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Abstract

In most meetings of shareholders, members of societies, and clubs, the

number of attendees must exceed an exogenously given participation re-

quirement in order for a decision to be taken. Otherwise, the meeting has

to be postponed. In order to understand the effect of such a participa-

tion requirement on individuals’ behavior and the decision outcome, we

model a setup of repeated meetings based on Osborne et al. (2000). We

show that the decision is delayed when the quorum requirement is high

and members are not harmed by postponing the decision. If this is the

case, the number of attendees taking the decision may be smaller than

in the no-quorum case. Finally, we show that in order to avoid policy

distortions, the required number of participants should be even.

1 Introduction

In any kind of decision making processes where a participation quorum require-
ment applies, the decision is valid only if participation is higher than a given
level. Examples are various and include large elections such as referenda and
presidential elections, but even more frequently smaller scale decision making
meetings such as meetings of faculty members, shareholders, neighbors, or mem-
bers of many societies, and clubs1.

Although economists have extensively studied alternative voting rules, the
use of a participation quorum has received very little attention. Recently, differ-
ent authors (Maniquet and Morelli, 2010; Herrera and Mattozzi, 2009; Aguiar-
Conraria and Magalhães, 2010,; Houy, 2009) have studied the effect of a partic-
ipation quorum in referenda. In this case, when not enough voters participate,

1The voting procedure in shareholders’ meetings varies among most countries and is de-

termined by each county’s corporate law (Dornseifer, 2005).
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the referendum is considered to be invalid and the outcome is a reversal to the
status quo. On the contrary, in decision making meetings, in case the quorum is
not fulfilled, the meeting has to be repeated since a decision must be taken (i.e.
in contrast to the case of referenda there is no reversal to the status quo). The
importance of analyzing such a situation lies in the fact that, although such a
participation requirement is widely applied, as we show, it often has negative
welfare implications, including policy distortions.

We build on the model of costly meetings by Osborne et al. (2000)2. In the
general setup, which may apply to any meeting and which we refer to as the
No-Quorum Game, a group of individuals has to decide on a policy through
a decision making meeting. Each member of the group independently decides
whether to participate, at a cost, in the meeting, whose outcome is assumed to
be a compromise between the participants’ favorite policies. In deciding whether
to attend or not, each member compares the cost of attending with the impact
of her presence on the policy decision.

Similar to Bulkley et al. (2001), we characterize the Nash equilibrium of
the one-shot attendance game by using a constructive approach as follows: We
assume a sequential exit process that starts with the full set of attendees, and
at each step of which the individual with the largest benefit from not attending
the meeting is the one who exits. The process finishes when no further attendee
is willing to exit. We fully characterize this exit process, and we argue that
it ends at a unique Nash equilibrium belonging to the set of equilibria of the
original Osborne et al. (2000) one-shot attendance game. Through this exit
process, we are able to characterize the unique Nash equilibrium of any such
attendance game, which consists in a set of attendees and the corresponding
policy decision.

More importantly, in order to extend the attendance game to decision mak-
ing meetings for which a participation quorum applies (which we refer to as the
quorum game), we introduce two additional notions: the participation quorum
itself, and how much members are harmed by the fact that a decision is delayed
in case the meeting has to be postponed. Our ultimate goal is to analyze the
effect of such a participation quorum on the equilibrium set of attendees, the
policy decision and on total welfare.

As in Osborne et al. (2000), the equilibrium of the No-Quorum game that is
reached through the exit process is such that moderates tend to abstain, while

2For other applications of Osborne et al. (2000), see, for example, Aragones and Sánchez-

Pagés (2009)
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extremists tend to attend. Introducing a participation quorum in this setup
leads to several insights. First, there is no situation in which some individuals
show up in the first meeting and the quorum is not met. That is, either the
participation quorum is fulfilled and the decision is taken in the first meeting,
or everyone abstains in the first meeting and the decision is taken in the second
one.

Second, the introduction of a quorum might either increase or decrease the
number of attendees in equilibrium, depending on whether the second meeting
is ever reached. More specifically, if the quorum requirement is higher than the
number of members who would attend if there was no quorum, the decision is
taken in the first meeting when individuals are harmed “enough” by delaying
the decision. In that case, the quorum is binding, and its introduction yields
to an increase in the equilibrium number of attendees with respect to the no-
quorum case. Conversely, if the second meeting is ever reached, and provided
that individuals value strictly less a decision that has been postponed, the intro-
duction of a quorum has the opposite effect of lowering the number of attendees
in equilibrium.

Third, given that we focus on symmetric individuals’ favorite policies, intro-
ducing a quorum has in most cases no effect on the chosen policy, no matter
whether the second meeting is reached or not. In terms of welfare, it turns out
that introducing a quorum, while having no direct policy effects, always yields
to a loss of aggregate welfare, even in the cases for which less individuals attend
the meeting as compared to the no-quorum equilibrium.

However, there does exist a situation in which the introduction of a quorum
might yield to a policy distortion, this situation being that the quorum is odd
and strictly higher than the number of attendees would there be no quorum.
Intuitively, such a situation might, in some cases, allow an individual to free
ride on the attendance of another committee member. As a result, the equilib-
rium policy ends up being biased. This result clearly has negative implications
from a welfare perspective. Indeed, not only does the introduction of a quorum
force more individuals to attend the meeting, which, given that the policy re-
mains unaffected, is always a pure welfare loss, but it might also yield to policy
distortions when it is odd, which is even worse in terms of aggregate welfare.

The paper is structured as follows: In Section 2, we present the model and
we describe formally the attendance and the quorum game. In Section 3 we
present the results of our analysis and in Section 4 we conclude. All proofs can
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be found in the Appendix.

2 The Model

2.1 The Setup

The policy space is continuous, one-dimensional, and represented by the inter-
val [0, 1]. There is a finite group of N � 2 individuals who must collectively
choose a policy, that is, a point x ∈ [0, 1]. We denote individual i’s favorite
policy/position by xi ∈ [0, 1]. We assume that individuals’ preferences are
single-peaked and uniformly distributed in the [0, 1] interval, so that the dis-
tance between the ideal policy of any two individuals is d = 1/(N − 1).

Each individual cares about the remoteness (but not the direction) of the
collectively chosen policy x from his favorite policy xi. Specifically, let individual
i’s valuation of the distance between policy x and his ideal point xi be Vi(|xi −
x|), where V : [0, 1] → [0, 1] is a continuous function. We assume that with
respect to the distance between x and xi, V is strictly increasing, and strictly
convex. Furthermore, notice that it is symmetric with respect to xi, that is, the
valuation of a policy x depends only on the distance between x and xi and not
on the direction in which x differs from xi.

Each individual chooses whether or not to attend a meeting, at which a
policy is to be selected. Hence, the available actions of individual i are either
to attend the meeting or to abstain. Every individual who attends a meeting
bears a cost c > 0. The final utility of individual i is then given by

Ui = 1− Vi(|xi − x|)− cαi

where αi = 1 if i attends the meeting (and so pays a cost c) and αi = 0 if i

abstains. Therefore, U(.) is strictly decreasing and strictly concave with respect
to the distance between x and xi.

