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Abstract

We propose a new model of firm reputation that interprets reputation directly as the market
belief about product quality. Quality is persistent and is determined endogenously by the firm’s
past investments. We analyse how investment incentives depend on the firm’s reputation and
derive implications for reputational dynamics.

Reputational incentives depend on the specification of market learning. When consumers
learn about quality through good news, incentives decrease in reputation and there is a unique
work-shirk equilibrium with convergent dynamics. When learning is through bad news, incen-
tives increase in reputation and there is a continuum of shirk-work equilibria with divergent
dynamics. More generally, for any imperfect learning process with Brownian and Poisson
signals, there exists a work-shirk equilibrium with cyclical dynamics if costs of investment are
low. This equilibrium is essentially unique if market learning contains a good news or Brownian
component.

1 Introduction

In most industries firms can invest into the quality of their products through human capital
investment, research and development, organisational change, and other channels. While imperfect
monitoring by customers gives rise to a moral hazard problem, the firm can share in the created
value by building a reputation for quality, justifying premium prices. This paper analyses the
investment incentives in such a market, characterising how they depend on the current reputation of
the firm and the market information structure, and analyzing the resulting reputational dynamics.
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Our key innovation is to model reputation directly as the market belief about the firm’s endoge-
nous product quality. As quality is determined by past investments, it is persistent and can serve
as a Markovian state variable. This is in contrast to repeated games models, which do not have a
state variable, and reputation models in which the state variable is exogenous. As a consequence,
long-term reputational dynamics in our model are endogenously driven by reputational incentives,
rather than fading out or trailing exogenous shocks.

The model captures key features of many important industries. In labor markets such as those
for academics, artists and advertising executives, agents spend much of their time investing in
skills and perfecting their trade. Their reputation and future compensation, however, depends
heavily on their best paper, performance or campaign. In the computer industry, component
manufacturers invest heavily into research and development while customers are only able to
observe the performance of the entire computer. Customers therefore often learn about the quality
of the product through newsworthy incidents, such as Dell’s 2006 recall of 4 million Sony lithium-ion
batteries.1 In the car industry, firms devote considerable resources to improving quality standards
through organisational change and new production processes. Since these investments are not
observable, customers only learn about the true quality slowly, through consumer reports and the
media.2

In the model, illustrated in Figure 1, one long-lived firm sells a product of high or low quality
to a continuum of identical short-lived consumers. Product quality is a stochastic function of the
firm’s past investments. Quality then determines future prices through imperfect market learning:
a high quality product generally leads to a higher consumer utility than a low quality product, but
learning is obstructed by noise. At each point in time, consumers’ willingness to pay is determined
by the market belief that the quality is high, xt, which we call the reputation of the firm. This
reputation changes over time as a function of (a) the equilibrium beliefs of the firm’s investments,
and (b) market learning about the product quality.

Motivated by the Levy Decomposition Theorem, we suppose that market learning has two
components: (1) a Brownian motion capturing continuous information such as consumer reports,
and (2) a Poisson process capturing discrete events such as product failures. A Poisson event is
a good news signal if it indicates high quality, and a bad news signal if it indicates low quality.
Market learning is imperfect if no Poisson signal perfectly reveals the firm’s quality.3

1See “Dell to Recall 4m Laptop Batteries”, Financial Times, 15th August 2006.
2See “Detroit Carmakers on a Journey to Recover Reputation”, Financial Times, 24th December 2008.
3There are many examples of these learning processes. Continuous updating may occur as drivers learn about

the build-quality of a car, as clients learn about the skills of a consultancy, and as callers learn about the customer
service of a telephone service provider. Good news signals may occur in academia when a paper becomes famous,
in the bio-tech industry when a trial succeeds, and for actors when they win an Oscar. Bad news signals may occur
in the computer industry when batteries explode, in the financial sector when a borrower defaults, and for doctors
when they are sued for medical malpractice.
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Figure 1: Gameform. Effort controls quality through a Poisson process with arrival rate λ. Consumer
utility is a stochastic function of quality and serves as noisy signal in updating reputation. The model nests
learning through good news, bad news or Brownian news as special cases.

In a Markovian equilibrium the firm’s value is a function of its product quality and its repu-
tation. As illustrated in Figure 1, both quality and reputation move slowly and therefore can be
interpreted as assets, which the firm builds up at times, and which it depletes at other times. Rep-
utation is valuable because it determines the firm’s revenue. Quality in turn is valuable because
a high quality product yields higher expected utility to customers, increasing the firm’s future
reputation. Crucially, as quality is persistent, this reputational payoff does not take the form of an
immediate one-off reputational boost but it accrues to the firm as a stream of future reputational
dividends. Theorem 1 formalizes this idea by writing the asset value of quality, i.e. the difference
in value between a high and low quality firm, as the net present value of its future reputational
dividends. This formula is important because it is precisely this value of quality which incentivizes
the firm to invest.

Our main result, Theorem 2, characterizes equilibria under the assumption that the cost of
effort is small and market learning is imperfect. We prove existence of a work-shirk equilibrium in
which the firm works when its reputation falls below some cutoff x∗. Equilibrium beliefs induce a
convergent reputational drift towards x∗, leading to cyclical long-term dynamics.4 The asymmetry
of the work-shirk equilbrium also hinges on this reputational drift. At extreme levels of reputations,
x ≈ 0 or 1, market learning is slow and the reputational dividend is small. At the top, work is not
sustainable: If the firm is believed to work, its reputation stays high and reputational dividends
stay small, undermining incentives to invest. In contrast, at the bottom, work is sustainable: If the
firm is believed to work, its reputation drifts up and reputational dividends increase, generating
incentives to invest.

Theorem 2 also shows that the work-shirk equilibrium is essentially unique if market learning
satisfied condition (HOPE). This condition requires that reputation will drift up with positive
probability, even if the firm is believed to be shirking. It is satisfied when market learning has a

4We also call these dynamics convergent, as the distribution F (xt) of reputation converges to a steady state that
is independent of the initial reputation x0.
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non-trivial good news or Brownian component. For an intuition, consider the incentives around
a shirk-work cutoff, where the firm shirks below the cutoff and works above it. At the cutoff
reputational dynamics are divergent; under condition (HOPE) investment incentives are large,
implying that the cutoff type strictly prefers to work. To the contrary, without (HOPE), adverse
beliefs below a shirk-work cutoff are self-fulfilling and support a continuum of shirk-work-shirk
equilibria.

In Section 5 we analyse learning processes with Poisson events that perfectly reveal high quality
or low quality. These learning specifications are highly tractable and allow for closed-form solutions
for any level of costs. Furthermore, they are useful for applications and illustrate the forces at work
under more general learning processes. In the perfect good news case there is a unique work-shirk
equilibrium. The reputational dividend is the possibility of a product breakthrough that reveals
the firm’s high quality and boosts its reputation to 1. Since the benefit of such a reputational
boost decreases in the firm’s reputation, so do investment incentives. The work-shirk beliefs imply
cyclical reputational dynamics: A firm with low reputation works, eventually jumps to reputation
1 where it starts shirking; the firm’s reputation then drifts down until it hits the cutoff and starts
working again.

The perfect bad news case is the polar opposite of perfect good news. There is a continuum of
shirk-work equilibria. The reputational dividend is insurance against a product breakdown that
reveals the firm’s low quality and destroys its reputation. Since the benefit of such insurance
increases in the firm’s reputation, so do investment incentives. The shirk-work beliefs imply
divergent reputational dynamics: A firm with reputation below the cutoff shirks forever, causing
its reputation to fall to 0; a firm with reputation above the cutoff works forever, causing its
reputation to approach 1. To reconcile this result with the unique work-shirk equilibrium of
Theorem ??, note that the possibility of perfect bad news sustains effort at the top and allows for
a “full work” equilibrium, while the failure of (HOPE) allows for shirk-work cutoffs at the bottom
and for multiple equilibria.

Our firm controls future quality through investments that affect quality through a Poisson
process. In Section 6, we connect our analysis to the standard models in the literature, where
quality is chosen in every period (e.g. Klein and Leffler (1981), Mailath and Samuelson (2001)),
by taking the quality obsolescence rate λ to infinity. With complete information, an increase
in λ front-loads the returns to investment and increases investment incentives. With incomplete
information, there is a countervailing effect: For large values of λ, equilibrium beliefs dominate
market learning in determining reputational dynamics. In a work-shirk profile, market beliefs
rapidly drift towards the cutoff and expected reputational dividends vanish. Thus, there are no
work-shirk equilibria for high λ, but full shirking is an equilibrium. In contrast, a shirk-work cutoff
that induces divergent reputational dynamics and can incentivize effort when λ is high. We thus
find that effort disappears under perfect good news, while any shirk-work cutoff can be sustained
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under perfect bad news.

1.1 Theoretical Literature

Our paper links classical models of reputation with exogenous types and models of repeated games.
In contrast to the repeated games literature, we suppose there is a state variable which links the
periods. In contrast to reputation models, we suppose the state variable is the quality of the firm’s
product rather than some exogenous ability type of the firm (see figure 2).

In their reputation paper, Mailath and Samuelson (2001) consider a firm that sells a good
of unknown quality. There are two types of firms: a competent firm who can choose high or
low effort, and an inept firm who can only choose low effort. The actual product quality is then
a noisy function of the firm’s effort. From the consumer’s perspective, utility is determined by
the probability the firm is competent (the firm’s reputation) multiplied by the probability that a
competent firm exerts effort.

Mailath and Samuelson derive a striking result: there is a unique Markov perfect equilibrium
in pure strategies in which the competent firm always chooses low effort. When the reputation
is close to 1, it is impossible to sustain high effort for the same reason as in our paper. Effort
then unravels from the top: If the firm is known to be shirking when its reputation passes some
cutoff, it has no incentive to exert effort just below this cutoff since an increase in reputation
leads to a collapse in the price. In contrast, in our paper, product quality is persistent. Thus,
expected quality and price drift down continuously when the firm starts to shirk, and unravelling
is prevented.

Holmström (1999) examines a signal-jamming model where an agent of unknown ability can
exert effort to confuse the learning of her employer. When the agent’s type is constant, the
employer gradually learns the agent’s ability, and effort declines over time. When the agent’s type
exogenously changes over time, some effort level is sustained in the stationary equilibrium.

Tadelis (1999) studies reputation as a adverse selection, rather than a moral hazard phe-
nomenon. Quality is exogenous, but firms can buy and sell brand names that can carry reputation
because change of ownership is not observed. Consumers learn about quality through good news
shocks and Tadelis (1999) accordingly finds that in equilbrium it cannot be that good names are
only bought by high quality firms.

There is a wider literature on reputation models with moral hazard and fixed types, surveyed
in Bar-Isaac and Tadelis (2008). A number of these papers examine how a firm’s incentives to
exert effort vary over its lifecycle. First, incentives are low towards the end of the firm’s life (Kreps
et al. (1982), Diamond (1989)). Second, incentives are low when updating is slow (Benabou
and Laroque (1992), Mailath and Samuelson (2001)). Third, when reputation can be lost with
one piece of bad news, incentives increase in the level of reputation (Diamond (1989)). Together
these papers help explain how demand varies across firms and over time (Foster, Haltiwanger, and
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Figure 2: Relation to Literature. This figure shows the relationships between this paper, Mailath and
Samuelson (2001) and Holmström (1999).

Syverson (2008)).5 Many of these results can be understood through our trichotomy of good, bad
and Brownian learning: With good news learning, firms with low reputations try to build, or buy
a reputation (Tadelis (1999)). With bad news learning, firms with high reputations have high
incentives to maintain them (Diamond (1989)). With Brownian learning, reputational incentives
are hump-shaped as in Mailath and Samuelson (2001).6

Cripps, Mailath, and Samuelson (2004) show that reputation is a short-run phenomenon, when
interpreted as a public belief about some exogenous uncertain type. The public posterior is a
bounded martingale and by the martingale convergence theorem learning and incentives fade out
eventually. Cripps, Mailath, and Samuelson (2004) write that “... [A]model of long-run reputations
should incorporate some mechanism by which the uncertainty about types is continually replen-
ished”. Our stochastic investment into quality is such a mechanism. Unlike in models of purely
exogenous shocks, such as Holmström (1999), in which reputation simply trails these shocks, the
reputational dynamics of our model are driven by the forward-looking reputational incentives.7

In contrast to the repeated games literature (e.g. Fudenberg, Kreps, and Maskin (1990)),
our model is distinguished by an evolving state variable. Effort directly feeds through to future
reputation and revenue in our model, rather than preventing deliberate punishment by the counter-
party in a repeated prisoners’ dilemma. However, the models are connected by a common limit:
As the frequency of play in a repeated game increases it approaches a continuous-time game, where
quality is chosen at any t ∈ R. This is also the limit of our reputation model as we take the quality
obsolescence rate λ to ∞.

In a repeated prisoners’ dilemma with frequent actions, Abreu, Milgrom, and Pearce (1991) and
5Industry dynamics have been analysed with complete information models with exogenous firm types (Jovanovic

(1982), Hopenhayn (1992)) or endogenous capital accumulation (Ericson and Pakes (1995)). The difference between
these two approaches is analogous to the distinction between our paper and classical reputation papers.

