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1 Introduction

This paper revisits Harsanyi's (1953, 1955) utilitarian impartial observer theorem. Consider a

society of individuals I: The society has to choose among di�erent social policies, each of which

induces a probability distribution or `lottery' ` over a set of social outcomes X . Each individual i

has preferences %i over these lotteries. These preferences are known, and they di�er.

To help choose among social policies, Harsanyi proposed that each individual should imagine

herself as an `impartial observer' who does not know which person she will be. That is, the

impartial observer faces not only the real lottery ` over the social outcomes in X , but also a

hypothetical lottery z over which identity in I she will assume. In forming preferences % over all

such `extended lotteries', an impartial observer is forced to make interpersonal comparisons: for

example, she is forced to compare being person i in social state x with being person j in social

state x0.

Harsanyi assumed that when an impartial observer imagines herself being person i she adopts

person i's preferences over the outcome lotteries. He also assumed that all individuals are expected

utility maximizers, and that they continue to be so in the role of the impartial observer. Harsanyi

argued that these \Bayesian rationality" axioms force the impartial observer to be a (weighted)

utilitarian. More formally, over all extended lotteries (z; `) in which the identity lottery and

the outcome lotteries are independently distributed, the impartial observer's preferences admit a

representation of the form

V (z; `) =
X

i
ziUi (`) (1)

where zi is the probability of assuming person i's identity and Ui (`) :=
R
X ui (x) ` (dx) is person

i's von Neumann-Morgenstern expected utility for the outcome lottery `. Where no confusion

arises, we will omit the \weighted" and refer to the representation in (1) simply as utilitarianism.1

1 Some writers (e.g., Sen1970, 1977; Weymark 1991, Mongin 2001) reserve the term utilitarianism for social
welfare functions in which all the zi's are equal and the Ui's are welfares not just von-Neumann Morgenstern
utilities. Harsanyi claims that impartial observers should assess social policies using equal zi weights, and that
von-Neumann Morgenstern utilities should be identi�ed with welfares. Harsayi (1977, pp.57-60) concedes that his
axioms do not force all potential impartial observers to agree in their extended preferences. Nevertheless, he claims
that, given enough information about \the individuals' psychological, biological and cultural characteristics" all
impartial observers would agree. These extra claims are not the focus of this paper, but we will return to the issues
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Harsanyi's utilitarianism has attracted many criticisms. We confront just two: one concerning

fairness; and one concerning di�erent attitudes toward risk. To illustrate both criticisms, consider

two individuals, i and j and two social outcomes xi and xj . Person i strictly prefers outcome xi

to outcome xj , but person j strictly prefers xj to xi. Perhaps, there is some (possibly indivisible)

good, and xi is the state in which person i gets the good while xj is the state in which person j

gets it. Suppose that an impartial observer would be indi�erent between being person i in state

xi and being person j in state xj ; hence ui (xi) = uj (xj) =: u
H . She is also indi�erent between

being i in xj and being j in xi; hence ui (xj) = uj (xi) =: u
L. And she strictly prefers the �rst

pair (having the good) to the second (not having the good); hence uH > uL.

The concern about fairness is similar to Diamond's (1967) critique of Harsanyi's aggregation

theorem. Consider the two extended lotteries illustrated in tables (a) and (b) in which rows are

the people and columns are the outcomes.

xi xj xi xj

i 1=2 0 i 1=4 1=4

j 1=2 0 j 1=4 1=4

(a) (b)

In each, the impartial observer has a half chance of being person i or person j. But in table (a),

the good is simply given outright to person i: outcome xi has probability 1. In table (b), the good

is allocated by tossing a coin: the outcomes xi and xj each have probability 1=2. Diamond argued

that a fair-minded person might prefer the second allocation policy since it gives each person a

\fair shake".2 But Harsanyi's utilitarian impartial observer is indi�erent to such considerations

of fairness. Each policy (or its associated extended lottery) involves a half chance of getting the

good and hence yields the impartial observer 12u
H+ 1

2u
L. The impartial observer cares only about

her total chance of getting the good, not how this chance is distributed between person i and j.

of agreement and welfare in section 7.

2 Societies often use both simple lotteries and weighted lotteries to allocate goods (and bads), presumably for
fairness considerations. Examples include the draft, kidney machines, oversubscribed events, schools, and public
housing, and even whom should be thrown out of a lifeboat! For a long list and an enlightening discussion, see
Elster (1989).

2



The concern about di�erent risk attitudes is less familiar.3 Consider the two extended lotteries

illustrated in tables (c) and (d).

xi xj xi xj

i 1=2 1=2 i 0 0

j 0 0 j 1=2 1=2

(c) (d)

In each, the impartial observer has a half chance of being in state xi or state xj , and hence a half

chance of getting the good. But in (c), the impartial observer faces this risk as person i, while in

(d), she faces the risk as person j. Suppose that person i is more comfortable facing such a risk

than is person j. In this case, the impartial observer might prefer to face the risk as person i.

But Harsanyi's utilitarian impartial observer is indi�erent to such considerations of risk attitude.

Each of the extended lotteries (c) and (d) again yield 1
2u

H + 1
2u

L. Thus, the impartial observer

does not care who faces this risk.

In his own response to the concern about fairness, Harsanyi (1975) argued that, even if ran-

domizations were of value for promoting fairness (which he doubted), any explicit randomization

is superuous since `the great lottery of (pre-)life' may be viewed as having already given each

child an equal chance of being each individual. That is, for Harsanyi, it does not matter whether

a good is allocated by a (possibly imaginary) lottery over identities as in table (a) above, or by

a (real) lottery over outcomes as in table (c), or by some combination of the two as in table (b).

The dispute about fairness thus seems to rest on whether or not we are indeed indi�erent between

such `accidents of birth' and real `life chances'. For Harsanyi, they are equivalent, but, for those

concerned about fairness, `genuine' life chances might be preferred to `mere' accidents of birth.

If we regard life chances and accidents of birth as equivalent, there is little scope left to

accommodate di�erent risk attitudes of di�erent individuals. For example, the outcome lottery in

table (c) would be indi�erent to the identity lottery in table (a) even though the risk in the �rst

is faced by person i and the risk in the second is faced by the impartial observer. Similarly, the

3 Pattanaik (1968) remarks that in reducing an identity-outcome lottery to a one-stage lottery, \what we are
actually doing is to combine attitudes to risk of more than one person" (pp. 1165-6).
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outcome lottery in (d) would be indi�erent to the identity lottery in (a). Hence the two outcome

lotteries (c) and (d) must be indi�erent even though one is faced by person i and the other by

person j. In e�ect, indi�erence between life chances and accidents of birth treats all risks as if

they were faced by one agent, the impartial observer: it forces us to conate the risk attitudes of

individuals with those of the impartial observer herself. But Harsanyi's own acceptance principle

states that, when the impartial observer imagines herself as person i, she should adopt person

i's preferences over the outcome lotteries faced by person i. This suggests that di�erent lotteries

perhaps should not be treated as equivalent if they are faced by di�erent people with possibly

di�erent risk attitudes.

We want to make explicit the possibility that an impartial observer might distinguish between

the identity lotteries 4 (I) she faces and the outcome lotteries 4 (X ) faced by the individuals.

Harsanyi's impartial observer is assumed to form preferences over the entire set of joint distribu-

tions 4 (I � X ) over identities and outcomes. In such a set up, it is hard to distinguish outcome

from identity lotteries since the resolution of identity can partially or fully resolve the outcome.

For example, the impartial observer could face a joint distribution in which, if she becomes person

i then society holds the outcome lottery `, but if she becomes person j then social outcome x

obtains for sure. To keep this distinction clean, we restrict attention to product lotteries, 4 (I)�

4 (X ). That is, the impartial observer only forms preferences over extended lotteries in which

the outcome lottery she faces is the same regardless of which identity she assumes. That said,

our restriction to product lotteries is for conceptual clarity only and is not essential for the main

results.4

Harsanyi's assumption that identity and outcome lotteries are equivalent is implicit. Suppose

that, without imposing such an equivalence, we impose each of Harsanyi's three main assump-

tions: that, if the impartial observer imagines being individual i, she accepts the preferences of

that individual; that each individual satis�es independence over the lotteries he faces (which are

outcome lotteries); and that the impartial observer satis�es independence over the lotteries she

faces (which are identity lotteries). Notice that, by acceptance, the impartial observer inherits

4 See section 6 below.
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independence over outcome lotteries. But this is not enough to force us to the (weighted) util-

itarianism of expression 1. Instead (theorem 1), we obtain a generalized (weighted) utilitarian

representation:

V (z; `) =
X
i

zi�i (Ui (`)) (2)

where zi is again the probability of assuming person i's identity and Ui (`) is again person i's

expected utility from the outcome lottery `, but each �i (:) is a (possibly non-linear) transformation

of person i's expected utility. Generalized utilitarianism is well known to welfare economists,5

but has not before been given foundations in the impartial-observer framework.

Generalized utilitarianism can accommodate concerns about fairness if the �i-functions are

concave.6 Harsanyi's utilitarianism can be thought of as the special case where each �i is a�ne.