The incentive of every individual to attend a meeting lies in the fact that
he can affect the chosen policy to some extent. For simplicity, we assume that
the chosen policy x is the median of the favorite policies of the members who
decide to attend3. Furthermore, given the symmetric distribution of individuals’
preferences in [0, 1], we assume that the default policy (i.e. the one chosen when
everyone abstains) is given by x = 1

2 . This is the most natural assumption, since

3In case the number of attendees is even the median is defined by

x N
2

+x N
2 +1

2
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any other choice for the default would mean introducing an arbitrary bias in
favor of some individuals.

2.2 The Exit Process

The attendance game of Osborne et al. (2000) is a one-shot game in which all
individuals simultaneously decide whether to abstain or to attend a (costly)
meeting. In this setup, there may exist multiple pure strategy Nash equilibria,
where in general, moderates tend to abstain, while extremists tend to pay the
cost and attend4.

Given that that the ultimate goal of our paper is to study the effect of an
exogenously given (quorum) voting rule on the decision process, the multiplicity
of equilibria may be problematic, as it may not allow us to draw sharp compar-
isons among different quorum rules regarding the decision outcome. In order
for the model of Osborne et al. (2000) to serve our purposes, we are interested
in an equilibrium refinement such that the Nash equilibrium of the attendance
game is unique.

Similar to Bulkley et al. (2001), we assume that the attendance decision of
each member is determined by a sequential exit process. At each step of the
process, given any set of attendees, we assume that the attendee to exit is the
individual with the highest potential benefit from doing so. Our exit process
begins with the full set of individuals attending, and continues successively until
no attendee has an incentive to exit.

Formally, let A be any set of attendees with decision outcome M . For some
i ∈ A, let A� = A \ {i} with decision outcome M �. Let the benefit of exit of
attendee i be given by the following function:

bi(A) = UExit
i − UAttend

i = Vi(|xi −M |)− Vi(|xi −M �|) + c

Let E be the set of attendees with a positive benefit of exiting (i.e. E = {i : i ∈
A and bi(A) > 0}). The exit process is defined as follows:

The process starts with the full set of individuals attending (i.e. A =
{1, 2, ..., N}) and proceeds in the following way:

For any committee A:

1. If E = ∅ then the process terminates;
4For the issue of multiplicity of equilibria, see Dhillon and Lockwood (2002)

5



2. If E �= ∅ then attendee j exits, where j is defined by: bj(A) be the maximal
element of {bi(A)}, i ∈ E;

3. If there are more than one maximal elements in E, then the attendee who
exits is drawn randomly among the ones having the maximal bi(A).

Intuitively, as in Osborne et al. (2000), when an attendee decides to exit, he
does not have to pay the cost of attending (i.e. c), while he suffers some disutility
in terms of the decision outcome since as a result of exiting, the decision moves
further from his ideal policy (i.e. Vi(|xi−M |)−Vi(|xi−M �|)) < 0). Notice that
at each step of the exit process, several attendees may have a positive benefit
from exiting. Having assumed that at each step the attendee to exit is the one
who has the highest benefit from doing so, and given that all individuals have
to pay the same cost in case of attending, the individual that actually exits is
the attendee with the smallest disutility from doing so in terms of the policy
outcome (i.e. the attendee with the lowest Vi(|xi −M �|)− Vi(|xi −M |))).

One can think of the above situation as following: Suppose that the com-
mittee members meet in a room where the meeting has to take place. Once in
the room, the individuals have to decide whether to leave the room or to stay
and pay the (opportunity) cost of attending the meeting, and thus influence to
some extent the decision taken. Given such a situation, and for a given cost,
we assume that the first individual to leave the room is the one for whom the
benefit of leaving is the highest. After the first individual has left, the next
member to exit (if any) is the one with the highest benefit from leaving given
the remaining set of people in the room, and so on.
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Figure 1: An Example of a 5 members committee. We denote by x a member who

abstains, and with a circle a member who attends.

Example 1. In order to illustrate how a decision is reached given the exit
process defined above, suppose N = 5, so that we start with a (full) set of 5
attendees as in situation A1. Let M denote the chosen policy for any given set
of attendees, and let M � denote the new chosen policy resulting from the exit of
some attendee from the committee. Then, for any given set of attendees, let m

denote the attendee located at M (when the number of attendees is odd), and let
l and r denote the first attendees on the left and on the right of M respectively.
Consider situation A1 in the figure. In that situation, we have that M = 1

2 ,
which coincides with the location of m = 3, while l = 2 and r = 4. If m

exits the committee, the policy remains at 1
2 , that is, M = M �, so that m is

willing to exit whenever Vm(0) > Vm(0) − c, or, equivalently, c > 0. If any
i �= m exits, he would suffer a strictly positive loss in terms of distance (i.e.
Vi(|xi −M |)− Vi(|xi −M �|) < 0 for all i �= m). Hence, m is the first attendee
to leave (i.e. b3(A) is the max element of E), so that we go to situation A2.

At A2, observe that both l and r are willing to leave if and only if V ( 1
4 ) >

V ( 1
2 ) − c, or, equivalently, c > V ( 1

2 ) − V ( 1
4 ). If this inequality is not satisfied,

the exit process stops here, and we are at an equilibrium (with the corresponding
policy being M = 1

2). Suppose now, on the contrary, that the inequality is satis-
fied so that l and r want to leave. Notice then that at this stage, both attendees
1 and 5 might also want to exit. However, their disutility in terms of distance
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from doing so is given by V ( 3
4 )−V ( 1

2 ) > V ( 1
2 )−V ( 1

4 ) by the strict convexity of
V (.). Therefore, the disutility from leaving is strictly higher for l and r than it
is for 1 and 5, so that either one of the formers leaves first. Suppose, WLOG,
that l exits, so that we go to A3.

At A3, it is clear that m = 4 would exit before r = 5. Indeed, m wants
to exit if and only if c > V ( 1

4 ), which is true since we have assumed at stage
A2 that c > V ( 1

2 ) − V ( 1
4 ) and V(.) is strictly convex. Hence, m wants to

leave. Then, observe that the potential disutility of r from exiting is given by
V ( 5

8 ) − V ( 1
4 ) > V ( 1

4 ), so that m exits before r. Now, attendee l wants to exit
if and only if c > V ( 7

8 ) − V ( 3
4 ). As we cannot compare the potential disutility

from exiting between m and l, either of the two might leave first.

Suppose that V (.) is such that m exits before l, so that we are at stage A�
4.

Again, observe that both l = 1 and r = 5 have the same incentives to leave the
committee, that is, they want to exit if and only if c > V (1) − V ( 1

2 ). If this
inequality is not satisfied, the exit process stops here, and we are at an equi-
librium. Indeed, neither l nor r want to exit, and none of the abstainers want
to attend: it is direct that neither 4 nor 2 (by symmetry) want to attend, as
they just left. Then, it is also direct that abstainer 3 has no incentive to attend,
as there would be no effect on the policy (which is already located at his ideal
point) while he would have to bear the cost of attending. Hence, as no individual
wants to deviate, we are at an equilibrium (with the corresponding policy being
M = 1

2). Suppose now, on the contrary, that c > V (1) − V ( 1
2 ), and suppose,

WLOG, that l leaves, so that we reach A�
5.

