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Abstract

Problems of coordination are at the core of most economic and social decision situations.

Theory and evidence from laboratory experiments show that when people are forced to

interact with other people efficiency strongly decays over time. This leaves us with the

puzzling uncertainty if all behavior we observe outside theoretical models and outside the

lab also has this tendency towards inefficiency. In a series of laboratory experiments we

show that in weakest-link (minimum effort games) maximal efficiency can be achieved when

participants are allowed to choose their interaction neighborhood. This holds for groups of

up to 24 members, which is the largest group size ever investigated in laboratory weakest-

link games. The results suggest that the possibility of choosing interaction partners is

a key mechanism to achieve efficient outcomes and to sustain them over time. This has

important consequences for the design of efficient organizations.



1 Introduction

Societies continuously face incidents in which coordination plays a crucial role. Many of

these situations have a weakest link characteristic, i.e. the weakest player determines the

outcome for all involved parties.

An intriguing example is given by Hirshleifer (1983). He describes Anarchia, a fictitious

island on which each citizen owns a wedge-shaped sector. In order to prevent the island

from occasional floods, each citizen builds a dike along the coastline of his plot of land.

The topography of Anarchia is flat. This means that if the sea overcomes one dike the

island will completely be flooded. In the absence of a governing body the citizens have to

coordinate on the height and strength of the dikes. The lowest and weakest dikes determine

the level of flood protection which Anarchia’s citizens may expect.

Another example that has recently attracted attention of the media, is the fight against

infectious diseases such as SARS, avian influenza, swine influenza, or AIDS. To prevent the

diseases from breaking out or spreading, involved parties have to invest into precautionary

means.1 The party which exerts the lowest effort determines to a large extent the chances

of outbreak or eradication of a disease. In the optimal case all parties would choose the

highest precaution level. The same reasoning transfers to computer networks. Hackers or

viruses try to enter weakly protected computers and use them as stepping stones to move

further into the network.

An example from business is the situation of an airport ground crew (see for example

Camerer 2003, p.381). While some teams are responsible for re-fueling and maintaining

the aircraft, other teams de-board and board passengers or unload and load luggage. The

aircraft can only take off again after all processes are completed. The time is determined

by the team which is slowest.2

In all examples players face the problem to coordinate on high efforts, which is maxi-

mizing both, welfare as well as individual payoffs. Hence, in contrast to typical dilemma

1Involved parties could be individual persons or countries. Precautionary means could be for example

vaccination on the individual level or the provision of medication or health education on the country level.

2Various other examples can be found in Sandler (1998).
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situations, everyone providing high effort is an equilibrium but it is characterized by high

strategic uncertainty. One single player deviating downwards is sufficient to cause substan-

tial for each individual as well as for the whole group.

A closer look to our examples, however, yields a crucial structural difference. The

inhabitants of Anarchia and the teams of the airport ground crew are exogenously bound

to their neighborhood by the geography of the island and the organizational decisions of

the airline’s management. In contrast, the actors in the disease example and the computer

network, be it countries or individuals, have the possibility to choose their neighborhood to

interact with. If for example a network is repeatedly hacked via the same weakly protected

computer, system administrators of other computers might deny access from this specific

computer to theirs. Similarly governments may restrict, or at least discourage, free travel

from and to countries with repeated outbreaks of infectious diseases.

The structural difference between endogenously chosen and exogenously given neigh-

borhoods opens up a new perspective on coordination problems and might turn out as a

crucial determinant when it comes to the observation of behavior in such situations.

For the case of exogenously given neighborhoods an appropriate game-theoretic model

is the so-called minimum effort game which was introduced by Bryant (1983).3 Van Huyck,

Battalio and Beil (1990, VHBB henceforth) were the first to examine it experimentally.

Subjects in their experiments repeatedly chose an effort level between 1 and 7 and received

round payoffs that decreased in their own chosen level, but more strongly increased in

the minimum level of the group. Any strategy profile where players play the same effort

level constitutes an equilibrium. Moreover these equilibria can be ranked according to the

criteria of risk dominance and payoff dominance (see Harsanyi and Selten, 1988).4 VHBB

were interested whether subjects could in the course of several rounds tacitly coordinate on

high efforts.5 The results were rather disappointing from the efficiency perspective. Only

3Bryant suggested the game as a simple, parsimonious micro-foundation to describe how coordination

failure in macroeconomics could lead to bad equilibria.

4Although the concept of risk dominance is not transitive in general, it turns out to be for this particular

type of game.

5Strictly speaking, VHBB separated two types of coordination problems. Firstly, players may fail to
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in very small groups of two participants and in the case of costless effort (i.e. high effort

was riskless) subjects were able to coordinate on the payoff dominant equilibrium.

These results have led to a wave of experiments in which their robustness was tested

and conditions for the emergence of Pareto-efficient behavior were explored (see Devetag

and Ortmann 2007 for an excellent overview). Almost all attempts focus on the reduc-

tion of strategic uncertainty. The most obvious are the potential efficiency gains and the

size of the group. Brandts and Cooper (2006) showed that the increase in the potential

efficiency gains mitigates the tendency to coordinate on inefficient equilibria. VHBB al-

ready demonstrated that small groups more easily coordinate on high efforts than large

groups (see also Based on this result Weber (2006) showed that starting out from small

groups and adding participants one by one also enables coordination on high effort levels

in larger groups although coordination eventually collapsed in many groups. Other ways

to reduce strategic uncertainty and to induce higher effort levels are the admission of cheap

talk before the game (Blume and Ortmann 2007), the reduction of exploration costs by an

increase of the number of rounds (Berninghaus and Ehrhart 1998), or (almost) common

knowledge, unanimous “positive” advice of previous subjects (Chaudhuri et al. 2009).

Mixed evidence was found with respect to feedback information. While Berninghaus

and Ehrhart (2001) found that average effort increases if subjects do not only get feedback

about the minimum effort but also about its distribution, other studies like the original

VHBB or Engelmann and Normann (2009) do not confirm this.

Not related to the reduction of uncertainty is the result of Feri et al. (forthcoming)

that groups elicit more effort than individuals. Last but not least also cultural differences

may play a role as being argued by Engelmann and Normann (2009).

By and large, although some studies provide gleams of hope, the picture for efficiency for

the minimum effort game with exogenously given neighborhood looks quite discouraging.

predict the effort levels of other players and therefore fail to coordinate on an equilibrium (individual

coordination problem). Secondly, as the equilibria can be Pareto ranked, players might coordinate but

coordinate on a low payoff equilibrium (collective coordination problem). The first coordination problem

is normally solvable via communication or repeated actions. Hence we concentrate on the more interesting

second coordination problem, the efficiency problem.
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Although coordination on the payoff-dominant equilibrium happens sometimes under some

specific conditions it is not guaranteed. Moreover if happening it turns out to be quite

fragile over time.

Endogenous neighborhood choice might change the picture because it introduces a

kind of (sometimes) costly punishment. Instead of adjusting the effort level to the low

efforts provided by some neighbors, players face the alternative to exclude them from their

neighborhood. Excluding players forgo the benefits from interaction with the excluded

players but they also reduces their strategic uncertainty. Hence, endogenous neighborhood

choice may serve as a powerful device to achieve coordination on the payoff dominant

equilibrium.

In our experiment we set out to test this hypothesis. Therefore we extend the minimum

effort game and allow players to simultaneously choose their neighborhood together with

their effort level. We run two treatments, a baseline treatment with a exogenously given full

network (comparable to the standard minimum effort game) and a neighborhood treatment

with endogenous neighborhood choice, each treatment with groups of 8 players.

We find indeed that in the long run outcomes of the neighborhood treatment converge

to the maximum effort and complete neighborhoods (i.e. everybody is linked to everybody

else). This is in sharp contrast to the result of the baseline treatment where most of the

groups converge to the lowest effort equilibrium. The effect turned out to be remarkably

stable with respect to group size. Even groups of 24 players yielded the same results.