The discussion above suggests that these di�erences about fairness involve preferences between

accidents of birth and life chances. The framework allows us to formalize this intuition: we show

that a generalized utilitarian impartial observer has concave �i-functions if and only if she has

a preference for life chances; and she is a utilitarian if and only if she is indi�erent between life

chances and accidents of birth.7

Generalized utilitarianism can accommodate concerns about di�erent risk attitudes simply by

allowing the �i-functions to di�er in their degree of concavity or convexity.
8 In the example above,

the impartial observer �rst assessed equal welfares to being person i in state xi or person j in state

xj , and equal welfares to being i in xj or j in xi. The issue of di�erent risk attitudes seemed to

rest on whether such `equal welfares' implies equal von Neumann-Morgenstern utilities. We show

that a generalized utilitarian impartial observer uses the same �-function for all people (implying

the same mapping from their von Neumann-Morgenstern utilities to her welfare assessments) if

5 See, for example, Blackorby, Donaldson & Weymark (1999) and Blackorby, Donaldson & Mongin (2004)

6 In our story, we have �i (ui (xi)) = �j (uj (xj)) > �i (ui (xj)) = �j (uj (xi)). Thus, if the �-functions

are (strictly) concave, the impartial observer evaluatation of allocation policy (c) �i
�
1
2
ui (xi) +

1
2
ui (xj)

�
>

1
2
�i (ui (xi)) +

1
2
�i (ui (xj)) =

1
2
�i (ui (xi)) +

1
2
�j (uj (xi)), her evaluation of policy (a). The argument comparing

(b) and (a) is similar.

7 This provides a new axiomatization of Harsanyi's utilitarianism, distinct from, for example, Karni & Weymark
(1998) or Safra & Weissengrin (2003).

8 For example, if �i is strictly concave but �j is linear, then the impartial observer's evaluation of policy (c)

�i
�
1
2
ui (xi) +

1
2
ui (xj)

�
> 1

2
�i (ui (xi))+

1
2
�i (ui (xj)) =

1
2
�j (uj (xj))+

1
2
�j (uj (xi)) = �j

�
1
2
uj (xj) +

1
2
uj (xi)

�
,

her evaluation of policy (d).
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and only if she would be indi�erent as to which person to be when facing such similar risks.

Where does Harsanyi implicitly assume both indi�erence between life chances and accidents

of births and indi�erence as to whom faces similar risks? Harsanyi's independence axiom goes

further than ours in two ways. First, in our case, the impartial observer inherits independence over

outcome lotteries indirectly (via acceptance) from individuals' preferences. In contrast, Harsanyi's

axiom imposes independence over outcome lotteries directly on the impartial observer. We will

see that this direct imposition forces the impartial observer to be indi�erent as to which individ-

ual faces similar risks. Second, Harsanyi's independence axiom extends to randomizations that

simultaneously mix outcome and identity lotteries. We will see that this assumption forces the

impartial observer to be indi�erent between these two types of randomization, and this in turn

precludes concern for fairness.

Earlier attempts to accommodate fairness considerations focussed on dropping independence.

For example, Karni & Safra (2002) relax independence for the individual preferences, while Ep-

stein & Segal (1992) relax independence for the impartial observer.9 Our approach maintains

independence for each agent but restricts its domain to the lotteries faced by that agent.

Section 2 sets up the framework. Section 3 axiomatizes generalized utilitarianism. Section 4

deals with concerns about fairness. We show that the impartial observer ignoring these concerns

is equivalent to her being indi�erent between identity and outcome lotteries. This yields a new

axiomatization of Harsanyi's utilitarianism. Section 5 deals with concerns about di�erent risk

attitudes. Section 6 �rst shows how to extend our analysis to the entire set of joint distributions

4 (I � X ) over identities and outcomes. We then show how Harsanyi's independence axiom

restricted to our domain of product lotteries, 4 (I)�4 (X ), implies both our independence axiom

and both our indi�erence conditions: indi�erence between life chances and accidents of births, and

indi�erence as to whom faces similar risks. Section 7 considers four possible views (including the

one taken in this paper) for the role of the impartial observer. For each view we ask: what are

the knowledge requirements for the impartial observer; and must all potential impartial observers

9 Strictly speaking, Epstein & Segal's paper is in the context of Harsanyi's (1955) aggregation theorem. In
addition, Broome (1991) addresses fairness concerns by expanding the outcome space to include the means of
allocation.
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agree in their preferences over extended lotteries; and we relate these to the issues of fairness and

di�erent risk attitudes. Proofs are in the appendix. Appendix B [on line] contains supplementary

examples and proofs.

2 Set up and Notation

Let society consist of a �nite set of individuals I = f1; : : : ; Ig, I � 2, with generic elements i and

j. The set of �nal outcomes or social states is denoted by X with generic element x. The set X

is assumed to have more than one element and to be a compact metrizable space and associated

with it is the set of events E , which is taken to be the Borel sigma-algebra of X . Let 4 (X ) (with

generic element `) denote the set of outcome lotteries; that is the set of probability measures on

(X ; E) endowed with the weak convergence topology. We will sometimes refer to these lotteries

over outcomes as life chances: they represent the risks actually faced by each individual in their

lives. With slight abuse of notation, we will let x or sometimes [x] denote the degenerate outcome

lottery that assigns probability weight 1 to social state x.

Each individual i in I, is endowed with a preference relation %i de�ned over the set of life-

chances4 (X ). We assume throughout that for each i in I, the preference relation%i is a complete,

transitive binary relation on 4 (X ), and that its asymmetric part �i is non-empty. We assume

these preferences are continuous in that weak upper and weak lower contour sets are closed. Hence

for each %i there exists a non-constant function Vi : 4 (X ) ! R, satisfying for any ` and `0 in

4 (X ), Vi (`) � Vi (`0) if and only if ` %i `0. In summary, a society may be characterized by the

tuple


X ; I; f%igi2I

�
.

In Harsanyi's story, the impartial observer imagines herself behind a veil of ignorance, uncertain

about which identity she will assume in the given society. Let 4 (I) denote the set of identity

lotteries on I. Let z denote the typical element of4 (I), and let zi denote the probability assigned

by the identity lottery z to individual i. We will sometimes refer to these lotteries over identity

as accidents of birth: they represent the imaginary risks in the mind of the impartial observer of

being born as someone else. With slight abuse of notation, we will let i or sometimes [i] denote the

degenerate identity lottery that assigns probability weight 1 to the impartial observer assuming
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the identity of individual i.

As discussed above, we assume that the outcome and identity lotteries faced by the impartial

observer are independently distributed; that is, she faces a product lottery (z; `) 2 4 (I)�4 (X ).

We shall sometimes refer to this as a product identity-outcome lottery or, where no confusion

arises, simply as a product lottery.

Fix an impartial observer endowed with a preference relation % de�ned over4 (I)�4 (X ). We

assume throughout that % is complete, transitive continuous (in that weak upper and weak lower

contour sets are closed in the product topology), and that its asymmetric part � is non-empty,

and so it admits a (non-trivial) continuous representation V : 4 (I) �4 (X ) ! R. That is, for

any pair of product lotteries, (z; `) and (z0; `0), (z; `) % (z0; `0) if and only if V (z; `) � V (z0; `0).

Utilitarianism We say that the impartial observer is a (weighted) utilitarian if her preferences

% admit a representation of the form

V (z; `) =
IX
i=1

ziUi(`)

where, for each individual i in I, Ui : 4 (X )! R is a von Neumann-Morgenstern expected-

utility representation of %i; i.e., Ui (`) :=
Z
X
ui (x) ` (dx).

Generalized Utilitarianism We say that the impartial observer is a generalized (weighted)

utilitarian if her preferences % admit a representation


fUi; �igi2I

�
of the form

V (z; `) =
IX
i=1

zi�i [Ui(`)] .

where, for each individual i in I, �i : R ! R is a continuous, increasing function, and

Ui : 4 (X )! R is a von Neumann-Morgenstern expected-utility representation of %i.

3 Generalized Utilitarianism

In this section, we axiomatize generalized utilitarianism. The �rst axiom is Harsanyi's acceptance

principle. In degenerate product lotteries of the form (i; `) or (i; `0), the impartial observer knows

she will assume identity i for sure. The acceptance principle requires that, in this case, the

impartial observer's preferences % must coincide with that individual's preferences %i over life

chances.
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Acceptance Principle. For all i in I and all `; `0 2 4 (X ), ` %i `0 if and only if (i; `) % (i; `0).

Second, we assume that each individual i's preferences satisfy the independence axiom for the

lotteries he faces; i.e., outcome lotteries.

Independence over Outcome Lotteries (for Individual i). Suppose `, `0 2 4 (X ) are such

that ` �i `0. Then, for all ~̀, ~̀0 2 4 (X ), ~̀%i ~̀0 if and only if �~̀+(1� �) ` %i �~̀0+(1� �) `0

for all � in (0; 1].

Third, we assume that the impartial observer's preferences satisfy independence for the lotteries

she faces; i.e., identity lotteries. Here, however, we need to be careful. The set of product lotteries

4 (I) � 4 (X ) is not a convex subset of 4 (I � X ) and hence not all probability mixtures of

product lotteries are well de�ned. Thus, we adopt the following notion of independence.10

Independence over Identity Lotteries (for the Impartial Observer). Suppose (z; `), (z0; `0)

2 4 (I)�4 (X ) are such that (z; `) � (z0; `0). Then, for all ~z, ~z0 2 4(I):(~z; `) % (~z0; `0) if

and only if (�~z + (1� �) z; `) % (�~z0 + (1� �) z0; `0) for all � in (0; 1].

To understand this axiom, �rst notice that the two mixtures on the right side of the implication

are identical to �(~z; `)+(1� �) (z; `) and �(~z0; `0)+(1� �) (z0; `0) respectively. These two mixtures

of product lotteries are well de�ned: they mix identity lotteries holding the outcome lottery �xed.

Second, notice that the two product lotteries, (z; `) and (z0; `0), that are `mixed in' with weight

(1� �) are themselves indi�erent. The axiom states that `mixing in' two indi�erent lotteries

(with equal weight) preserves the the original preference between (~z; `) and (~z0; `0) prior to mixing.

Finally, notice that this axiom only applies to mixtures of identity lotteries holding the outcome

lotteries �xed, not to the opposite case: mixtures of outcome lotteries holding the identity lotteries

�xed.

