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Lúıs Cabral∗

New York University and CEPR

This draft: March 2009

Abstract

I consider a dynamic model of competition between
two proprietary networks. Consumers die and are re-
placed with a constant hazard rate; and firms compete
for new consumers to join their network by offering net-
work entry prices.

I derive a series of results pertaining to: (a) existence
and uniqueness of symmetric equilibria, (b) monotonicity
of the pricing function (e.g., larger networks set higher
prices), (c) network size dynamics (increasing dominance
vs. reversion to the mean), and (d) firm value (how it
varies with network effects).

Finally, I apply my general framework to the study
of termination charges in wireless telecommunications. I
consider various forms of regulation and examine their
impact on firm profits and market share dynamics.
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1 Introduction

Many industries exhibit some form of network effects, the situation whereby
a consumer’s valuation is increasing in the number of other consumers buying
the same product (that is, the number of consumers in the same “network”).
The most obvious source of network effects is direct network effects. Take
the example of operating systems. If I use the Windows OS then, when I
travel, it is more likely I will find a computer that I can use (both in terms of
knowing how to use it and in terms of being able to run files and programs
I carry with me).1

A second source of network effects is the availability of complementary
products. For example, it seems reasonable that the variety and quality of
software available for the Palm system is greater the more users buy PDAs
that run Palm OS. A similar argument applies for complementary services.
For example, the greater the number of Canon photocopiers are sold, the
more likely it is that I will be able to find good post-sale service providers.

Finally, a third source of network effects is the pricing of network ser-
vices.2 Take the example of wireless telecommunications. To the extent that
operators set different on-net and off-net prices, the utility from being con-
nected to a given network is increasing in the number of other users on the
same network.

In this paper, I consider a dynamic model of competition between two
proprietary networks. Consumers die and are replaced with a constant hazard
rate. Firms compete for new consumers to join their network by offering
network entry prices (which may be below cost). New consumers have a
privately known preference for each network. Upon joining a network, in
each period consumers enjoy a benefit which is increasing in network size
during that period. Firms receive revenues from new consumers as well as
from consumers already belonging to their network.

I develop a general model with the above features. I derive the firms’
and the consumers’ value functions, both of which are a function of current
network sizes. I provide conditions such that there exists a unique Markov
equilibrium. The key is that, differently from static models, in an overlap-

1. Another source of direct network effects would be file sharing. While this is fre-
quently proposed as the main source of direct network effects, in the example at
hand I think it is relatively less important.

2. Laffont, Rey and Tirole (1998a) refer to this case as “tariff-mediated network ex-
ternalities.”
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ping generations framework consumers effectively make their network choices
sequentially.

I then characterize the equilibrium, using a combination of analytical
and numerical methods. One set of results pertains to the pricing function.
As is frequently the case with dynamic games, there are two effects to con-
sider. Larger networks are more attractive to consumers. This implies that,
ignoring the firms’ future payoffs, larger networks should set higher prices.
However, in terms of future payoffs, larger firms have more to gain from in-
creasing their network size then smaller firms. This dynamic version of the
“efficiency effect” (duopoly joint profits are greater the greater the asymme-
try between firms) leads larger firms to price lower. I provide conditions such
that each of these effects dominates.

Although the equilibrium is symmetric, both the birth and the death
processes are stochastic. Consequently, the actual state of the system (each
firm’s network size) is generally asymmetric. I show that a larger network is
generally more likely to attract a new consumer (weak market dominance).
Moreover, if network effects are sufficiently strong, then the larger network
tends to increase in size (strong market dominance), unless it holds close to
100% of the market, in which case it tends to decrease in size. As a result,
when network effects are sufficiently strong the stationary distribution of
market shares is typically bimodal — the system spends most of the time
at states where the large network has a market share between 50 and 100
percent.

Finally, I apply my general framework to the study of termination charges
in wireless telecommunications. I consider three stylized forms of regulation:
(a) termination charges set at marginal cost level, (b) symmetric termination
charges higher than marginal cost, and (c) asymmetric termination charges
(higher for smaller networks). I derive both the short-run and the long-run
effects of these different regimes.