6In this last case, however, our work-shirk equilibrium is in contrast to the “low-high-low” incentives of Mailath
and Samuelson (2001). This is because our reputational dividends accrue to the firm over time.

7Liu (2009) gives an alternative explanation of long-run reputational dynamics that is driven by imperfect, costly
recall and lack of a public posterior.
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Sannikov and Skrzypacz (2007) show that only discrete, “bad news” signals that indicate defection
can sustain cooperation. Brownian, or good news signals are too noisy to deter defections without
destroying all surplus by punishments on the equilibrium path. Thus, sustained cooperation
depends on the information structure in the same way as in our model. While the common limit
already suggests this analogy, our model highlights an alternative mechanism that distinguishes
the role of bad news signals in overcoming moral hazard, namely divergent reputational dynamics.

Finally, our paper is related to contract design with persistent effort. Fernandes and Phelan
(2000) suppose that an agent’s output depends today on effort both today and yesterday, and
derive a recursive formulation to solve for the principal’s optimal contract. Jarque (2008) shows
that the problem is much simpler when output depends on the geometric sum of past efforts and
the cost of effort is linear. Unlike these papers, our consumers simply react to the firm’s actions,
rather than designing contingent contracts.

1.2 Empirical Literature

A number of empirical papers examins the importance of reputation in internet auctions (eBay).
Resnick, Zeckhauser, Swanson, and Lockwood (2006) find that a new seller obtains significantly
lower prices than a seller with a good feedback score. Cabral and Hortaçsu (2009) similarly find
that a seller with negative feedback obtains significantly lower prices. More interestingly, Cabral
and Hortaçsu (2009) study sellers’ reactions to negative feedback. They find that a seller who
receives negative feedback becomes more likely to receive additional negative feedback, and is
more likely to exit. This suggests that either underlying quality is correlated over time, or a seller
who receives negative feedback exerts less effort, as in our bad news case.

Studies have also examined the role of reputation in other markets. In the airline industry, a
crash reduces the stock market value of the airline and manufacturer in question, reduces demand
for all aviation, but increases the value of firms who compete directly with the crashed airline
(Chalk (1987), Borenstein and Zimmerman (1988), Bosch, Eckard, and Singal (1998)). In the
restaurant market, the introduction of grade cards increased investments in hygiene, and had the
biggest effect on non-chain restaurants (Jin and Leslie (2003, 2009)). In the vehicle emission
testing market, garages with higher pass rates can demand higher prices (Hubbard (1998, 2002)).
In all of these cases, firms make investments that affect the quality of the product, and hence their
reputation. While these studies demonstrate the importance of maintaining a reputation, there is
little evidence on the effect of reputation on the firm’s investment incentives, as examined in this
paper.
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2 Model

Timing: Time t ∈ [0,∞) is continuous and infinite. The common interest rate is r ∈ (0,∞).

Firm and Consumers: There is one firm and a continuum of consumers. At any point in time t

the firm’s product can have high or low quality, θt ∈ {L = 0,H = 1}. The expected instantaneous
value of the product to the consumer equals θtdt. Consumers learn about the firm’s quality though
a stochastic process dZt = dZ (θt, εt). Motivated by the Levy decomposition theorem, we suppose
Zt is generated by a Brownian motion and a finite number of Poisson processes. The Brownian
motion ZB,t is generated by

dZB,t = µBθtdt + dWt

where Wt is the Wiener process. The Poisson process are indexed by y ∈ {1, . . . , Y } with arrival
rates µθ,y. Signal y is good news if µy := µH,y − µL,y > 0 and bad news if µy < 0. We say that
dZ is perfect good (bad) news learning if there is no Brownian component, µB = 0, and a single
Poisson signal that reveals high (low) quality perfectly, i.e. µH,y = µ and µL,y = 0 (resp. µH,y = 0
and µL,y = µ). Market learning is imperfect if µθ,y ∈ (0,∞) for each signal.8

Strategies: At time t the firm chooses effort ηt ∈ [0, 1] at cost cηtdt. Product quality θt is a
function of past effort (ηs)0≤s≤t via a Poisson process with arrival rate λ that models quality
obsolescence. Absent a shock, quality is constant: θt+dt = θt, while at a shock, previous quality
becomes obsolescent and quality is determined by the level of investment: Pr(θt+dt = H) = ηt.
This implies Pr (θt = H) =

∫ t
0 λeλ(s−t)ηsds + e−λt Pr (θ0 = H).9 We assume that this Poisson pro-

cess is independent of market learning εt.

Information: The signal dZt is public information, while actual product quality θt is observed
only by the firm. The market belief about product quality xt = Pr(θt = H) at time t is called the
firm’s reputation.

Reputation Updating: The reputation increment dxt = xt+dt−xt is governed by the signal dZt

8Experienced utility is generated by these signals and carries no additional information. For example, with only
a Brownian motion, we can let dZt/µB measure the instantaneous utility of the agent.

9This formulation provides a tractable way to allow the firm’s type to depend on its past investments. One
can view effort as the choice of absorptive capacity, determining the ability of a firm to recognise new external
information and apply it to commercial ends (Cohen and Levinthal (1990)). Equivalently, one could assume the
firm first sees the new technology arrive and chooses whether to adopt it at cost k = c/λ. Yet another equivalent
interpretation is that a low-quality firm chooses the arrival rate of high quality from [0; λ] at marginal cost c/λ, and
a high-quality firm can abate the intensity λ of the arrival of low quality at marginal cost c/λ.
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and beliefs about effort η̃t. By independence, dxt can be decomposed additively:

dxt = λ(η̃t − xt)dt + xt(1− xt)
Pr(dZt|H)− Pr(dZt|L)

xt Pr(dZt|H) + (1− xt) Pr(dZt|L)
. (2.1)

Let dθxt be the increments conditional on quality θ. We evaluate (2.1) explicitly in Section 4.

Profit and Consumer Surplus: Firm and consumers are risk-neutral. At time t the firm sets
price equal to the expected value xt. While consumers get utility 0 in expectation, the firm’s
instantaneous profit is (xt − cηt)dt and its discounted present value is thus given by:

Vθ (x; η, η̃) :=
∫ ∞

t=0
e−rtEθ0=θ,x0=x,η,η̃ [xt − cηt] dt. (2.2)

Markov-Perfect-Equilibrium: We assume Markovian beliefs η̃ = η̃ (x) and show below that
optimal effort η = η (x) is independent of history and current product quality θ. A Markov-
Perfect-Equilibrium 〈η, η̃〉 consists of a Markovian effort function η : [0, 1] → [0, 1] for the firm and
Markovian market beliefs η̃ : [0, 1] → [0, 1] such that 1) η ∈ η∗ (η̃) := arg maxη {Vθ (x; η, η̃)} maxi-
mizes firm value Vθ (x; η, η̃), and 2) market beliefs are correct: η̃ = η. In a Markovian equilibrium
η, we will write the firm’s value as a function of its quality and its reputation: Vθ(x).

2.1 Optimal Investment Choice

In principle, the firm’s effort choice η as well as market beliefs η̃ could depend on the entire public
history Zt = (Zs)0≤s<t, as well as the private history θt = (θs)0≤s<t and time t. We assume that
market beliefs η̃ are Markovian because we think of the continuum of consumers as sharing their
experience in a sufficient, yet incomplete manner, e.g. through consumer reports. For Markovian
beliefs η̃, all payoff relevant parameters at time t depend on the history only via the current product
quality θt and the firm’s reputation xt. Thus, the optimal effort choice of the firm only depends
on these two parameters.

The benefit of effort in [t; t + dt] is the probability of a technology shock hitting, λdt, times
the difference in value functions ∆ (x) := VH (x)− VL (x), which we call the value of quality. The
marginal cost of investment is c, and thus optimal effort η (x) is given by

η (x) =

{
1 if c < λ∆ (x) ,

0 if c > λ∆ (x) .
(2.3)

As quality after the shock is independent of previous quality, so is optimal effort.
Lemma 1 summarizes this discussion:
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Lemma 1 For Markovian beliefs η̃ (x) there is an optimal Markovian effort function η (x) that
depends solely on the firm’s reputation but not on its product quality. Additionally, η (x) satisfies
the “bang-bang” equation (2.3).

Equation (2.3) makes the model tractable and is the reason that we assume the cost of effort
to be independent of product quality and past effort. An implication of equation (2.3) is that our
results are not driven by the asymmetric information about product quality θ, but solely by the
unobserved investment η into future quality.

2.2 Cutoff Equilibria and Reputational Dynamics

We call an equilibrium work-shirk, if there exists a cutoff x∗ such that a firm with low reputation
x < x∗ exerts effort, η(x) = 1, whereas a firm with a high reputation x > x∗ does not, η(x) = 0.
The opposite case, where low reputations shirk and high reputations work, is called a shirk-work
equilibrium.

Work-shirk equlibria and shirk-work equilibria have opposite reputational dynamics. Net of
market learning, dynamics dx = λ(η̃t−xt)dt are convergent in a work-shirk equilibrium, i.e. dx > 0
for x < x∗ and dx < 0 for x > x∗, but divergent in a shirk-work equilibrium. We will see in section
6 that for high values of λ incentives disappear in work-shirk profiles, but not in shirk-work profiles.

We consider two effort profiles η, η′ as close if their value functions are close. Formally, let
dist (η, η′) := supx∈(0,1),θ

{∣∣Vθ,η (x)− Vθ,η′ (x)
∣∣}. This (pseudo) metric captures a fundamental

asymmetry between work-shirk and shirk-work cutoffs. A work-shirk profile with cutoff x∗ = 1− ε

close to 1 is close to the full-work profile, i.e. η (x) = 1 for all x: For small x0, the trajectories are
identical for a long time; thus the values are close. For large x0, learning is slow and both values
are close to 1. To the contrary, a shirk-work profile with cutoff x∗ = ε close to 0, is not similar
to the full-work profile, i.e. η (x) = 0 for all x: For x0 < x∗ sufficiently small, the value under
shirk-work is close to 0 because the firm is stuck in the shirk-region. The value under full work is
greater because reputation will drift up due to favorable beliefs.

2.3 Welfare

Suppose product quality is publicly observed. Then the benefit of exerting effort equals the obso-
lescence rate λ, times the price differential 1, divided by the effective discount rate r + λ. Thus
first-best effort is given by:

η =

{
1 if c < λ

r+λ

0 if c > λ
r+λ

. (2.4)

There is no equilibrium with positive effort if c > λ
r+λ : Effort decreases welfare and the firm

makes negative profits as consumers receive zero utility in equilibrium. The firm therefore prefers
to shirk at all levels of reputation, thereby guaranteeing itself a non-negative payoff.
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We thus restrict attention in the paper to the case c < λ
r+λ .

3 Value of Quality

A firm’s value Vθ(x) is a function of its reputation x and its quality θ. While reputation directly
determines revenue, quality derives its value indirectly, through its effect on reputation. More
precisely, Theorem 1 shows that the value of quality can be written as a present value of future
reputational dividends.

Lemma 2 shows that, when the firm is choosing its effort optimally, the value function is
increasing in reputation. To prove the lemma, we need to rule out the possibility that a firm with
a higher initial reputation may shirk, lose its product quality, and fall behind a firm with a lower
initial reputation. We do so by supposing the firm with the higher reputation mimics the firm
with the lower reputation, thereby staying ahead in all states of the world.

Lemma 2 Given an optimal response to market beliefs η∗(η̃), the value function of the firm
Vθ(x; η∗(η̃), η̃) is strictly increasing in its reputation x and increasing in market beliefs η̃.

Proof. See Appendix A.2. ¤

Lemma 2 implies that across equilibria η, η′, with η′(x) ≥ η(x) for all x, the firm’s value is
increasing in effort Vθ(x; η′, η′) ≥ Vθ(x; η, η).

To analyze the asset value of quality ∆(x), we decompose it into (a) the immediate benefit of
having high quality, called the reputational dividend, and (b) the continuation benefit of a high
quality product.

∆(x) = (1− rdt)(1− λdt)Ex [VH(x + dHx)− VL(x + dLx)] (3.1)

= (1− rdt− λdt)Ex [(VH(x + dHx)− VH(x + dLx)) + ∆(x + dLx)] .

The first line uses the principle of dynamic programming, while the second adds and subtracts
VH(x+dLx). Intuitively, for a fixed initial reputation x, current profits are completely determined
by the firm’s reputation. Rather than increasing current profits, high quality increases tomorrow’s
reputation.

Integrating (3.1) yields equation (3.2) in Theorem 1, which expresses the asset value of quality
as the discounted sum of future reputational dividends. This expression serves as a work-horse
throughout the paper.

Theorem 1 Fix any Markovian beliefs η̃ and a Markovian best response η∗ (η̃). Then two closed-
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form expressions for the value of quality ∆(x) are given by:

∆(x) =
∫ ∞

0
e−(r+λ)tEx0=x,θt=L[DH(xt)]dt, (3.2)

=
∫ ∞

0
e−(r+λ)tEx0=x,θt=H [DL(x)]dt, (3.3)

where θt = L is short for θs = L for all s ∈ [0; t], and the reputational dividend Dθ (x) is defined
by

Dθ(x) := E[Vθ(x + dHx)− Vθ(x + dLx)]/dt.