In the remainder of the paper we will formally introduce the minimum effort game

and its neighborhood extension in Section 2. Then we describe our experimental design

and procedure in Sections 3 and 4. In Sections 5 and 6 we report on the results of the

experiments and in Section 7 we conclude. The appendix provides the formal derivation

of the theoretical benchmarks as well as experiment instructions.

2 The model

For our baseline treatment we use the same minimum effort game as in VHBB. We call it

the baseline game. For the treatment with endogenous neighborhood choice we extend the
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players’ strategy set to include a set of desired neighbors. Furthermore we adjust the payoff

function (only the neighborhood is taken into account). We call this the neighborhood

game.

2.1 The baseline game

Let N = {1, 2, 3, ..., n} be a group of players and E = {1, 2, .., 7} be a set of effort levels (1

being the lowest and 7 being the highest). Each player simultaneously chooses a strategy,

i.e. an effort level si = ei. Let s = (si)i∈N be a strategy profile of all players in the group.

Further, let b denote the marginal cost of effort, let a be the marginal return on the lowest

group effort, and let a > b > 0. The payoff of player i is determined by

πi(s) = amin
j∈N

{ej} − bei + c. (1)

where c > 0 ensures non-negative payoffs for all strategy profiles.6

Since a > b > 0, every player has the incentive to choose his effort level equal to the

minimum level of the other players. Therefore all profiles sẽ = (ẽ)i∈N where all players play

the same effort ẽ are Nash equilibria.7 Furthermore s7 = (7)i∈N is Pareto-dominant and

s1 = (1)i∈N is the risk-dominant, i.e. s1 pairwisely risk-dominates any other pure strategy

equilibrium.

2.2 The neighborhood game

As in the baseline game letN = {1, 2, 3, ..., n} be a finite set of players and E = {1, 2, . . . , 7}

a set of effort levels. Each player i chooses a strategy which consists of two parts: si =

(ei, Ii). Additionally to the effort level ei player i chooses a set of players with whom he

would like to interact: Ii ⊆ N \ {i}.8 An interaction requires mutual consent, i.e. i and j

6Negative payoffs are problematic from a practical point of view because it is not possible to legally

enforce payments from subjects.

7We concentrate on pure strategy equilibria. Equilibria in mixed strategies exist, however.

8The words interaction and play can be used interchangeably. In the context of endogenous neigh-

borhood choice we use the term interaction since whether or not to interact is a choice rather than an

5



interact if and only if i ∈ Ij and j ∈ Ii. Let s = (s1, s2, . . . , sn) be a strategy profile. The

neighborhood of player i can now be defined as Ni(s) = {j|j ∈ Ii ∧ i ∈ Ij} with |Ni(s)|

being the number of i’s neighbors.

In reality, having more interactions also implies higher potential payoffs (recall the

computer network and the disease example example from the introduction). An increase

in the number of neighbors, however, also increases the chance of facing a low effort level

in the own neighborhood. In our model players should face the same tradeoff between

the size of the neighborhood an the strategic uncertainty which goes along with it. The

simplest and most natural extension to the payoff function is to determine the minimum

effort only with respect to the neighborhood, but account the payoff only proportionally

to the neighborhood size. We therefore introduce the factor |Ni(s)|
n−1

into the payoff function:

πi(s) =
|Ni(s)|

n− 1

[

a

(

min
j∈Ni(s)∪{i}

{ej}

)

− bei + c

]

. (2)

For the case of the maximum neighborhood (Ni(s) = N \ {i}) the payoff function and the

degree of strategic uncertainty for the neighborhood game and the baseline game coincide.

Moreover it is always beneficial to increase one’s neighborhood if the minimum effort does

not decrease.

2.3 Theoretical benchmarks

Games involving networks may go along with a huge multiplicity of Nash equilibria. This

is also the case in our neighborhood game because we require mutual consent for neigh-

borhood links. For example any fragmentation of the network, where in each component

the same effort is played and none of the players wants to interact with players from other

components, is a Nash equilibrium. Consequently many actions can be justified as part

of an equilibrium strategy by some appropriate beliefs. To get predictive power of our

benchmark we apply stochastic stability (Young 1993, 1998) as an equilibrium refinement

concept. We chose it over other refinement concepts, because it fits best to our experi-

mental design. Subjects play the game for many rounds and they are able to adjust their

exogenously given fact.
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strategy in each round (see next section for details).9 The analysis yields

Proposition 2.1 In both, the baseline and the neighborhood game, the unique stochasti-

cally stable equilibrium is the complete network with every player playing the lowest effort.

The proposition summarizes the results of Propositions A.5 and A.7. See the appendix for

details and the proofs. Note however, that in both cases the network is complete. While

this is due to construction in the baseline game it emerges from the stochastic dynamics

in the neighborhood game.

3 Design and hypotheses

Our experiment comprises two treatments; the baseline treatment and the neighborhood

treatment. In each treatment subjects played the corresponding game repeatedly for 30

rounds in fixed matching groups of eight. To assure anonymity, subjects did not get to

know the identity of the other group members. They referred to themselves as “me” and to

the others with the capital letters “A” to “G”. For each subject these identifiers remained

fixed throughout the experiment. The parameters of the payoff function were set in the

same way as in VHBB, i.e. a = 20, b = 10, and c = 60. This yielded an equivalent

payoff table (see the payoff table in the instructions in the appendix). When making their

decision, subjects had access to the complete history of other group members’ previous

actions.

3.1 Baseline treatment

In the baseline treatment the full neighborhood was exogenously enforced, i.e. in each

round each subject had to interact with all group members and only chose an effort level.

The only notable difference to the standard minimum effort game (VHBB, is the additional

9Crawford (1995) provides a discussion on the (in-)appropriateness of other equilibrium refinement

concept. He also suggests and analyzes a rather general learning model to explain the data of VHBB.

This model however requires a one-dimensional strategy space and is therefore not applicable for the

neighborhood game.
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information of all previous decisions. Moreover, to have the appearance of the screen most

similar to the neighborhood treatment (see next section for details) the baseline subjects

received a graphical representation of the network.10

The major problem, subjects face is the strategic uncertainty. Doubts in the high effort

ambitions of other subjects induce playing safe, i.e. low effort. Doubts might be straight or

of a more subtle higher order, for example a subject might not doubt another’s willingness

to coordinate on high efforts, but beliefs that the other is doubtful. As soon as more

subjects follow a safe strategy, low-effort outcomes are self-confirming and very difficult to

overcome.

This consideration is confirmed by the prevailing evidence from the literature. Subjects

do not manage to coordinate on the payoff-dominant equilibrium but rather converge to the

lowest effort over time (Devetag and Ortmann 2007). This also holds for extended feedback

(VHBB, Engelmann and Normann 2009). Even in the extended feedback condition of

Berninghaus and Ehrhart (2001) in which higher than usual effort levels are found, these

levels deteriorate over time. The difference in the visual representation of the group might

influence subjects’ choices but only to a negligible extent. Therefore, we expect to find the

usual result:

Hypothesis 3.1 In the baseline treatment (minimum effort game with fixed exogenously

given neighborhoods), subjects behavior will converge to the minimum effort.

3.2 Neighborhood treatment

In the neighborhood treatment, neighborhoods are endogenous, i.e. in each round subjects

do not only choose their effort level but also indicate for all other group members whether

they want to interact with them or not. In order to save some time and effort costs, the

interaction decisions from the previous round was given as default for the current round.

Before their decisions subjects can browse through the entire history of all other group

members’ actions. After the decision each subject’s neighborhood and corresponding payoff

10The representation showed the full network and did not change of course. For a screenshot see the

instructions in the appendix.
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was individually determined (see Equation 2 in Section 2.2). Thereafter subjects received

feedback about the size of their neighborhood, the minimum effort in their neighborhood,

and their payoff.