Related literature. Following seminal work by Katz and Shapiro
(1985), the early literature on oligopoly with network effects focused on rel-
atively simple, static models.3 Since then, the industrial organization litera-
ture developed in two directions. One strand attempts to empirically measure

3. Other important early work includes Farrell and Saloner (1985), who focus on
consumer behavior, and Arthur (1989), who presents an infinite period model but
assumes non-proprietary networks (and thus excludes strategic behavior).
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the size of network effects.4 Another strand investigates further implications
of network effects in an oligopoly context.5 Despite important developments,
most of this literature has followed a static, or finite period, approach.6

More recent work attempts to explicitly address the issue of dynamic
competition between proprietary networks. Doganoglu (2003), Mitchell and
Skrzypacz (2006), derive the Markov Perfect Equilibrium of an infinite pe-
riod game where consumer’s utility is an increasing function of past market
shares. Markovich (2004), Markovich and Moenius (2004) develop compu-
tational models of industries with “hardware” and “software” components
(very much like my paper). They assume consumers live for two periods and
benefit from indirect network effects through the quality of products avail-
able. Doraszelski, Chen, and Harrington (2007) also develop a computational
dynamic model. In many respects, their analysis goes beyond my paper: for
example, they analyze compatibility decisions, which I don’t. However, like
Doganoglu (2003), Mitchell and Skrzypacz (2006), they assume consumer
benefits are an increasing function of network size at the time of purchase
(that is, consumers are not forward looking). In sum, all of these papers as-
sume relatively simple behavior on the part of consumers: either consumers
are short-lived, or they are myopic, or they are backward looking.7 By con-
trast, I assume that consumers live for potentially many periods (that is, die
with a constant hazard rate), and make their decisions in a rational, forward
looking way. My paper also differs from theirs in that I look at a different
set of issues.

In this sense, the papers that come closest to mine are Fudenberg and
Tirole (2000), Driskill (2007), Laussel and Resende (2007), and Zhu and Ian-
siti (2007), all of which consider forward looking consumers. The framework
considered by Fudenberg and Tirole (2000) is very specific: two consumers,
two consumer types, etc.; the number and type of questions that can be
addressed with such a simple model is therefore limited. Fudenberg and Ti-
role (2000) show that, under certain conditions, there exists an equilibrium
whereby an incumbent firm sets a lower price in the presence of network
externalities with a view at preempting competition by a potential entrant.

4. See, for example, Gandal (1994), Goolsbee and Klenow (2002), Rysman (2004).
5. See, for example, Laffont, Rey and Tirole (1998a,b).
6. Farrell and Klemperer (2006) present an excellent survey of this literature. See also

Economides (1996).
7. See also Kandori and Rob (1998), Auriol and Benaim (2000), who approach the

problem from a stochastic evolutionary perspective.
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The issue of network effects and pricing is also present in Driskill (2007).
He considers a deterministic, continuous-time model where consumers are
forward looking. He shows, among other things, that steady-state prices are
lower in the presence of network externalities. My framework differs from his
in that I consider idiosyncratic consumer preferences, which generate stochas-
tic dynamics: I show that prices may be higher or lower in the presence of
network effects; I also explain the main forces leading to different price levels.

Laussel and Resende (2007) look at equilibria in linear Markov strategies.
They show that, in equilibrium, network access prices are decreasing in firm
size. I provide sufficient conditions such that this is the case; but I also
provide sufficient conditions such that the opposite is true. Moreover, in my
model equilibrium strategies are generally nonlinear.

Zhu and Iansiti (2007) look at the competition between an incumbent
and an entrant platform. In some respects, their model is more complex
than mine: for example, they explicitly consider investment decisions by
developers of each platform (network). In other respects, their framework is
simpler than mine: for example, they assume prices are fixed and exogenouly
given. They make several interesting points. In particular, they show that,
contrary to popular wisdom, indirect network effects may favor the entrant
platform (see also Llobet and Manove, 2006). In my paper, networks effects
tend to hurt the small firm. The difference with respect to Zhu and Iansiti
(2007) is partly due to the fact that I do not consider investments in quality.

Following the seminal contributions by Gilbert and Newbery (1982) and
Reinganum (1982), a series of papers have addressed the issue of persistence
of firm dominance. Contributions to this literature include Budd, Harris and
Vickers (1993), Cabral and Riordan (1994), Athey and Schmutzler (2001),
Cabral (2002). These papers provide conditions under which larger firms
tend to become larger (market dominance). Intuitively, the reason for such
dynamics corresponds to some form of the “efficiency effect” characterized
by Gilbert and Newbery (1982): the fact that joint profits are greater the
closer the market structure is to monpoly. My framework and results are
consistent with the idea of market dominance. Specifically, I show that, if
network effects are sufficiently strong and the large firm is not too large, then
market dominance holds.

From a methodological point of view, my framework has various similar-
ities with Cabral and Riordan’s (1994) study of dynamic competition with
learning curves. In many respects, one can interpret learning curves as a
“sequential network effect.” In fact, some of Cabral and Riordan’s (1994)
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results regarding market dynamics hold in the context of network effects:
in particular, the idea that larger firms tend to become even larger. How-
ever, there are two important differences between my framework and Cabral
and Riordan (1994). First, Cabral and Riordan (1994) assume that learning
curves “bottom out” at some level of learning (and there is no forgetting).
This implies that the model can be solved backwards, starting with the state
at which both firms reached the bottom of their learning curves. This in turn
greatly simplifies the problem of finding a unique equilibrium. My current
framework, by contrast, has consumers dying and being born. There is no
absorbing state, rather firm size follows an ergodic Markov chain. This is
more realistic in the context of network effects, but it also makes the analy-
sis more complicated. Second, and more important, in Cabral and Riordan
(1994) consumers play a passive role: they simply pick the best value for the
money in each period. By contract, under network effects, I need to explicitly
model consumer expectations regarding the evolution of network sizes.