Proof. To integrate up (3.1), fix x and set ψ(t) := Ex0=x,θt=L [∆(xt)]. Up to terms of order o(dt)
we have

−d
(
ψ (t) e−(r+λ)t

)
= −e−(r+λ)t (ψ (t + dt)− ψ (t)− (r + λ) dtψ (t))

= e−(r+λ)tEx0=x,θt=L [−Ext [∆(xt + dLxt)] + (1 + (r + λ) dt) ∆(xt)]

= e−(r+λ)tEx0=x,θt=L [DH(xt)] dt

and (3.2) follows.
Equation (3.3) follows from the alternative decomposition of (3.1) when we add and subtract

VL(x + dHx) instead of VH(x + dLx). ¤

While standard reputation models incentivise effort by an immediate effect on the firm’s rep-
utation, effort in our model pays off through quality with a delay. Once quality is established, it
is persistent and generates a stream of reputational dividends until it becomes obsolete. We must
thus evaluate the reputational incentives at future levels of reputation xt, rather than the current
level x.

Corollary 1 Fix any Markovian beliefs η̃ and a Markovian best response η∗ (η̃). For a given
reputation x, a high-quality firm has a higher value than a low-quality firm, i.e. VH (x) ≥ VL (x).

Proof. By the updating equation (2.1) we have dHx ≥ dLx, by Lemma 2 we get Dθ(x) =
Vθ(xt + dHxt)− Vθ(xt + dLxt) ≥ 0. Finally by Theorem 1 we get ∆ (x) = VH (x)−VL (x) ≥ 0. ¤

4 Main Result

Our main result, Theorem 2 shows that for imperfect market learning processes and sufficiently
small costs, there exists a work-shirk equilibrium and, under condition (HOPE), this equilibrium is
essentially unique. We prove Theorem 2 by evaluating the reputational dividends that constitute
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the value of quality and incentivise effort. The reputational dividend is the sum of a Brownian
component (4.2) and a Poisson component (4.4).

For the Brownian component of learning, updating evolves according to

dθx = µBx(1− x) (µB (θ − x) dt + dW ) . (4.1)

To calculate the value of quality we apply Itô’s formula to get:

Ex[VH(x + dθx)] = VH(x) + µ2
Bx(1− x) (θ − x) V ′

H(x)dt +
(µBx(1− x))2

2
V ′′

H(x)dt.

The Brownian component of the reputational dividend is thus:

DH(x) = Ex[VH(x + dHx)− VH(x + dLx)]/dt = µ2
Bx(1− x)V ′

H(x). (4.2)

The dividend declines to zero in either tail as the factor x (1− x) slows down reputational updating.
For the Poisson component of learning, recall that µy = µH,y − µL,y is the net arrival rate of

good news. The reputational increment is given by

dx =
∑

y

µyx(1− x)

{
(µH,yx + µL,y (1− x))−1 at arrival y,

−dt otherwise.
(4.3)

Absent an arrival the second drift term is negative since, when µy > 0, no news is bad news.
The Poisson component of the reputational dividend is thus

DH(x) = Ex[VH(x + dHx)− VH(x + dLx)]/dt =
∑

y

µy [VH (x + dyx)− VH(x)] , (4.4)

where dyx := µyx(1−x)/ (µH,yx + µL,y (1− x)) is the reputation increment at arrival y. If market
learning is imperfect µθ,y ∈ (0,∞), then the reputational increments dyx converge to zero in the
tails and the dividend declines to zero, just like the Brownian component.

The most robust feature of equilibrium under imperfect learning is thus that there must be a
shirk-region at the top. If the firm is believed to be working in an interval around x = 1, it is all
but certain to have a high reputation in the future, undermining incentives to actually invest. To
go beyond this local result, and prove the main result of the paper, Theorem 2, we will focus on
the case of sufficiently small costs c.

To concisely state Theorem 2 we say that the learning process dZ satisfies (HOPE), when a
firm with any non-zero reputation has a chance of its reputation increasing even under adverse
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equilibrium beliefs:
Pr [dx > 0|η̃ = 0] > 0 for all x > 0 (HOPE)

This holds if (a) there is a non-trivial Brownian component, (b) there are good news signals, or (c)
there are only bad news signals but −∑

y µy > λ, so that the absence of bad news can outweigh
adverse equilibrium beliefs. Theorem 2 shows that, under (HOPE), equilibrium is essentially
unique. That is, for any ε > 0 and sufficiently low cost c, any two equilibria η, η′ are close in the
metric defined in Section 2.2, i.e. dist (η, η′) < ε.

Theorem 2 For any imperfect learning process, there exists c > 0 such that for all c∗ ∈ (0, c):

(a) There exists a work-shirk equilibrium with cutoff x∗ ∈ (0, 1).

(b) Reputational dynamics converge to a non-trivial cycle in this equilibrium.

(c) With (HOPE), equilibrium is essentially unique.

Proof. See Appendix B. ¤

Theorem 2 shows that, when costs are low, effort is sustainable at the bottom but not at
the top. This fundamental asymmetry is illustrated in the left panel of Figure 3 for the case of
Brownian motion. Intuitively, when the firm is believed to be working, the value of quality is zero
at x = 1 since current dividends are zero and, as the firm’s reputation stays at x = 1, future
dividends are zero. In contrast, the value of quality is positive at x = 0 since favorable equilibrium
beliefs push the firm’s reputation into the interior of (0, 1), where dividends are high. The firm
thus invests at x = 0 not because of the immediate reputational dividends, which are close to 0,
but because of future dividends, when the firm’s reputation is sensitive to actual quality.

Imperfect learning about low quality is a necessary condition for Theorem 2. Poisson signals
that reveal low quality perfectly, i.e. y with µy,H = 0, invalidate the argument for “shirking at
the top” because xt+dt = 0 at arrival of signal y. We study perfect bad news learning in Section
5.2. Imperfect learning about high quality, on the other hand, is merely assumed for symmetry
and tractability in the proofs. Proposition 1 replicates the results of Theorem 2 for perfect good
news learning.

Figure 3 is almost a proof of Theorem 2(a). Let ∆x∗(x) be the asset value of quality for a firm
with reputation x in a work-shirk profile with cutoff x∗. Arguments in the appendix show that:

∆1(x)

{
> 0 for x < 1
= 0 for x = 1

and ∆′
1(1) < 0.
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Figure 3: Asset Value of Quality under Full Effort (left) and in Work-Shirk Equilibrium (right).
This figure assumes that µ = 1, λ = 1, r = 1 and c = 0.01. In the work-shirk equilibrium, the resulting
cutoff is is x∗ = 0.900.

and thus for small c there exists x∗ such that

λ∆1(x)





> c for x < x∗ (Low reputations work)
= c for x = x∗ (x∗ is indifferent)
< c for x > x∗ (High reputations shirk).

(4.5)

To prove part (a) we just need to replace ∆1 on the LHS with ∆x∗ . The problem with this simple
argument is that it implicitly assumes continuity of ∆′

x∗ as x∗ → 1. However, it is not difficult to
show that limx∗→1 ∆′

x∗(1) = 0 while ∆′
1(1) > 0. As a result, it could be that ∆x∗(x) is increasing

in x for x > x∗, contradicting the last condition in (4.5).
To appreciate this complication, consider the marginal value of reputation V ′

θ(x) to a firm with
reputation x ∈ [x∗, 1] where x∗ ≈ 1. A reputational increment dx is valuable to the firm only as
long as xt|x0=x+dx > x∗: As soon as xt|x0=x+dx = x∗ the increment xt|x0=x+dx − xt|x0=x vanishes
because of the difference of drift to the left of x∗ and to the right of x∗. As a consequence, V ′

θ(x)
and Dθ(x) may be minimized at the cutoff x∗. Numerical simulations show that this is actually
the case in relevant parameter ranges for a pure Brownian learning process. Thus, we need to take
seriously the possibility that ∆x∗(x) could be minimised at x = x∗.

To rule this out, i.e. show that λ∆x∗(x∗) > λ∆x∗(x) for x ∈ (x∗, 1], we need a better under-
standing of the reputational dynamics dx and the marginal values V ′

θ,x∗(x) for x, x∗ ≈ 1. Assume
for notational simplicity that learning is pure Brownian without Poisson signals. Then, the dy-
namics of (1− x) approximate a geometric Brownian motion which is reflected at (1− x∗) by the
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Figure 4: Shirk-Work-Shirk Equilibrium. This figure illustrates the asset value of quality in a work-
shirk equilibrium, ∆x∗(x). The straight line equals rc/λ. This figure assumes that µ = 1, λ = 1, r = 1 and
c = 0.06. The resulting cutoffs are x = 0.910 and x = 0.958.

large relative difference in the drift terms. For the high quality firm,

dH(1− x) = −λ (η − x) dt− µ2
Bx (1− x)2 dt + µBx (1− x) dW

≈
{
−λ (1− x) dt− µB (1− x) dW for x < x∗

λxdt for x > x∗

and likewise for dL(1− x).
This has two implications. First, while the dividend may be minimised at x∗, the value of

quality at the cutoff ∆x∗(x∗) is largely determined by the dividends at x < x∗. Second, the
marginal value of reputation and the dividend at x > x∗ are small in relation to those at x < x∗.
This is because a reputational increment essentially disappears when xt = x∗ and this happens
much sooner for initial reputations x0 > x∗ than for x0 < x∗. Hence for x > x∗, ∆x∗(x) is an
average of low dividends while xt > x∗, and a continuation value ∆x∗(x∗) when xt hits x∗. This
average comes to less than ∆x∗(x∗), as required.

Slow reputational updating at x ≈ 0 and x ≈ 1 suggests another, shirk-work-shirk type of
equilibrium, where a firm works when its reputation is between two cutoffs, x ∈ [x, x] and shirks
elsewhere. A firm with a low reputation is trapped in a lower “shirk-hole” in which market learning
is too slow to incentivise effort, while a firm above x experiences convergent dynamics around x.

Theorem 2(c) shows that such shirk-work-shirk equilibria disappear for small costs. Intuitively,
reputational dividends and the value of quality are bounded below on any interval [ε; 1− ε] so,
when costs are small, all intermediate reputations prefer to work. At a shirk-work cutoff, x,
working is then profitable for low costs if the firm will escape from the lower shirk region with
positive probability. That is, if (HOPE) is satisfied.

16



If (HOPE) is violated, i.e. if learning is only through bad news and −∑
y µy < λ, the work-

shirk is not unique but coexists with a continuum of shirk-work-shirk equilibria. The failure of
(HOPE) implies that a firm whose reputation drops into the shirk hole will remain there forever.
This creates a discontinuity in the value function that incentivizes effort above the cutoff but not
in the shirk-hole just below.1011

Investment incentives in a shirk-work-shirk equilibrium are greatest just above the shirk-work
cutoff where the divergent reputational drift makes value functions discontinuous. This captures
the intuition that one product breakdown can put a reputable firm in the “hot-seat” where one
more breakdown would finish the firm off. In such an equilibrium a firm that fails once will try
hard but a firm that fails repeatedly gives up.

The above arguments imply that with (HOPE) and small costs, the firm works at all in-
termediate and low levels of reputation and shirks at some high levels of reputation, i.e. the
work-shirk equilibrium is “essentially” unique. Beyond this we can show that there is a only one
work-shirk equilibrium, but there may be other “work-shirk-work-shirk” equilibria with additional
work-regions at the very top. Nevertheless, any such equilibrium is similar to work-shirk equilibria
in that it is characterised by a reputation levels 0 < x∗ < 1 such that η (x) = 1 for x < x∗ and
η (x) = 0 for some x > x∗.12 These equilibria all involve work on [0, 1− ε], so they converge to the
work-shirk equilibrium in the Hausdorff metric as c → 0.

The above analysis relies on the assumption of low costs c to ensure work for intermediate
reputations x ∈ [ε; 1− ε]. For higher costs, numerical simulations indicate that shirk-work-shirk
equilibria exist also in the pure Brownian case where (HOPE) holds (see Figure 4). As discussed
abore, investment incentives in this equilibrium (with c = 0.06) are much higher than in the above
work-shirk equilibrium (with c = 0.01). A firm at the work-shirk cutoff has more to lose when a
sequence of bad utility draws can push its reputation into a shirk-region, where it may be stuck
forever. This argument makes it unlikely that these two types of equilibrium co-exist for given
parameters.

10To construct shirk-work-shirk equilibria, we can first choose the lower, shirk-work cutoff low enough so as to
discourage work in the shirk-hole, and then reapply the arguments in Appendix B to prove existence of the upper,
work-shirk cutoff with the required properties.

11This argument implies that the equilibrium correspondence is not lower hemi-continuous. Learning processes
with (HOPE) approximate learning processes without (HOPE), e.g. by taking the Brownian component of learning
µB to zero. While equilibria along the convergent sequence are work-shirk, additional shirk-work-shirk equilibria
discontinuously appear in the limit. These shirk-work-shirk equilibria are not close to the work-shirk equilibrium in
the metric dist (·, ·).

