4) (5) (6) 
Sample 0-2 months 

 avg. malaria 
2-4 months 

 avg. malaria 
0-2 months 

 avg. malaria 
0-2 months 

 avg. malaria 
2-4 months 

 avg. malaria 
2-4 months 

 avg. malaria 
Malaria months in  0.42 0.92     
year before birth (1.14) (0.59)     
0 malaria months   0.30 0.93 -3.09 -7.09** 
   (2.76) (2.85) (2.98) (3.44) 
       
1-2 malaria months     -6.92*** -8.59*** 
     (2.23) (2.37) 
       
3-4 malaria months   1.31 1.20   
   (3.80) (3.87)   
       
5-6 malaria months   15.62 14.14 -4.59 -3.33 
   (11.89) (11.49) (3.68) (3.83) 
       
>6  malaria months   38.44** 36.56** 15.89** 20.75** 
   (15.62) (15.74) (7.69) (8.18) 
       
F-test(polynomials)     1.48  2.61 
     [0.190]  [0.020] 
Fixed effects Cluster-month, 

Country-year 
Cluster-month, 
Country-year 

Cluster-month, 
Country-year 

Cluster-month, 
Country-year 

Cluster-month, 
Country-year 

Cluster-month, 
Country-year 

Polynomials No No No Yes No Yes 
S.E. clustered at ERA-40 cells ERA-40 cells ERA-40 cells ERA-40 cells ERA-40 cells ERA-40 cells 
# of S.E. clusters 150 125 150 150 125 125 
# of obs. 187858 190685 187858 187858 190685 190685 
Notes: Robust standard errors in parentheses, clustered as indicated. * significant at the 10 percent level, ** 5 percent, *** 1 percent. Fixed 
effects included as indicated. The row “Polynomials” indicates whether the cubic polynomials in the average monthly temperature and total 
precipitation over the 12-month period up to the birth month are included. The null for F-test(polynomials) is that the coefficients on 
polynomial terms are all zero.!



Table 4 – Crop Price and Growing-season Rainfall 
The Dependent Variable: Log Crop Price 

 
 (1) (2) 
Sample Rainy Arid 
   

Rainfall in previous completed  -0.00046*** 0.00005 

growing season (centimeters) (0.00015) (0.00036) 

   

Indicator for rainfall in previous  completed  0.067*** 0.095*** 

growing season < Mean - 2 SD (0.022) (0.021) 

   

Mean and SD of rainfall in previous completed    85.5 25.2 

growing season (centimeters)   (45.7) (18.4) 

   

# of ERA-40 cells 85 75 

# of obs. 109124 74631 
 

Notes: Robust standard errors in parentheses, clustered at the ERA-40 cell level. * significant at the 10 percent level, ** 5 percent, 
*** 1 percent. Fixed effects for crop-by-market-by-month and for crop-by-country-by-year are included in both regressions.  

 
 



Table 5 – Infant Mortality and Nutrition: Linear Effects 
 Dependent Variable: Infant death indicator (multiplied by 1000) 
 

 (1) (2) (3) (4) (5) (6) 
Sample Full Full Full Full Rainy Arid 
       
Rainfall (centimeters)  -0.015 -0.018 -0.044*  -0.034 -0.067 
in growing seasons  (0.018) (0.019) (0.023)  (0.025) (0.104) 
associated with birth       
       
Rainfall (centimeters)    -0.017   
in last 12 months    (0.013)   
       

Fixed effects Cluster, Year Cluster-month, 
Year 

Cluster-month, 
Country-year 

Cluster-month, 
Country-year 

Cluster-month, 
Country-year 

Cluster-month, 
Country-year 

S.E. clustered at ERA-40 cells ERA-40 cells ERA-40 cells ERA-40 cells ERA-40 cells ERA-40 cells 
# of S.E. clusters 743 743 743 743 439 304 
# of obs. 975800 975800 975800 975800 493165 482635 
 

Notes: Robust standard errors in parentheses, clustered as indicated. * significant at the 10 percent level, ** 5 percent, *** 1 percent.!Fixed 
effects included as indicated. !

 



Table 6 – Infant Mortality and Nutrition: Nonlinear Effects 
Dependent Variable: Infant death indicator (multiplied by 1000) 

 
 (1) (2) (3) (4) (5) 
Sample Full Rainy Arid Arid Arid 
      
Rainfall (centimeters) -0.039* -0.030 -0.036 -0.036 -0.052 
in growing season (0.024) (0.026) (0.10) (0.067) (0.10) 
      
Drought (0,1) in  8.22 -2.81 23.4*** 23.4*** 22.7*** 
growing season (8.04) (12.2) (8.49) (7.36) (8.52) 
      
Flood (0,1) in -1.54 -1.95 -1.57 -1.57 -1.57 
growing season (2.67) (3.91) (3.80) (3.42) (3.75) 
      