2 Model

I consider an infinite period model of price competition between two propri-
etary networks, owned by firms A and B. Since I analyze anonymous Markov
equilibria, with some abuse of notation I denote each firm by the size of its
network, i or j. Network size evolves over time due to consumer birth and
death. In each period, a consumer dies and a new consumer is born. The
new consumer chooses between one of the existing networks and stays with
it until death.8,9

Specifically, the timing of moves in each period is summarized in Table 1.
Initially, a total of η− 1 consumers are distributed between the two firms, so
i + j = η − 1. A new consumer is born and firms simultaneously set prices

8. In this sense, my framework is similar to that of Beggs and Klemperer (1992).
They too consider a stationary number of consumers and assume that a newborn
consumer, having chosen one of the sellers, sticks with it until death.

9. Although I work with a discrete time model, the underlying reality I have in mind
is one of continuous time. Suppose that consumers die according to a Poisson
process with arrival rate λ. Essentially, I consider the time between two consecutive
deaths as a period in my discrete time model. By assuming risk-neutral agents, I
can summarize the Poisson arrival process in a discount factor δ that reflects the
average length of a discrete period: δ = exp(−r/λ), where r is the continuous time
discount rate.
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Table 1: Timing of model: events occurring in each period t.

Event Value State of the game

functions

Firms set network entry prices p(i) v(i) i ∈ {0, . . . , η − 1}
Nature chooses xi, new consumer’s
preference for network i

New consumer chooses network u(i) i ∈ {0, . . . , η}
Stage competition takes place: period
profits θ(i), consumer surplus λ(i)

One consumer dies (probability 1
η
) i ∈ {0, . . . , η − 1}

p(i), p(j) for the consumer to join their network. If the new consumer opts
for network i, then firm i receives a profit p(i), whereas the consumer receives
a one-time benefit from joining network i, ζi.

10

After the new consumer makes his choice, there are a total of η consumers
divided between the two networks. During the remainder of the period, firm
i receives a payoff θ(i), whereas a consumer attached to network i enjoys
a benefit λ(i). In others words, I treat network choice as a durable good,
and assume there is some non-durable good attached to the durable good
“network membership.” I denote the market for the non-durable good as the
aftermarket. Finally, at the end of the period one consumer dies, each with
equal probability.11 In other words, a consumer from firm i’s network dies
with probability i/η.

Since my main goal is to understand the evolution of network size over
time, I take the values θ(i) and λ(i) as given, that is, I treat them as the
reduced form of the stage game played in the aftermarket. I assume that
λ(i) and θ(i) are bounded. Some of the results in Section 3 assume further
properties of θ(i) and λ(i), in particular the following two:

10. For simplicity, I assume zero cost. Alternatively, we can think of p(i) as markup
over marginal cost.

11. The assumption that each consumer dies with equal probability allows me to keep
the state space one-dimensional. In the opposite extreme case when consumers live
a fixed number of periods (η, to keep total market size the same), the state space
becomes η-dimensional.
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Property 1 (increasing network benefits) λ(i) is increasing.

Property 2 (increasing returns to network size) Both θ(i) and θ(i +
1)− θ(i) are increasing.

Property 1 is straightforward: the greater a network size, the greater
each consumer’s aftermarket surplus (weakly). The first part of Property 2
is also fairly straightforward: larger networks make at least as much money
in the aftermarket as smaller networks. With regards to the second part of
Property 2, note that increasing θ(i) first differences implies that

θ(i + 1)− θ(0)

i + 1
≥ θ(i)− θ(0)

i

It thus implies that firms (weakly) enjoy network benefits, in the sense that
aftermarket variable profit per consumer is nondecreasing in network size,
that is, network benefits imply increasing returns to scale for firms.

One can find many examples that feature increasing network benefits ac-
cording to Properties 1 and 2.12 One can also find examples where one of
the properties, or both, fail. In Section 5, I consider an application to wire-
less telecommunications networks where the aftermarket corresponds to cell
phone usage. I show that, if termination charges are symmetric (network A
pays network B the same charge that network B pays network A) and greater
than marginal cost, then we have increasing network benefits and increasing
returns to network size. If however access charges are very asymmetric, then
Property 1 and Property 2 may fail.