To obtain our representation results, we work with a richness condition on the domain of

individual preferences: we assume that none of the outcome lotteries under consideration are

10 This axiom is based on Fishburn's (1982, p.88) and Safra & Weissengrin's (2003) substitution axioms for
product lottery spaces. Their axioms, however, apply wherever probability mixtures are well de�ned in this space.
We only allow mixtures of identity lotteries. In this respect, our axiom is similar to Karni & Safra's (2000)
`constrained independence' axiom, but their axiom applies to all joint distributions over identities and outcomes,
not just to product lotteries.
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Pareto dominated.

Absence of Unanimity For all `; `0 2 4 (X ) if ` �i `0 for some i in I then there exists j in

I such that `0 �j `.

This condition is perhaps a natural restriction in the context of Harsanyi's thought experiment.

That exercise is motivated by the need to make social choices when agents disagree. We do not

need to imagine ourselves as an impartial observer facing a identity lottery to rule out social

alternatives that are Pareto dominated.11

These axioms are enough to yield a generalized utilitarian representation.

Theorem 1 (Generalized Utilitarianism) Suppose that absence of unanimity applies. Then

the impartial observer's preferences % admit a generalized utilitarian representation


fUi; �igi2I

�
if and only if the impartial observer satis�es the acceptance principle and independence over iden-

tity lotteries, and each individual satis�es independence over outcome lotteries.

Moreover the functions Ui are unique up to a�ne transformations and the composite functions

�i � Ui are unique up to a common a�ne transformation.

Grant et al. (2006: theorem 8) show that without absence of unanimity, we still obtain a general-

ized utilitarian representation but we lose the uniqueness of the composite functions �i�Ui. Notice

that, while the representation of each individual's preferences Ui is a�ne in outcome lotteries, in

general, the representation of the impartial observer's preferences V is not.

4 Fairness or ex ante egalitarianism

So far we have placed no restriction on the shape of the �i-functions except that they are increasing.

In a standard utilitarian social welfare function, each ui-function maps individual i's income to

an individual utility. These incomes di�er across people, and concavity of the ui-functions is

associated with egalitarianism over incomes. In a generalized utilitarian social welfare function,

11 In Harsanyi's thought experiment, Pareto dominated lotteries would never be chosen by the impartial observer
since the combination of the acceptance principle and Harsanyi's stronger independence axioms imply the Pareto
criterion. We are grateful to a referee for this point.
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each �i-function maps individual i's expected utility Ui (`) to a utility of the impartial observer.

These expected utilities di�er across people, and concavity of the �i-functions is associated with

egalitarianism over expected utilities, often called ex ante egalitarianism.12

We will show that concavity of the �i-functions is equivalent to an axiom that generalizes

the example in the introduction. The example involved two indi�erence sets of the impartial

observer, that containing (i; xi) and (j; xj) and that containing (i; xj) and (j; xi). We argued that

a preference for fairness corresponds to preferring a randomization between these indi�erence sets

in outcome lotteries (i.e., real life chances) to a randomization in identity lotteries (i.e., imaginary

accidents of birth). To generalize, suppose the impartial observer is indi�erent between (z; `0) and

(z0; `), and consider the product lottery (z; `) that (in general) lies in a di�erent indi�erence set.

There are two ways to randomize between these indi�erence sets while remaining in the set of

product lotteries. The product lottery (z; �`+ (1� �) `0) randomizes between these indi�erence

sets in outcome lotteries (i.e., real life chances); while the product lottery (�z + (1� �) z0; `)

randomizes between these indi�erence sets in identity lotteries (i.e., imaginary accidents of birth).

Preference for Life Chances. For any pair of identity lotteries z and z0 in 4 (I), and any

pair of outcome lotteries ` and `0 in 4 (X ), if (z; `0) � (z0; `) then (z; �`+ (1� �) `0) %

(�z + (1� �) z0; `) for all � in (0; 1).

If we add this axiom to the conditions of Theorem 1, then we obtain concave generalized

utilitarianism.

Proposition 2 (Concavity) Suppose that absence of unanimity applies. A generalized utilitar-

ian impartial observer with representation


fUi; �igi2I

�
exhibits preference for life chances if and

only if each of the �i-functions is concave.

This result does rely on there being some richness in the underlying preferences so that preference

for life chances has bite. In particular, example 2 in the supplementary appendix shows that, if

12 See for example, Broome (1984), Myerson (1981), Hammond (1981, 1982) and Meyer (1991). In our context,
it is perhaps better to call this `interim' egalitarianism since it refers to distributions `after' the resolution of the
identity lottery but `before' the resolution of the outcome lottery. We can contrast this with a concern for ex post
inequality of individuals' welfare, see for example Fleurbaey (2007).
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all agents agree in their ranking of all outcome lotteries then the �i's need not be concave. This

is ruled out in the proposition by absence of unanimity.

As discussed, Harsanyi treats identity and outcome lotteries as equivalent. Hence he implicitly

imposes indi�erence between life chances and accidents of birth.

Indi�erence between Life Chances and Accidents of Birth. For any pair of identity lot-

teries z and z0 in 4 (I), and any pair of outcome lotteries ` and `0 in 4 (X ), if (z; `0) �

(z0; `) then (z; �`+ (1� �) `0) � (�z + (1� �) z0; `) for all � in (0; 1).

This is a very strong assumption. If we impose this indi�erence as an explicit axiom then, as

a corollary of Proposition 2, we obtain that each �i-function must be a�ne. In this case, if we let

Ûi := �i � Ui, then Ûi is itself a von Neumann-Morgenstern expected-utility representation of %i.

Thus, we immediately obtain Harsanyi's utilitarian representation.

But, in fact, we obtain a stronger result. This indi�erence over the type of randomization

allows us to dispense with the independence axiom over outcome lotteries for the individuals.

Theorem 3 (Utilitarianism) Suppose that absence of unanimity applies. The impartial ob-

server's preferences % admit a utilitarian representation


fUigi2I

�
if and only if the impartial

observer satis�es the acceptance principle, independence over identity lotteries, and is indi�erent

between life chances and accidents of birth.

Moreover the functions Ui are unique up to common a�ne transformations.

Standard proofs of Harsanyi's utilitarianism directly impose stronger notions of indepen-

dence.13 For example:

Independence over Outcome Lotteries (for the Impartial Observer). Suppose (z; `), (z0; `0)

2 4 (I)�4 (X ) are such that (z; `) � (z0; `0). Then for all ~̀, ~̀0 2 4(X ): (z; ~̀) % (z0; ~̀0) if

and only if (z; �~̀+ (1� a) `) % (z0; �~̀0 + (1� a) `0) for all � in (0; 1].

This axiom is the symmetric analog of identity independence for the impartial observer reversing

the roles of identity lotteries and outcome lotteries. Clearly, if the impartial observer satis�es this

13 See section 6 for details.
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independence then it would be redundant for her to inherit independence over outcome lotteries

from individual preferences; and moreover, given acceptance, this independence for the impartial

observer imposes independence on the individuals. We do not directly impose independence over

outcome lotteries on the impartial observer, but our axioms imply it.

Corollary 4 Suppose that absence of unanimity applies. Then the impartial observer satis�es in-

dependence over outcome lotteries if she satis�es acceptance, independence over identity lotteries,

and is indi�erent between life chances and accidents of birth.

To summarize: What separates Harsanyi from those generalized utilitarian impartial observers

who are ex ante egalitarians are their preferences between life chances and accidents of birth. If

the impartial observer prefers life chances, she is an ex ante egalitarian. If she is indi�erent (like

Harsanyi) then she is a utilitarian. Moreover, indi�erence between life chances and accidents of

birth forces the generalized utilitarian to accept stronger notions of independence.

5 Di�erent risk attitudes

Recall that an impartial observer's interpersonal welfare comparisons might rank (i; xi) � (j; xj)

and (i; xj) � (j; xi), but if person i is more comfortable facing risk than person j, she might rank�
i; 12 [xi] +

1
2 [xj ]

�
�
�
j; 12 [xi] +

1
2 [xj ]

�
. Harsanyi's utilitarianism rules this out.

An analogy might be useful. In the standard representative-agent model of consumption

over time, each time period is assigned one utility function. This utility function must reect

both risk aversion in that period and substitutions between periods. Once utilities are scaled for

inter-temporal welfare comparisons, there is limited scope to accommodate di�erent risk attitudes

across periods. Harsanyi's utilitarian impartial observer assigns one utility function per person.

This utility function must reect both the risk aversion of that person and substitutions between

people. Once utilities are scaled for interpersonal welfare comparisons, there is limited scope to

accommodate di�erent risk attitudes across people.

Given this analogy, it is not surprising that generalized utilitarianism can accommodate dif-

ferent risk attitudes. Each person is now assigned two functions, �i and ui, so we can separate

interpersonal welfare comparisons from risk aversion.
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To be more precise, we �rst generalize the example in the introduction.

Similar Risks Suppose the impartial observer assesses (i; `) � (j; `0) and (i; ~̀) � (j; ~̀0). Then,

for all � in (0; 1), the two outcome lotteries �~̀+ (1� �) ` and �~̀0 + (1� �) `0 are similar

risks for individuals i and j respectively.

These risks are similar for i and j in that they are across outcome lotteries that the impartial

observer has assessed to have equal welfare for individuals i and j respectively. If individual j is

more risk averse than individual i, then we might expect the impartial observer to prefer to face

these similar risks as person i; that is,
�
i,�~̀+ (1� �) `

�
%
�
j,�~̀0 + (1� �) `0

�
.

Recall that agent j is more income risk averse than agent i if the function uj that maps income

to agent j's von Neumann-Morgenstern utility is a concave transformation of that function ui

for agent i; that is, ui � u�1j is convex. For each i, the function ��1i maps the utilities of the

impartial observer (used in her interpersonal welfare comparisons) to agent i's von Neumann-

Morgenstern utility. Thus, if agent j is more (welfare) risk averse than agent i then ��1j is a

concave transformation of ��1i ; that is, ��1i ��j is convex everywhere where they are comparable.