F-test (polynomials)     0.72 
      [0.633] 
Fixed effects 
 

Cluster-month 
Country-Year 

Cluster-month, 
Country-Year 

Cluster-month, 
Country-Year 

Cluster-month, 
Country-Year 

Cluster-month, 
Country-Year 

Polynomials No No No No Yes 
S.E. clustered at ERA-40 cell ERA-40 cell ERA-40 cell 5-year by climate 

zone 
ERA-40 cells 

# of S.E. clusters 743 439 304 35 304 
# of obs. 975800 493165 482635 482635 482635 

Notes: Robust standard errors in parentheses, clustered as indicated. * significant at the 10 percent level, ** 5 percent, *** 1 percent. Fixed effects 
included as indicated. The row “Polynomials” indicates whether the cubic polynomials in the average monthly temperature and total 
precipitation over the 12-month period up to the birth month are included. In column (4), “climate zone” refers to “steppe” and “desert” climates 
types, north and south of the equator, respectively. The null for F-test(polynomial) is that the coefficients on polynomial terms are all zero.  

 



          Table 7 – Infant Mortality and Nutrition: Heterogeneous Effects 
Dependent Variable: Infant death indicator (multiplied by 1000) 

 
 (1) (2) (3) (4) 
Sample 
Household type  

Rainy 
 Agriculture 

Arid  
Agriculture 

Rainy  
Educated 

Arid 
 Educated 

     
Rainfall (centimeters) 0.007 0.021 -0.049* -0.049 
in growing season (0.031) (0.176) (0.028) (0.101) 
     
Rainfall (centimeters) x -0.106** -0.205 0.153** 0.395 
Household type (0.045) (0.246) (0.069) (0.395) 
     
Drought (0,1) in  -1.448 30.947** -2.277 27.290*** 
growing season (16.450) (12.410) (13.252) (9.399) 
     
Drought(0,1) x 0.611 -17.827 -63.765 -62.504*** 
Household type (17.210) (22.540) (88.540) (19.040) 
     
F-test (rainfall) 5.89 1.52 2.67 0.82 
  [0.016] [0.218] [0.103] [0.365] 
F-test (drought) 0.00 0.46 0.61 4.81 
  [0.953] [0.498] [0.434] [0.029] 
# of ERA-40 cells 439 304 439 304 
# of obs. 469600 464031 490908 480930 
Notes: Robust standard errors in parentheses, clustered at the ERA-40 cell level. * significant at the 10 percent level, ** 5 
percent, *** 1 percent. Fixed effects for cluster-month and country-year interacted with household type indicators are 
included (see equation (5) in the text for the exact speficiation). The nulls for F-test (rainfall) and F-test (drought) are that 
the sum of rainfall and drought coefficients, respectively, is equal to zero.  !



Table 8 – Infant Mortality, Nutrition and Malaria 
Dependent Variable: Infant death indicator (multiplied by 1000) 

 
 (1) (2) (3) (4) (5) (6) 
Sample Epidemic Epidemic Epidemic Arid Arid Arid 
       
Malaria index  0.94* 0.94* 1.22*  1.34* 2.25*** 
in year before birth (0.53) (0.53) (0.66)  (0.71) (0.81) 
       
Rainfall (centimeters)  -0.016 -0.025 -0.046 -0.080 -0.064 
in growing seasons 
associated with birth 

 (0.060) (0.064) (0.10) (0.10) (0.098) 

       
Drought (0,1) in  7.61 7.55 23.3*** 23.3*** 22.2*** 
growing seasons 
associated with birth 

 (14.3) (14.5) (8.47) (8.33) (8.38) 

       
F-test (polynomials)   0.36   1.33 
    [0.903]   [0.244] 
Fixed effects 
 

Cluster-month, 
Country-Year 

Cluster-month, 
Country-Year 

Cluster-month, 
Country-Year 

Cluster-month, 
Country-Year 

Cluster-month, 
Country-Year 

Cluster-month, 
Country-Year 

Polynomials No No Yes No No Yes 
S.E. clustered at ERA-40 cells ERA-40 cells ERA-40 cells ERA-40 cells ERA-40 cells ERA-40 cells 
# of S.E. clusters 275 275 275 304 304 304 
# of obs. 378543 378543 378543 482635 482635 482635 
 

Notes: Robust standard errors in parentheses, clustered as indicated. * significant at the 10 percent level, ** 5 percent, *** 1 percent. Fixed 
effects included as indicated. The row “Polynomials” indicates whether the cubic polynomials in the average monthly temperature and 
total precipitation over the 12-month period up to the birth month are included. The null for F-test (polynomials) is that the coefficients on 
polynomial terms are all zero.  !

 



!

Appendix Figure A1 – Crop markets in the Sample 
Notes: Blue and yellow squares indicate markets in rainy and arid areas, respectively.!
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