My focus is on the firms’ pricing decision and the consumer’s network
choice. Specifically, I consider equilibria in Markov pricing and network
choice decisions. The state is defined by i, the size of firm i’s network at
the beginning of the period, that is, when firms set prices and the newborn
consumer chooses one of the networks.13 I next derive the consumer’s and
the firm’s decisions in a Markov equilibrium.

12. Two examples are: after sales service (e.g., photocopiers, printers, cameras); and
handheld operating systems (e.g., Palm, PocketPC).

13. Note that, when consumers enjoy network benefits, there are a total of η consumers,
divided across the two networks. However, at the time that prices are set there are
only η−1 consumers, so i ∈ {0, . . . , η−1} at that moment. The state and the firm
value functions are defined at this moment (beginning of period).
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Consumer choice. Each consumer’s utility is given by two components:
ζi and λ(i). The first component is the consumer’s idiosyncratic preference
for firm i, which I assume depends on the identity of firm i but not on the size
of its network (thus the use of a subscript rather than an argument). The
value of ζi is also the consumer’s private information. The second component
is network benefit from a network with size i (including the consumer in
question), which I assume is independent of the firm’s identity. I assume
that consumers receive the ζi component the moment they join a network,
whereas λ(i) is received each period that a consumer is still alive (and thus
varies according to the size of the network during each future period).14

I assume that the values of ζi are sufficiently high so that a newborn
consumer always chooses one of the available networks; that is, the outside
good is always dominated. This is not an innocuous assumption, as I will
discuss in Section 3; but it greatly simplifies the analysis. In particular,
it allows me to concentrate on the value of ξi ≡ ζi − ζj, the consumer’s
idiosyncratic relative preference for firm i’s network. Notice that ξj = −ξi. I
assume that ξi is distributed according to Φ(ξ) (density φ(ξ)), which satisfies
the following properties:

Assumption 1 (i) Φ(ξ) is continuously differentiable; (ii) φ(ξ) = φ(−ξ);
(iii) φ(ξ) > 0, ∀ξ; (iv) Φ(ξ)/φ(ξ) is strictly increasing.

Many common distributions, including the Normal, satisfy Assumption 1.
Let u(i) be a consumer’s aftermarket value function, that is, the dis-

counted value of payoff streams λ(i) received while the consumer is alive
(thus excluding both ζi and the price paid to join the network). Unlike the
firm value functions, which I will measure at the beginning of each period,
I will measure u(i) after the current consumer has made his decision. This
means that the argument of u(i) varies from 1 to η.

Consider a new consumer’s decision. At state i, the indifferent consumer
will have ξi = x(i), where the latter is given by

x(i)− p(i) + u(i + 1) = −p(j) + u(j + 1), (1)

14. The assumption that ζi is received at birth is not important. I could have the con-
sumer receive ζi each period of his or her lifetime. However, this way of accounting
for consumer utility simplifies the calculations. The important assumption is that
all consumer heterogeneity is encapsulated in the value of ζi, not in the recurring
network benefit λ(i). Abandoning this assumption would make the state space
extremely large and render the analysis considerably more complex.
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u(i)

u(i− 1)

0

u(i + 1)

u(i)

i−1
η

j
η

1
η

q(i− 1)

q(j)

q(i)

q(j − 1)

u(i) = λ(i) + δ

Figure 1: Consumer’s value function.

or simply
x(i) = p(i)− p(j)− u(i + 1) + u(j + 1). (2)

where p(i) is firm i’s price. This looks very much like a Hotelling consumer
decision, except for the fact that u(i+1) and u(j +1) are endogenous values.

Firm i’s demand is the probability of attracting the new consumer to its
network. It is given by

q(i) = 1− Φ
(
x(i)

)

= 1− Φ
(
p(i)− p(j)− u(i + 1) + u(j + 1)

)
. (3)

The consumer value functions, introduced above, are illustrated in Figure
1. The corresponding formula is given by

u(i) = λ(i) + δ


 j

η
q(i) u(i + 1) +

(
j

η
q(j − 1) +

i− 1

η
q(i− 1)

)
u(i)+

+
i− 1

η
q(j) u(i− 1)


 , (4)

where q(i) is given by (3), i = 1, . . . , η, and j = η − i.15 In words, a
consumer’s value is given, to begin with, by the current aftermarket benefit

15. Recall that the argument of u includes the network adopter to whom the value
function applies, thus i must be strictly positive in order for the value function to
apply. For the extreme values i = 1 and i = η, (4) calls for values of q(·) and u(·)
that are not defined. However, these values are multiplied by zero.
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λ(i). In terms of future value, there are three possibilities: with probability
1/η, the consumer dies, in which case I assume continuation utility is zero.16

With probability (i−1)/η, a consumer from the same network dies. This loss
is compensated by the newborn consumer joining network i, which happens
with probability q(i−1), in which case next period’s aftermarket state reverts
back to i. With probability 1− q(i− 1), the new consumer opts for the rival
network, in which case next period’s aftermarket state drops to i−1. Finally,
with probability j/η, a consumer from the rival network dies. This loss is
compensated by the newborn consumer joining network j, which happens
with probability q(j−1), in which case next period’s aftermarket state reverts
back to i. With probability 1 − q(j − 1) = q(i), the new consumer opts for
network i, in which case next period’s aftermarket state increases to i + 1.