The theoretical benchmarks of both treatments are identical, but from a behavioral

aspect there is a difference. Suppose that subjects have an interest in efficient coordination.

This is plausible since it does not only satisfy efficiency concerns but also pure self-interest.

Suppose further, that nevertheless not all of them play the highest effort due to strategic

uncertainty. Unlike in the baseline treatment a subject now faces an alternative way of

reacting to low effort providers. Rather than adjusting her own effort downwards, she might

exclude them from her neighborhood. Thereby exclusion might serve different motives.

One one hand it might be part of a myopic better response11 or a myopic best response.

On the other hand she might also exclude others if this implies costs in order to punish

them for their inefficient behavior.

The payoffs are proportional to the size of the subject’s neighborhood. An excluded

subject forgoes gains. Therefore a possible response is to increase the effort level in consec-

utive rounds. This gives the excluder an incentive to re-include the excluded subject into

her neighborhood. This basic mechanism of efficiency enforcement might lead to maximum

effort and a complete network in the group. Weber (2006) shows that starting out from

pairs and adding subjects one by one fosters high effort levels up to a certain size of the

group. We expect that a similar but endogenous process takes place in our neighborhood

treatment. Small subgroups coordinating on high effort levels will form and only admit

others to their neighborhood if they elicit high effort. Compared to Weber (2006) this

process should even be more robust because deviators can be excluded again and do not

have to lead to an effort deterioration. We therefore put forward

Hypothesis 3.2 In the neighborhood treatment (minimum effort game with endogenously

chosen neighborhoods), subjects behavior will converge to the complete network with every

subject playing the highest effort.

11With better response we denote a strategy that gives ceteris paribus a higher payoff than the currently

played strategy. In contrast to the best response is has not to be optimal.
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4 Experimental Procedure

All experimental sessions were conducted at the Behavioral and Experimental Economics

Laboratory Maastricht (BEELab) with students from Maastricht University. The vast

majority of subjects were from economics and business administration. The others were

from law, cultural sciences and from the University College Maastricht. They were recruited

through email announcements and announcements on students’ intranet. Subjects were not

allowed to participate more than once in the experiment. The experiment was computer

based and programmed in Z-tree (Fischbacher, 2007). To ensure anonymity, 16 subjects

were recruited for every session and were randomly divided into two independent groups

of 8 students. Subjects got written instructions which they could study at their own

pace (see appendix). Additionally they could ask questions privately.12 Before the game

started subjects had to answer some control questions correctly (see appendix). In total,

we conducted 9 sessions: 5 with endogenous neighborhood choice and 4 baseline sessions.

Subjects collected their payoffs in points which were paid confidentially in cash immediately

after the experiment. The exchange rate was 2 points = e 0.01. On average participants

earned e 11.82 in the baseline treatment and e 17.17 in the neighborhood treatment. A

typical session in the neighborhood treatment lasted about 80-90 minutes whereas a typical

session in the baseline treatment lasted around 50-60 minutes.

To check the robustness of our results we ran additional sessions with large groups of 24

subjects, three sessions with the baseline treatment (baseline XL) and three sessions with

the neighborhood treatment (neighborhood XL). The sessions took roughly 30 minutes

longer than their small groups counterparts. Baseline XL participants earned e 14.35 on

average while neighborhood XL participants got e 20.32 on average.

12We did only answer questions about the instructions. No answer was given if it had influenced the

subjects expectation or strategy choice.
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5 Results

5.1 Effort levels

In the experiment we collected data from 8 groups for the baseline treatment and 10 groups

for the neighborhood treatment. Each group forms an independent observation and if not

stated differently statistical tests are based on aggregated measures of these independent

groups.

We begin the analysis with the effort choices over time. Figures 1(a) and 1(b) show the

cumulative distribution of effort levels for the baseline treatment and the neighborhood

treatment, respectively. In the first round, we observe only little differences. Regarding
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Figure 1: Cumulative Distribution of Efforts across Rounds

the effort level as cardinal and applying a MWU-test on individual first round effort levels

across treatments yields no significance (MWU, n=144, p=0.8919, two-sided).13 However,

behavior follows completely different trends in the consecutive rounds. In the baseline

treatment the lowest effort becomes more frequent and ends being most frequentin the

last round, more often played than all other effort levels together. In the neighborhood

treatment, in contrast, the highest effort level becomes very quickly dominant while the

frequencies of the other levels dwarf to a negligible size. To test this difference in trends

we calculate each group’s Spearman rank correlation coefficient between round and effort

13The distributions of effort levels are not identical though (Fisher exact test, n=144, p=0.027). There

is more mass on the extreme effort levels in the baseline treatment.
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level. The coefficients in the neighborhood treatment are (marginally) significantly more

positive than those of the baseline treatment (MWU, n=18, p=0.0756, two-sided).14

A similarly clear picture yields the look at the average effort levels and the average

minimum effort levels reported in Figure 2. Both curves for the neighborhood treatment
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Figure 2: Average and average minimum efforts across rounds. Average minimum refers

to the minimum effort levels played in the group averaged across groups.

are clearly above their counterparts for the baseline treatment. To test this we average effort

levels and minimum effort levels across rounds for each group. The differences between

treatments are significant (MWU on groups’ average effort levels over all rounds, n=18,

p=0.001, two-sided; MWU on groups’ minimum effort levels averaged over all rounds,

n=18, p=0.0033, two-sided).

In the baseline treatment, three out of eight groups manage to coordinate on the highest

effort during rounds 13 to 24. The average effort of the other groups is approaching 1. Most

of this convergence is caused by subjects who adapt their behavior to the minimum effort

played in the groups. Moreover some subjects even overshoot, i.e. they play a lower level

than the minimum level of the previous round. This behavior causes a drop in the minimum

effort level and shows up in the data within the first 11 and the last 6 rounds. Towards the

end we observe an end game effect in two of the three efficient groups (see Section 5.5).

The baseline treatment results are in line with previous findings although they are

rather on the Pareto-efficient end of the spectrum from the literature (compare for example

14Stronger results can be achieved with a Kolmogorov-Smirnov test (KS, n=18, p=0.012).
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Devetag and Ortmann 2007). Possible reasons could be the relatively small group size, the

high number of rounds, complete feedback, cultural differences, and lower social distance

due to the graphical representation of the network on the decision screen. All factors

increase the chance of Pareto-efficient coordination and except for the last factor some

(weak) supporting evidence exists. See the introduction for details.

In the neighborhood treatment all but one group converge within the first ten rounds to

a complete network with each player playing the maximum effort level. One group remains

unstable and does not converge to any common effort level. Nevertheless, the average level

in this group is above 6 from round 10 onwards. Also here we observe an end game effect

in six of the ten groups which drags down the overall average (see Section 5.5).

5.2 Neighborhood formation

Next to the development of the effort levels we are interested in the neighborhood formation

process. Depending on the players’ interaction choices Ii and Ij, four different situations

may result. Besides mutual interaction (j ∈ Ii and i ∈ Ij) and mutual exclusion (j 6∈ Ii and

i 6∈ Ij ) player i might be the sole proposer of an interaction (j ∈ Ii and i 6∈ Ij) or the one

to reject j’s interaction proposal (j 6∈ Ii and i ∈ Ij). Figure 3 shows the frequencies of these

situations over time.15 We see that the groups are almost completely interlinked from the
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Figure 3: Interactions Proposals across Rounds

15Note that the frequencies to be a sole interaction proposer and a rejector of a proposal have to be

equal by construction.
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beginning. Moreover ther is a clear increase of the interaction frequency over time. This

is confirmed by a Wilcoxon signed rank test applied to groups’ Spearman rank correlation

coefficients between frequency of mutual interaction and round number (Wilcoxon, n=10,

p=0.043, two-sided). An interesting fact to mention is that the frequency of interactions

that do not take place after round 10 is caused by one group.16 The remaining groups

approach the complete network within this time.

5.3 Exclusion

The frequencies of highest effort and interaction density seem to be in strong accordance.