12For example, given the parameters in figure 3, there is another equilibrium with working on [0, 0.900], shirking
on [0.900, 0.944], working on [0.944, 0.9605] and shirking on [0.9605, 1].
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5 Perfect Poisson Learning

The analysis in Section 4 subsumes Poisson processes with imperfect learning. We now turn to
Poisson processes that can perfectly reveal the firm’s quality. These cases are highly tractable and
allow for a more explicit equilibrium characterization: see Appendix D.1 and Appendix D.2. The
perfect good news case illustrates and extends Theorem 2, in that equilibrium is work-shirk and
unique. The perfect bad news case highlights the limitations of Theorem 2, in that equilibria are
shirk-work and not unique. Moreover, these learning models are natural for many applications,
making the results interesting in their own right.

5.1 Perfect Good News

Assume that consumers learn about quality θt from infrequent product breakthroughs that reveal
high quality θ = H with arrival rate µ. Absent a breakthrough, updating evolves deterministically
according to:

dx

dt
= λ(η(x)− x)− µx(1− x). (5.1)

Let xt be the deterministic solution of the ODE (5.1) with initial value x0.
The reputational dividend is the value of having a high quality in the next instant. This equals

the value of increasing the reputation from x to 1 times the probability of a breakthrough:

DH(x) = E [VH(x + dHx)− VH(x + dLx)] /dt = µ(VH(1)− VH(x))

Using equation (3.2), the asset value of quality is:

∆(x0) =
∫ ∞

0
e−(r+λ)tµ[VH(1)− VH(xt)]dt (5.2)

The reputational dividend VH(1) − VH(xt) is decreasing in xt, so that ∆(x0) is decreasing in x0.
It follows that any equilibrium is work-shirk. Intuitively, a breakthrough that increases the firm’s
reputation to 1 is most valuable for a firm with a low reputation. Thus, investment incentives
decrease in reputation and the equilibrium is work-shirk.

The work-shirk beliefs imply that reputational dynamics converge to a cycle. Absent a break-
through, the firm’s reputation converges to a stationary point x̂ = min{λ/µ, x∗} where the firm
works with positive probability. When a breakthrough occurs, the firm’s reputation jumps to
1. The firm is then believed to be shirking, so its reputation drifts down to x̂, absent another
breakthrough. In the long-run, the firm’s reputation therefore cycles over the range [x̂, 1].

Proposition 1 Under perfect good news learning:

(a) Every equilibrium is work-shirk.
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Figure 5: Reputational dynamics in Good News (left) and Bad News (right). This figure
illustrates how the reputational drift dx/dt, absent a breakthrough, changes with the reputation of the firm,
x. These pictures assume λ = µ and x∗ = 1/2. The dark line shows the drift when beliefs are correct.

(b) Reputational dynamics converge to a non-trivial cycle.

(c) If λ ≥ µ, the equilibrium is unique.

Proof. Part (a). Reputation xt follows (5.1), so an increase in x0 raises xt at each point in
time. Lemma 2 says that VH(x) is strictly increasing in x, so equation (5.2) implies that ∆(x0) is
decreasing in x0. Part (b) follows from (a).

Part (c). Given λ ≥ µ, the process xt starting at x0 = 1, falls until it becomes stock at x∗.
Equation (??) in Appendix D.1 derives a closed-form expression for ∆x∗(x∗). This implies that
∆x∗(x∗) is decreasing in the cutoff, implying the equilibrium is unique. ¤

Suppose that λ ≥ µ, so the firm’s reputation drifts up whenever it is believed to be working
(see Figure 5). In this case, the dynamics are stationary at x̂ = x∗, at which point the firm chooses
to work with intensity η(x∗) = x∗

(
1 + µ

λ (1− x∗)
)
.

To understand the uniqueness result of Proposition 1(c), suppose the market believes the cutoff
is x̃, and denote the firm’s best response by x∗(x̃). An increase in x̃ means the firm’s reputation
will not drift down as far, absent a breakthrough. This change benefits low-quality firms more
than high-quality firms, reducing ∆(x). As a result, x∗(x̃) is decreasing in x̃ and there is a unique
fixed point where x∗(x̃) = x̃.

This result illustrates Theorem 2. When the market learns through perfect good news, the
strength of the signal is decreasing in the firm’s reputation. This means that not only are invest-
ment incentives higher at x = 0 than x = 1, but that incentives are monotonically decreasing in
x.
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5.2 Perfect Bad News

Assume that xt is generated by breakdowns that reveal low quality θ = L with arrival rate µ.
Absent a breakdown, updating evolves deterministically according to:

dx

dt
= λ(η(x)− x) + µx(1− x). (5.3)

Let xt be the deterministic solution of ODE (5.3) with initial value x0.
The reputational dividend is the value of having a high quality in the next instant. This equals

the value of not losing one’s reputation times the probability of a breakdown:

DL(x) = E [VL(xt + dHxt)− VL(xt + dLxt)] /dt = µ(VL(xt)− VL(0)).

Using equation (3.3), the asset value of quality is:

∆(x0) =
∫ ∞

0
e−(r+λ)tµ[VL(xt)− VL(0)]dt. (5.4)

The jump size VL(xt)−VL(0) is increasing in xt, so that ∆(x) is increasing in x. It follows that any
equilibrium is shirk-work. Intuitively, a breakdown that destroys the firm’s reputation entirely is
most damaging for a firm with a high reputation. Thus, incentives to invest increase in reputation
and equilibrium must be shirk-work.

The shirk-work beliefs imply that the reputational dynamics diverge. Consider an equilibrium
with x∗ ∈ (0, 1), i.e. the firm works if its reputation is below x∗ and works if it is above x∗. A firm
that starts with reputation above x∗ converges to reputation x = 1, absent a breakdown. If the
firm is hit by such a breakdown while its product quality is still low, it gets stuck in a shirk-hole
with reputation x = 0. A firm with reputation below x∗ initially shirks and may have either rising
or falling reputation, depending on parameters. In either case, its reputation will either end up at
x = 0 or x = 1.

To allow for positive effort in some equilibrium we impose the following assumption:

λ

r + λ + µ
µ(1− c)/r > c (5.5)

Proposition 2 Under perfect bad news learning:

(a) Every equilibrium is shirk-work.

(b) If x∗ ∈ (0, 1) then reputational dynamics diverge to 0 or 1.

(c) Assume (5.5) holds and λ ≥ µ. There is a non-empty interval [a, b] such that every cutoff
x∗ ∈ [a, b] defines an equilibrium.
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Proof. Part (a). Reputation xt follows (5.3), so an increase in x0 raises xt at each point in
time. Lemma 2 says that VL(x) is strictly increasing in x, so equation (5.4) implies that ∆(x0) is
increasing in x0. Part (b) follows from (a).

Part (c). If λ ≥ µ, the dynamics are divergent at x∗: if x0 = xt − ε, then limxt = 0; if
x0 = xt + ε, then limxt = 1. Thus, to define value functions and ∆ at the cutoff x∗ we need to
specify whether or not x∗ works. Denote by ∆−

x∗(x) (resp. ∆+
x∗(x)) the value of quality at x when

x∗ is believed to be shirking (resp. working). At x∗ ∈ (0, 1) we have ∆−
x∗(x

∗) = limx↗x∗ λ∆x∗(x)
and ∆+

x∗(x
∗) = limx↘x∗ λ∆x∗(x). Lemma 2 says that VL(xt) is strictly increasing in xt, so (5.4)

implies that
∆−

x∗(x
∗) < ∆+

x∗(x
∗). (5.6)

A cutoff x∗ ∈ (0, 1] then defines a shirk-work equilibrium iff13

λ∆−
x∗(x

∗) ≤ c ≤ λ∆+
x∗(x

∗). (5.7)

Equation (5.4) implies that ∆+
x∗(x

∗) and ∆−
x∗(x

∗) are increasing and continuous in x∗. For the
lower bound, observe that λ∆−

0 (0) = 0, because a firm with no reputation that is believed to
be shirking is stuck at 0 forever. For the upper bound, λ∆+

1 (1) = λ
r+λ+µµ(1 − c)/r because

VL,1(1) = r+λ
r+λ+µ(1− c)/r, VL,1(0) = 0, and λ∆+

1 (1) = λµ
r+λ (VL,1 (1)− VL,1 (0)). Under assumption

(5.5), equation (5.7) therefore defines a non-empty interval of cutoffs, [a, b]. ¤

Suppose λ ≥ µ, so that whenever the firm is known to be shirking its reputation drifts down
(see Figure 5). In this case, the region below x∗ is a shirk-hole: when a firm’s reputation is below
the cutoff, it is certain to see its reputation decrease because of the adverse beliefs. Such a firm
always shirks, eventually giving rise to a low quality product and a product breakdown destroying
whatever is left of its reputation. When a firm’s reputation is above the cutoff, favourable market
beliefs contribute to an increasing reputation and the firm invests to insure itself against a product
breakdown. At the cutoff, the firm works when it is believed to be working and shirks whenever
it is believed to be shirking.14

Theorem 2(c) shows that there is an interval of equilibrium cutoffs satisfying (5.7). The multi-
plicity is driven by a discontinuity in the value function at x∗, caused by the divergent reputational
dynamics. Intuitively, the market’s beliefs become self-fulfilling. If the market believes the firm

13The case x∗ = 0 is more subtle because there are two qualitatively different effort-profiles with cutoff x∗ = 0.
If x∗ = 0 is believed to be working, there is no shirk-hole, and the necessary and sufficient condition for equilibrium

is that the lowest reputation works, i.e. c ≤ λ∆+
0 (0).

However, if x∗ = 0 is believed to be shirking, then x∗ = 0 is a shirk-hole and the equilibrium condition is
c ≤ λ∆−

0 (x) for all x > 0 (and c ≥ λ∆−
0 (0) which is automatically satisfied because λ∆−

0 (0) = 0). This condition is
weaker than (5.7) as ∆+

0 (0) < limx→0 ∆−
0 (x): The existence of a shirk-hole increases the value of quality. Formally,

this is reflected in equation (5.4) in that VL (0) = 0 if reputation 0 shirks, but VL (0) > 0 if reputation 0 works.
14The divergent dynamics imply that there will be path dependence in reputations. This is consistent with the

existence of credit traps in financial markets, and may help explain why political scandals have such dramatic effects
on politicians careers (Diermeier, Keane, and Merlo (2005)).
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is shirking, its reputation falls, undermining its incentive to invest. Conversely, if the market
believes the firm is working, its reputation rises, causing the firm to invest in order to protect its
appreciating reputation.15

The shirk-work equilibrium under perfect bad news learning seems to be at odds with the
unique work-shirk equilibrium under “almost perfect” bad news covered in Theorem 2. However,
this limit is continuous. Full work, η (x) = 1 for all x, is an equilibrium under perfect bad news
learning when costs are low.16 This full work profile is approximated by work-shirk equilibria
when learning is via bad news signals y with high but finite ratios µL,y/µH,y. With such signals
the reputational increment dyx and the reputational dividend remain high close to x = 1. Thus,
the work-shirk equilibria with x∗ ≈ 1 for close to perfect learning approximate the full work
equilibrium, with x∗ = 1, under perfect learning.

When λ < µ the dynamics have additional interesting features: Define x̂ = 1 − λ
µ ∈ (0, 1) to

be the stationary point in the dynamics when the firm is believed to be shirking. There are two
types of equilibria:

1. Trapped equilibria. When x̂ < x∗, a firm with reputation x ∈ (0, x∗) finds its reputation
converging to x̂, and remains stuck in a shirk-hole. At some point is suffers a breakdown
and remains at x = 0 thereafter. Since the dynamics are divergent at x∗ the value function
is discontinuous, and there is an interval of such equilibria.

2. Permeable equilibria. When x̂ > x∗, a firm with reputation x ∈ (0, x∗) finds its reputation
increasing. If xt passes x∗ before a breakdown hits, the firm starts to work and its reputation
may converge to one. Since the value functions are continuous at a permeable cutoff x∗, there
is at most one permeable equilibrium.

5.3 Perfect Good and Bad News

If the product can both enjoy breakthroughs revealing high quality with intensity µg, and suffer
breakdowns revealing low quality with intensity −µb, the reputational dividend is given by:

Dθ (x) = µg (Vθ (1)− Vθ (x))− µb (Vθ (x)− Vθ (0)) (5.8)

= − (µb + µg) Vθ (x) + µgVθ (1) + µbVθ (0) .

When good news is more frequent than bad news, µg > −µb, the analysis is similar to the
perfect good news case of Section 5.1: Reputational dividends and value of quality are decreasing

15While outside the model, this multiplicity creates an incentive for firms to invest in marketing in order to shape
consumers expectations.

16Investment incentives under full work are bounded below by ∆0 (x) > ∆+
0 (0) > 0. This bound is derived

explicitly in equation (??) in Appendix D.2.
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in reputation and any equilibrium must be work-shirk. However, full work can be an equilibrium
now, because the perfect bad news signal incentivizes work even for high reputations.

When bad news is more frequent than good news, −µb > µg, the analysis is similar to the
perfect bad news case of Section 5.2: Reputational dividends and value of quality are increasing
in reputation, and any equilibrium must be shirk-work. However, when costs are low, equilibrium
must be full work now, because the perfect good news signal guarantees (HOPE) and rules out
shirking at the bottom.