Firm’s pricing decision. Firm i’s value function is given by

v(i) = q(i)

(
p(i) + θ(i + 1) + δ

j

η
v(i + 1) + δ

i + 1

η
v(i)

)

+
(
1− q(i)

) (
θ(i) + δ

j + 1

η
v(i) + δ

i

η
v(i− 1)

)
, (5)

where i = 0, . . . , η − 1 and j = η − 1 − i.17 This is illustrated in Figure 2.
With probability q(i), firm i attracts the new consumer and receives p(i).
This moves the aftermarket state to i+1, yielding a period payoff of θ(i+1);
following that, with probability (i+1)/η network i loses a consumer, in which
case the state reverts back to i, whereas with probability j/η network j loses
a consumer, in which case the state stays at i + 1. With probability q(j),
the rival firm makes the current sale. Firm i gets no revenues in the primary
market. In the aftermarket, it gets θ(i) in the current period; following that,
with probability i/η network i loses a consumer, in which case the state drops
to i − 1, whereas with probability (j + 1)/η network j loses a consumer, in
which case the state reverts back to i.

Equation (5), and the fact that q(i) depends on p(i) according to (3),

16. Alternatively, I can consider a constant continuation utility upon death.
17. Again, notice that, for the extreme case i = 0, (5) calls for values of v(·) which are

not defined. However, these values are multiplied by zero.
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v(i)

v(i + 1)

v(i− 1)

v(i)

q(i)

q(j)

p(i) + θ(i + 1) + δ

θ(i) + δ

i+1

η

j

η

i

η

j+1

η

v(i) =

Figure 2: Firm’s value function.

leads to the following first-order conditions for firm value maximization:

q(i) +
∂ q(i)

∂ p(i)

(
p(i) + θ(i + 1)− θ(i)

+ δ
j

η
v(i + 1) + δ

i + 1

η
v(i)

− δ
j + 1

η
v(i)− δ

i

η
v(i− 1)

)
= 0,

or simply
p(i) = h(i)− w(i), (6)

where

h(i) ≡ q(i)

−q′(i)
=

1− Φ
(
x(i)

)

φ
(
x(i)

)

w(i) ≡ (
θ(i + 1)− θ(i)

)
+ δ

(
j

η
v(i + 1) +

i− j

η
v(i)− i

η
v(i− 1)

)

In order to understand the intuition for the first order condition (6), it may
help to rewrite it as follows:

p(i)− (− w(i)
)

p(i)
=

q(i)

−q′(i) p(i)
=

1

ε
(7)
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where ε is the absolute value of the price elasticity of demand (by a new-
born consumer). In other words, (7) is similar to the standard static profit
maximization elasticity rule, with one difference: instead of the production
marginal cost, which for simplicity I assume is zero, we have a negative “cost”
of −w(i). The value w(i), is firm i’s incremental future value from winning
the current sale. By “future” I mean beginning with the current period’s
aftermarket. In terms of current period’s payoff, the difference comes to
θ(i + 1) − θ(i). In terms of future payoffs, we have the difference in value
function between states i+1 and i (if consumer death takes place in network
j) or between states i and i− 1 (if consumer death takes place in network i).

With this comparison in mind, we can see that the first term on the
right-hand side of (6) roughly corresponds to the standard markup under
monopoly pricing. The only difference is that consumer demand includes the
endogenous value difference u(i + 1) − u(j + 1): recall that the indifferent
consumer “address” x(i) is given by x(i) = p(i)− p(j)− u(i + 1) + u(j + 1).
The first term thus reflects the firm’s “harvesting” price incentives (i.e., the
lower the demand elasticity, the higher the price).

The second term reflects the firm’s “investing” price incentives; that is,
the more a firm has to gain, in terms of future payoffs, from making the
current sale, the lower price it will set. I will return to this in the next
section.

Finally, substituting (6) into (5) and simplifying, we get

v(i) = r(i) + θ(i) + δ

(
j + 1

η
v(i) +

i

η
v(i− 1)

)
, (8)

where

r(i) ≡
(
1− Φ

(
x(i)

))
h(i) =

(
1− Φ

(
x(i)

))2

φ
(
x(i)

) .

This system is defined by a lower triangular matrix, and can thus be solved
by forward substitution. The solution is given by

v(i) =

(
1− δ

η − i

η

)−1 (
r(i) + θ(i) + δ

i

η
v(i− 1)

)
, (9)

i = 0, . . . , η − 1.