The next proposition makes this precise.

Proposition 5 (Di�erent Risk Attitudes.) Suppose that absence of unanimity applies. A

generalized utilitarian impartial observer with representation


fUi; �igi2I

�
always prefers to face

similar risks as individual i rather than individual j if and only if the composite function ��1i ��j

is convex on the the domain Uji := fu 2 R : there exists `; `0 2 4 (X ) with (i; `) � (j; `0) and

Uj (`
0) = ug.

Next consider indi�erence as to which individual should face similar risks.

Indi�erence between Individuals facing similar risks. For any pair of individuals i and j

in I and any four outcome lotteries `,`0,~̀ and ~̀0 in 4 (X ), if (i; `) � (j; `0) and (i; ~̀) �

(j; ~̀0) then, for all � in [0; 1], the impartial observer is indi�erent between facing the similar

risks �~̀+ (1� �) ` and �~̀0 + (1� �) `0 as individual i or j respectively.

Harsanyi's utilitarian impartial observer satis�es this indi�erence: it is an immediate conse-

quence of independence over outcome lotteries for the impartial observer. But we can imagine
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an impartial observer who, without necessarily satisfying all of Harsanyi's axioms, is nevertheless

indi�erent as to which individual should face similar risks. For example, consider an impartial ob-

server in the analog of a `representative-agent' model. In the standard representative-agent model,

all individuals have the same preferences over private consumption and the same attitude to risk.

In our setting, we must allow individuals to have di�erent preferences over public outcomes.14

But, as in the standard representative-agent model, we could assume that each individual had the

same risk attitude across outcome lotteries that had been assessed to have equal welfare. This is

precisely the indi�erence property above.

Given Proposition 5, for any two individuals i and j, indi�erence between individuals facing

similar risks forces the �i and �j-functions to be identical up to a�ne transformations provided

Uji has a non-empty interior. Hence:

Corollary 6 (Common �-Function) Suppose that absence of unanimity applies and consider

a generalized utilitarian impartial observer. There exists a generalized utilitarian representation

fUi; �igi2I

�
with �i = � for all i in I if and only if the impartial observer is indi�erent between

individuals facing similar risks.

Moreover, if for any pair of individuals i and j in I, there exists a sequence of individuals

j1 : : : jN with j1 = i and jN = j such that Ujnjn�1 has non-empty interior then the functions Ui

are unique up to a common a�ne transformation, and the composite functions � � Ui are unique

up to a common a�ne transformation.

To compare results, a generalized utilitarian impartial observer who is not concerned about

the issue of di�erent individual risk attitudes (and hence satis�es indi�erence between individuals

facing similar risks) need not be a utilitarian. She need only translate individuals' von Neumann-

Morgenstern utilities using a common �-function when making welfare comparisons across those

individuals. Hence such an impartial observer can accommodate issues of fairness: in particular,

the common �-function might be concave.

In contrast, a generalized utilitarian impartial observer who is not concerned about issues of

14 For example, public outcome xi might allocate an indivisible good to person i, while xj might allocate it to
person j.
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fairness (and hence satis�es indi�erence between life chances and accidents of birth) must be a

utilitarian. Hence such an impartial observer cannot accommodate the issue of di�erent individual

risk attitudes.

To see this directly, recall that independence over outcome lotteries for the impartial observer

immediately implies indi�erence between individuals facing similar risks. And, by corollary 4,

for a generalized utilitarian impartial observer, indi�erence between life chances and accidents of

birth implies independence over outcome lotteries for the impartial observer.

Consideration of di�erent risk aversions and consideration of fairness are distinct issues and

they may lead an impartial observer in opposite directions. For example, suppose that all indi-

viduals are extremely risk averse over outcome lotteries, but that the impartial observer is almost

risk neutral over identity lotteries. This impartial observer, anticipating the real discomfort that

outcome lotteries would cause people, might prefer to absorb the risk into the imaginary identity

lottery of her thought experiment. That is, she might prefer a society in which most uncertainty

has been resolved { and hence people would \know their fates" { by the time they were born.

Such an impartial observer would prefer accidents of birth to life chances: she would be an ex

ante anti-egalitarian.

6 Contrasting Independences and Domains

Recall that Harsanyi works with the full set of joint distributions 4 (I � X ), not just the prod-

uct lotteries 4 (I)�4 (X ). He imposes independence directly on the impartial observer for all

mixtures de�ned on that domain. In this section, we �rst consider the natural extensions of our

axioms for the impartial observer in the larger domain 4 (I � X ). Second, we consider restrict-

ing Harsanyi's original independence axiom de�ned on 4 (I � X ) to the set of product lotteries

4 (I)�4 (X ). Third, we discuss whether imposing identity and outcome independence directly

on the impartial observer is enough to induce utilitarianism.
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The full set of joint distributions.

Suppose that the impartial observer has preferences over the full space of joint distributions over

identities and outcomes, 4 (I � X ). With slight abuse of notation, let % continue to denote

these larger preferences. For purposes of comparison, it is convenient to denote each element of

4 (I � X ), in the form
�
z; (`i)i2I

�
where z 2 4 (I) is the marginal on the identities and each

`i 2 4 (X ) is the outcome lottery conditional on identity i obtaining. Thus (`i)i2I is a vector of

conditional outcome lotteries. Notice that, in this larger setting, the impartial observer imagines

each individual having his own personal outcome lottery.

In this setting, the analog of our independence over identity lotteries axiom for the impartial

observer is:

Constrained Independence over Identity Lotteries (for the Impartial Observer). Suppose

(z; (`i)i2I), (z
0; (`0i)i2I) 2 4 (I � X ) are such that (z; (`i)i2I) � (z0; (`0i)i2I). Then, for

all ~z, ~z0 2 4(I): (~z; (`i)i2I) % (~z0; (`0i)i2I) if and only if (�~z + (1� �) z; (`i)i2I) %

(�~z0 + (1� �) z0; (`0i)i2I) for all � in (0; 1].

This is the independence axiom suggested by Karni & Safra (2000).

Constrained independence over identity lotteries is weaker than Harsanyi's independence axiom

in that it only applies to mixtures of identity lotteries. That is, like our independence axiom for

the impartial observer, constrained independence over identity lotteries is independence for the

impartial observer over the lotteries that she faces directly { namely, identity lotteries { holding the

vector of conditional outcome lotteries �xed. Notice, however, that each resolution of the identity

lottery yields not just a di�erent identity but also a di�erent outcome lottery. This extends the

bite of the axiom to the larger space 4 (I � X ). When restricted to the set of product lotteries,

4 (I)�4 (X ), conditional independence reduces to our independence axiom over identity lotteries.

The following axiom (also from Karni & Safra (2000)) is a slight strengthening of Harsanyi's

acceptance axiom.

Acceptance* Principle. For all i in I and all `i; `0i 2 4 (X ), ` %i `0 if and only if (i; (`1; : : : ;

`i; : : : ; `I)) %(i; (`1; : : : ; `0i; : : : ; `I)).
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The motivation for this axiom is the same as that for Harsanyi's axiom. The slight additional

restriction is that, if the impartial observer knows that she will assume individual i's identity, she

does not care about the (possibly di�erent) conditional outcome lottery that she would have faced

had she assumed some other identity.

If we replace our independence and acceptance axioms with these axioms, then our gener-

alized utilitarian representation theorem holds exactly as stated in theorem 1 except that the

representation becomes

V
�
z; (`i)i2I

�
=
X
i

zi�i (Ui (`i)) . (3)

That is, each individual has a personal conditional outcome lottery `i in place of the common

outcome lottery `. The proof is essentially the same as that of theorem 1.15 Moreover, proposition

2, theorem 3, proposition 5 and their corollaries all continue to hold (with the same modi�cation

about personal outcome lotteries) by the same proofs.16 Thus, if we extend the analogs of our

axioms to Harsanyi's setting 4 (I � X ), we get essentially the same results.

Harsanyi's independence axiom restricted to product lotteries.

Conversely, now consider the restriction of Harsanyi's independence axiom to our setting, 4 (I)�

4 (X ). In this setting, the analog of Harsanyi's axiom is to apply independence to all mixtures that

are well-de�ned in the set of product lotteries.17 To understand how Harsanyi's independence

relates to the axioms in this paper { and hence to see how Harsanyi implicitly imposes each of

those axioms { it helps to unpack Harsanyi's independence axiom into three axioms each associated

with the type of mixture to which it applies. First, Harsanyi's independence axiom restricted to

product lotteries implies our independence over identity lotteries for the impartial observer. This

independence axiom is also satis�ed by our generalized utilitarian impartial observer. Second,

it implies independence over outcome lotteries, imposed directly on the impartial observer not

15 See the supplementary appendix. Alternatively, this generalized utilitarian representation could be obtained
as a corollary of theorem 1 in Karni & Safra (2000).

16 Corollary 4 also holds without this modi�cation, and we can also obtain stronger versions of outcome inde-
pendence.

17 This is the approach of Safra & Weissengrin (2002) who adapt Fishburn's (1982, chapter 7) work on product
spaces of mixture sets.

18



just derived via acceptance from the preferences of the individuals. This independence axiom

immediately implies indi�erence between individuals facing similar risks.

Third, the restriction of Harsanyi's axiom also forces the impartial observer to apply indepen-

dence to hybrid mixtures.

Independence over Hybrid Lotteries (for the Impartial Observer). Suppose (z; `), (z0; `0)

2 4 (I) �4 (X ) are such that (z; `) � (z0; `0). Then for all ~z 2 4(I) and all ~̀0 2 4(X ):

(~z; `) % (resp. -) (z0; ~̀0) if and only if (�~z + (1� �) z; `) % (resp. -) (z0; �~̀0 + (1� a) `0)

for all � in (0; 1].