At A�
5, only attendee m is left, and the chosen policy M is at his ideal point.

As c > V ( 1
2 ), m leaves, and we reach A�

6, at which no attendee is left. As no
abstainer wants to attend, we are at an equilibrium. Indeed, it is direct that
neither 5 nor 1 (by symmetry) want to attend, as they just left. Then, it follows
directly that neither 2 nor 4 want to attend either, as their potential benefit from
doing so is strictly lower than it is for 1 and 5. Finally, as M is already located
at 3’s ideal point, he has no incentive to attend either. Therefore, we are at an
equilibrium, and the chosen policy is the default (i.e. M = 1

2).

Suppose now that at A3, V (.) is such that l exits before m, so that we go to
A4. The policy M is now located at 7

8 , and both l and r want to exit if and only
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if c > V ( 1
4 )− V ( 1

8 ). As we have assumed that c > V ( 7
8 )− V ( 3

4 ) at the previous
stage, it follows directly that c > V ( 1

4 )−V ( 1
8 ), so that both l and r want to leave.

Suppose, WLOG5 that l leaves, so that we go to stage A5, which is identical to
stage A�

5. From there on, we just saw that we end up at an equilibrium at which
no attendee is left, and at which the chosen policy is the default (i.e. M = 1

2).

2.3 The Quorum Game

In order to study the effect of a participation quorum, we introduce two addi-
tional ingredients in the attendance game: the quorum itself, and how much
individuals discount the fact that the decision may be delayed in case the meet-
ing has to be postponed.

Regarding the participation quorum, we start the analysis with the simplest
case. In particular, we assume that in the first meeting, the number of attendees
must be at least Q ∈ (0, N ] in order for a policy to be chosen. In case the
attendees of the first meeting do not fulfill the quorum, the meeting has to
be repeated. We assume that in the second meeting no participation quorum
applies.

Individual i’s valuation of the policy chosen (in terms of final utility) in the
second meeting is given by β(1−Vi(|xi−x|)), where β ∈ [0, 1] denotes the loss in
terms of utility that individuals suffer as a result of the decision being delayed.
In situations where the final decision is the same no matter if delayed or not, a
low β captures the idea that individuals are in a hurry to take the decision the
soonest possible. On the contrary, individuals with a high β do not really care
about postponing the decision to the following meeting, while individuals with
β = 1 are indifferent whether the decision is taken in the first or in the second
meeting.

• Stage 1 (1st Meeting): Following the exit process defined above, indi-
viduals decide whether to attend the meeting or not. If the number of
attendees is larger than Q, then a policy x is decided according to the
compromise function (here the median). Each individual gets final utility
U1i = 1− Vi(|xi − x|)− cαi. If the quorum is not met, the game goes to
stage two.

5This is WLOG because we are at the 5 individuals’ example. Otherwise, it wouldn’t be

general to assume that l leaves first at this stage. In any case, this is of little importance, as it

turns out that no matter what is the number of individuals, the structure of the equilibrium

that is reached by applying the exit process is always the same (see section 3).
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• Stage 2 (2nd Meeting): Following the exit process defined above, indi-
viduals decide whether to attend the meeting or not. No matter what is
the number of participants this time, a policy x is to be chosen accord-
ing to the same compromise function. Each individual gets final utility
U2i = β(1− Vi(|xi − x|))− cαi.

3 Results

3.1 The Benchmark: The No-Quorum Game

In this section, we present the results for a one-shot attendance game for which
no quorum applies. Naturally, these results are similar to the ones described
in Osborne et al. (2000). To be more precise, our results characterize a unique
equilibrium that belongs to the set of equilibria of the original work by Osborne
et al. (2000). The novelty of our results lies in the fact that the equilibrium we
obtain is unique, thanks to the equilibrium refinement through the defined exit
process we based on Bulkley et al. (2001).

Given the exit process we have defined previously, the following lemmas
apply for the equilibrium:

Lemma 1. The equilibrium number of attendees is even.

N1   1/2 X =1
L

X =0
LK

M
l r

R

i j

i
  1/2X =0 X =1

M M'

1 N

y
x

m
Figure 2: The equilibrium number of attendees cannot be odd.

Lemma 1 is intuitive. In any situation where the number of attendees is odd
(see Figure 2), the policy is located at attendee m’s ideal point. Such a situation
cannot be an equilibrium, since the non-attendee i who mirrors m with respect
to M � is willing to attend if m does so (M � being the new policy would m leave).
Indeed, observe that the policy moves by the same distance ∆ would m leave
or i attend (i.e. it goes to M �). However, given that ∆ occurs at a further
distance from i than it does from m, and given that V (.) is strictly convex, i

always wants to attend provided that m attends.
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Lemma 2. The equilibrium is such that there are no gaps between two given
attendees on each side of 1

2 .

X = 01

M

X = 1N1/2

X = 01

M

X = 1N
1/2

tkd t2 2

X = 01

M

X = 1N
1/2

tkd t2 2

l

l

l ri

Figure 3: No gaps in equilibrium.

Lemma 2 is a consequence of the exit process. Starting from the full set
of attendees N , and as c > 0, the first attendee to leave is m. Then, as the
process keeps going, whenever the number of attendees is even, it is either l

or r who leaves first. In order to see this, observe that if any attendee on the
left of l leaves, the effect on the policy is exactly the same as if l leaves (i.e. it
will coincide with xr), while, being further from M , the disutility of doing so
is strictly higher than the one of l by the strict convexity of V (.). As the same
holds for any attendee on the right of r, the first one to leave will be either l or
r (and thus, individual i in the figure cannot have left before l).

By the same reasoning, whenever the number of attendees is odd, m always
leaves before all the attendees between himself and the extreme of the policy
line (i.e. 0 or 1), while the same holds for the first attendee on the other side
on 1/2 (i.e. l or r). Therefore, it is always either m, or r, or l leaving first,
and there can be no gaps between any two attendees on each side of 1/2 in
equilibrium.

Corollary 1. If there are attendees on both sides of 1/2, the individuals located
at 0 and 1 attend.

At any stage of the exit process such that there are attendees on both sides
of 1/2, the attendee located at 0 (respectively 1) has strictly higher disutility
from leaving than l (respectively r). Hence, it follows directly that any such
stage, both the individuals at 0 and 1 attend.

Lemma 3. The equilibrium is balanced. That is, the number of attendees on
each side of 1

2 is the same.
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Figure 4: The equilibrium number of attendees can not be unbalanced.

Given that at an equilibrium, the number of attendees is even (Lemma 1),
and that there can be no gaps between any two attendees on each side of 1

2

(Lemma 2), then a situation in which the number of attendees is unbalanced
is such that the number of attendees between 0 and 1/2 is strictly smaller (or
higher) than the number of attendees between 1/2 and 1. Such a situation, as
depicted in Figure 4, cannot be an equilibrium since if l and r are attending, any
given abstainer is also willing to attend provided that V (.) is strictly convex.