Transition matrix and steady state distribution. Given the equi-
librium values of q(i), I can compute a Markov transition matrix M = m(i, k)
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where m(i, k) is the probability of moving from state i to state k. For
0 < i < η − 1, we have

m(i, i− 1) =
i

η

(
1− q(i)

)

m(i, i) =
i + 1

η
q(i) +

η − i

η

(
1− q(i)

)
(10)

m(i, i + 1) =
η − 1− i

η
q(i)

Moreover, m(i, k) = 0 if k < i− 1 or k > i + 1. Finally, the boundary values
are obtained as follows. For i = 0, I apply the general equations and add
the value obtained for m(0,−1) to the value of m(0, 0). For i = η − 1, again
I apply the general equations and add the value obtained for m(η − 1, η) to
m(η − 1, η − 1). As a result, I get

m(0, 0) = 1− η − 1

η
q(0)

m(0, 1) =
η − 1

η
q(0)

m(η − 1, η − 2) =
η − 1

η

(
1− q(η − 1)

)

m(η − 1, η − 1) = 1− η − 1

η

(
1− q(η − 1)

)

Given the assumption that Φ(·) has full support (part (iii) of Assump-
tion 1), q(i) ∈ (0, 1) ∀i, that is, there are no corner solutions in the pricing
stage. It follows that the Markov process is ergodic and I can compute the
stationary distribution over states. This is given by the (transposed) vector
d that solves dM = d.18

A summary of the model’s notation is given in Table 2. To help the
reader navigate through the extensive set of variables, I follow the rule of
using Greek letters to denote exogenous values and Roman letters to denote
endogenous values.

18. This vector d can also be computed by repeatedly multiplying M by itself. That
is, limk→∞Mk is a matrix with d in every row.
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Table 2: Notation.

i Firm i’s network size (also j)
η Market size (number of consumers).
δ Discount factor.
ξi Consumers’s idiosyncratic preference for firm i.

Φ(ξi) Distribution of ξi.
θ(i) Firm’s aftermarket profit in state i.
λ(i) Consumer’s aftermarket benefit in state i.
x(i) Indifferent consumer’s relative preference for firm i.
p(i) Price in state i (for new consumer).
q(i) Probability of a sale in state i (to new consumer).
u(i) Individual consumer’s value in state i.
v(i) Firm’s value in state i.

m(i, j) Transition probability from state i to state j.
d(i) Stationary probability density of state i.

3 Analytical results

In this section, I characterize the equilibrium of the model introduced in
the previous section. A preliminary question of interest is existence and
uniqueness. Once that is established, I will be interested in (a) the price
function, (b) the evolution of market shares, and (c) firm profits.

Regarding the price function, the main question of interest is whether,
under network effects, p(i) is increasing or decreasing. The answer is not
obvious. On the one hand, we might expect the large network to exploit
its consumers’ greater willingness to pay and charge a higher price. On the
other hand, the large network may have more to lose from failing to sign up
a new consumer, and thus price more aggressively than the small network.

Regarding the evolution of market shares, I define two concepts: weak and
strong market dominance. We say there is weak market dominance when the
large network attracts a new consumer with higher probability than the small
network, that is, q(i) > q(j) if and only if i > j. Weak market dominance
does not imply that the large network tends to increase in size. In fact,
since the death rate is given by i/η, the large network loses a consumer
with greater probability than the small network. We then say there is strong
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market dominance when the large network increases its size in expected value,
which happens if and only if q(i) > i/η. Since the large network’s death rate
is greater than the small network’s, strong market dominance implies weak
market dominance.19

Finally, regarding firm profits, the questions of interest are whether firm
value is increasing in network size; and whether firm value and industry value
are increasing or decreasing with the degree of network effects.

To recap, the model consists essentially of four sets of equations: the new
consumer demand functions (3), the consumer value functions (4), the firm
price functions (6), and the firm value functions (9). This system does not
have a general analytical solution. As a result, I follow a two-pronged strat-
egy. First, I develop analytical results for restricted sets of parameter values,
specifically, low η, low δ, and low ψ, where the latter parameter measures
the degree of network effects. Second, I compute the solution numerically
and determine the extent to which the limited analytical results extend to
the rest of the parameter space.

Before getting into the main characterization results, I introduce three
lemmas which provide a partial characterization of uniqueness and the shape
of q(i) and p(i). These lemmas are useful in several ways. First, they help
understand the intuition for equilibrium dynamics. Second, they are used in
the proofs of propositions that will follow. Finally, the first lemma also forms
the basis for the Gaussian method used in numerical computations. The
lemmas (and the propositions that follow) make extensive use of differences
across players. Specifically, I define

P (i) = p(i)− p(j)

H(i) = h(i)− h(j)

U(i) = u(i + 1)− u(j + 1)

W (i) = w(i)− w(j)

In words, a capital Roman letter variable denotes the difference between
player i’s variable and player j’s. The only exception to this rule, U(i), takes

19. Athey and Schmutzler (2001) also distinguish between weak and strong market
dominance. They propose an investment model of dynamic competition. In their
definition, weak dominance means the leader invests more, whereas strong domi-
nance means the leader increases its lead in expected terms. Although the mapping
between my model and theirs is not exact, I believe my definition is the natural
counterpart to theirs.
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into account the fact that, when a newborn consumer joins network i, that
network’s size increases to i + 1.