In this axiom the lotteries being mixed on the left are identity lotteries (holding outcome lotteries

�xed), while the lotteries being mixed on the right are outcome lotteries (holding identity lotter-

ies �xed). This independence axiom immediately implies indi�erence between life chances and

accidents of birth.

It follows from theorem 1 that, given absence of unanimity and acceptance, the �rst and third

implication of Harsanyi's independence axiom when restricted to our setting,4 (I)�4 (X ) | i.e.,

identity and hybrid independence | are enough to yield Harsanyi's conclusion, utilitarianism.18

Independence along both margins.

A natural question is whether we can replace hybrid independence with outcome independence in

the statement above: that is, whether acceptance and both identity and outcome independence

are enough to induce utilitarianism. We have argued in this paper that outcome independence is a

strong assumption in the context of the impartial observer: it directly imposes independence over

lotteries that she does not face directly, and by so doing implies much more than simply imposing

independence on the individuals and acceptance on the impartial observer. Nevertheless, one

might prefer such an axiomatization to using hybrid independence. First, hybrid independence

might seem the least natural of the three implications of Harsanyi's independence axiom for

product lotteries. Both outcome and identity independence only involve mixing one margin at a

18 Given all three implications of Harsanyi's independence axiom (i.e., including outcome independence), we can
dispense with absence of unanimity: see Safra & Weissengrin (2002).
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time. Second, an impartial observer might satisfy identity and outcome independence because she

views the two types of randomization symmetrically { if independence applies to one margin then

perhaps it should apply to the other { without taking a direct position on whether the two types

of randomization are equivalent.

It turns out, however, that identity independence, outcome independence and acceptance are

not enough to induce utilitarianism. In fact, we can see this using the example in the introduction.

Once again, suppose that there are two individuals, i and j, and two states, xi and xj , denoting

which agent is given a (possibly indivisible) good. As before, suppose that the impartial observer's

preferences satisfy (i; xi) � (j; xj) and (i; xj) � (j; xi). Suppose that both individuals satisfy

independence. Speci�cally, for any outcome lottery `, player i's expected utility is given by

Ui (`) = ` (xi) � ` (xj) and player j's expected utility is given by Uj (`) = ` (xj) � ` (xi). Let the

impartial observer's preferences be given by the generalized utilitarian representation V (z; `) :=

zi� [Ui (`)] + zj� [Uj (`)] where the (common) �-function is given by:

� [u] =

8>><>>:
uk for u � 0

� (�u)k for u < 0

, for some k > 0.

Since these preferences are generalized utilitarian, by theorem 1, they satisfy acceptance and

identity independence. And since the �-function is common, by corollary 6, they satisfy in-

di�erence between individuals facing similar risks. It is less obvious that they satisfy outcome

independence but this is shown in the supplementary appendix.

These preferences even have the property (similar to utilitarianism) that if the impartial ob-

server thinks she is equally likely to be either person, she is indi�erent who gets the good. But

these preferences do not satisfy utilitarianism unless k = 1. To see this, notice that these prefer-

ences fail indi�erence between life chances and accidents of birth. For example, we have (i; xi) �

(j; xj), but (i; �xi + (1� �)xj) � (� [i] + (1� �) [j] ; xi) except in the special case when � = 1
2 .

Nevertheless, the conjecture that independence along both margins implies utilitarianism is

close to correct. Grant et al (2006: Theorem 7) show that, if there are three or more agents, under

some richness conditions on the preferences, the combination of identity independence, outcome

independence and acceptance do imply utilitarianism.
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7 Knowledge, Agreement and Welfare

Two questions �gure prominently in the debates on the impartial observer theorem. First, what

is it that an individual imagines and knows when she imagines herself in the role of the impartial

observer. Second, must all potential impartial observers agree in their preferences over extended

lotteries. In this section, we consider four (of many) possible views on these questions and show

how they relate to the issues of this paper: concern about di�erent risk attitudes (loosely, does the

impartial observer use a common �-function); and concern about fairness (loosely, is her common

�-function a�ne).19

In one view of the impartial observer, she simply imagines being in the physical circumstances

of person i or j facing the outcome lottery ` or `0.20 In this view, often associated with Vickery

(1945), the impartial observer does not attempt to imagine having person i's or j's preferences.

In the context of our example, the impartial observer simply imagines herself having some chance

of getting the indivisible good, and applies her own preferences about such outcome lotteries.

Compared to other views, this approach does not require as much imagination or knowledge on

behalf of the impartial observer. In particular, she need not know i's or j's preferences. If the

impartial observer adopts this approach, loosely speaking, we get a common �-function for free:

the utilities in its domain are all utilities of the same agent, the impartial observer. The �-function

need not be a�ne however since the impartial observer might still, for example, prefer life chances

to accidents of birth. In this approach, there is no reason to expect all impartial observers to agree.

For example, di�erent potential impartial observers will generally have di�erent preferences over

physical outcome lotteries. This approach does not attempt to follow the acceptance principle.

Individuals' preferences over life chances (other than those of the impartial observer) play no role.

In a second view (the view taken in this paper), the impartial observer imagines not only being

in the physical circumstances of person i or j but also adopting what Pattanaik (1968, p.1155)

calls \the subjective features of the respective individuals". Arrow (1963, p.114, 1977) calls this

\extended sympathy" but it is perhaps better to use Harsanyi's own term, \imaginative empathy":

19 The following builds especially on Weymark (1991) and Mongin (2001).

20 Pattanaik (1968, p.1155) and Harsanyi (1977, p.52) refer to these as `objective positions'.
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\This must obviously involve [her] imagining [her]self to be placed in individual i's

objective position, i.e., to be placed in the objective positions (e.g., income, wealth,

consumption level, state of health, social position) that i would face in social situation

x. But it must also involve assessing these objective conditions in terms of i's own

subjective attitudes and personal preferences ... rather than assessing them in terms

of [her] own subjective attitudes and personal preferences. [Harsanyi, 1977, p.52:

notation changed to ours but emphasis in the original]21

This approach requires more imagination and knowledge by the impartial observer; in particular,

she is assumed to know the preferences of each individual over outcome lotteries and, by accep-

tance, to adopt these preferences when facing outcome lotteries as that individual. Knowledge and

acceptance of individual preferences implies agreement across all potential impartial observers in

ranking pairs of the form (i; `) and (i; `0). But, as Broome (1993) and Mongin (2001) have pointed

out (and as Harsanyi (1977, p.57) himself concedes), it does not imply agreement in ranking pairs

of the form (i; `) and (j; `0) where i 6= j. For example, each impartial observer can have her own

rankings across others' subjective and objective positions.

Moreover, unlike in the Vickery view above, a generalized utilitarian impartial observer in this

setting need not use a common �-function across all individuals. To see this, let us extend the

example from the introduction by allowing the good being allocated to be divisible. Suppose that

an impartial observer's own interpersonal assessments are such that she is indi�erent between

being person i with share s of the good and being person j with the same share s of the good.

Suppose that for person i, the outcome lottery 1
2xi+

1
2xj in which he has a half chance of getting

the whole good is indi�erent to getting half the good for sure, but for person j this same lottery is

indi�erent to getting one third of the good for sure. Combining acceptance with her interpersonal

assessments, the impartial observer must prefer facing this outcome lottery as person i. But, by

corollary 6, this contradicts using a common �-function (and in particular, not all the �i-functions

21 Rawls also appeals to such imaginative empathy: \A competent judge ... must not consider his own de facto
preferences as the necessarily valid measure of the actual worth of those interests which come before him, but ... be
both able and anxious to determine, by imaginative appreciation, what those interests mean to persons who share
them, and to consider them accordingly." (Rawls 1951, p.179 quoted in Pattanaik 1968, p. 1157-8). See also Sen's
(1979) behavioral and introspective bases for interpersonal comparisons of welfare.
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can be a�ne).

A third, more welfarist view goes beyond the assumptions of this paper. Suppose that, when

an impartial observer imagines being person i facing outcome lottery `, she knows the (ex ante)

`welfare' that i attains from this lottery. That is, suppose that each person i has a commonly

known `welfare function' wi : � (X ) ! R. If we assume what Weymark (1991) calls congruence

between welfare and preference { that is, ` % `0 if and only if wi (`) � wi (`0) { then this implies,

as before, that the impartial observer knows person i's preferences. But now suppose further

that these welfares functions are at least ordinally measurable and fully comparable, and that

the impartial observer satis�es the rule: (i; `) % (j; `0) if and only if wi (`) � wj (`0). This extra

assumption implies acceptance, but it is stronger. It implies that all potential impartial observers

must agree in ranking pairs of the form (i; `) and (j; `0).

Nevertheless, a generalized utilitarian impartial observer in this setting still need not use a

common �-function across all individuals. The example above still applies. The wi (:) functions

can just encode the impartial observer's same assessment about being indi�erent between being

i or j with the same share s of the good; and they can encode i and j's same assessments about

di�erent certainty equivalents. Again, this forces �i and �j to di�er (and at least one to be

non-a�ne).

Moreover, these welfarist assumptions still do not imply full agreement across potential im-

partial observers. All impartial observers must agree in the ranking extended lotteries in which

they know for sure which identity they will assume, but they can still di�er in their ranking of

general extended lotteries of the form (z; `) and (z0; `0). For example, di�erent impartial observers

might have di�erent preferences between life chances and accidents of birth. And/or each impar-

tial observer can have her own risk attitude in facing identity lotteries, reected in her own set

of �i-functions. That is, even with these extreme assumptions, di�erent impartial observers with

di�erent risk attitudes will make di�erent social choices.