We are now ready to characterize the (unique) equilibrium of the attendance
game given the exit process:

Proposition 1. For any c > 0, let t be the unique solution of c = V (2t)−V (t).
If t � 1

2 , then for all N � 2, A∗ = 0. If t < 1
2 , then, for all N � 2, there exists

a unique equilibrium at which any individual i with xi ∈
�
0, 1

2 − t) ∪ ( 1
2 + t, 1

�

attends. The equilibrium number of attendees is given by A∗ = 2(k + 1), where
k ∈ N is the maximum natural number such that k < ( 1

2 − t)(N − 1).

The characterization, and, more importantly, the uniqueness of the equilib-
rium rely on the above lemmas and the associated corollaries.

X = 01

M

X = 1N
1/2

tkd t

Figure 5: The Unique No-Quorum Equilibrium.

The threshold t represents the distance from 1
2 such that an individual is

indifferent between abstaining and attending. Observe that t does not depend
on N . That is, no matter what is the number of individuals, the attendance
condition is always the same, as for any given c, what matters for individual
decisions is the absolute distance from the policy, which does not depend on N .
On the contrary, t is increasing in c, as a higher participation cost obviously
pushes the attendance threshold towards the extremes, meaning that the exit
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process continues further6.

If t � 1
2 , it means that c is so high that the abstention interval includes the

whole policy line, so that no one attends (i.e. A∗ = 0)7. If, on the contrary,
t < 1

2 , it means that the policy line will contain both an abstention interval and
two attendance regions on each side of 1

2 . Given the exit process, the equilibrium
is characterized by an equal number of consecutive attendees on each side of 1

2 ,
from the extremists (i.e. the attendees located at 0 and 1) to the last individuals
for whom it is worth attending given c (i.e. attendees l and r). Consider the
individuals located on the left of 1

2 . The exit process continues until reaching
the attendee located at kd, who is the first attendee for whom the benefit of
leaving is negative (since kd < 1

2 − t). Therefore, the equilibrium number of
attendees on the left of 1

2 is given by k + 1, and thus A∗ = 2(k + 1).

Corollary 2. The equilibrium number of attendees is zero if and only if c �
V (1)− V ( 1

2 ).

From the above corollary, there exists a threshold value of c (which corre-
sponds to t = 1/2) such that no individual wants to attend the meeting. As it
was the case for t, observe that the threshold value of c is constant. In particular,
it does not depend on the number of individuals N .

Corollary 3. The equilibrium policy x∗ is always 1
2 .

Given the symmetric structure of the equilibrium, it turns out that the
equilibrium policy is always located at the middle of the policy line (i.e. at 1

2 )
no matter what is the number of attendees.

Finally, Proposition 2 below gives some comparative statics results regarding
the participation cost c and the number of individuals N on the equilibrium
number of attendees.

Proposition 2. The equilibrium number of attendees is decreasing in the at-
tendance cost. Furthermore, both the number of attendees and abstainers is
nondecreasing in the number of individuals.

The comparative statics results in the above proposition are intuitive. For
given N , an increase in the attendance cost c implies that the exit process

6see Proposition 2 and its proof.
7we assume that whenever an individual is indifferent between attending and abstaining,

he abstains.
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continues further. That is, the most moderate attendees from the original set of
attendees might not find it worthwhile any longer to attend, given that the cost
of participation has increased. Therefore, the equilibrium number of attendees
decreases. Moreover, given that an increase in the number of individuals N

does not alter the indifference threshold on the policy line between attending
and abstaining, it follows that such an increase directly translates into a higher
(or at least equal) equilibrium number of both attendees and abstainers.

3.2 The Quorum Game

Having characterized the unique equilibrium of the No-Quorum Game, we can
apply the results to the analysis of the Quorum Game. Remember that the
Quorum Game consists of two meetings. In the second meeting there is no
quorum requirement, while in the first one, a participation quorum Q ∈ (0, N ]
has to be fulfilled in order for a decision to be taken.

Notation 1. We use subindexes 1 and 2 to refer to the first and second round
of the quorum game, while no subindex refers to the one-shot no-quorum game.

We begin the analysis of the quorum game with the second meeting, if this
were to be required.

Lemma 4 (Second Meeting). For any c > 0, let t2 be the unique solution of
c = β[V (2t2) − V (t2)]. If t2 � 1

2 , then for all N � 2, A∗
2 = 0. If t2 < 1

2 , then,
for all N � 2, there exists a unique equilibrium at which any individual i with
xi ∈

�
0, 1

2 − t2) ∪ ( 1
2 + t2, 1

�
attends. The equilibrium number of attendees is

given by A∗
2 = 2(k2 + 1), where k2 ∈ N is the maximum natural number such

that k2 < ( 1
2 − t2)(N − 1).

Lemma 4 has exactly the same flavor as Proposition 1. The equilibrium
has a very similar structure, the chosen policy at the second stage is x∗2 = 1/2,
and the only (but important) difference is that the number of attendees may
decrease.

Proposition 3. A∗
2 � A∗

The number of attendees in the second meeting, if affected, is lower than that
of the no-quorum game. Remember that in the second meeting, each individual
discounts the decision taken (i.e. β ∈ [0, 1]). More specifically, the effect of one’s
attendance in terms of final utility is discounted, and hence some moderates
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that would have incentives to attend the one-shot no-quorum meeting may not
participate in the second one. This is the case if their incentives to attend in
terms of their (small) influence on the postponed decision do not compensate
the cost of attending.

In order to characterize the equilibrium of the quorum game, the following
definitions will be helpful. Thereafter we present the main contribution of our
analysis in Proposition 4.

Definition 1. Let the threshold values of the discount factor be defined as fol-
lows:

β1 = 1− c
1−V (|kd− 1

2 |) , β2 = c
V (|1−2kd|)−V (|kd− 1

2 |) , β3 = 1− c
1−V (|( Q

2 −1)d− 1
2 |) ,

β4 = 1−c
1−V (|( Q−1

2 )d− 1
2 |) , β5 = 1−V (|1−( Q−1

2 )d|)
1−V ( 1

2 )

Proposition 4. For any c > 0, N � 2 and Q ∈ (0, N ] there exists a unique
equilibrium that is characterized as follows:

Table 1: Equilibrium of the Quorum Game

Q Q < A∗ Q = A∗ Q > A∗

Q even Q odd
β β ∈ [0, 1] β ∈ (β1, β2] otherwise β < β3 otherwise β < min{β4, β5} otherwise

A∗
1 A∗ 0 Q Q 0 Q 0

A∗
2 – 2(k2 + 1) – – 2(k2 + 1) – 2(k2 + 1)

x∗ 1/2 1/2 1/2 1/2 1/2 (Q−1
2 )d 1/2

According to the above proposition, the effect of the quorum on the equi-
librium (i.e. A∗

1, A
∗
2 and x∗) depends on the level of the quorum itself (i.e. Q),

and on how much individuals discount a delayed decision (i.e. β). To be more
precise, the only case for which the equilibrium outcome is independent of β

(and the decision always taken in the first meeting), is when the quorum is
lower than the no-quorum attendance rate (i.e. Q < A∗). On the contrary,
when Q � A∗, how much individuals discount a delayed decision is crucial.