This suggests a causal relationship between both and calls for a more thorough investiga-

tion. In the introduction we already discussed that exclusion of others from the neighbor-

hood extends a player’s strategic possibilities to react to low effort providers. Exclusion

could either be used to myopically best respond or to discipline others. In the following we

investigate this to more detail. We look at the development of dyadic relationships among

all subject pairs i and j for a two period time interval (t − 1 and t). In a first step we

analyze the consequences which arise for low effort providers; do they face a higher risk of

being excluded by others?

Therefore we categorize the dyadic relations by the behavior of subject i in round t− 1

into three distinct classes. The first class includes all cases where i provided at least as

much effort as j (ei ≥ ej). The second class includes cases where i provided less effort than

j but still more than the minimum in j’s neighborhood (ei < ej but ei > mink∈Nj
{ek}).

Eventually the third class includes all cases where i’s effort was not only lower than j’s but

also the minimum in j’s neighborhood (ei < ej and ei = mink∈Nj
{ek}). We finally check

whether in round t subject j excluded i from her neighborhood.

The data in Table 1 (rounds t−1 and t) shows that playing at least the effort of the other

subject goes along with a very small risk of being excluded (0.6%). In contrast, the risk is

quite high when playing a lower effort level than the other subject (25.0%) and it further

increases if this effort level is the minimum of the other subject’s neighborhood (38.8%). To

16This is the same group which also showed unstable behavior with respect to the effort choices.
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test these differences we calculate the exclusion rates for each independent group separately

and apply a Wilcoxon signed rank test. All three pairwise comparisons are significant

(Wilcoxon signed rank test, two-sided: 0.6%<25.0%, n=8, p=0.039; 25.0%<38.8%, n=8,

p=0.023; 0.6%<38.8%, n=10, p=0.002).

Table 1: Reactions to being excluded

Round Action

t− 1 i’s effort i’s effort i’s effort

ei ≥ ej ei < ej but ei < ej and

ei > mink∈Nj
{ek} ei = mink∈Nj

{ek}

t j excluded i j excluded i j excluded i

excl. rate: 0.6% excl. rate: 25.0% excl. rate: 38.8%

cases: 84/14738 cases: 26/104 cases: 100/258

t+ 1 i’s reaction i’s reaction i’s reaction

j ∈ Ii j 6∈ Ii j ∈ Ii j 6∈ Ii j ∈ Ii j 6∈ Ii

ei ↑ 11.8% 2.6% ei ↑ 69.2% 11.5% ei ↑ 61.7% 9.6%

(9) (2) (18) (3) (58) (9)

ei= 68.4% 14.4% ei= 3.8% 3.8% ei= 19.1% 0.0%

(52) (11) (1) (1) (18) (0)

ei ↓ 1.3% 1.3% ei ↓ 11.5% 0.0% ei ↓ 9.6% 0.0%

(1) (1) (3) (0) (9) (0)

There are two possible motivations for exclusion. Players may act in their self-interest

and play a best or at least a better response17 to the behavior of the others in the previous

round. However, players may also perceive low efforts as an intentional or stupid negative

act and want to educate the others by excluding them. These motivations are not mutually

exclusive, but the self-interest explanation only holds if the exclusion of the other player is

not costly.

17With better response we denote a weaker concept than the best response. Rather than being payoff

maximizing a better response only ensures a higher (or at least equal) payoff compared to the previous

round ceteris paribus. A best response is always also a better response.
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It turns out that 45% of all exclusions can be explained by a best response and 24%

by a better response. In contrast 31% of all exclusions can only be assigned to reciprocal

behavior. This means that in a majority of cases (24%+31%) players incur short term

costs or forgo short term gains in order to exclude low effort providers.

The question remains whether excluded players change their behavior or not. Only

by keeping their interaction wish and increasing their effort level they give the excluding

player an incentive to re-establish the link. To investigate this issue in detail we extend the

analysis of the dyadic relationships by another period t+1. We investigate the behavior of

those subjects i who have been excluded in round t. Subjects may react in two dimensions.

Firstly, they may keep the interaction wish to j (j ∈ Ii) or break the link on their part

(j 6∈ Ii). Secondly, they may stay (ei=), go up (ei ↑) or down (ei ↓) with their effort level.

Table 1 (round t+1) reports the results.18 Roughly 86% of the cases excluded subjects

keep their interaction wish in round t + 1 (81.6%, 84.6%, and 90.6% for the respective

classes). With respect to the effort level subjects make their decisions dependent on how

much effort they provided in round t − 1. If they were at least equal to the excluding

subject, they most often stick to their effort level in round t + 1 (82.9%). If they were

lower than the excluding subject, they most often increase their effort level in round t+ 1

(80.8% and 71.3% for the respective classes).

5.4 Welfare

Failure of coordination can create huge potential welfare losses. We have seen that the

possibility of exclusion promotes coordination to higher effort levels. However, exclusion

comes with some costs and we do not know yet whether or not the gains from higher effort

levels outweigh these costs. We therefore calculate a group’s welfare level by the summation

of payoffs of all group members. Additionally we calculate two benchmark levels: firstly

the optimal level (every group member plays maximum effort and interacts with all other

group members) and secondly a fictitious welfare level which had been obtained in the

18Note that the sum of cases in round t+1 might be lower than in round t because for t = 30 no further

round exists.
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neighborhood treatment if subjects stuck to their effort level but were fully interlinked

with all group members. 4 depicts the average welfare level over time for each treatment

as well as the corresponding benchmarks. Both average welfare levels increase over time.
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Figure 4: Welfare Levels across Rounds

However the average welfare level of the neighborhood treatment significantly outreaches

that of the baseline treatment (MWU on groups average welfare, n=18, p=0.0129, two-

sided).

The difference between the fictitious benchmark and the welfare level of the neighbor-

hood treatment provides us with a measure of the net costs of exclusion. As can be seen it

is small in the beginning and turns negligible from round 10 onwards. In some particular

rounds (e.g. round 14) exclusion is even efficiency enhancing.

5.5 End game effect

As already briefly discussed in Section 5.1 we see an end game effect in many groups. This

end game effect happens in two out of three efficient groups in the baseline treatment. In

one group it happened in the last round only in the other it started in round 25 already.

In the neighborhood treatment an end game effect happened in six out of ten groups.

In five out of the six groups, the effect is caused by one player deviating from the highest

effort, in the other group this was caused by four players. In four of the six groups, the

end game effect occurred in the last round only, in two groups it started earlier (in rounds

28 and 29 respectively).
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Strictly speaking lowering the effort in the last rounds could be part of an overall

equilibrium strategy. From a myopic perspective, however, it seems rather implausible.

Why should one leave a “functioning” and efficient equilibrium? In the following we discuss

three possible explanations and report the corresponding evidence in the data.

A first possible reason is revenge. Subjects who played a high effort in the beginning

rounds and either by exclusion or by good example dragged others into the Pareto-efficient

equilibrium earn a lower total payoff compared to their peers who started off with low

effort. These efficiency minded subjects might use the last rounds to equalize total payoffs

by playing a low effort.

Another reason only applies for the neighborhood treatment. Some subjects might lack

the insight that high effort levels are beneficial for all. By exclusion they feel forced into a

high effort equilibrium. Towards the end of the experiment, facing a diminishing threat of

exclusion they fell back into their preferred behavior.

Neither pattern of behavior was frequent in the data. Therefore we have to come back

to the rather vague explanation that for various reasons trust vanishes and some subjects

start to doubt that others will continue to play the highest effort. As already mentioned

in the introductions this doubts may be of a very subtle higher order type.

6 Large groups

Our results, in particular those from the neighborhood treatment, are strikingly clear, but

an important question which we can not answer from our data is that of the robustness of

the efficiency enforcing mechanism. While there are several dimensions in which robustness

can be checked, we want to focus on group size, because of two reasons: Firstly, group size

has a strong impact to strategic uncertainty. Adding another player decreases the chance

of efficient coordination in a multiplicative way. Secondly, also the existing literature

acknowledges group size as an important factor (Van Huyck, Battalio and Beil, 1990 and

Van Huyck Battalio and Rankin, 2007).