To get beyond this conclusion, a fourth view simply assumes that each potential impartial

observer's von Neumann-Morgenstern utility V (i; `) from the extended lottery (i; `) is equal to

the commonly known (fully comparable) welfare wi (`) which in turn is equal to individual i's von
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Neumann-Morgenstern utility Ui (`).
22 In this case, all attitudes toward similar risks are the same;

in particular, the preferences of the impartial observer and the individuals i and j in the example

above can no longer apply. With this strong identi�cation assumption, we �nally get both an a�ne

common �-function (i.e., utilitarianism) and agreement among all potential impartial observers,

but this approach seems a few assumptions beyond Harsanyi's claim to have derived utilitarianism

from Bayesian rationality alone.

A Appendix: Proofs

We �rst establish some lemmas that will be useful in the proofs that follow.

The �rst lemma shows that, given absence of unanimity, we need at most two outcome lotteries,

`1 and `2, to `cover' the entire range of the impartial observer's preferences in the following sense:

for all product lotteries (z; `) either (z; `) �
�
z0; `1

�
for some z0, or (z; `) � (z00; `2) for some z00,

or both. Moreover the set of product lotteries for which `both' applies are not all indi�erent.

To state this more formally, let the outcome lotteries `1; `2 (not necessarily distinct) and

identity lotteries z1; z2 (not necessarily distinct) be such that
�
z1; `1

�
� (z2; `2) and such that�

z1; `1
�
% (z; `) % (z2; `2) for all product lotteries (z; `). That is, the product lottery

�
z1; `1

�
is

weakly better than all other product lotteries, and the product lottery (z2; `2) is weakly worse than

all other product lotteries. And let the identity lotteries z1 and z
2 (not necessarily distinct) be such

that
�
z1; `1

�
%
�
z; `1

�
%
�
z1; `

1
�
for all product lotteries

�
z; `1

�
, and

�
z2; `2

�
% (z; `2) % (z2; `2) for

all product lotteries (z; `2). That is, given outcome lottery `
1, the identity lottery z1 is (weakly)

worse than all other identity lotteries; and, given outcome lottery `2, the identity lottery z
2 is

(weakly) better than all other identity lotteries. The existence of these special lotteries follows

from continuity of %, non-emptyness of �; and the compactness of � (I)��(X ). Moreover, by

independence over identity lotteries, we can take z1; z1; z
2; and z2 each to be a degenerate identity

lottery. Let these be i1; i1; i
2; and i2 respectively.

Lemma 7 (Spanning) Assume absence of unanimity applies and that the impartial observer

22 This identi�cation is at the heart of the debate between Harsanyi and Sen. See Weymark (1991).
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satis�es acceptance and independence over identity lotteries. Let i1; i1; i
2; i2; `

1; and `2 be de�ned

as above. Then (a) either
�
i1; `

1
�
� (i2; `2), or

�
i2; `2

�
�
�
i1; `1

�
, or

�
i2; `2

�
�
�
i1; `

1
�
. And (b),

for all product lotteries (z; `), either
�
i1; `1

�
% (z; `) %

�
i1; `

1
�
or
�
i2; `2

�
% (z; `) % (i2; `2) or

both.

Proof. (a) If `1 = `2, then the �rst two cases both hold. Otherwise, suppose that the �rst two

cases do not hold; that is,
�
i1; `

1
�
� (i2; `2) and

�
i1; `1

�
�
�
i2; `2

�
. By the de�nition of i1, we know

that
�
i2; `

1
�
%
�
i1; `

1
�
, and hence

�
i2; `

1
�
� (i2; `2). Using absence of unanimity and acceptance ,

there must exist another individual {̂ 6= i2 such that (̂{; `2) �
�
{̂; `1

�
. Again by the de�nition of i1,

we know that
�
{̂; `1

�
%
�
i1; `

1
�
, and hence (̂{; `2) �

�
i1; `

1
�
. By the de�nition of i2, we know that�

i2; `2
�
% (̂{; `2), and hence

�
i2; `2

�
�
�
i1; `

1
�
, as desired. Part (b) follows immediately from (a).

�

The next lemma does not yet impose independence over outcome lotteries on individuals and

hence yields a more general representation than that in theorem 1. The idea for this lemma comes

from Karni & Safra (2000) but they work with the full set of joint distributions4 (I � X ) whereas

we are restricted to the set of product lotteries 4 (I)�4 (X ).

Lemma 8 (A�ne Representation) Suppose absence of unanimity applies. Then the impartial

observer satis�es the acceptance principle and independence over identity lotteries if and only

if there exist a continuous function V : 4 (I) � 4 (X ) ! R that represents %, and, for each

individual i in I, a function Vi : 4 (X )! R, that represents %i, such that for all (z; `) in 4 (I)�

4 (X ),

V (z; `) =
IX
i=1

ziVi(`): (4)

Moreover the functions Vi are unique up to common a�ne transformations.

Proof . Since the representation is a�ne in identity lotteries, it is immediate that the represented

preferences satisfy the axioms. We will show that the axioms imply the representation.

Let i1; i1; i
2; i2; `

1; and `2 be de�ned as in lemma 7 above. Given continuity, an immediate

consequence of lemma 7 is that, for all product lotteries (z; `), either (z; `) �
�
z0; `1

�
for some z0,
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or (z; `) � (z00; `2) for some z00 or both. Moreover, we can choose the z0 such that its support only

contains individuals i1 and i1. And similarly for z
00 with respect to i2 and i2.

The proof of lemma now proceeds with two cases.

Case (1) The easiest case to consider is where `1 = `2. In this case,
�
i1; `1

�
�
�
i1; `

1
�
, and�

i1; `1
�
% (z; `) %

�
i1; `

1
�
, for all (z; `). Then, for each (z; `), let V (z; `) be de�ned by

�
V (z; `)

�
i1
�
+ (1� V (z; `)) [i1] ; `1

�
� (z; `) :

By continuity and independence over identity lotteries, such a V (z; `) exists and is unique.

To show that this representation is a�ne, notice that if
�
V (z; `)

�
i1
�
+ (1� V (z; `)) [i1] ; `1

�
�

(z; `) and
�
V (z0; `)

�
i1
�
+ (1� V (z0; `)) [i1] ; `1

�
� (z0; `) then independence over identity lotteries

implies ([�V (z; `) + (1� �)V (z0; `)]
�
i1
�
+[1��V (z; `)�(1� �)V (z0; `)] [i1] ; `1) � (�z + (1� �) z0; `).

Hence �V (z; `) + (1� �)V (z0; `) = V (�z + (1� �) z0; `).

Since any identity lottery z in � (I) can be written as z =
P

i zi [i], proceeding sequentially

on I, a�nity implies V (z; `) =
P

i ziV (i; `). Finally, by acceptance, V (i; �) agrees with %i on

� (X ). Hence, if we de�ne Vi : � (X ) ! R by Vi (`) = V (i; `), then Vi represents individual i's

preferences. The uniqueness argument is standard: see for example, Karni & Safra (2000, p.321).

Case (2). If
�
i1; `

1
�
� (i2; `2) then

�
i1; `1

�
% (z; `) %

�
i1; `

1
�
for all (z; `) and hence case (1)

applies. Similarly, if
�
i2; `2

�
�
�
i1; `1

�
then

�
i2; `2

�
% (z; `) % (i2; `2) for all (z; `), and again case

(1) applies (with `2 in place of `
1). Hence suppose that

�
i1; `1

�
�
�
i2; `2

�
and that

�
i1; `

1
�
�

(i2; `2). Then, by lemma 7,
�
i1; `1

�
�
�
i2; `2

�
�
�
i1; `

1
�
� (i2; `2); that is, we have two overlapping

intervals that `span' the entire range of the impartial observer's preferences.

Then, just as in case (1), we can construct an a�ne function V 1(�; �) to represent the impartial

observer's preferences % restricted to those (z; `) such that
�
i1; `1

�
% (z; `) %

�
i1; `

1
�
, and we can

construct an a�ne function V 2(�; �) to represent % restricted to those (z; `) such that
�
i2; `2

�
%

(z; `) % (i2; `2). We can then apply an a�ne re-normalization of either V1 or V2 such the (re-

normalized) representations agree on the `overlap'
�
i2; `2

�
% (z; `) %

�
i1; `

1
�
. Since V1(�; �) and

V2(�; �) are a�ne, the re-normalized representation is a�ne, and induction on I (plus acceptance)

gives us V (z; `) =
P

i ziVi (`) as before. Again, uniqueness follows from standard arguments. �
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Remark. The argument in case (1) above is similar to that in Safra & Weisengrin (2003, p.184)

and Karni & Safra (2000, p.320) except that, in the latter case, the analog of `1 is a vector of

outcome lotteries, with a di�erent outcome lottery for each agent. Both these papers use stronger

axioms to obtain a unique representation when case (1) does not apply. Our argument for these

cases applies lemma 7 which in turn uses the richness condition, absence of unanimity, in place of

any stronger axiom on the preferences of the impartial observer.

Proof of Theorem 1 (Generalized Utilitarianism): It is immediate that the represented

preferences satisfy the axioms. We will show that the axioms imply the representation. If we

add to lemma 8 (the a�ne representation lemma) the assumption that each individual satis�es

independence over outcome lotteries, then it follows immediately that each Vi-function in repre-

sentation (4) must be a strictly increasing transformation, �i, of a von Neumann-Morgenstern

expected-utility representation, Ui. Thus, we obtain a generalized utilitarian representation. �

Proof of Proposition 2 (Concavity) For each i in I, set Vi (`) := V (i; `) = �i [Ui(`)] for all

`. That is, these are the Vi's from the a�ne representation in lemma 8. Since each Ui is a�ne in

outcome lotteries, each V (i; �) is concave in outcome lotteries if and only if the corresponding �i

is concave.