6 Quality Choice

We now connect our analysis to the standard models in the literature, where quality is chosen in
every period, by taking the quality obsolescence rate λ to infinity. As discussed in the introduction
we find that an increase in λ can be detrimental to incentives despite the benefit of front-loading
the returns to effort. In particular we find that the work-shirk equilibria of Theorem 2 disappear
as λ →∞.

Theorem 3 For any learning process, there exists λ∗ such that for all λ > λ∗:

(a) Pure shirking is an equilibrium.

(b) There is no work-shirk equilibrium with cutoff x∗ ∈ (0; 1].

Proof. See Appendix C. ¤

Intuitively, when we fix a learning process dZt and choose λ sufficiently high, the reputational
dynamics dxt in (2.1) are dominated by equilibrium beliefs λ (η̃ − x), and any effect of learning
from actual quality is quickly lost. If beliefs η̃ are work-shirk the firm’s future reputation and
revenue will be close to the cutoff x∗, irrespectively of its investment, quality, or consumer utility.

More precisely, we can apply Theorem 1 to write the benefits of working as the product of an
average reputational dividend and an average time at which the dividend accrues:

λ∆(x) = λ

∫ ∞

0
e−(r+λ)tE[D(xt)]dt ≈ λ

r + λ︸ ︷︷ ︸
≤1

D(xfuture)︸ ︷︷ ︸
→0

The first term λ
r+λ captures the front-loading effect discussed in the introduction: As λ increases

so does the probability that current effort affects quality. At the same time it increases the rate
at which this quality becomes obsolete, and the effective discount rate r + λ. Aggregating these
two effects, an increase in λ front-loads returns and increases λ/ (r + λ). By this logic, investment
incentives are increasing in λ under complete information, where the dividend from quality is equal
to 1.
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Under incomplete information to the contrary, investment incentives vanish: While the front-
loading effect λ/ (r + λ) is bounded by 1, the reputational dividend of quality vanishes as a function
of λ. To see this, we decompose the value of a firm, say that is shirking and has low quality,
into current profits and continuation value VL (x) = xtdt + (1− rdt) VL (x− dx). Rearranging
terms, we find that marginal value V ′

L(x) = 1
dx/dt (xt − rVL (x)) is decreasing in dx/dt ≈ λ. As

the marginal value of reputation vanishes, so does the reputational dividend of quality, which is
composed of “jump-terms” µy (Vθ (xy)− Vθ (x)) derived from the Poisson component of learning,
and a continuous term µ2

Bx(1− x)V ′
θ(x) derived from the Brownian component of learning.17

For the perfect Poisson learning processes of Section 5, we find:

Proposition 3 There is λ∗ such that for all λ > λ∗:

(a) Under perfect good news learning, full shirking is the only equilibrium.

(b) Under perfect bad news learning, any cutoff x∗ ∈ (0; 1] defines a shirk-work equilibrium, as
long as condition (5.5) is satisfied.

Proof. Part (a). By Proposition 1 any equilibrium under good news is work-shirk, but the only
such equilibrium for high λ entails full shirking by Theorem 3. More explicitly, we can bound the
cutoff type’s investment incentives directly,

λ∆x∗(x∗) ≤ λ∆0(0) ≤ µ

λ + µ
λ

∫ ∞

0
e−rtxtdt ≤ µ

λ + µ

λ

r + λ
.

The first inequality comes from equation (??), the second from substituting x∗ = 0 into (??), and
the third from observing that xt ≤ e−λt when x∗ = 0.

Part (b). Pick any x∗ > 0. First, suppose x0 > x∗ and observe that xt ≥ 1 − e−λt. Equation
(??) in Appendix D.2 gives an explicit formula for the value of quality. Taking limits,

lim
λ→∞

λ∆x∗(x) ≥ lim
λ→∞

λµ

λ + µ

∫ ∞

t=0
e−rt(1− e−λt − c)(1− e−(λ+µ)t) dt = µ(1− c)/r

where the final equality uses the fact that the integral converges to (1 − c)/r. Assumption (5.5)
implies that µ(1 − c)/r > c. Hence for sufficiently large λ, working is optimal for all x > x∗ and
any x∗.

17Theorem 3 does not show that full shirking is the unique equilibrium in the Brownian case. In this sense, this
result is weaker than the one in Sannikov and Skrzypacz (2007). This seems to be a matter of analytic tractability
rather than economic substance: Consider the incentives in a shirk-work-shirk equilibrium with cutoffs x < x for
high values of λ. A firm with reputation x faces the risk of slipping through the work-region into the shirk hole. Let
γθ be the intensity with which this happens to a firm with quality θ. The dividend of quality is now a function of
the difference in these intensities, γL − γH . For large values of λ, the size of the work-region x− x must be small to
bound this difference from below. The analysis in Sannikov and Skrzypacz (2007) suggests that this increases γH .
Even a firm with high quality slips into the shirk hole arbitrarily fast, and V (x) and ∆ (x) converge to 0.
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Next suppose x0 < x∗ and observe that xt ≤ e−(λ−µ)t. Equation (??) in Appendix D.2 derives
an explicit formula for the asset value of quality. Taking limits,

lim
λ→∞

λ∆x∗(x) ≤ lim
λ→∞

λµ

λ− µ

∫ ∞

t=0
e−rte−(λ−µ)tdt = 0

Hence for sufficiently large λ, shirking is optimal for all x < x∗ and any x∗. ¤

The key difference that sustains effort in part (b) is that reputational dynamics are diver-
gent at a shirk-work cutoff x∗, and value functions are discontinuous as discussed in Section 5.2.
Thus, while the marginal value of reputation V ′

θ(x) vanishes for all x 6= x∗ and the value func-
tion approaches Vθ (0) for x < x∗, and Vθ (1) for x > x∗, the reputational dividend approaches
µ (Vθ (1)− Vθ (0)). The proof shows that under condition (5.5) this exceeds c. High values of λ

amplify the multiplicity of equilibria found in the bad news case. Intuitively, a firm that starts
below the cutoff finds its reputation falling to zero instantly and gives up, while a firm above the
cutoff finds its reputation rising to one instantly and works to stay there.

Theorem 3 has a surprising consequence: Providing more information about the firm’s quality
may be detrimental to equilibrium effort. More specifically, consider a shirk-work equilibrium
under perfect bad news learning. Then improve the learning process by introducing additional
perfect good news signals. If the arrival rate of the good news exceeds the arrival rate of the bad
news, Section 5.3 shows that equilibria must be work-shirk. If additionally λ is high enough, full
shirking is the only equilibrium by Lemma 3.

Ordering signal structures by sufficiency, equilibria by effort, and equilibrium sets by the set
order we can summarize:

Corollary 2 More information can lead to less effort.

The economics of the counter-example resembles the problem of renegotiation-proofness in a
repeated prisoners’ dilemma: Under perfect bad news learning a firm with a high reputation works
because a breakdown permanently destroys its reputation. Additional good news signals grant the
firm a second chance after a breakdown, and undermine incentives to work hard in the first place.

7 Conclusion

This paper develops a new model of reputation, where the firm invests in the quality of its products,
which is imperfectly observed by the market. As customers experience the product, the firm’s
reputation evolves. This evolution, in turn, affects the firm’s incentives to invest in quality.

The model forms a bridge between repeated games and classical models of reputation. In
contrast to repeated games, different firms may have different capabilities. In contrast to classical
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models of reputation, firm’s capabilities are a function of past decisions and are therefore endoge-
nous. This model seems realistic: The current state of General Motors is a function of its past
hiring policies, investment decisions and reorganisations, all of which are endogenous.

Our results highlight the role of the learning process in determining reputational incentives:
When the market learns high quality perfectly through product breakthroughs, there is a unique
work-shirk equilibrium and convergent dynamics. When the market learns low quality perfectly
through product breakdowns, there is a continuum of shirk-work equilibria and divergent dynamics.
For imperfect learning processes, there exists a work-shirk equilibrium just like for perfect good
news learning, but no shirk-work equilibrium.

There are many ways to extend this model to capture additional important aspects of firm
reputation. One can allow the high-quality firms to have lower investment costs than low-quality
firms. Under perfect good news learning, equilibria are work-shirk, with a low quality firm’s cutoff
x∗L lying below a high quality firm’s cutoff, x∗H , implying that the firm’s reputation ultimately
cycles over [x∗L, 1] if λ ≥ µ. In another variant, one might suppose that people stop buying from
the firm when its reputation falls below an exogenous threshold, x. The value functions now satisfy
VL(x) = VH(x) = 0; so with Brownian learning the firm shirks when its reputation gets close to
x as its life expectancy gets short. Beyond firm reputation, we hope that our model may prove
useful in other applications, such as finance, trade, political careers, or labor markets.
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A General Results

A.1 Log-likelihood Ratio Transformation

For most of the technical proofs in the appendix, we represent reputation by the log-likelihood
ratio `(x) = log(x/(1− x)) ∈ R ∪ {−∞,∞} of state H rather than the posterior x. The relevant
transformation functions are:

`(x) = log
x

1− x
x (`) =

e`

1 + e`

dx

d`
=

e`

(1 + e`)2
= x (1− x)

When we work in `-space we write V̂θ (`) := Vθ (x (`)) for value functions, D̂θ(`) := Dθ (x (`)) for
the reputational dividend, ∆̂ (`) := ∆ (x (`)) for the value of quality, and η̂ (`) := η (x (`)) for effort.
The advantage of this transformation is that reputational updating is more tractable in `-space.

Market Learning: Bayesian updating from signals dZt is linear in `-space:

`t+dt = `t + log
Pr(dZt|H)
Pr(dZt|L)

. (A.1)

More specifically, the Brownian component of learning θµBdt + dW imposes a Brownian motion
on reputational dynamics:

dθ` = µ2
B (θ − 1/2) + µBdW

The Poisson component of learning, with event y arriving at intensity µy,θ, affects reputational
dynamics via

d` =

{
δy in case of arrival y,
−∑

y µydt absent of an arrival,

where the jump equals δy = log(µy,H/µy,L).

Equilibrium Beliefs: This part of reputational updating is more complex in `-space:

d`

dt
=

d`

dx
λ (η̃ − x) = λ

(
1 + e`

)2

e`

(
η̃ − e`

1 + e`

)
=

{
λ

(
1 + e−`

)
for η̃ = 1,

−λ
(
1 + e`

)
for η̃ = 0.

(A.2)

Asymptotic Dynamics: In a work-shirk profile with cutoff `∗ À 0, dynamics of high reputations
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0 ¿ ` ≤ `∗ are approximately independent of ` with

dθ` =





(
λ

(
1 + e−`

)
+ µ2

B (θ − 1/2)−∑
y µy

)
dt almost constant drift,

+µBdW constant wiggle,
+

∑
y∈Y δy constant jumps,

(A.3)

while the boundary `∗ is approximately reflecting with d` ≈ −λe` ≈ −∞.

Reputational Dividend: D̂θ(`) is additive across the Brownian and Poisson component of
market learning:

D̂θ(`) =
µ2

B

2
V̂ ′

θ(`) +
∑

y

µy

(
V̂θ(` + δy)− V̂θ(`)

)
. (A.4)

A.2 Value of Reputation: Reprise

We first give the proof of Lemma 2:

Proof of Lemma 2. Fix θ, (x′, η̃′) and (x′′, η̃′′) ≥ (x′, η̃′), i.e. x′′ ≥ x′ and η̃′′ (x) ≥ η̃′ (x)
for all x. Write the best response η∗(η̃′) to the Markovian beliefs η̃′ in a non-Markovian way as
a function of the public history η(dZt) = η

(
x

(
dZt, η̃′, x′

))
. For any realization of the random

processes, denote by (x′′t , θ′′t , η′′t , dZ ′′t ) the trajectory of reputation, quality, effort and utility given
effort η(dZt), initial reputation x′′ and market beliefs η̃′′, and by (x′t, θ′t, η′t, dZ ′t) the corresponding
trajectory given η, x′, η̃′.

By construction, effort η′t = η′′t , quality θ′t = θ′′t , and utility dZ ′t = dZ ′′t will coincide for all times
t. Reputation on the other hand may start at different levels x′′ ≥ x′ and because the updating
equation (2.1) implies that xt+dt (xt, η̃t, dZt) is increasing in xt and η̃t, we get x′′t ≥ x′t.

Thus, by mimicking the effort of the firm with lower initial reputation x′, the firm with a
strictly higher initial reputation x′′ can secure itself a strictly higher value. By Lemma 1 there
must be a Markov strategy that is at least as good as this mimicking strategy. ¤

We now extend Lemma 2 (positive marginal value of reputation in equilibrium) in two direc-
tions. Lemma 4 extends the result to non-equilibrium work-shirk profiles and provides an explicit
formula for the marginal value of reputation (equation A.5). Lemma 5 provides a lower bound to
incremental value that is uniform across equilibrium effort profiles.

We first prove an auxiliary lemma that uses flexible accounting in representing value functions
as NPV of future profits. Future profits depend on current quality and effort via the reputational
evolution. Lemma 3 shows one way of controlling this evolution, by replacing the actual effort
function η by an arbitrary other, not necessarily Markovian, effort function η

(
Zt

)
.