We conducted six additional sessions, three with the neighborhood treatment and three
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with the baseline treatment. Each session consisted of one large group of 24 subjects.19

In the following we will call them XL baseline treatment and XL neighborhood treatment.

Besides seeing whether our results are robust with respect to size, we were also interested

in whether the group gets fragmented into separate neighborhoods, for example one coor-

dinating on high and the other on low effort. In the following, we will briefly report the

results.

By and large we get the same treatment differences than with the small groups. Figure

5 shows the distribution of effort levels, which develops in a similar manner as in the smaller

groups. In contrast to the small group treatments find already a clear difference in the

effort levels in the first round. Neighborhood XL subjects show a significantly higher effort

in round 1 than baseline XL subjects (MWU, n=144, p= 0.0238, two-sided).

Like in the small group treatments we find opposite trends with respect to the efforts

development. In the baseline XL treatment, the absolute majority of subjects converge to-

wards playing the lowest possible effort level, whereas in the neighborhood XL treatment,

subjects converge towards the highest effort (MWU, n=6, p=0.05, one-sided). Figure 6

0
.2

.4
.6

.8
1

A
ve

ra
ge

 fr
eq

ue
nc

y 
ef

fo
rt

 p
la

ye
d

0 10 20 30
Period

Effort 7 Effort 6
Effort 5 Effort 4
Effort 3 Effort 2
Effort 1

Baseline Treatment
Effort Levels across Periods

(a) Baseline Treatment

0
.2

.4
.6

.8
1

A
ve

ra
ge

 fr
eq

ue
nc

y 
ef

fo
rt

 p
la

ye
d

0 10 20 30
Period

Effort 7 Effort 6
Effort 5 Effort 4
Effort 3 Effort 2
Effort 1

Neighborhood Treatment
Effort Levels across Periods

(b) Neighborhood Treatment

Figure 5: Distribution of Efforts in Groups across Rounds

shows the average effort level and the average minimum effort level. Despite the small

number of independent observations, the differences are significant (MWU on groups aver-

age effort level, n=6, p=0.05, one-sided; MWU on average minimum effort level, n=6, p=

19To the best of our knowledge this has been the largest groups ever being tested with the minimum

effort game.
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0.05, one-sided).20
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Figure 6: Average and Minimum Efforts across Rounds

In each of the neighborhood XL sessions we observe an end game effect in the last

round. It was triggered by one, two and four subjects, respectively. A notable observation

is that all downward movements of the average as well as minimum effort, except for the

last round, are caused by one single group where one single individual played low effort

levels recurrently. The other two groups reach the highest effort after ten rounds.

A similar picture yields the analysis of the link structure (see Figure 7). In the very

0
.5

1
F

re
qu

en
cy

0 10 20 30
Period

No interaction proposal
Rejector interaction proposal
Sole proposer interaction
Interaction

Neighborhood treatment
Interaction Proposals and Occurence across Periods

Figure 7: Interactions across Rounds

beginning the group forms an almost complete network, but quickly the interaction fre-

quency drops down to a bit more than 0.5, before recovering to almost full interaction by

20The tests are one-sided because given our results from the small groups we had a clear hypothesis for

the direction of the difference.
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round 11. From then on all cases of non-interaction involve the one single subject who

repeatedly deviated from the highest possible effort.

As with the small groups we find that in the neighborhood XL treatment exclusion

is triggered by playing the minimum effort within the neighborhood. In each situation

where a subject played an effort below the maximum, this person was excluded by at least

one other person. In the most extreme case, a person who played a lower effort level got

excluded completely.

Being excluded made subjects realize that they should increase their effort level to the

maximum. After this increase, they were included again by all other subjects. This does

not hold however for the particular subject who repeatedly decreased the effort level. Other

subjects became more and more reluctant to interact with this person. On average this

person only received five interaction proposals per round, whereas the remaining subjects

receive 21 proposals per round on average.

7 Conclusions

With the real live examples of the minimum effort game we pointed out a major difference

between situations where players are bound to their neighborhood and others where players

may freely choose with whom to interact. We extended the minimum effort game by

endogenous neighborhood choice and conducted an experiment with two treatments, a

baseline treatment where the neighborhood was fixed and a neighborhood treatment where

subjects could endogenously determine their neighborhood.

The results show that endogenous neighborhood choice solves the coordination problems

and ensures efficient outcomes. The basic mechanism is quite simple. In standard minimum

effort games subjects do not have the means to force others into the payoff dominant

equilibrium. Consequently, as soon as there exists subjects unwilling to exert the highest

effort or doubting that others will exert high efforts, efficient coordination will fail. The

only way to ensure reasonable payoffs in such a situation is to also provide low effort. By

this self-confirming process the outcome gets mired into the risk dominant equilibrium.

Endogenous neighborhood choice gives subjects the possibility to exclude others with
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unwanted behavior. It turns out that exclusion is used by high-effort players against low-

effort players although it is sometimes costly. Moreover exclusion works, i.e. low-effort

players quickly realize that they have to increase effort in order to be included again by

other subjects. This behavior forced all subjects of the neighborhood treatments into the

efficient equilibrium.21

With respect to our real world examples our data indicate that the worrying results of

VHBB and successors do not apply for the type of situations where the minimum effort

game is played in networks and individual players are able to choose their interaction

partners. Regulatory means seem not be necessary for this class of games. However we

do not want to stretch our results too far. Our neighborhood treatments give efficient

coordination a good shot. Our subjects played the game for many rounds; they had

full information about others choices (effort levels as well as neighborhood choices); and

eventually the costs of exclusion were rather moderate. Hence, we consider our experiment

to provide two benchmarks that show what is possible with endogenous networks. The

region between the benchmarks is largely unexplored. It is not clear where the line of border

between efficient and inefficient coordination runs. In our view a possible and interesting

avenue to proceed is to check the robustness of the results under varying conditions. Our

results are remarkably robust with respect to group size. Other dimensions like feedback

information have to be tested still. For example coordination on the payoff dominant

equilibrium has a harder stand if subjects only receive information about those players’

actions whom they interacted with. A fragmentation of the group into different sub-

groups becomes more likely then, because linking up to “unknown” players involves risk.

A further avenue is to vary the characteristics of links, e.g. add linking costs or allow for

one-sided linking. While linking costs might lead to an increase of efficiency in the minimum

effort game due to a forward induction argument, one-sided linking completely offsets the

exclusion power and will most likely lead to outcomes as in the standard minimum effort

game experiments. Further interesting variations may include non-linear exclusion costs or

a limited amount of links. Once these and other robustness checks have been done, more

21Only one subject in the neighborhood XL treatment repeatedly fell back on playing low effort levels.
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detailed statements can be made about real world situations.
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A Theoretical benchmarks

We show that for our parameter setting the fully interlinked network with every player

playing the lowest effort is the unique stochastically stable equilibrium for the minimum

effort game with neighborhood choice. Thereafter we show that this also holds for the

restricted case of the minimum effort game without neighborhood choice.

A.1 The game

The analysis rests on a one-shot game where each player simultaneously chooses an effort

level and the set of other players whom he or she wants to interact with. The basic elements

of the game are:

• N = {1, 2, 3, ..., n} is a finite set of players.

• E = {1, 2, ..., m} is a set of effort levels.

• si = (ei, Ii) is the strategy of player i with ei ∈ E is the player’s chosen effort level

and Ii ⊆ N \ {i} is the set of players with whom i wants to interact with.

• s = (s1, ..., sn) = ((ej , Ij))j∈N is a strategy profile. Later we will interpret it as

a state in a Markovian chain. With sẽ we denote the strategy profile where every

player wants to interact with every other player and all play the same effort ẽ, i.e.

sẽ = ((ẽ, N \ {j}))
j∈N .