1. Q < A∗: If the quorum is smaller than the no-quorum attendance rate,
then it has no effect on the equilibrium outcome. This is a consequence of the
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fact that the quorum does not alter the exit decision of any of the individuals
during the first meeting and hence the policy decision remains unaffected.

2. Q = A∗: When the quorum is equal to the number of attendees in the
no-quorum game, we know that A∗ and hence the quorum is even. Moreover,
we know that individual l located at kd is the first attendee who decided not to
exit the no-quorum game (see Figure 6)8.

X = 01

M

X = 1N
1/2

tkd t

X = 01

M

X = 1N
1/2

tkd t2 2

X = 01

M

X = 1N
1/2

tkd t2 2

l

l r

l

Figure 6: The meeting at the top is the one of the No-Quorum Game. At the middle

the case of Q = A∗
, and at the bottom the case of Q > A∗

. The individual with a

“star” is the pivotal individual (located at kd if Q = A∗
, at (

Q
2 − 1)d if Q > A∗

and

even, and at (
Q−1

2 )d if Q > A∗
and odd).

Starting analyzing the exit process of the quorum game with the full set
of attendees, the decision of all attendees between l and r is the same as in
the no-quorum game, meaning that they exit. Notice though that because of
the presence of the quorum, attendee l is now pivotal on whether the quorum
is going to be met or not. Hence, his cost-benefit exit calculation is altered
compared to the no-quorum case.

By exiting, he actually postpones the decision to the next meeting, while he
knows that the policy will remain the same (that is, x∗2 = 1/2). The cost of
such a decision stems from the fact that the decision is delayed, while its benefit
lies in the fact that under certain conditions, he will not have to pay the cost of
attending the second meeting.

When will the exit decision be worthwhile for the pivotal individual? Or,
said in other words, when is the cost of exiting lower than the benefit? On the
one hand, he must not discount the future “too much” (i.e. β > β1), so that

8WLOG we analyze the decision of individual l, while the same holds for individual r.
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he does not care to delay the decision (i.e. low cost of exiting). On the other
hand, however, he has to discount the future “enough” (i.e. β < β2), so that
he has no incentives to attend the second meeting (i.e. high benefit of exiting).
Notice that if the pivotal individual exits (who is also the individual with the
highest incentives to attend), then all the remaining attendees exit as well so as
to avoid paying the cost of attending a meeting that is not fulfilling the quorum.
Therefore, if β ∈ (β1, β2), then A∗

1 = 0, A∗
2 = 2(k2 + 1) and x∗ = 1/2.

If the above restriction on the discount factor does not hold (i.e. β /∈
(β1, β2)), for example because the pivotal individual discounts the future a lot,
then the quorum equilibrium is identical to the no-quorum one and the quorum
is binding in the first round.

3. Q > A∗: If the quorum is larger than the number of attendees in the
no-quorum game, its effect on the equilibrium varies depending on whether the
quorum is even or odd.

(a) Q Even: The intuition in this case is similar to the one where Q = A∗.
However, an important difference is that when Q > A∗, the pivotal individual is
now located at (Q

2 −1)d, and hence is more moderate than the pivotal individual
at Q = A∗9.

During the exit process of the quorum game, the pivotal attendee is the first
individual whose exit decision may be altered because of the presence of the
quorum. By exiting, he actually postpones the decision to the next meeting,
being sure that the policy will remain the same (that is x∗2 = 1/2). Moreover,
and contrary to the Q = A∗ case, he definitely has no incentives to attend the
second meeting, given that he is an abstainer in the no-quorum game.

The benefit of attending stems from the fact that the decision is not delayed,
while it implies an extra attendance cost. Hence, the pivotal individual is willing
to pay the cost, attend and make the quorum binding in the first meeting if he
discounts a lot a delayed decision (i.e. β < β3). On the contrary, if β � β3,
the pivotal individual has no incentives to pay the cost, the quorum is not met
and as before no one attends the first meeting (i.e. A∗

1 = 0, A∗
2 = 2(k2 + 1) and

x∗ = 1/2).
(b) Q Odd: The intuition in this case is similar but with a very important

difference with respect to the case of an even quorum. The pivotal individual is
located at (Q−1

2 )d, who is again more moderate than the pivotal individual at

9WLOG we analyze the individual located at (
Q
2 − 1)d. Because of symmetry, the same

analysis holds for his mirror with respect to 1/2.
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Q = A∗10.
Through the exit process of the quorum game, the pivotal attendee is the

first individual whose exit decision may be altered because of the presence of
the quorum. By exiting, he actually postpones the decision to the next meeting,
being sure that the policy will remain the same (that is x∗2 = 1/2). As before,
he definitely has no incentives to attend the second meeting, given that he is an
abstainer in the no-quorum game.

The benefit of attending has now an additional component compared to the
case of an even quorum. In addition to not being delayed, the elected policy
moves to his ideal point (since the pivotal attendee is the new median). As
before, the cost is what the individual has to pay in order to attend the meeting.
Hence, the pivotal individual is willing to pay the cost, attend and make the
quorum binding in the first meeting if he discounts a lot a delayed decision (i.e.
β < β4). On the contrary, if β > β4, the pivotal individual has no incentives
to pay the cost, the quorum is not met and as before no one attends the first
meeting (i.e. A∗

1 = 0, A∗
2 = 2(k2 + 1) and x∗ = 1/2).

Notice though that the attendance of the pivotal member implies a policy
distortion. Indeed, the policy now moves to x∗ = Q−1

2 d � 1
2 , and given that the

exit process is altered, it deserves a closer look. In order to guarantee that the
exit process terminates at an equilibrium, we have to make sure that no further
attendees have incentives to exit, while no further abstainers want to attend.

The process actually terminates if the attendee with the highest benefit of
exiting is not willing to do so. Notice that the policy is biased towards the left
(i.e. x∗ = Q−1

2 d � 1
2 ). Moreover, any attendee that exits guarantees a delayed

policy outcome of 1/2. The individual with the highest incentives to do so is
then the extremist located the furthest from x∗ = Q−1

2 d, that is, the individual
located at 1. In order for this extremist not to exit, it has to be the case that he
is harmed a lot by postponing the decision to the second meeting (i.e. β < β5).

The individual with the highest benefit of entering is the mirror (with respect
to 1/2) of the individual located at x∗. Observe that this individual is never
attending a no-quorum meeting, precisely because it is not worthwhile for him
to pay the cost so as to push the policy from x∗ to 1/2. Therefore, he has no
incentives to attend here either. Notice that in fact, this individual free rides on
the attendance of his ‘mirror” who participates so as to avoid postponing the
decision.

10For the same reasoning as Footnote 7, WLOG we analyze the individual located at

(
Q−1

2 )d.
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To sum up, our results regarding the Quorum Game can be summarized as
following:

• The quorum is met in the first round when:

1. The quorum is lower than the no-quorum attendance rate.

2. The quorum is higher than the no-quorum attendance rate and mem-
bers discount a lot a delayed decision.

• If the second meeting takes place, the number of attendees is smaller or
equal than in the no-quorum case.