To show that concavity is su�cient, suppose (z; `0) � (z0; `). Using the representation in

lemma 8 and imposing concavity, we obtain V (z; �`+ (1� �) `0) =
PI

i=1 ziVi(�`+ (1� �) `0) =PI
i=1 ziV (i; �` + (1� �) `0) �

PI
i=1 zi[�V (i; `) + (1� �)V (i; `0)] = �V (z; `) + (1� �)V (z; `0).

Using the fact that (z; `0) � (z0; `), the last expression is equal to �V (z; `) + (1� �)V (z0; `) =

V (�z + (1� �) z0; `). Hence the impartial observer exhibits a preference for life chances.

For necessity, we need to show that for all i and all `, `0 2 4 (X ), V (i; �` + (1� �) `0) �

�V (i; `) + (1� �)V (i; `0) for all � in [0; 1]. So let % exhibit preference for life chances, �x i and

consider `, `0 2 4 (X ). Assume �rst that ` �i `0 By acceptance, V (i; `) = V (i; `0). Hence, by
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preference for life chances,

V (i; �`+ (1� �) `0)

� V (� [i] + (1� �) [i] ; `) (by preference for life chances)

= V (i; `)

= �V (i; `) + (1� �)V (i; `0) (since V (i; `) = V (i; `0)),

as desired.

Assume henceforth that ` �i `0 (and, by acceptance, V (i; `) > V (i; `0)). By absence of una-

nimity, there must exist a j such that V (j; `) < V (j; `0). There are three cases to consider.

(a) If V (i; `0) � V (j; `) then, by the representation in lemma 8, there exists z0 (of the form

� [i] + (1� �) [j]) such that V (z0; `) = V (i; `0). Thus, for all � in (0; 1),

V (i; �`+ (1� �) `0)

� V (� [i] + (1� �) z0; `) (by preference for life chances)

= �V (i; `) + (1� �)V (z0; `)

= �V (i; `) + (1� �)V (i; `0) (since V (z0; `) = V (i; `0)),

as desired.

Assume henceforth that V (j; `) > V (i; `0) (which implies V (j; `0) > V (i; `0)).

(b) If V (j; `0) � V (i; `) then, by the representation in lemma 8, there exists z (of the form

� [i] + (1� �) [j]) such that V (z; `0) = V (i; `). Thus, for all � in (0; 1),

V (i; �`0 + (1� �) `)

� V (� [i] + (1� �) z; `0) (by preference for life chances)

= �V (i; `0) + (1� �)V (z; `0)

= �V (i; `0) + (1� �)V (i; `) (since V (z; `0) = V (i; `) ),

as desired.
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(c) Finally, let V (i; `) > V (j; `0) > V (j; `) > V (i; `0). By the continuity of V , there exist �0; �0

in (0; 1) such that �0 > �0, and such that V (i; �
0` +

�
1� �0

�
`0) = V (j; `0) and V (i; �0` +

(1� �0) `0) = V (j; `). Denote `0 = �0`+ (1� �0) `0. Then, similarly to part (a),

Vi(`+ (1� ) `0) � Vi (`) + (1� )Vi (`0)

for all  2 (0; 1). Next, denote `0 = �0`+
�
1� �0

�
`0. Then, similarly to part (b),

Vi(`
0 + (1� ) `0) � Vi (`0) + (1� )Vi

�
`0
�

for all  2 (0; 1). Therefore, restricted to the line segment [`0; `], the graph of Vi lies weakly

above the line connecting (`0; Vi (`
0)) and

�
`0; Vi

�
`0
��
(as does the point (`0; Vi (`0))) and weakly

above the line connecting (`0; Vi (`0)) and (`; Vi (`)) (as does the point
�
`0; Vi

�
`0
��
). Hence,

Vi(�`+ (1� �) `0) � �Vi (`) + (1� �)Vi (`0) for all � 2 (0; 1). �

Proof of Theorem 3 (Utilitarianism): It is immediate that the represented preferences satisfy

the axioms. We will show that the axioms imply the representation. Given acceptance, the proof

of proposition 2 (concavity) shows that the impartial observer satis�es preference for life chances

if and only if, each Vi in the representation in lemma 8 is concave in outcome lotteries. Notice,

in particular, that this argument never uses the fact that each individual satis�es independence

over outcome lotteries. By a similar argument, the impartial observer is indi�erent between life

chances and accidents of birth if and only if each Vi is a�ne in outcome lotteries. To complete

the representation, for each i, set Ui (�) � Vi (�) to obtain the required von Neumann-Morgenstern

expected-utility representation of individual i's preferences %i. �

Proof of Corollary 4 (Outcome Independence). This result can be obtained as a corollary

of theorem 3 (Utilitarianism I). Alternatively, the proof of proposition 2 (concavity) shows that

the impartial observer is indi�erent between life chances and accidents of birth if and only if,

for all i in I, V (i; �) is a�ne in outcome lotteries. Using the representation in lemma 8, we

obtain V (z; �`+ (1� �) `0) =
PI

i=1 ziV (i; �`+(1� �) `0) =
PI

i=1 zi[�V (i; `)+(1� �)V (i; `0)] =

�V (z; `) + (1� �)V (z; `0). That is, the impartial observer is a�ne in outcome lotteries. Hence

it follows that the impartial observer satis�es independence over outcome lotteries. �
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Proof of Proposition 5 (Di�erent Risk Attitudes). First, notice that if Uji is not empty

then it is a closed interval. If Uji has an empty interior then the proposition holds trivially true.

Therefore, assume that Uji = [uji; �uji] where uji < �uji.

To prove that ��1i � �j convex is su�cient, �x `; `0; ~̀ and ~̀0 such that V (i; `) = V (j; `0) and

V
�
i; ~̀
�
= V

�
j; ~̀0

�
. We want to show that V

�
i; �~̀+ (1� �) `

�
� V

�
j; �~̀0 + (1� �) `0

�
. By

construction, both Uj (`
0) and Uj

�
~̀0
�
lie in Uji. Moreover, we have Ui (`) = ��1i � �j [Uj (`0)] and

Ui

�
~̀
�
= ��1i � �j

h
Uj

�
~̀0
�i
Applying the representation we obtain,

V
�
i; �~̀+ (1� �) `

�
= �i

h
Ui

�
�~̀+ (1� �) `

�i
(by the representation)

= �i

h
�Ui

�
~̀
�
+ (1� �)Ui (`)

i
(by a�nity of Ui)

= �i

h
���1i � �j

h
Uj

�
~̀0
�i
+ (1� �)��1i � �j [Uj (`0)]

i
(by the representation)

� �i
h
��1i � �j

h
�Uj

�
~̀0
�
+ (1� �)Uj (`0)

ii
(by convexity of ��1i � �j)

= �j

h
Uj

�
�~̀0 + (1� �) `0

�i
(by a�nity of Uj)

= V
�
j; �~̀0 + (1� �) `0

�
(by the representation)

To prove that ��1i � �j convex is necessary, �x v,w in Uji. By the de�nition of Uji, there exists

outcome lotteries `; `0 2 4 (X ) such that Uj (`0) = v and Ui (`) = ��1i � �j (v); and there exists

outcome lotteries ~̀; ~̀0 2 4 (X ) such that Uj
�
~̀0
�
= w and Ui

�
~̀
�
= ��1i ��j (w). By construction,

we have V (i; `) = V (j; `0) and V
�
i; ~̀
�
= V

�
j; ~̀0

�
. Therefore, for all � in (0; 1)

�i

h
Ui

�
�~̀+ (1� �) `

�i
� �j

h
Uj

�
�~̀0 + (1� �) `0

�i
)

�Ui

�
~̀
�
+ (1� �)Ui (`) � ��1i � �j

h
�Uj

�
~̀0
�
+ (1� �)Uj (`0)

i
)

���1i � �j (w) + (1� �)��1i � �j (v) � ��1i � �j (�w + (1� �) v)

Since v and w were arbitrarily, the last inequality corresponds to the convexity of ��1i ��j on Uji.

�

Proof of Corollary 6 (Common �-function) . Necessity follows immediately from proposition

5. For the su�ciency argument, �rst �x a representation


fUi; �igi2I

�
of the preferences of the
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generalized utilitarian impartial observer. Recall that, by theorem 1, the composite functions

�i � Ui are unique up to a common a�ne transformation. The argument proceeds by a series of

steps to construct a new representation

�n
Ûi; �̂i

o
i2I

�
with �̂i � � for all i in I. The construction

leaves the composite functions unchanged; that is, �i�Ui � ��Ûi for all i. To start, let the outcome

lottery `1 and the individual i1 be such that
�
i1; `1

�
% (j; `0) for all individuals j 2 I and outcome

lotteries `0 in 4 (X ).

Step 1. Suppose there exists a second individual j such that the interval Uji1 has a non-empty

interior. By Proposition 5, if the impartial observer is indi�erent between facing similar risks as

i1 or j, then ��1i1 � �j is a�ne on Uji1 . Since Uji1 has a non-empty interior, �
�1
i1 � �j has a unique

extension on R. De�ne a new von Neumann-Morgenstern utility function Ûj for agent j by the

a�ne transformation, Ûj (`) := �
�1
i1 � �j [Uj (`)] for all ` in 4 (X ). De�ne a new transformation

function �̂j for agent j by setting �̂j

�
Ûj (`)

�
:= �j (Uj (`)). Thus, in particular, if (i

1; `) � (j; `0)

(and hence �j [Uj (`
0)] = �i1 [Ui1 (`)]), then by construction we have Ûj (`

0) = Ui1 (`). Moreover,

by construction, we have �̂j (u) = �i1 (u) for all u in the intersection of the ranges Ui (4 (X )) \

Ûj (4 (X )). Hence, with slight abuse of notation we can write � := �̂j = �i1 , even if this extends

the domain of �i1 . Thus, we can construct a new generalized utilitarian representation of the same

preferences with Uj replaced by Ûj and �j replaced by � in which the two individuals i
1 and j

share a common �. Uniqueness of the Ui up to common a�ne transformations holds because, by

construction, (i1; `) � (j; `0) implies Ui1 (`) = Ûj (`0).