• s−i = (s1, . . . , si−1, si+1, . . . , sn) = ((ej, Ij))j∈N\{i} is the vector of strategies of all

players except i.

• Given a strategy profile s, players i and j are linked if both want to interact with

each other, i.e. j ∈ Ii and i ∈ Ij . If an interaction wish of i with j is not reciprocated,

i.e. j ∈ Ii but i 6∈ Ij then j is called a dangling link of i.
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• Given a strategy profile s, the neighborhood of a player i is the set of all players i is

linked to, i.e. Ni(s) = {j|j ∈ Ii ∧ i ∈ Ij}. With |Ni(s)| we denote the cardinality of

Ni(s), in other words the size of the neighborhood.

• For a given s players i’s payoff is

πi(s) =
|Ni(s)|

n− 1

[

a

(

min
j∈Ni(s)∪{i}

{ej}

)

− bei + c

]

with a > b > 0 and c > 0.

• Our specific experimental settings are m = 7, a = 20, b = 10 and c = 60 for n = 8

and n = 24, respectively.

A.2 The process

We follow a variant of the approach of Young (1993,1998). Assume discrete and successive

time rounds (t = 1, 2, ..). Each round t every player may play a myopic best response to the

other players’ strategies of round t−1 with some positive probability σ. This construction

constitutes a Markov chain with the state space being the set of all strategy profiles and the

transition probabilities depending on σ and the payoffs π. We will show that only states

with the complete network and everybody playing the same effort are absorbing states and

that no other recurrent class of states exist. Thereafter we take the parametrization of our

experimental design and calculate the number of errors which are necessary to get from

one absorbing state to the other. We use the method introduced by Young (1993,1998)

to show that the state with the complete network and the minimum effort played by all

players is the only stochastically stable one.

A.3 Some useful observations

To start, we state some almost trivial propositions. We will use them later. The corre-

sponding proofs are straightforward.

Proposition A.1 Given an outcome s = ((ei, Ii), s−i). Then the players i’s payoff is

independent of dangling links, i.e. πi((ei, Ii), s−i) = πi((ei, I
′
i), s−i) with I ′i = {j|j ∈ Ii∧ i ∈

Ij}.
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Proof: Dangling links are not decisive for the neighborhood of a player, i.e.Ni((ei, Ii), s−i) =

Ni((ei, I
′
i), s−i). Hence neither the removal nor the addition of dangling links change pay-

offs. As a corollary we get that any best response remains a best response if dangling links

are removed or added. �

Proposition A.2 For Ni(s) 6= ∅ the condition ei = minj∈Ni(s){ej} is necessary for si =

(ei, Ii) being a best response to s−i = ((ej, Ij))j∈N\{i}.

Proof: Assume Ni(s) 6= ∅ and that the condition does not hold, then i can improve his

payoff by adjusting ei to minj∈Ni(s) ej while holding Ii constant. �

A.4 Absorbing states and recurrent classes

Proposition A.3 A state sẽ with sẽi = (ẽ, N \ {i}) for each player i ∈ N and some ẽ ∈ E

is an absorbing state.

Proof: We have to show that si = (ẽ, N \{i}) is the only best response to s−i = (sj)j∈N\{i}

with sj = (ẽ, N \ {j}).

Removing players from Ii strictly decreases |Ni(s)| and therefore strictly decreases πi.

The marginal payoff change with respect to ei is −a + b (< 0) if i decreases ei and −b

(< 0) if i increases ei. Any combination of changes in effort and interaction also leads to

negative payoff consequences. It follows that si is the only best response to s−i. This holds

for each player. �

Each of the absorbing states forms a recurrent class. In the following we will show that

no other recurrent class exists.

Proposition A.4 No other recurrent class than those defined by the absorbing states in

proposition A.3 exists.

Proof: We introduce a hierarchy of sets of states into the state space. Let

S be the set of all possible states.
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S ′ be the subset of S for which in any state s′ players who are linked play the same effort

level and no dangling link exists. This means that the network induced by s′ consists

of one or more components with all players within a component are playing the same

effort level.

S ′′ be the subset of S ′ where in any state s′′ the link relation is transitive, i.e. if i is linked

to j and j to k then also i is linked to k. This means that the network induced by

s′′ consists of one or more fully interlinked components without dangling links and

with all players within a component are playing the same effort level.

Sa be the set of the absorbing states.

It is obvious that S ⊃ S ′ ⊃ S ′′ ⊃ Sa. The last inclusion follows from Proposition A.3,

an absorbing state is characterized by the complete network with every player playing the

same effort.

The proof comprises three steps. We will show that for each state in the supersets S,

S ′, and S ′′ a finite path of best responses into the subsets S ′, S ′′, and Sa exists which the

players follow with positive probability.

Step s ∈ S → s′ ∈ S ′

Assume state s ∈ S. The following algorithm generates a finite sequence of best responses

that occurs with a positive probability and leads to a state s′ ∈ S ′. Assume that players

update their strategies one by one.

1. Sort the players into a two lists A and B.22

List A contains players that do not have any dangling link in their strategy and

whose effort level is at most the minimum effort level of their neighborhood.

List B contains the other players.

22We chose to have lists rather than sets because list B must enable an order for processing the elements

(first in first out principle).
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2. Take the first player i from list B and calculate all best responses to s−i. There exists

a best response si without dangling links and ei = minj∈Ni(s){ej} (see propositions

A.1 and A.2). Update player i’s strategy to such a best response and put him at

the end of list A. The update of si may cause some players in A to violate the

A-conditions. Put them at the end of list B.

3. If there are players left in B then continue with step 2.

The generated sequence is finite because for each application of step 2 there is exactly

one player moving from B to A. A move of a player i from A to B can only happen if a

neighbor j moves from B to A and breaks up a link or decreases his effort level such that

ej < ei. In the first case the link between i and j will be irreversibly deleted.23 In the

second case i updates by keeping the link and lowering ei or by breaking the link. Since

E is finite, lowering ei can only happen a finite number of times before the link has to be

broken. Because the breaking of a link is irreversible and there is only a finite number of

links to be broken, there can only be a finite number of moves from A to B.

Step s′ ∈ S ′ → s′′ ∈ S ′′

Assume state s′ ∈ S ′, i.e. N is subdivided into several disjoint components C1, C2, . . . , Ck.

Each component is (not necessarily fully) linked and is free of dangling links. Each player

within a component is playing the same effort level. Consider a component Cl in which

effort level ẽ is played. Consider further a player i ∈ Cl who plays strategy si = (ẽ, Ii) with

Ii ⊆ Cl. Then strategy si = (ẽ, Cl \ {i}) is a best response to s−i because adding dangling

links do not change payoffs (see Proposition A.1). There is a positive probability that each

player is playing this best response and that this happens in each component. This means

that we reach a state s′′ ∈ S ′′ where components are fully connected.

23Note that only players moving from B to A may change their strategy. Player j who is now in A can

only reestablish the link to i, after he has been moved back to B. Since he will be put at the end of the

list, i will have deleted the dangling link before j’s next turn.
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Step s′′ ∈ S ′′ → sa ∈ Sa

Assume state s′′ ∈ S ′′. Assume two disjoint components C,C ⊂ N and that each compo-

nents is fully connected. Each player in C and C plays effort e and e, respectively. Without

loss of generality assume that e ≥ e.

By the condition

|C|+
∣

∣C
∣

∣− 1

n− 1
(ae− be + c) >

∣

∣C
∣

∣− 1

n− 1
(ae− be + c) (3)

we distinguish two cases:

If condition (3) holds, then a player i ∈ C prefers to play e and to link up to all players

in both components rather than to stay with component C. Because of Proposition A.1

it happens with positive probability that all players in C will create a dangling link to all

players in C. Once this happens it becomes a best response for each player from C to

connect to all players from C and switch to effort level e.