28



Lemma 3 For any effort and belief function 〈η̂, η̃〉, and any (non-Markovian) alternative effort
function η

(
Zt

)
the firm’s value equals:

V̂θ(`0) = Eη,η̃

[∫ ∞

0
e−rt

((
x (`t)− cη

(
Zt

))
+

(
η̂(`t)− η

(
Zt

)) (
λ∆̂(`t)− c

))
dt

]

Proof. Fix θ0, `0 and η̃. Consider first a “one shot deviation” from η̂, i.e. an alternative effort
function η that differs from η̂ only for t ∈ [0, dt], say η = 1 while η̂ = 0. A firm that exerts effort
according to η̂ but whose quality θdt is governed by η gains λ∆̂(`0)dt. Thus, the firm’s actual value
is the value under the more favorable process η, minus the fair value of the quality subsidy:

V̂θ(`0) = Eη,η̃

[∫ ∞

0
e−rt (x (`t)− cη̂(`t)) dt

]
− λ∆̂(`0)dt.

For “multi-period” deviations, we accumulate a term
(
η̂(`t)− η

(
Zt

))
λ∆̂(`t)dt whenever η̂(`t) 6=

η
(
Zt

)
. Thus, in general we have

V̂θ(`0) = Eη,η̃

[∫ ∞

0
e−rt

(
(x (`t)− cη̂(`t)) +

(
η̂(`t)− η

(
Zt

))
λ∆̂(`t)

)
dt

]

= Eη,η̃

[∫ ∞

0
e−rt

((
x (`t)− cη

(
Zt

))
+

(
η̂(`t)− η

(
Zt

)) (
λ∆̂(`t)− c

))
dt

]

as required. ¤

To state and prove the next lemma, we write the firm’s reputation at time t as a function of
its initial reputation `0, realized utilities Zt and the Markovian beliefs η̃: `t = `t

(
`0, Z

t, η̃
)
.

Lemma 4 Fix a work-shirk profile with cutoff `∗:

(a) Reputational increments are decreasing:

∂`t

∂`
(`, Zt, η̃) < 1.

(b) Value V̂θ (`) is continuous in reputation `.

(c) If the cutoff `∗ weakly prefers to shirk, i.e. λ∆̂`∗ (`∗) ≤ c, the marginal value of reputation
is strictly positive:

V̂ ′
θ (`) > 0 for all ` ∈ R.

(d) If the cutoff `∗ is indifferent, i.e. λ∆̂`∗ (`∗) = c, the marginal value of reputation equals:

V̂ ′
θ (`) =

∫ ∞

t=0
e−rtEθ0=θ

[
e`t

(1 + e`t)2
∂`t

∂`
(`, Zt, η̃)

]
dt > 0 for all ` ∈ R. (A.5)
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(e) The value of quality at `∗ is strictly positive:

∆̂`∗ (`∗) > 0.

Proof. For part (a), consider the reputational trajectories `t, `
′
t originating at ` < `′. Equations

(A.1) and (A.2) imply that `′t − `t is decreasing in t for all work-shirk profiles: Market learning
(A.1) shifts `t and `′t by the same amount log (Pr(dZt|H)/ Pr(dZt|L)), while equilibrium beliefs
shrink `′t − `t at rate λ

(
1 + e−`′t

)
− λ

(
1 + e−`t

) ≈ −λe−`t

(
1− e−(`′t−`t)

)
< 0 in the work-region

and similarly in the shirk-region.
Turning to points (b) to (e), let η

(
Zt

)
= η̂(`t(`′, Zt, η̃)) be the effort strategy of a firm with

initial reputation `, expressed in a non-Markovian way directly as a function of market signals Zt.
We decompose the incremental value of reputation as follows:

V̂θ,η̂

(
`′

)− V̂θ,η̂ (`) = [V̂θ,η̂(` + d`)− V̂θ,η(`)] + [V̂θ,η(`)− V̂θ,η̂(`)] (A.6)

The first term in (A.6) is the reputational advantage of starting with reputation `′ > `, when the
firm starting at reputation ` mimics the effort of the firm starting at `′. It is determined by the
derivative of future reputation with respect to current reputation:

V̂θ,η̂(`′)− V̂θ,η(`) =
∫

e−rtEθ0=θ,η

[(
x

(
`t(`′, Zt, η̃)

)− x
(
`t

(
`, Zt, η̃

)))]
dt

This term is always positive. Taking the limit as `′ → ` and applying the chain rule gives rise to
equation A.5.

The second term in (*) is the net value of shirking whenever η
(
Zt

)
= 0 and η̂(`t) = 1. We will

now show that it is of order o (d`).

V̂θ,η(`)− V̂θ,η̂(`)

= E`0=`,θ0=θ,η,η̃

[∫ ∞

0
e−rt

(
η̂(`t)− η

(
Zt

)) (
c− λ∆̂(`t)

)
dt

]

= Eθ0=θ,η

[∫ ∞

0
e−rt

(
η̂(`t(`, Zt, η̃))− η̂(`t(`′, Zt, η̃))

) (
c− λ∆̂(`t(`, Zt, η̃))

)
dt

]

= Eθ0=θ,η

[∫

`t(`,Zt,η̃)<`∗<`t(`′,Zt,η̃)
e−rt

(
c− λ∆̂(`t(`, Zt, η̃))

)
dt

]
(A.7)

≤ max
˜̀∈[`∗;`∗+(`′−`)]

{∣∣∣c− λ∆̂
(˜̀)

∣∣∣
} (

`′ − `
)
/2λ

The first equality applies Lemma 3. The second applies the definition of η
(
Zt

)
. The third uses

that the effort functions disagree if and only if the trajectories are on opposite sides of the cutoff,
i.e. `t(`, Zt, η̃) < `∗ < `t(` + d`, Zt, η̃). The final inequality uses that by (a), `t(` + d`, Zt, η̃) −
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`t(`, Zt, η̃) is decreasing in t and by (A.2) it is decreasing at rate −λ
(
2 + e−`t(`) + e`t(`′)

)
whenever

`t(`, Zt, η̃) < `∗ < `t(`′, Zt, η̃). This proves (b).
For (c) the integrand is positive when λ∆̂ (`∗) ≤ c: Reducing effort on the margin is profitable

if cost exceeds benefit.
For (d), when λ∆̂ (`∗) = c and ∆̂ is continuous, the upper bound of (A.5) is of order o (`′ − `)

because now max`∈[`∗,`∗+(`′−`)]

{∣∣∣c− λ∆̂ (`)
∣∣∣
}

is of order o (1).

To prove (e) assume to the contrary that the cutoff is non-positive ∆̂ (`∗) ≤ 0. A fortiori
∆̂ (`∗) ≤ c and by part (c) the marginal value of reputation is positive V̂ ′

H (`) > 0 and so is the
reputational dividend D̂H (`). But then, also the value of quality would be positive ∆̂ (`∗) > 0. ¤

Lemma 4(d) has the flavor of the envelope theorem: when the firm’s first-order condition holds
at the cutoff, then a change in initial reputation only affects its payoff through the reputational
evolution. Intuitively, a firm with a lower initial reputation works more, leading to a gain of ∆̂(`)
when a technology shock hits. This gain is exactly offset by the extra cost born by the firm. The
marginal value of reputation V̂ ′

θ (`) is thus determined solely by the “durability” of the reputational
increment `′t − `t.

In important cases we can truncate the integral (A.5) at time T when the reputational evolution
hits `∗. When `t < `∗ < `′t the increment `′t− `t decreases at rate −λ

(
2 + e−`t + e`′t

)
. If the cutoff

`∗ is “reflecting” because either `∗ ≈ ±∞ or λ À 0, the reputational increment `′t−`t approximately
disappears at T and we can restrict the integral in (A.5) to t ≤ T .

We now come to the second extension, which we will use to prove essential uniqueness of
equilibrium (Lemma 10).

Lemma 5 There exists a function α (`, `′) > 0, that is a lower bound of the incremental value of
reputation α (`, `′) < V̂θ (`′)− V̂θ (`) for ` < `′, uniformly across cost c and equilibrium effort η̂.

Proof. Let `′ > `. In equilibrium the firm with the higher reputation `′ cannot benefit by imitating
the effort of the firm with the lower reputation via η

(
Zt

)
= η̂(`t(`, Zt, η̃)). Therefore,

V̂θ

(
`′

)− V̂θ (`) ≥
∫

e−rtEη

[
x

(
`t

(
`′, Zt, η̃

))− x
(
`t

(
`, Zt, η̃

))]
dt

≥ k1
e`

(1 + e`)2

∫
e−rtEη

[
`t

(
`′, Zt, η̃

)− `t

(
`, Zt, η̃

)]
dt

≥ k1
e`

(1 + e`)2

∫
e−rt

[
`′ − `− λ

(
2 + e`′t + e−`t

)
t
]
+

dt

≥ k2
e`

(1 + e`)2
(`′ − `)2

2λ (2 + e` + e−`)
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The first line bounds V̂θ (`′) below by the value when exerting effort η. The second line essentially
applies the chain rule to factor out dx/d` = e`/

(
1 + e`

)2, and the constant k1 accounts for the
possibility that dx/d` needs to be evaluated at `t instead of `, and possibly dx (`t) /d` < dx (`) /d`.
The second line takes the most pessimistic stance on the evolution of `′t − `t by assuming that
η (`t) = 1 and η (`′t) = 0 in which case d (`′t − `t) /dt = −λ(2+e`′t +e−`t)t. The third line evaluates
the integral over an essentially linear function, and k2 accounts for e−rt < 1 and the possibility
that λ(2 + e`′t + e−`t) < λ(2 + e` + e−`). ¤

While the bounds in the proof are far from being tight the argument actually shows, conversely,
that V̂ ′

θ (`∗) = 0 at a work-shirk cutoff `∗, when market learning has no Brownian component, i.e.
µB = 0.

B Proof of Theorem 2

We prove Theorem 2 in `-space, introduced in Appendix A.1. We show that for sufficiently small
c there exists a cutoff `∗ such that:

(a) Cutoff is indifferent: λ∆̂`∗(`∗) = c (Section B.1, Lemma 6),

(b) Low reputations work: λ∆̂`∗(`) > c for ` < `∗ (Section B.2, Lemma 8),

(c) High reputations shirk: λ∆̂`∗(`) < c for ` > `∗ (Section B.3, Lemma 9).

Section B.4 shows the essential uniqueness of the work-shirk equilibrium.

B.1 Indifference of Cutoff

We now show that for small costs there exists a high cutoff `∗ that satisfies the indifference
condition. Since ∆̂ and V̂ depend on c, we subscript them with c where useful.

Lemma 6 For every ` ∈ R there exists c (`) > 0 such that for all c∗ < c there exists `∗ > ` such
that c∗ = λ∆̂`∗,c∗ (`∗).

Proof. Fix ` ∈ R and consider ∆̂`,c(`) as a function of c ∈ [0, λ/(r + λ)]. By Lemma 4(e) we have
∆̂`,c(`) > 0 for all c. Since ∆̂`,c(`) is continuous in c, it takes on its minimum ∆̂`,c′(`) > 0 at some
c′.

Let c (`) = λ∆̂`,c′(`) and fix c∗ ∈ (0, c (`)). Using the definitions of c′ and c∗,

λ∆̂`,c∗(`) ≥ λ∆̂`,c′(`) > c∗,
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so the firm prefers to work. On the other hand, at ` = ∞:

c∗ > λ∆̂∞,c∗(∞) = 0,

so the firm prefers to shirk. By continuity of ∆̂`′,c∗(`′) as a function of `′ ∈ [`;∞], there exists
`∗ ∈ (`,∞) with c∗ = λ∆̂`∗,c∗(`∗). ¤

The daunting array of quantifiers in the statement of this lemma guarantees that we can assume
`∗ with c∗ = λ∆̂`∗,c∗ (`∗) as large as necessary in the upcoming arguments.

B.2 Low Reputations Work

We first use equation (A.5) to prove an auxiliary result about the marginal value of reputation:

Lemma 7 Fix any α > 0, M > 0 and `V sufficiently large. Suppose `∗ > `V is sufficiently high
and c = λ∆̂`∗,c(`∗).

(a) V̂ ′
θ (`) is decreasing on [`V ; `∗].

(b) V̂ ′
θ (`) “diminishes” to the right of `∗ :

V̂ ′
θ(`∗ − γ) > MV̂ ′

θ (`∗ + δ) for all γ ∈ [α; `∗ − `V ] and all β > 0.

Intuitively, incremental reputation above `∗ is less “durable” because it disappears when `t

hits `∗ and reputational updating d`
dt decelerates from −λ

(
1 + e`

) ≈ −∞ to λ
(
1 + e−`

) ≈ λ.
Formally, for ` < `∗ let T (`) = min {t|`t ≥ `∗, `0 = `} be the cutoff time: This is the first time
that the reputational dynamics starting at ` reach, or exceed, the cutoff `∗. For ` > `∗ let
T (`) = min {t|`t ≤ `∗, `0 = `}.