• When the quorum is larger or equal than the no-quorum attendance rate,
then either no member attends the first meeting or the quorum is binding.
Notice that there exists no equilibrium in which a subset of members
decide to attend the first meeting and the quorum is not met11.

• The quorum has a different effect when it is even or odd. An odd quorum
may create policy distortions.

Finally, Corollary 4 below describes the effect of the quorum regarding total
welfare:

Corollary 4. Total welfare is higher or equal under no quorum than under a
quorum requirement.

Whenever the quorum has no effect on the equilibrium, that is, when the
decision is taken in the first meeting and both the number of attendees and the
equilibrium policy remain the same, total welfare is clearly not affected.

Whenever the quorum is binding, but the equilibrium policy unchanged,
total welfare is strictly lower than under the no-quorum equilibrium. Indeed,
as the presence of the quorum “forces” some moderates to attend (and thus
bear the corresponding cost) in order for the meeting not to be postponed, total
welfare is strictly lower following the introduction of the quorum. If, in addition
to that, the equilibrium policy gets distorted (i.e. x∗ �= 1

2 ), the effect of the
quorum is even worse from a welfare perspective.

Finally, when the decision is postponed to the second meeting, and even
though less individuals attend, total welfare is lowered as a result of the quorum
being present. That is, the fact that less individuals pay the cost of attending
does not compensate the aggregate loss of welfare in terms of policy valuation.

11A possible way to obtain such a result would be to introduce an exogenous probability

that each individual may be prevented from attending the meeting.
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4 Conclusion

We believe that this piece of research is a first step towards the understanding
of a widely used but not formally analyzed voting rule. Clearly, our results have
important policy implications, and we think that policy makers deciding on the
use of a participation quorum in small decision making meetings should take
our results into consideration.

In particular, in meetings where the preferences of individuals are symmet-
rically distributed, introducing a participation quorum is a bad idea since it
creates welfare losses. As explained, these losses may be the result of the de-
cision being delayed, or the consequence of the fact that individuals who are
better off abstaining are now “forced” to attend in order to fulfill the quorum.

One standard argument in favor of the use of a participation quorum is that
it allows to protect individuals from a policy decision being taken by a small
minority of the members. However, it turns out that the policy is in general
not affected as it coincides with the one that would have been taken had there
been no quorum. This is so because in a world where the the costly committee
meetings are ruled by the “citizen-candidate” spirit of Osborne et al. (2000),
the individuals who are really afraid of a unwanted decision have incentives to
attend anyway. In order to protect those individuals, there is then no need for a
participation quorum since their participation is in line with their own interest,
and hence this argument does not apply.

A final argument in favor of a participation quorum is that it guarantees
the legitimacy of the decision taken. Think for instance of a meeting of the
shareholders of an important enterprise deciding on the enterprise’s strategy.
Suppose that all shareholders have a very high opportunity cost of attending
the meeting, so that the equilibrium number of attendees under no quorum
is very small. In such cases, one can think of a participation quorum as a
tool to protect the legitimacy of the decision, since a decision taken by very
few shareholders might have a rather negative impact on the enterprise’s image.
According to our results, if the shareholders are in a hurry, introducing a quorum
then has the effect of increasing the number of shareholders who take part in
the decision. In such situations, our analysis has policy recommendations as
well. We showed that the use of a participation quorum always lowers welfare.
In any case, however, if there is a quorum to be introduced, it should require an
even number of individuals so as to avoid policy distortions (and thus minimize
welfare losses).
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As the present paper constitutes a first attempt to analyze the use of a
participation quorum in meetings, many paths for future research remain open.
Among those, a very important feature which we wish to capture is the case
in which a positive number of members show up at the first meeting, but the
quorum is not fulfilled. A way to allow for such a possibility could be the
introduction of an exogenous probability that each member is prevented from
attending the meeting. Intuitively, this would affect the number of attendees in
each meeting and, more importantly, it would give rise to situations in which
some individuals end up paying the cost of attending (even though the meeting
has to be postponed), because they believe the quorum will be met.

So far our analysis has been focused on the case of uniformly distributed
individuals’ favorite positions. Although our results would still be valid for
other symmetric distributions, we believe it is important to extend our analysis
to asymmetric setups. Indeed, one of the main arguments favoring the use
of a participation quorum is the fact that one wants to prevent the decision
from being taken by a (non-representative) minority. However, in symmetric
situations such as the one we have been analyzing here, there is no way a
minority could possibly exploit a majority.
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5 Appendix
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Figure 7: Proof of Lemma 1.

Proof of Lemma 1. Suppose the number of attendees is odd and individual m,
by leaving, does not change the location of the policy M . Then he’s willing to
leave if and only if V (0) > V (0) − c or, equivalently, c > 0. Therefore, m is
always leaving.
Suppose the number of attendees is odd and individual m, by leaving, changes
the location of the policy. Suppose, furthermore, that c is such that m is not
willing to leave, and let the corresponding policy given this set of attendees
be M . If this is the case, there is always a non-attendee i who is willing to
attend, and whose location is such that by doing so, the policy moves to the
same location as it does if m leaves. Let the distance between individual m

and the new policy M � in case he leaves be x. Furthermore, let the distance
between the non-attendee i mentioned above and the policy M be y, where
y = 2x. If m is not willing to leave, it means that −V (x) < −V (0) − c, or,
equivalently, c < V (x). Now, notice that i is willing to attend if and only
if −V (x) − c > −V (y), or, equivalently, c < V (y) − V (x). As y = 2x and
V (.) is strictly convex, it follows that V (x) < −V (x) + V (y), or, equivalently,
V (2x) > 2V (x). Therefore, i wants to attend.

Proof of Lemma 2. Given the exit process, we know that at any stage, the first
attendee to leave (if any) is the one with the lowest potential disutility from
leaving. Starting from the full set of attendees N , where N is odd, we know
that as c > 0, the first attendee to leave is m. Let l and r be the first attendees
on the left and on the right of M respectively12. The potential disutility from
leaving is the same for both of them, and is given by V (2d) − V (d). Consider
now the next attendees on the left of l and on the right of r respectively. Their

12Observe that assuming that N is odd is without loss of generality, since assuming instead

that N is even simply means that we start from here on.