Step 2. By repeating step 1, for any individual j0 in I such that there exists a sequence of

individuals j1 : : : jN with j1 = i
1 and jN = j0 such that Ujnjn�1 has non-empty interior, we can

construct a new generalized utilitarian representation in which the two individuals i1 and j0 share

a common �. Let I1 be the set of individuals who can be connected to i1 in this manner. If

I1 = I, then we are done.

Step 3. Suppose then that InI1 is non-empty. By construction, (j; `00) % (j0; `0) for all `0; `00

in 4 (X ) and all j 2 I1 and j0 2 InI1. Let i0 2 InI1 and ^̀2 4 (X ) be such that
�
i0; ^̀
�
% (j0; `0)

for all individuals j0 2 InI1 and outcome lotteries `0 in 4 (X ). If (j; `00) � (i0; `) for some `; `00

in 4 (X ) and j 2 I1: let Ûi0 be an a�ne transformation of Ui0 such that Ûi0 (`) = Uj (`
00), and
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let �̂i0 be such that �̂i0 � Ûi0 � �i0 � Ui0 . Then simply extend � on the range of Ûi0 by setting

� := �̂i0 . Conversely, if (j; `
00) � (i0; `) for all `; `00 in 4 (X ) and j 2 I1: let Ûi0 be an a�ne

transformation of Ui0 such that Ûi0 (`) < Uj (`
00) for all `; `00 in 4 (X ) and j 2 I1, and let �̂i0 be

such that �̂i0 � Ûi0 � �i0 � Ui0 . Again, extend � on the range of Ûi0 by setting � := �̂i0 .

Step 4. Repeat steps 1 and 2 using i0 in place of i1 and � in place of �i1 . Let I2 be the set

of individuals who can be connected to i0 when step 2 is repeated. Notice that, by construction

I1 \ I2 is empty. If I1 [ I2 = I then we are done. If I1 [ I2 6= I then repeat step 3. Let i00 be

the individual in In
�
I1 [ I2

�
that corresponds to i0 in this step. Then repeat steps 1 and 2 using

i00 place of i. From the �niteness of I, this process can be repeated only a �nite number of times

before we exhaust I. �

B Supplementary Appendix:

This appendix contains two counter-examples mentioned in the text and also the key step to show

that the proof of theorem 1 extends to obtain the form of generalized utilitarian representation

given in expression (3) for preferences de�ned on 4 (I � X ) and the corresponding axioms as

given in section 6.

Examples. For each of the following examples, let I = f1; 2g and X= fx1; x2g. To simplify

notation, for each z 2 4 (I), let q = z2; and for each ` 2 4 (X ) let p := `(x2). Then, with slight

abuse of notation, we write (q; p) % (q0; p0) for (z; `) % (z0; `0), and write V (q; p) for V (z; `).

Example 1 simply translates the example discussed in section 6 to show that the impartial

observer might satisfy acceptance, and both identity and outcome independence but not be utili-

tarian.

Example 1 Let agent 1's preferences be given by U1 (p) = (1� 2p), and let agent 2's preferences

be given by U2 (p) = (2p� 1). Let the impartial observer's preferences be given by V (q; p) :=

(1� q)� [U1 (p)] + q� [U2 (p)], where the (common) �-function is given by:

� [u] =

�
uk for u � 0
� (�u)k for u < 0

, for some k > 0
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Acceptance and identity independence were discussed in the text. To show that this example

satis�es outcome independence, consider the inverse function ��1 (u) = u1=k for u � 0 and

��1 (u) = � (�u)1=k for u < 0. This is a strictly increasing function. Therefore, the function

��1 [V (�; �)] represents the same preferences as V (�; �).

It is enough to show that we can write

��1 [V (q; p)] = (1� p)��1 [(1� 2q)] + p��1 [(2q � 1)] :

This alternative representation is symmetric to the original representation V (�; �) with the p's and

q's reversed and ��1 replacing �. Since the alternative representation is a�ne in p, preferences

must satisfy independence over outcome lotteries.

To con�rm that ��1 [V (�; �)] takes this form, it is instructive to rewrite V (q; p) as follows:

V (q; p) =

8>><>>:
(1� 2q) (1� 2p)k for p < 1=2

(2q � 1) (2p� 1)k for p > 1=2

=

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

(1� 2q) (1� 2p)k for q < 1=2, p < 1=2 (and V (q; p) > 0)

� (2q � 1) (1� 2p)k for q > 1=2, p < 1=2 (and V (q; p) < 0)

0 for (2q � 1) (2p� 1) = 0

� (1� 2q) (2p� 1)k for q < 1=2, p > 1=2 (and V (q; p) < 0)

(2q � 1) (2p� 1)k for q > 1=2, p > 1=2 (and V (q; p) > 0)

.
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Hence,

��1 � V (q; p) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

(1� 2q)1=k (1� 2p) for q < 1=2, p < 1=2

� (2q � 1)1=k (1� 2p) for q > 1=2, p < 1=2

0 for (2q � 1) (2p� 1) = 0

� (1� 2q)1=k (2p� 1) for q < 1=2, p > 1=2

(2q � 1)1=k (2p� 1) for q > 1=2, p > 1=2

=

8>>>>>><>>>>>>:
(1� p)

h
(1� 2q)1=k

i
+ p

h
� [� (2q � 1)]1=k

i
for q < 1=2

0 for q = 1=2

(1� p)
h
� [� (1� 2q)]1=k

i
+ p

h
(2q � 1)1=k

i
for q > 1=2

= (1� p)��1 [(1� 2q)] + p��1 [(2q � 1)]

which equals (1� p)��1 [(1� 2q)] + p��1 [(2q � 1)] as desired. �

Example 2 shows that the impartial observer's preferences can satisfy all the conditions of

proposition 2 (the concavity result) except absence of unanimity and yet the functions �i need

not be concave. That is, absence of unanimity is essential.

Example 2 Let the individual's preferences be given by U1 (p) = U2 (p) = p, and let the impartial

observer's preferences be given by V (q; p) := (1� q)�1 [U1 (p)] + q�2 [U2 (p)] where

�1 (u) :=

�
1=4 + u=2 for u � 1=2
u for u > 1=2

�2 (u) :=

�
u for u � 1=2
2u� 1=2 for u > 1=2

Since U1 = U2, both individuals have the same ranking over outcome lotteries and so the

impartial observer's preferences violate absence of unanimity. Clearly, the functions �1 (:) and

�2 (:) are not concave. To see that the impartial observer satis�es preference for life chances,

without loss of generality let p � p0 and notice that (q; p0) � (q0; p) implies either p � p0 � 1=2

or p0 � p � 1=2. But in either case, the functions �1 and �2 are concave (in fact, a�ne) on the

domain [p; p0] and hence V (�q + (1� �) q0; p) � (in fact, =) V (q; �p+ (1� �) p0), as desired. �

The generalized utilitarian representation for 4 (I � X ). We next show that we can
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use essentially the same proof as for theorem 1 to obtain the form of generalized utilitarian repre-

sentation given in expression (3) for an impartial observer's preferences % de�ned on 4 (I � X )

that satisfy the axioms given in section 6. The key step is to show that the analog of lemma 7

(spanning) part (b) still applies: there exist two outcome lotteries `1 and `2 and four individuals

i1; i1; i
2; and i2 such that for all joint distributions

�
z; (`i)i2I

�
, either

�
i1; `1

�
%
�
z; (`i)i2I

�
%�

i1; `
1
�
or
�
i2; `2

�
%
�
z; (`i)i2I

�
% (i2; `2) or both. That is, we can still use two sets of product

lotteries, one associated with `1 and one with `2, to span the entire range of the the impartial

observer's preferences even though these are now de�ned over the full set of joint distributions

4 (I � X ).

To see this, let (ẑ;
�
^̀
i

�
i2I
) be an element of 4 (I � X ) with the property that (ẑ;

�
^̀
i

�
i2I
) %

(z; (`i)i2I) for all (z; (`i)i2I) 2 4 (I � X ). By constrained independence, there must exist an

individual i1 in the support of ẑ such that (i1;
�
^̀
i

�
i2I
) � (ẑ;

�
^̀
i

�
i2I
). Let `1 := ^̀i1 , and let

�
i1; `1

�
denote the (product) lottery (i1; (`i)i2I) where `i = `

1 for all i 2 I. By the acceptance� principle,�
i1; `1

�
� (i1;

�
^̀
i

�
i2I
). Therefore, there exists an outcome lottery `1 and an individual i1 such

that the product lottery
�
i1; `1

�
has the property that

�
i1; `1

�
% (z; (`i)i2I) for all (z; (`i)i2I) 2

4 (I � X ). Similarly, there exists a outcome lottery `2 and an individual i2 such that the product

lottery (i2; `2) has the property that (z; (`i)i2I) % (i2; `2) for all (z; (`i)i2I) 2 4 (I � X ). De�ne

i1 and i
2 exactly as in lemma 7. The proof of part (a) of lemma 7 (spanning) then follows with no

change in the proof. And the analog of part (b) of the lemma (as stated above) follows immediately

from part (a).

Thereafter, the proof of the representation result is almost unchanged. The analog of lemma 8

obtains a a�ne representation of the form V (z; `) =
PI

i=1 ziVi(`i). The proof is the same as that

for lemma 8 except that constrained independence is used where ever independence over identity

lotteries was used before. This extends the representation from product lotteries 4 (I)�4 (X )

to the full space of joint distributions 4 (I � X ). The fact that Vi(`i) takes the form �i (Ui (`i))

follows (as before) from acceptance and outcome independence for individuals.
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