Proof. (a): For high enough `∗ and `0 ∈ (`V ; `∗), the reputational dynamics `t are approximately
governed by a Brownian motion with constant drift and jumps (A.3). As long as `t < `∗ we have
∂`t
∂`0

≈ 1. When the trajectory hits `∗ at time T (`0), then ∂`t
∂`0

≈ 0 for t > T (`0) since `∗ is reflecting.
Using equation (A.5)

V̂ ′
θ(`0) =

∫ ∞

0
e−rtE`0

[
e`t

(1 + e`t)2
∂`t

∂`0

]
dt ≈ E`0

[∫ T (`0)

0
e−rt e`t

(1 + e`t)2
∂`t

∂`0
dt

]
. (B.1)

Since e`t/(1 + e`t)2 is strictly decreasing for `t > 0, and T (`0) is decreasing in `0, equation (B.1)
is strictly decreasing in ` on [`V ; `∗].
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(b): Let γ ∈ [α; `∗ − `V ]. When `∗ is sufficiently high, the reputational dynamics are given by
(A.3). The drift is finite, and the expected cutoff time E [T (`∗ − γ)] is bounded below independently
of `∗. Thus, E

[
d`t
d`0

(`′)
]

for `′ ∈ [`V ; `∗ − α] is bounded away from 0 as `∗ →∞.
Next, consider `∗ + β. The expected time until cutoff E [T (`∗ + β)] converges to 0 as `∗ →∞,

uniformly in δ. This is easier to see for the posterior xt than for the log-likelihood-ratio `, as
E

[
dθx
dt

]
= −λx is bounded away from 0 while 1 − x∗ converges to 0. Thus, E

[
d`t
d`0

(`∗ + β)
]

for
β > 0 converges to 0 as `∗ →∞.

For large values of `∗ we can ignore in (A.5) all terms with t > T (`0). Since e`/(1 + e`)2 is de-
creasing in ` > 0 we get bounds e`t(`∗−γ)/(1+e`t(`∗−γ))2 ≥ e`∗/(1+e`∗)2 ≥ e`t(`∗+β)/

(
1 + e`t(`∗+β)

)2

and equation (A.5) implies

V̂ ′
θ(`∗ − γ)

V̂ ′
θ(`∗ + β)

≥
e`∗

(1+e`∗ )2E
[∫ T (`∗−γ)

0 e−rt d`t
d`0

(`∗ − γ)dt
]

e`∗

(1+e`∗ )2E
[∫ T (`∗+β)

0 e−rt d`t
d`0

(`∗ + β)dt
] ≥ const.

E [T (`∗ − γ)]
E [T (`∗ + β)]

Therefore, V̂ ′
θ(`∗−γ)/V̂ ′

θ(`∗+β) diverges as `∗ →∞, uniformly over all γ ∈ [α; `∗− `V ] and β > 0.
¤

Lemma 8 shows that firms with low reputations work. For reputations ` ∈ [`∆, `∗] for some
`∆ defined below, the optimality of working follows directly by showing that ∆̂(`) is decreasing on
[`∆; `∗]. For reputations ` < `∆ the result follows from the closeness of ∆̂`∗(·) and ∆̂∞(·).

Lemma 8 Assume `∗ is large, costs c are small and λ∆̂`∗(`∗) = c. Then λ∆̂`∗(`) > c for all
` < `∗.

Proof. Claim 1. For any α > 0, there exists `D sufficiently large such that D̂H(·) is strictly
decreasing on [`D; `∗ − α] for any `∗ > `D.

Proof. By (A.4) D̂H(·) is composed of V̂ ′
H -terms and jump terms. The former are taken care

off by Lemma 7(a). For the jump terms, pick α,`V and M = 1 as in Lemma 7, and choose
`D = `V + maxy {−δy}. We need to show D̂H (`) > D̂H (`′) for all ` < `′ in [`D; `∗ − α] and all
y ∈ Y .

First consider good news events y ∈ Y + with δy, µy > 0 and assume wlog that ` + δy > `′.
Then

D̂H (`)− D̂H

(
`′

)
= µy

(∫ `+δy

`
V̂ ′

H

(˜̀) d˜̀−
∫ `′+δy

`′
V̂ ′

H

(˜̀) d˜̀
)

= µy

∫ `′

`

(
V̂ ′

H

(˜̀)− V̂ ′
H

(˜̀+ δy

))
d˜̀

> 0
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where the inequality follows pointwise for every ˜̀ from Lemma 7(a) if ˜̀+δy < `∗ and from Lemma
7(b) if ˜̀+ δy > `∗.

Now consider bad news events y ∈ Y − with δy, µy < 0. Then

D̂H (`)− D̂H

(
`′

)
= −µy

(∫ `

`+δy

V̂ ′
H

(˜̀) d˜̀−
∫ `′

`′+δy

V̂ ′
H

(˜̀) d˜̀
)

= −µy

∫ `

`+δy

(
V̂ ′

H

(˜̀)− V̂ ′
H

(˜̀+
(
`′ − `

)))
d˜̀

> 0

where the inequality follows pointwise for every ˜̀by Lemma 7(a) because ` + δy ≥ `V .

Claim 2. For any ε > 0, there exists α > 0, `D arbitrarily high, and `∆ > `D sufficiently high
such that for any `∗ > `∆ and `′ ∈ (`∆; `∗), we have

(r + λ)
∫

e−(r+λ)t Pr(`′t ∈ [`D; `∗ − α])dt ≥ 1− ε.

Proof. This is because the reputational dynamics d`t in [`, `∗] are approximately governed by
a Brownian motion with constant drift and jumps (A.3) reflected at `∗.

Claim 3. There exists `∆ sufficiently large such that ∆̂(·) is strictly decreasing on [`∆; `∗] for
any `∗ > `∆.

Proof. Pick `D as in Claim 1 and `∆ > `D as in Claim 2. Claim 1 states that D̂H(·) is strictly
decreasing on [`D; `∗−α] and claim 2 states that `t ∈ [`D; `∗−α] with probability close to 1. The
claim follows because the reputational evolution `t is monotone, and the value of quality ∆̂(`) is
the integral over the dividends D̂H(`t).

Claim 4. Assume that λ∆̂`∗(`∗) = c and fix any `. Then ∆̂`∗(·) converges to ∆̂∞ (·) uniformly
on [−∞, `] as `∗ →∞.

Proof. As `∗ → ∞, ∆̂`∗(`) converges pointwise to ∆̂∞(`) for all `. Let `∗ À `. For any ` < `,
equations (A.5) and (A.4) imply that, V̂ ′

θ,`∗(`) and D̂θ,`∗(`), and thus ∆̂`∗(`), depend on `∗ only
on trajectories `t that reach `∗. The future discounted probability of these trajectories converges
to 0 as `∗ →∞, so the convergence is uniform for ` < `.

Proof of Lemma. Choose 0 ¿ ` ¿ `∗. Claim 3 implies that ∆̂`∗(`) is strictly decreasing in `

for ` ∈ [`, `∗). Since λ∆̂`∗(`∗) = c, we have

λ∆̂`∗(`) > c for ` ∈ [`, `∗).
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The function ∆̂∞ (·) is bounded away from 0 on [−∞, `]. Hence Claim 4 implies that ∆̂`∗(`) is
bounded away from zero. For small costs c, we get

λ∆̂`∗(`) > c for ` ∈ [−∞, `],

as required. ¤

B.3 High Reputations Shirk

Lemma 9 shows that firms with high reputations shirk.

Lemma 9 Suppose `∗ is large and λ∆̂(`∗) = c. Then λ∆̂(`′) < c for all `′ > `∗.

Proof. The idea of the proof is to develop ∆̂(`′) into dividends D̂ (`′t) and a continuation value
e−(r+λ)T ∆̂ (`′T ) for a “small” stopping time T , and show that the dividends D̂ (`′t) are small com-
pared to dividends of ∆̂(`∗), while the continuation value e−(r+λ)T ∆̂ (`′T ) is no bigger than the
respective term of ∆̂(`∗). There are two possible comparisons:

(a) Develop ∆̂(`∗) until T and compare dividends and appreciation of continuation values sepa-
rately, i.e. show D̂ (`′t) < D̂ (`∗t ) and ∆̂(`′T )− ∆̂(`′) ≤ ∆̂(`∗T )− ∆̂(`∗).

(b) Let T = T (`′) be the time when `′t first hits `∗ (so that ∆̂ (`′T ) = ∆̂(`∗)) and compare the
dividend D̂ (`′t) to the annuity value of ∆̂(`∗).

Below we show D̂ (`′t) < D̂ (`∗t ) for t ≈ 0 and use comparison (a), if there is some Poisson
event y ∈ Y − signalling bad news, i.e. µy = µH,y − µL,y < 0. On the other hand we can show
D̂ (`′t) < (r + λ) ∆̂(`∗) and use comparison (b), if there is no such bad news Poisson event y.

Case (a): Assume that there is a bad news Poisson event y ∈ Y , with µy < 0. Assume by
contradiction, that `′ > `∗ maximizes ∆̂(`) on [`∗,∞]. We develop ∆̂(`′) and ∆̂(`∗) until T and
subtract e−(r+λ)T ∆̂(`′) to express the rental value of ∆̂ (`′) as sum of dividends and appreciation:

(r + λ) T ∆̂(`′) =
∫ T

0
e−(r+λ)tEθt=L

[
D̂H

(
`′t

)]
dt +

(
∆̂

(
`′T

)− ∆̂(`′)
)

,

(r + λ) T ∆̂(`∗) =
∫ T

0
e−(r+λ)tEθt=L

[
D̂H (`∗t )

]
dt +

(
∆̂ (`∗T )− ∆̂(`∗)

)
,

Let T > 0 be sufficiently small18 with `′t > `∗ for t ≤ T and `∗T < `∗. Then the appreciation
∆̂ (`∗T )− ∆̂(`∗) is positive by claim 2 in the proof of Lemma 8, while ∆̂ (`′T )− ∆̂(`′) is negative by
choice of `′.

18Technically, T is a stopping time, but for notational simplicity we treat it as a real number here.
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We now argue that D̂H (`∗t ) > D̂H (`′t). We first compare the jump terms for bad news events
y ∈ Y − with µy, δy < 0. Because of the reflecting dynamics we can assume that `∗t + δy < `′t + δy <

`∗t < `∗ < `′t. Just like in the proof of claim 1 in Lemma 8 we get

µy

(
V̂H(`∗t + δy)− V̂H(`∗t )

)
− µy

(
V̂H(`′t + δy)− V̂H(`′t)

)
= −µy

∫ `′t

`∗t

(
V̂ ′

H (` + δy)− V̂ ′
H (`)

)
d`.

(*)
The RHS is strictly positive because V̂ ′

H (` + δy) exceeds V̂ ′
H (`) by Lemma 7(a) when ` < `∗

and by Lemma 7(b) when ` > `∗.
The (*) term dominates the good news and Brownian component of D̂H (`′t), i.e. µy

∫ `′t+δy

`′t
V̂ ′

H

(˜̀) d˜̀
for y ∈ Y + and V̂ ′

H(`′t)µ2
B/2. This is because V̂ ′

H (`∗t + δy) /V̂ ′
H (`′t) diverges as `∗ → ∞ (Lemma

7(b)).

Case (b): Assume that there is no bad news Poisson event, i.e. µy ≥ 0 for all y ∈ Y . We
develop ∆̂(`′) until cutoff time T (`′). As there are no downward jumps in `′t, we have `′t > `∗ for
t < T .

∆̂(`′)− ∆̂(`∗) = E

[∫ T (`′)

0
e−(r+λ)tD̂H

(
`′t

)
dt + e−(r+λ)T (`′)∆̂ (`∗)

]
− ∆̂(`∗)

= E

[∫ T (`′)

0

(
e−(r+λ)tD̂H

(
`′t

)− (r + λ) ∆̂ (`∗)
)

dt

]
(B.2)

To show that the integrand is negative, we develop (r + λ) ∆̂ (`∗) into future reputational
dividends D̂H (`∗t ), that will on average exceed D̂H (`′t):

(r + λ) ∆̂ (`∗) = (r + λ)
∫ ∞

0
e−(r+λ)tE

[
D̂H (`∗t )

]
dt

≥ (r + λ)
∫ ∞

0
e−(r+λ)t

(
Pr (`∗t ∈ [`D; `∗ − α])

∗ inf`∈[`D;`∗−α]

{
D̂H (`)

}
)

dt

≥ (r + λ)
∫ ∞

0
e−(r+λ)t

(
1− ε

∗M sup`>`∗
{

D̂H (`)
}

)
dt

≥ sup
t≤T (`′)

{
D̂H

(
`′t

)}

The third line uses that for α > 0 sufficiently small, and `∗ sufficiently large we get Pr (`∗t ∈ [`D; `∗ − α]) =
1−ε by claim 3 in the proof of Lemma 11, while by choosing `∗ large enough, we get inf`∈[`D;`∗−α]

{
D̂H (`)

}
>

M sup`>`∗
{

D̂H (`)
}

, for any M . ¤
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B.4 Essential Uniqueness

We prove Theorem 2(c) in two steps. Lemma 10 shows that for low costs, intermediate reputations
prefer to work in any tentative equilibrium effort profile. Lemma 11 shows that if market learning
ensures hope and intermediate reputations work, so do low reputations: a firm with reputation
just below a tentative shirk-work cutoff hopes to achieve an intermediate reputation in the future
and thus prefers to work.

Lemma 10 There exists a function β (`) > 0, such that the value of quality is bounded below
β (`) < ∆̂ (`), uniformly across costs c and equilibrium effort profiles η̂.