22



disutility from leaving is identical, and is given by V (3d) − V (2d), which is
strictly higher than V (2d)− V (d) given the strict convexity of V (.). Obviously,
this will also be true for any pair of attendees who are located even further from
M . Therefore, the first one to leave is either l or r. From there on, if c is high
enough so that the exit process keeps going,

1. At any stage for which the number of attendees is odd (case A3 in Example
1), either m, or one (and only one) of the attendees l or r is the first one
to leave. Given the exit process, a situation in which the number of
attendees is odd is such that m is next to r (l), while, as some attendees
have already left, there are gaps between m and l (r). Suppose, WLOG,
that m is next to r (as in case A3) and let kd be the distance between m

and l (so that k = 3 in the example). We aim at showing that the first
one to leave is either m or l (that is, either the median attendee or the
furthest one next to him). If m leaves, his disutility from doing so is given
by V ( (k−1)d

2 ). If r leaves, he will suffer a disutility of V (kd
2 +d)−V (d). As

V ( (k−1)d
2 ) = V ( (k+1)d

2 − d) < V ( (k+1)d
2 )− V (d), it follows that m always

leaves before r. Obviously, this is also true for any attendee on the right
of r. Indeed, if any such attendee leaves, the effect on the policy will be
exactly the same as if r leaves, while, being strictly further, the disutility
from leaving in terms of distance will be strictly higher than the one of r

by the strict convexity of V (.).
Now, if l leaves, his disutility from doing so is given by V ((k+ 1

2 )d)−V (kd).
We do not know whether it is m or l who has the lowest disutility from
leaving. However, by the same reasoning as the one just described above,
we know that any attendee on the left of l will suffer a strictly higher
disutility from leaving than l, so that l always leaves first. Therefore,
either m or l leaves first.

2. At any stage for which the number of attendees is even (cases A4 and
A�

4 in Example 1), so that the policy is M = (xl+xr)
2 , either l or r is the

first one to leave. Let kd be the distance between i and M , i = l, r (so
that k = 1

2 in situation A4 and k = 2 in situation A�
4). The disutility

from leaving for individual i = l, r is given by V (2kd)− V (kd). Consider
now the next attendees on the left of l and on the right of r respectively.
Their disutility from leaving is strictly higher than V (2kd)− V (kd) given
the strict convexity of V (.). Furthermore, this is also true for any pair of
attendees who are located even further from M .
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Proof of Corollary 1. Consider any stage of the exit process such that there are
still attendees on both sides of 1/2 (i.e. we rule out situations such as A4 in
Example 1). From Lemma 3, we know that, no matter whether the number of
attendees is even or odd, the first one to leave is always either m, or l, or r.
Therefore, it follows directly that at any such stage (i.e. such that there are
attendees on both sides of 1/2), the attendee located at 0 (respectively 1) has
strictly higher disutility from leaving than l (respectively r). Hence, at any such
stage, both the individuals at 0 and 1 attend.

Figure 8: Proof of Lemma 3.

Proof of Lemma 3. Let L � 0 be the number of attendees on the left of 1/2.
Similarly, let R be the number of attendees on the right of 1/2, and assume,
WLOG, that R � L, and so R = L + K, where K > 0 and is even by Lemma
1. From Lemma 2, it follows that the L and R attendees respectively on the
left and on the right of 1/2 are consecutive (i.e. there are no gaps between
them). Let M be the chosen policy given this set of attendees, which is located
at the median of the K attendees. Observe that if the attendees l and r are not
willing to leave, it means that c is small enough so that it is worth attending to
prevent M from moving by 1

2d, that is, it means that c < V (d) − V ( 1
2d). Let

i and j be the first attendees on the left and on the right of 1/2 respectively,
and consider any non-attendee between i and j. If any such non-attendee were
to come back, the policy would move to xl, and he would do so if and only if
c < V ((k+ 1

2 )d)−V (kd), where kd > d is the distance between any non-attendee
and l. It turns out that if r attends, any abstainer between i and j wants to
attend as well, that is, V ((k + 1

2 )d) − V (kd) > V (d) − V ( 1
2d) for all k > 1 by

the strict convexity of V (.). Therefore, the equilibrium is such that K = 0 (i.e.
balanced).

Proof of Proposition 1. By lemmas 1 to 3 and the associated corollaries, we
know that the equilibrium reached by means of the exit process is such that
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there is an equal number of attendees on each side of 1
2 without gaps between

any two of them, and such that the individuals located at the extremes of the
policy line attend. Let t be the unique solution of c = V (2t)−V (t) and consider
a situation such as A1 in Figure 9. By definition of t (and by the lemmas and
associated corollaries), any such situation, that is, any situation with an equal
number of consecutive attendees starting from the extremes on both sides of
1
2 , and such that only individuals with xi ∈

�
0, 1

2 − t) ∪ ( 1
2 + t, 1

�
attend, is an

equilibrium. Indeed, notice that the individuals with the highest potential ben-
efit from leaving are l and r. However, as by definition of t, bl(A) = br(A) < 0,
they both attend. Furthermore, as by definition of t, bi(A) > 0 for any i with
xi ∈

�
1
2 − t, 1

2 + t
�
, none of such individuals is willing to attend. Therefore, the

situation depicted in the figure is an equilibrium.

In order to derive the equilibrium number of attendees A∗, observe that
the exit process stops at the individual located at kd (i.e. attendee l), who is
the first attendee (on the left side of 1

2 ) for whom bi(A) < 0. Therefore, the
equilibrium number of attendees on the left of 1

2 is given by k + 1, and thus
A∗ = 2(k + 1).
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Figure 9: Proof of Proposition 1: Uniqueness

It now remains to be shown that the equilibrium is unique. Consider a situ-
ation such as A2 in the figure. That is, a situation that satisfies the equilibrium
requirements as described in the lemmas, but such that there is one (or more)
pair(s) of consecutive attendees in the interval

�
1
2 − t, 1

2 + t
�

(or, equivalently,
such that xl, xr ∈

�
1
2 − t, 1

2 + t
�
). As, by definition of t, bi(A) � 0 for any i with
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xi ∈
�
1
2 − t, 1

2 + t
�
, it follows that, for any t, any such situation cannot be an

equilibrium.

Finally, consider a situation such as A3 in the figure. That is, a situation
that satisfies the equilibrium requirements as described in the lemmas, but such
that there is one (or more) pair(s) of consecutive abstainers in the interval
�
0, 1

2 − t) ∪ ( 1
2 + t, 1

�
. As, by definition of t, bi(A) < 0 for any i with xi ∈�

0, 1
2 − t) ∪ ( 1

2 + t, 1
�
, it follows that, for any t, any such situation cannot be an

equilibrium.

Proof of Corollary 2. According to the exit process, if everybody leaves, the
last attendee to exit is either the one located at 0 or the one located at 1. This
individual is indifferent to leave if and only if c = V (1)−V ( 1

2 ), or, equivalently,
t = 1

2 . Obviously, if c > V (1)− V ( 1
2 ), or, equivalently, t > 1

2 , this last attendee
wants to exit, which means that no one attends.

Proof of Proposition 2. The equilibrium value of t is implicitly defined by φ(t) =
c− V (2t) + V (t) = 0. We have that

∂φ

∂t
= −2V �(2t) + V �(t) < 0

∂φ

∂c
= 1 > 0

and thus, by the implicit function theorem: ∂t
∂c = −

∂φ
∂c
∂φ
∂t

> 0. Therefore, as the
threshold for attendance is moving towards the extremes of the policy line as c

increases, it follows directly that the equilibrium number of attendees decreases.

Given that t does not depend on the number of individuals N , it is also
direct that the absolute number of both attendees and abstainers is increasing
in N . Indeed, for a given c > 0 and given the (fixed) distance t, increasing
the (uniformly distributed) number of individuals obviously means that there
will be more (or at least an equal number of) individuals both between 0 and t

(respectively t and 1) and in the abstention interval.