If the converse of condition (3) holds, then

|C|+
∣

∣C
∣

∣− 1

n− 1
(ae− be + c) <

∣

∣C
∣

∣

n− 1
(ae− be + c) (4)

follows. This means that player i ∈ C prefers to join C, to switch the effort level to e and to

break up all links to his neighbors from C, rather than being connected to both components

and to play an effort level of e. Because of Proposition A.1 it will happen with positive

probability that all players in C will offer to establish a link with all players in C. Once

this happens it becomes a best response for all players from C to connect to all players

from C, switch the effort level to e and break the links with their old neighborhood. The

resulting component is not completely connected but connects completely with positive

probability and within finitely many steps (for the proof see step s′ ∈ S ′ → s′′ ∈ S ′′).

The previous paragraphs show that regardless of the result of condition 3 there is a

positive probability that two components merge to one fully interlinked component C ∪C

where each player plays the same effort level (either e or e). A repeated application of this

part of the proof shows that with finitely many steps and positive probability we reach a

single fully interlinked component with all players playing the same effort level; i.e. we

reach a state sa ∈ Sa. �
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A.5 Stochastically stable equilibria

So far we showed that the best reply dynamic almost surely converges to one of the ab-

sorbing states, making them the only candidates for stochastically stable equilibria. We

continue by determining the number of mistakes that is necessary to reach from one ab-

sorbing state to a basin of attraction of another absorbing state. First, note that mistakes

in the form of breaking links only, cannot lead to a different absorbing state unless players

are excluded completely from their neighborhood. This requires at least n − 1 mistakes.

Fewer mistakes are necessary if players change their effort level as well. Note further that a

number of uncoordinated deviations does never create a higher temptation for other play-

ers to change their strategies than the same number of coordinated deviations to another

effort level. Therefore it is sufficient to look at the cases where with a subgroup’s joint

deviation to another effort level we can reach the basin of attraction of another absorbing

state.

Consider the system to be in an absorbing state sa with N fully interconnected and

ei = ẽ for all players i. Assume that d↓ players deviate to e < ẽ. The following condition

must hold to make other players switching to e instead of breaking the links to the deviators:

ae− be + c ≥
n− 1− d↓

n− 1
(aẽ− bẽ + c) .

This resolves to

d↓ ≥
(n− 1)(ẽ− e)

ẽ + c
a−b

.

Consider d↑ players who deviate to e > ẽ. The following condition must hold to make

players switching to e and cutting all the links to the players of the lower effort level,

instead of not changing the strategy:

d↑

n− 1
(ae− be + c) ≥ aẽ− bẽ + c.

This resolves to

d↑ ≥
(n− 1)

(

e+ c
a−b

)

ẽ + c
a−b

.

In the remainder we focus on our parameter settings of the experiment. In short

this means: a = 20, b = 10, c = 60, E = {1, 2, . . . , 7}, and N = {1, 2, . . . , 8} or N =
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{1, 2, . . . , 24}, respectively.24 The following tables show the resistances between the ab-

sorbing states, i.e. the number of deviations needed to move from an absorbing state (row

entry) to a basin of attraction of another absorbing state (column entry).

For the case of 8 players we get:

r(si, sj) s1 s2 s3 s4 s5 s6 s7

s1 0 7 6 5 5 5 4

s2 1 0 7 6 6 5 5

s3 2 1 0 7 6 6 5

s4 3 2 1 0 7 6 6

s5 3 2 2 1 0 7 6

s6 3 3 2 2 1 0 7

s7 4 3 3 2 2 1 0

For the case of 24 players we get:

r(si, sj) s1 s2 s3 s4 s5 s6 s7

s1 0 21 18 17 15 14 13

s2 3 0 21 19 17 16 15

s3 6 3 0 21 19 18 16

s4 7 5 3 0 21 20 18

s5 9 7 5 3 0 22 20

s6 10 8 6 4 2 0 22

s7 11 9 8 6 4 2 0

Proposition A.5 For both, the 8-player case and the 24-player case s1 is the only stochas-

tically stable equilibrium of the minimum effort game with endogenous neighborhood choice.

24There are more general results achievable. For example all absorbing states may be stochastically

stable for some appropriate parameter settings. These results are however not important for our central

goal, the calculation of the theoretical benchmark for our experimental settings.

31



Proof: We have to show that s1 is the state with the minimum stochastic potential. This

means that among all rooted trees, those with the minimum total resistance (sum of all

resistances among the edges) have the root s1.

Consider a rooted tree Tm with root sm 6= s1 and total resistance r(Tm). Then we can

construct a new rooted tree Tm−1 with root sm−1 by connecting sm to sm−1 and removing

the edge from sm−1 to state sk on the path to sm. The new tree has total resistance

r(Tm−1) = r(Tm) + r(sm, sm−1)− r(sm−1, sk) ≤ r(Tm).

The last inequality holds because r(sm, sm−1) ≤ r(sm−1, sk) as can be verified from the

tables.

We can iterate this process till we construct T 1 with root s1 and total resistance

r(T 1) = r(T 2) + r(s2, s1)− r(s1, sk) < r(T 2).

The last inequality holds because r(s2, s1) < r(s1, sk) as can be verified from the tables.

Hence, for any rooted tree Tm we find a chain of rooted trees such that r(T 1) < r(T 2) ≤

· · · ≤ r(Tm). Therefore the root of the tree with the minimum total resistance must be s1.

�

A.6 The case without neighborhood choice

For the case without neighborhood choice Ii is restricted to Ii = N \ {i}. A strategy is

therefore si = ei. Furthermore Ni(s) = N \ {i} and hence |Ni(s)| = n − 1. This reduces

the payoff function to

πi(s) = amin
j∈N

{ej} − bei + c

Proposition A.6 A state s with si = ẽ for each player i ∈ N and some ẽ ∈ E is an

absorbing state in the minimum effort game without neighborhood choice and no other

recurrent class exists.

Proof: This follows immediately from the restriction Ii = N \ {i} and Proposition A.2.�

The resistance table for the case of 8 players is:
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r(si, sj) s1 s2 s3 s4 s5 s6 s7

s1 0 7 7 7 7 7 7

s2 1 0 7 7 7 7 7

s3 1 1 0 7 7 7 7

s4 1 1 1 0 7 7 7

s5 1 1 1 1 0 7 7

s6 1 1 1 1 1 0 7

s7 1 1 1 1 1 1 0

For the case of 24 players we get:

r(si, sj) s1 s2 s3 s4 s5 s6 s7

s1 0 23 23 23 23 23 23

s2 1 0 23 23 23 23 23

s3 1 1 0 23 23 23 23

s4 1 1 1 0 23 23 23

s5 1 1 1 1 0 23 23

s6 1 1 1 1 1 0 23

s7 1 1 1 1 1 1 0

Proposition A.7 For both, the 8-player case and the 24-player case s1 is the only stochas-

tically stable equilibrium of the minimum effort game without endogenous neighborhood

choice.

The proof is identical to the proof of Proposition A.5.
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B Instructions

In the following we present an integrated version of the instructions for the neighborhood

treatment. The instructions for the baseline treatment were the same except for paragraphs

marked with [N] and [*]. Paragraphs with [N] were only given in the neighborhood treat-

ment. Paragraphs with [*] were given in both treatments but appropriately reformulated

for the baseline treatment. A complete set of instructions is available from the authors.

Instructions

Introduction

Welcome to this decision-making experiment. In this experiment you can earn money. How

much you earn depends on your decisions and the decisions of other participants. During

the experiment your earnings will be counted in points. At the end of the experiment

you get your earned points paid out privately and confidentially in cash, according to the

exchange rate:

2 points = 1 eurocent.

It is important that you have a good understanding of the rules in the experiment. There-

fore, please read these instructions carefully. In order to check that the instructions are

clear to you, you will be asked a few questions at the end of the instructions. The ex-

periment will start only after everybody has correctly answered the questions. At the end

of the experiment you will be asked to fill in a short questionnaire. Thereafter you will

receive your earnings.