Proof. If the Poisson component of market learning is non-trivial, i.e. there is y ∈ Y with δy 6= 0,
then the reputational dividend is uniformly bounded below by Lemma 5, and so is ∆̂ (`).

If market learning is pure Brownian and the value of quality equals ∆̂ (`) =
∫

e−(r+λ)tE
[
µ2

BV̂ ′
θ (`t) /2

]
dt,

this argument still holds. While Lemma 5 does not prove V̂ ′
θ (`t) > 0 for every `t, the volatility of

the Brownian motion distributes `t over some interval [`; `′] and the expectation E
[

µ2
B
2 V̂ ′

θ (`t)
]

is

then bounded below by k
(
V̂θ (`′)− V̂θ (`)

)
. ¤

Lemma 11 Fix ` > 0. If market learning ensures hope and costs are sufficiently low, then a firm
with reputation below ` works in equilibrium.

Proof. From Lemma 10 we know that the firm prefers to work for ` ∈ [−`; `
]
. By contradiction,

assume that there is equilibrium shirking in
[−∞;−`

]
and let the highest shirk-work cutoff be

`∗ < −`. We develop ∆̂(`∗ − ε) until the first time T when `t = −`:

∆̂(`∗ − ε) ≥ E[e−(r+λ)T ]∆̂(`T ). (B.3)

As ∆̂(`T ) = ∆̂(−`) is bounded below by β
(−`

)
we just need to show that E[e−(r+λ)T ] > 0,

independently of effort η̂ and costs c: By the assumption that market learning ensures hope, and
by choosing −`, and thus `∗, low enough, the firm’s initial reputation `∗− ε will rise above `∗ with
positive probability. Once `t > `∗, equilibrium beliefs η̃ = 1 will push reputation `t′ to −` in finite
time with positive probability.

Thus the RHS of (B.3) is strictly positive, and by choosing c small enough we get λ∆̂(`∗−ε) > c,
and the desired contradiction. ¤
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C Quality Choice

Proof of Lemma 3. We will show that the dividend V̂ ′
θ (`) approaches 0 uniformly over all

reputations and all work-shirk effort profiles. That is, limλ→∞ sup`∗∈[−∞,∞],`∈R V̂ ′
θ,`∗ (`) = 0, where

`∗ = ±∞ captures the full shirk (resp. work) profile.
To do so, fix ε and let `∗∗ > 0 solve e`∗∗/

(
1 + e`∗∗)2 = ε. First, consider a cutoff `∗ in the tail,

i.e. |`∗| > `∗∗.

lim
λ→∞

sup
|`∗|>`∗∗,`0∈R

V̂ ′
θ,`∗ (`0) = lim

λ→∞
sup

|`∗|>`∗∗,`0
E

[∫
e−rt e`t

(1 + e`t)2
∂`t

∂`0
dt

]

≤ lim
λ→∞

sup
|`∗|>`∗∗,`0

E

[∫
e−rt

(
Pr(|`t| < `∗∗)

4
+

Pr(|`t| ≥ `∗∗)e`∗∗

(1 + e`∗∗)2

)
dt

]

≤ ε.

The first line applies Lemma 4 (d). The second line uses e`/(1 + e`)2 ≤ 1/4 and Lemma 4 (a).
The first term under the integral vanishes because limλ→∞ sup`0 Pr (|`t| < `∗∗) = 0 for all t > 0.
The second term is bounded by ε.

Next, suppose that |`∗| ≤ `∗∗. Suppose the process `t hits `∗ at time T . Using equation (A.5)
we get:

lim
λ→∞

sup
|`∗|<`∗∗,`0∈R

V̂ ′
θ (`0) = lim

λ→∞
sup

|`∗|<`∗∗,`0
E

[∫
e−rt e`t

(1 + e`t)2
∂`t

∂`0
dt

]

≤ lim
λ→∞

sup
|`∗|<`∗∗,`0

1
4
E

[∫ T

t=0
e−rtdt +

∫ ∞

t=T
e−rt ∂`t

∂`0
dt

]

= 0.

The first two lines are as above. The first integral vanishes because sup`0,|`∗|<`∗∗ E [T ] → 0 as
λ →∞. The second integral vanishes because reputational increments disappear at an absorbing
boundary, i.e. E[∂`t/∂`0(`∗)|t ≥ T ] → 0 as λ →∞.

Thus the marginal value of reputation V̂ ′ (`) uniformly approaches 0 as λ → ∞. The reputa-
tional dividend in the general Poisson & Brownian case is given by

D̂θ (`) =
∑

y

(µH,y − µL,y)
(

V̂θ

(
` + log

µH,y

µL,y

)
− V̂θ (`)

)
+ µ2

BV̂ ′
θ (`) .

¤
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D Perfect Poisson Learning

In this appendix we solve the perfect learning specifications of Section 5 explicitly by calculating
value functions in closed form. This approach highlights the analytic tractability of these learning
specificications and delivers a more explicit understanding of value functions and the value of
quality. Some of the derived expressions are also used in the proofs of Section 5.

We assume throughout that λ ≥ µ, so that the drift of the firm’s reputation is determined by
market beliefs.

D.1 Perfect Good News

Shirk-region, above the cutoff x ≥ x∗ : Suppose x0 = 1 and let xt solve the dynamics (5.1),
absent a breakthrough. xt is strictly decreasing until it stops at xt = x∗. The firm weakly prefers
to shirk and we assume it always does so. With a low quality product, reputation is deterministic
and firm value is given by:

VL(xs) =
∫ ∞

t=0
e−rtxt+sdt

With a high quality product dynamics are more complicated, because the reputation jumps to 1
at a µ-shock and quality disappears at a λ-shock:

VH(xs) =
∫ ∞

t=0
e−(r+λ+µ)t[xt+s + λVL(xt+s) + µVH(1)]dt

=
∫ ∞

t=0
xt+se

−rt

[
λ

λ + µ
+

µ

λ + µ
e−(µ+λ)t

]
dt +

µ

r + λ + µ
VH(1), (D.1)

where we rewrote the λVL(xt+s)-term by changing the order of integration:

∫ ∞

t=0
e−(r+λ+µ)tλVL(xt+s)dt =

λ

λ + µ

∫ ∞

t=0
xt+se

−rt[1− e−(µ+λ)t]dt.

We evaluate (D.1) at xs = 1, and rearrange

VH(1) =
r + λ + µ

r + λ

∫ ∞

t=0
xte

−rt

[
λ

λ + µ
+

µ

λ + µ
e−(µ+λ)t

]
dt.

The value of quality is the difference of the value functions (D.1) and (??)19

∆(xs) =
µ

r + λ

∫ ∞

t=0
xte

−rt

[
λ

λ + µ
+

µ

λ + µ
e−(µ+λ)t

]
dt− µ

λ + µ

∫ ∞

t=0
xt+se

−rt
[
1− e−(µ+λ)t

]
dt.

19Alternatively, we could compute the reputational dividend from the value functions and plug it into the dividend
formula for the value of quality (5.2). Explicit calculations show that both approaches lead to the same result.
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When xs = x∗, we get

∆(x∗) =
µ

r + λ

∫ ∞

t=0
(xt − x∗)e−rt

[
λ

λ + µ
+

µ

λ + µ
e−(µ+λ)t

]
dt.

Quality at x∗ is valuable because of the possibility that reputation jumps from x∗ to x0 = 1. The
terms in brackets capture the possibilities of λ and µ shocks while xt descends from 1 to x∗.

Work-region, below the cutoff x ≤ x∗ : Next, suppose x̃0 = 0 and let x̃t solve the dynamics
(5.1), absent a breakthrough. x̃t is strictly increasing until it stops at x̃t = x∗. The firm weakly
prefers to work and we assume it always does so. With a high quality product, the firm’s reputation
drifts up until x̃t = x∗, or a µ-shock hits:

VH(x̃s) =
∫ ∞

t=0
e−(r+µ)t[(x̃t+s − c) + µVH(1)]dt.

With a low quality product, the firm’s reputation drifts up until x̃t = x∗, or a λ-shock hits:

VL(x̃s) =
∫ ∞

t=0
e−(r+λ)t[(x̃t+s − c) + λVH(x̃t+s)]dt

=
∫ ∞

t=0
(x̃t+s − c)

[
λ

λ− µ
e−(r+µ)t − µ

λ− µ
e−(r+λ)t

]
dt +

λ

r + λ

µ

r + µ
VH(1), (D.2)

where we rewrote the λVH(x̃t+s)-term by changing the order of integration:

∫ ∞

t=0
e−(r+λ)tλVH(x̃t+s)dt =

λ

λ− µ

∫ ∞

t=0
(x̃t+s − c)e−rt(e−µt − e−λt)dt +

λ

r + λ

µ

r + µ
VH(1).

The value of quality is the difference of the value functions (??) and (D.2):

∆(x̃s) =
r

r + λ

µ

r + µ
VH(1)− µ

λ− µ

∫ ∞

t=0
(x̃t+s − c)e−rt(e−µt − e−λt)dt

The first term captures the value of the high quality firm’s breakthroughs while the second term
captures the opportunity cost.

D.2 Perfect Bad News

Work-region, above the cutoff x ≥ x∗ : First assume that x∗ > 0, so that VL(0) = 0. Consider
starting at x0, just above x∗, and let xt solve the dynamics (5.3), absent a breakdown. xt is strictly
increasing and converges to 1. With a high quality product, reputation is deterministic and firm
value equals:

VH(xs) =
∫ ∞

t=0
e−rt(xt+s − c)] dt.
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With a low quality product dynamics are more complicated, because the reputation jumps to 0 at
a µ-shock and quality improves at a λ-shock:

VL(xs) =
∫ ∞

t=0
e−(r+λ+µ)t[(xt+s − c) + λVH(xt+s) + µ · VL(0)] dt. (D.3)

=
∫ ∞

t=0
e−rt(xt+s − c)

[
λ

λ + µ
+

µ

λ + µ
e−(λ+µ)t

]
dt, (D.4)

where we rewrote the λVH(xt+s)-term by changing the order of integration:

∫ ∞

t=0
e−(r+λ+µ)tλVH(xt+s) dt =

λ

µ + λ

∫ ∞

t=0
e−rt(xt+s − c)[1− e−(λ+µ)t] dt.

The value of quality is the difference of the value functions (??) and (D.4),

∆(xs) =
µ

λ + µ

∫ ∞

t=0
e−rt(xt+s − c)(1− e−(λ+µ)t) dt.

The cost of low quality is the loss of reputation when the µ-shock hits before the λ-shock.

Shirk-region, below the cutoff x ≥ x∗ : Next, consider starting at x̃0 just below x∗, and and
let x̃t solve the dynamics (5.3), absent a breakdown. x̃t is strictly decreasing and converges to 0.
With a low quality product, reputation is deterministic and firm value equals:

VL(x̃s) =
∫ ∞

t=0
e−(r+µ)tx̃t+s dt.

With a high quality product, quality disappears at a λ-shock and the firm’s value function is

VH(x̃s) =
∫ ∞

t=0
e−(r+λ)t[x̃t+s + λVL(x̃t+s)] dt.

=
∫ ∞

t=0
x̃t+s

[
λ

λ− µ
e−(r+µ)t − µ

λ− µ
e−(r+λ)t

]
dt, (D.5)

where we rewrote the λVL(x̃t+s)-term by changing the order of integration:

∫ ∞

t=0
λVL(x̃t+s) =

λ

λ− µ

∫ ∞

t=0
e−rtx̃t+s(e−µt − e−λt)dt.

The value of quality is the difference of the value functions (D.5) and (??):

∆(xs) =
µ

λ− µ

∫ ∞

t=0
e−rtxt+s(e−µt − e−λt) ds.

Again, the cost of low quality is the loss of reputation when the µ-shock hits before the λ-shock.
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Full work, i.e. η (x) = 1 for all x : Finally, suppose x∗ = 0 so the firm always works. Consider
x0 = 0 and let xt denote the dynamics (5.3), absent a breakdown. The value function for the high
quality firm is given by (??). The value function of the low quality firm (D.4) becomes

VL(xs) =
∫ ∞

t=0
e−rt(xt+s − c)

[
λ

λ + µ
+

µ

λ + µ
e−(λ+µ)t

]
dt +

µ

r + λ + µ
VL(0).

Setting s = 0, we obtain

VL(0) =
r + λ + µ

r + λ

∫ ∞

t=0
e−rt(xt+s − c)

[
λ

λ + µ
+

µ

λ + µ
e−(λ+µ)t

]
dt.

The value of quality is the difference of (??) and (??):

∆(xs) =
µ

λ + µ

∫ ∞

t=0
xt+se

−rt
[
1− e−(λ+µ)t

]
dt− µ

r + λ

∫ ∞

t=0
xte

−rt

[
λ

λ + µ
+

µ

λ + µ
e−(µ+λ)t

]
dt.

Cost terms cancel since both high- and low quality firms always work. This equation parallels
equation (??) in the good-news case. When s = 0, this becomes

∆(0) =
µ

λ + µ

∫ ∞

t=0
e−rtxt

[
r

r + λ
− r + µ + λ

r + λ
e−(λ+µ)t

]
dt.

The value of quality realizes when a µ-shock hits before the first λ-shock.
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