Proof of Proposition 3. As t is the unique solution of c = V (2t) − V (t) and t2

26



is the unique solution of c = β [V (2t2)− V (t2)], we have that

β =
V (2t)− V (t)

V (2t2)− V (t2)

As β � 1, it follows that t2 � t, and thus k2 � k and A∗
2 � A∗.

Proof of Proposition 4. 1. Suppose Q < A∗ and consider attendees l and r

of the no-quorum game for given N and c. Thus, bl(A∗) = br(A∗) < 0,
the set E is empty and there are A∗ attendees in equilibrium. Let now
introduce a quorum Q < A∗. All moderates located between l and r of
the no-quorum game exit, as before. Then, bl(A∗

1) = br(A∗
1) < 0 and

the set E is empty, so that the exit process stops at l and r. Therefore,
A∗

1 = A∗ and x∗1 = x∗ = 1
2 . Said in words, the attendance decision of any

individual is the same as in the no-quorum case (in particular, l is not
pivotal regarding the quorum requirement), and hence the equilibrium in
unaffected.

2. Suppose Q = A∗. All moderates located between l and r of the no-quorum
game exit, as before. Then, WLOG, given that l is now pivotal regarding
Q, he exits if and only if

1− V (|kd− 1
2
|)− c < β

�
1− V (|kd− 1

2
|)

�
− αlc

where αl = 1 if and only if

β >
c

V (|1− 2kd|)− V (|kd− 1
2 |)

= β2

and αl = 0 otherwise. Suppose that β < β2, so that l would not attend in
the second round (otherwise, the second round is never reached as l has
no incentive to exit in the first round). Then, he exits in the first round
if and only if

β > 1− c

1− V (|kd− 1
2 |)

= β1

Therefore, l exits in the first round if and only if β1 < β < β2. Suppose
this is the case. Notice that l is the abstainer with the highest potential
benefit from attending so as to fulfill Q, and thus no other abstainer has
an incentive to attend either. Given that l exits, all other attendees exit
as well since the quorum is not met and c > 0. Hence, A∗

1 = 0 and we go
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to stage 2. From there on, the characterization of the equilibrium and its
uniqueness follow the same reasoning as in Proposition 1 (with t2 being the
unique solution of c = β [V (2t2)− V (t2)] as the new attendance threshold
and x∗2 = 1

2 ).

If β < β1, l has no incentive to exit in the first round. The exit process
stops here, and as no individual has an incentive to deviate, we are at an
equilibrium, and it follows that A∗

1 = A∗ and x∗1 = x∗ = 1
2 . Similarly, if

β > β2, l would attend in the second round, so that he has no incentive
to exit in the first round, and the same conclusion applies.

3. Suppose Q > A∗ is even. Then, during the exit process, WLOG, the
attendee i located at (Q

2 − 1)d > kd is pivotal regarding Q, so that he
exits if and only if

β > 1− c

1− V (|(Q
2 − 1)d− 1

2 |)
= β3

Suppose this is the case, so that i exits. Notice that i is the abstainer with
the highest potential benefit from attending so as to fulfill Q, and thus no
other abstainer has an incentive to attend either. Given that i exits, all
other attendees exit as well since the quorum is not met and c > 0. Hence,
A∗

1 = 0 and we go to stage 2. From there on, the characterization of the
equilibrium and its uniqueness follow the same reasoning as in Proposition
1.

Suppose now that β < β3, so that i attends. Given that i is the attendee
with the highest potential benefit from exiting, and bi(A) < 0, the exit
process stops here, and since no individual has an incentive to deviate, we
are at an equilibrium. Thus, the equilibrium number of attendees is given
by A∗

1 = Q and the equilibrium policy is x∗1 = 1
2 .

4. Suppose Q > A∗ is odd. Then, during the exit process, WLOG, the
attendee i located at (Q−1

2 )d > kd is pivotal regarding Q, so that he exits
if and only if

β >
1− c

1− V (|(Q−1
2 )d− 1

2 |)
= β4

Suppose this is the case, so that i exits. Notice that i is the abstainer with
the highest potential benefit from attending so as to fulfill Q, and thus no
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other abstainer has an incentive to attend either. Given that i exits, all
other attendees exit as well since the quorum is not met and c > 0. Hence,
A∗

1 = 0 and we go to stage 2. From there on, the characterization of the
equilibrium and its uniqueness follow the same reasoning as in Proposition
1.

Suppose now that β < β4, so that i attends. Notice that at this stage, the
attendee located at 1 has the highest potential from exiting. Indeed, he’s
the furthest from the policy M = (Q−1

2 )d, would it be implemented, and
he’s pivotal with respect to Q, so that it could be beneficial for him to
exit in order for the decision to be postponed and the policy to be closer
to his ideal point. Formally, 1 exits if and only if

β >
1− V (|1− (Q−1

2 )d|)
1− V ( 1

2 )
= β5

Suppose that β < min{β4, β5}, so that both i and 1 attend. Given that
1 is the attendee with the highest potential benefit from exiting, and
b1(A) < 0, the exit process stops here, and since no individual has an
incentive to deviate, we are at an equilibrium. Thus, the equilibrium
number of attendees is given by A∗

1 = Q and the equilibrium policy is
x∗1 = (Q−1

2 )d.

Proof of Corollary 4. Total welfare under the No-Quorum equilibrium is given
by

W = N −
N�

i=1

V (|xi −
1
2
|)−A∗c

Then, total welfare in the first meeting under the Quorum equilibrium is given
by

W1 = N −
�N

i=1 V (|xi − (Q−1)
2 d|)−Qc if Q > A∗ odd and β < min{β4, β5}

W1 = N −
�N

i=1 V (|xi − 1
2 |)−Qc otherwise

Finally, total welfare in the second meeting under the Quorum equilibrium is
given by

W2 = β

�
N −

N�

i=1

V (|xi −
1
2
|)

�
−A∗

2c
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1. If Q < A∗, we know from Proposition 3 that A∗
1 = A∗ and x∗ = x∗1 = 1

2 ,
and thus W = W1.

Then, if Q = A∗ and β /∈ (β1, β2), we know from Proposition 3 that
A∗

1 = Q = A∗ and x∗ = x∗1 = 1
2 , and thus W = W1.

2. If Q = A∗ and β ∈ (β1, β2), Q > A∗ even and β > β3, or Q > A∗ odd and
β > min{β4, β5}, we know from Proposition 3 that the policy x is decided
at the second meeting. Notice that... TO BE COMPLETED

3. If Q > A∗ even and β < β3, we know from Proposition 3 that Q is binding
in the first meeting and x∗1 = x∗ = 1

2 . As Q > A∗, it follows directly that
W > W1.

Then, if Q > A∗ odd and β < min{β4, β5}, we know from Proposition 3
that Q is binding in the first meeting and x∗1 = (Q−1)

2 d. As Q > A∗ and
�N

i=1 V (|xi − x|) is minimized at x = 1
2 , it follows directly that W > W1.
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