During the whole experiment, you are not allowed to communicate with other

participants in any other way than specified in the instructions.

If you have a question, please raise your hand. We will then come to you and answer your
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question in private.

Explanation Experiment

During the experiment every participant is in a group of eight, that is in a group with

seven other participants. The group you are in will not change during the experiment. You

will not receive any information about the identity of the persons in your group, neither

during the experiment, nor after the experiment. Other participants will also not receive

any information about your identity.

Each person in your group is indicated by a letter. You will receive the name “me”. The

other seven persons in your group will be indicated by the letters A, B, C, D, E, F and

G. The same letter always refers to the same person.

The experiment consists of 30 rounds. In each round you can earn points. Your total

earnings in this experiment is the sum of your earnings in each of the 30 rounds.

[*] In each round, you - and each other person in your group - will have to make two

decisions which will influence your earnings. You have to make a decision called “With

whom would you like to interact?” and a decision called “Which number do

you choose?” Your decisions and the decisions of the other participants in your group

will influence your earnings (as well as the earnings of the other group members). These

decisions are explained in detail below.

Note: During the whole experiment, during all 30 rounds the other participants in your

group will stay the same persons
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Decisions (in one single round)

[N] Decision: “With whom would you like to interact?”

[N] You have to decide with whom you would like to interact. You can propose an

interaction to any other person in your group and you can make as many proposals as

you want. (You can also decide not to make any proposal.) Your interaction proposals -

together with the proposals of the other persons in your group - determine with whom you

actually interact (in the respective round) as explained below:

• [N] You will interact with a person to whom you proposed to interact only if the

other person also proposed to interact with you. That is, mutual consent is needed

for an interaction to actually take place.

• [N] You will not interact with another person if either only you or only the other

person proposed to interact.

• [N] You will not interact with another person if neither of you proposed to interact

with each other.

[N] For convenience we will call those persons in your group with whom you interact:

your neighbors. Your neighbors are therefore those persons to whom you proposed to

interact and who at the same time also proposed to interact with you.

Decision: “Which number do you choose?”

In each round, each person in your group has to choose one number from 1 to 7; i.e. either

1, 2, 3, 4, 5, 6, or 7. Your earned points in each round depend on

1. your own choice of number

2. [*] the smallest number chosen by your neighbors and yourself
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3. [N] the number of neighbors you have

[N] Note: You can not choose different numbers for different neighbors. You can, however,

choose different numbers as well as different persons to interact with in the different rounds.

Here is the payoff table:

Smallest number chosen by your group including yourself

7 6 5 4 3 2 1

7 130 110 90 70 50 30 10

6 - 120 100 80 60 40 20

Your 5 - - 110 90 70 50 30

chosen 4 - - - 100 80 60 40

number 3 - - - - 90 70 50

2 - - - - - 80 60

1 - - - - - - 70

[*] Since one’s choice can be a number from 1 to 7, the smallest number can range from

1 to 7. Your payoff is determined by the cell in the row of “your chosen number” and the

column of the “smallest number chosen by your neighbors and yourself”. An example is

given below.

[*] In the table there are cells with “-”. This indicates that such a combination of “your

chosen number” and the “smallest number chosen by your neighbors and yourself” is not

possible. For example, if “your chosen number” is 4, the smallest number chosen by your

neighbors and yourself cannot be 7, 6, or 5.

[N] Your earned points in a round will be the payoff as given in the table multiplied by

number of neighbors

7
.

[N] For each person in your group with whom you do not interact (i.e. all persons who are

not your neighbors) you earn 0 points. For example, if you have no neighbors in a round,

then you earn 0 points in that round.
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Examples:

[*] Suppose you have four neighbors. You chose 3 and the smallest number chosen by your

neighbors and yourself was 3, you earn 4/7 * 90 = 51 3/7 points.

[*] Suppose you have three neighbors. You chose 5 and the smallest number chosen by

your neighbors and yourself was 3, you earn 3/7 * 70 = 30 points.

[*] Suppose you have four neighbors. You chose 5 and the smallest number chosen by your

neighbors and yourself was 4, you earn 4/7 * 90 = 51 3/7 points.

[*] Suppose you have three neighbors. You chose 7 and the smallest number chosen by

your neighbors and yourself was 4, you earn 3/7 * 70 = 30 points.

Information about Computer Screen (in one single round)

You now get information about the computer screen that you will see during the exper-

iment. You received a print-out of the computer screen (Example screen 1) from us.

Take this print-out in front of you. The screen consists of two windows: History and

Decision.

• History: This window holds information about past round(s). At the beginning of a

new round you will automatically receive information in this window about decisions

made in the previous round, (In the example, this is round 2; see upper part of the

screen). In the window there are 8 circles, named me, A, B, C, D, E, F and G.

Me always refers to you. The letters refer to the other seven persons in your group.

– [N] A thick complete line between two persons (letters or ’me’) indicates that

they both proposed to interact with each other, that is they were neighbors and,

hence, did actually interact with each other. (See, e.g., the line between me

and D on the example screen).
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– [N] A thin incomplete line between two persons indicates that only one of

them proposed to interact. That is, they were not neighbors and, hence, did

not interact with each other. Such a line starts on the side of the person that

proposed to interact, and stops just before the circle of the person that did not

want to interact. (See, e.g., the line between me and F on the example screen:

me proposed to interact with F, but F did not propose to interact with me.)

– [N] No line between two persons indicates that neither of them proposed to

interact. That is, they were not neighbors and hence, did not interact with each

other.

– Next to the letters you see numbers between 1 and 7. These numbers indicate

the chosen numbers of the persons in your group. The number next to letter A

shows the chosen number of A. The number next to letter B shows the chosen

number of B and so forth. (For example in screen 1, persons A and G have

chosen number 5, while the persons me and E have chosen number 7.)

– At the bottom of this window you find two buttons called Previous Round

and Next Round. You can use these buttons to look at the decisions in all

previous rounds. The button Most Recent Round brings you back to the last

round played.

– Your earnings (in points) in the corresponding round can be found just above

the graph next to Round Earnings.

• Decision: In this window you see which round you are in and here you have to make

your decisions.

1. [N] With whom would you like to interact? Below this question you

see the seven letters which refer to the seven other participants in your group.

You can propose to interact with another person in your group by clicking the

button “yes” (the first button), that is the first button to the right of that

person’s letter. If you do not want to interact with a person or if you want to

remove a proposal to interact, you activate the button “no”, that is the second

button to the right of that person’s letter. Note: At the beginning of each new
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round the buttons (i.e. proposals) you have chosen in the previous round will

be activated. In each new round you can change your choices, i.e., proposals

(not) to interact in the way described above.

2. Which number do you choose? In the small window next to My Number

you type in the number you want to choose.

[*] When you are satisfied with all your decisions (that is, with both the proposals

(not) to interact and your chosen number), you have to confirm these decisions by

clicking on the button “Ok”.

[*] Note: After each round you will receive information about all the decisions made (that

is, all interaction proposals made and the number choices) by all persons in your group.

All other persons in your group will also receive information about all your decisions. This

is the end of the instructions. You will now have to answer a few questions to make sure

that you understood the instructions properly. If you have any questions please raise your

hand. After you have answered all questions please raise your hand. We will then come to

you to check your answers. The experiment will begin only after everybody has correctly

answered all questions.

If you are ready please remain seated quietly.

C Instructions Large Networks

The instructions for the robustness check with large groups were similar to the small group

instructions, except that subjects were called “me, N1, N2, ..., N23” rather than “me,

A, B, ..., G”, the calculation examples have been modified, and the layout of the history

window has been slightly modified.
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Figure 8: [B] Example screen 1

Figure 9: [N] Example screen 1
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Figure 10: [B] Example screen 1

Figure 11: [N] Example screen 1
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