Lemma 1 Given {U(i), W (i)}, there exist unique {p(i), q(i)} satisfying equi-
librium conditions (3) and (6); given {p(i), q(i)}, there exist unique {u(i), v(i)}
satisfying equilibrium conditions (4) and (9).

The proof of this and the following results may be found in the Appendix.
Notice that {U(i),W (i)} are uniquely determined by {u(i), v(i)}. There-
fore, a corollary of Lemma 1 is that, given {u(i), v(i)}, there exist unique
{p(i), q(i)} satisfying equilibrium conditions (3) and (6).20

Lemma 2 In equilibrium, the higher U(i)+W (i) is, the higher q(i) is. More-
over, q(i) ≥ 1

2
if and only if U(i) + W (i) ≥ 0.

Lemma 2 implies that q(i) > q(j) if and only if U(i) + W (i) > 0. We thus
have two sources of weak market dominance: U(i) and W (i). To the extent
that consumers derive greater utility from a larger network, U(i) > 0, which
in turn increases the likelihood a new consumer joins the larger network.
To the extent that a large network has more to gain from attracting a new
consumer than a small network, W (i) > 0. Since p(i) = h(i) − w(i), the
larger network, having a higher w(i), prices more aggressively, which in turn
increases the likelihood a new consumer joins the larger network.

An alternative way to understand the effect of W (i) is to consider that,
if w(i) > w(j) when i > j, then industry continuation value is greater if
the larger network makes the sale. That is, if we let v+ and v− be con-
tinuation value with and without a sale, respectively, then w(i) > w(j) is
equivalent to v+(i) − v−(i) > v+(j) − v−(j), which in turn is equivalent to
v+(i) + v−(j) > v−(i) + v+(j). In related research, Budd, Harris and Vick-
ers (1993) and Cabral and Riordan (1994) also found that such joint-profit
or joint-value effects lead to market dominance. Essentially, the joint-value
effect corresponds to the dynamic version of Gilbert and Newbery’s (1982)
efficiency effect, whereby a monopolist has more to lose from not acquiring

20. Caplin and Nalebuff (1991) prove equilibrium uniqueness (Proposition 6) for a
game similar to the static game obtained when δ = 0 or when {u(i), v(i)} are
given. Instead of my Assumption 1, they assume that φ is log-concave. Bagnoli
and Bergstrom (2005) establish that my assumption is weaker than Caplin and
Nalebuff’s (1991). (I am grateful to a referee for the latter reference.)
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a new patent than a potential entrant has to gain from acquiring the same
new patent.

I should note that these results depend on the assumption that the outside
good is always dominated, that is, a newborn consumer always chooses one
of the networks. If the outside good is not dominated, then I would need
to consider a two-dimensional state space, keeping track of both i and j. In
economic terms, the no-outside-good assumption maximizes the preemption
motives by the large firm. This is equivalent to the contrast between Gilbert
and Newbery’s (1982) result on persistence of monopoly and Reinganum’s
(1982) replacement counter-example.21

Lemma 3 For a given W (i), there exists a U ′ such that P (i) > 0 if and
only if U(i) > U ′. For a given U(i), there exists a W ′ such that P (i) < 0 if
and only if W (i) > W ′.

The values of U(i) and W (i) measure the two sources of pricing incentives.
To the extent that U(i) is positive, consumers place a premium on network
i. Everything else constant, this leads firm i to set a higher price. We may
refer to this as the “harvesting” effect. But everything else is not constant. A
positive W (i) implies that firm i has more at stake in terms of future value.
Everything else constant, this would lead firm i to set a lower price. We may
refer to this as the “investment” effect.

We thus have a “race” between harvesting and investing. Lemma 3 pro-
vides a (partial) characterization of prices with reference to this “race.” It
states that a larger network i will set a higher price than a smaller network if
and only if the harvesting effect, measured by U(i), is sufficiently large with
respect to the investment effect, measured by W (i).

Equipped with these three lemmas, I now set out to characterize the
solution for particular regions of the model’s parameter set. I start with the
case of low η.

Proposition 1 If η = 2, then there exists a unique equilibrium. Moreover,
if Properties 1 and 2 hold, then q(1) > q(0) and v(1) > v(0). Finally, there
exists a λ′ such that p(1) > p(0) if and only if λ(2)− λ(1) > λ′.

In the particular case when η = 2, the values of U(i) and W (i) are completely
determined by the primitives λ(i) and θ(i). The first part of Proposition

21. See Cabral (2000, Chapter 16) for a model that nests both Gilbert and Newbery
(1982) and Reinganum (1982).
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1 then follows from Lemma 1. Moreover, Properties 1 and 2 imply that
U(i) > 0 and W (i) > 0. The second part of Proposition 1 then follows from
Lemma 2 (q(1) > q(0)) and simple algebraic manipulations (v(1) > v(0)).
Finally, the result regarding prices follows from Lemma 3.

One question that might be asked about my framework is the role played
by consumer rational expectations. Many of the existing models of network
effects assume that consumers are short-lived, myopic, or naive. I define a
naive consumer as one who assumes that network size will remain at its cur-
rent level, that is, a consumer who fails to “solve” the model and correctly
predict the evolution of network size. Denote by a tilde equilibrium vari-
ables corresponding to the case of naive consumers. Beginning with value
functions, we have

ũ(i) = λ(i) + δ ũ(i) (11)

In words, a consumer in a network of size i assumes that network size will
remain the same. There are other ways of modeling naivete, but this seems
a natural one.22

How do equilibrium values with naive consumers compare to the case of
rational, forward-looking consumers? The next result provides the answer:

Proposition 2 Suppose that Property 1 holds. If η = 2, then q̃(0) < q(0)
and ṽ(0) < v(0).

Intuitively, a small network suffers from consumer naivete because, in
expected value, its network size can only increase — but consumers don’t
take that into account. For example, suppose that Φ(x) is a standardized
Normal (consistent with Assumption 1); θ(0) = 0, θ(1) = 1

2
, θ(2) = 2, λ(1) =

1
2
, λ(2) = 1 (all consistent with Properties 1 and 2); and δ = .9. Then,

in the equilibrium with rational consumers we have q(0) ≈ .199, whereas
with naive consumer we obtain q̃(0) ≈ .097; that is, the model with naive
consumers underestimates the probability of a sale by a small firm by less
than one half. In terms of value, we have v(0) ≈ 7.96 and ṽ(0) ≈ 2.43; that
is, the model with naive consumers underestimates the value of a small firm
by less than one third. Naturally, different parameter values lead to different
estimate errors. However, my various simulations suggest that the prediction
of Proposition 2 is not simply a theoretical possibility.

22. For example, I could assume that the consumer allows for the possibility that he
will die (which happens with probability 1/η). In that case, δ would be multiplied
by (η − 1)/η. The qualitative nature of Proposition 2 would remain valid.
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I next turn to the case when the discount factor, δ, is small. I show
uniqueness of equilibrium and characterize the price function (Proposition
3) as well as the evolution of market shares (Proposition 4).

Proposition 3 There exists a δ′ such that, if δ < δ′, then there exists a
unique equilibrium. Moreover, (a) if θ(i + 1)− θ(i) is constant and Property
1 holds strictly, then p(i) is strictly increasing; (b) if λ(i) is constant and
Property 2 holds strictly, then p(i) is strictly decreasing.

Proposition 3 highlights the two main forces impacting on the firms’ pric-
ing incentives: market power over the current newborn consumer and the
quest for market power in the aftermarket and in future periods. Analyti-
cally, we have p(i) = h(i) − w(i), where the right-hand side represents the
two effects on pricing. Proposition 3 considers the case when the discount
factor is small. In this case, most of the effects are reflected in (current
period’s) aftermarket payoffs, which in turn allows me to derive conditions
under which the first or the second effects dominate.

Specifically, in case (a) aftermarket profits are an affine function of net-
work size. This implies that the benefit from winning a new customer, in
terms of aftermarket profits, does not depend on network size: w(i) is a
constant. Differences in pricing are thus exclusively driven by market power
considerations related to the newborn consumer, h(i). Now, consumers are
willing to pay more for a firm with a bigger network. In equilibrium, this is
reflected in a higher price by the firm with a larger network. Thus p(i) is
increasing in i.

In case (b), consumers do not care about network size. (Notice this does
not mean there are no network externalities, rather that sellers completely
capture the added consumer surplus resulting from network externalities.) If
it were not for aftermarket and future profits, firms would set the same price,
as their products are identical in the eyes of consumers. But to the extent
that w(i) ≈ θ(i)− θ(i− 1) is increasing, the firm with a bigger network size
has more to gain from making the next sale. This implies that it discounts
price (with respect to the static price) to a greater extent. Thus p(i) is
decreasing in i.

Before presenting the next result, I define by i∗ ≡ η−1

2
the “symmetric”

state. If η is even, then there exists no symmetric state, but the result below
applies nonetheless.23

23. Specifically, if η is odd, then i∗ is the symmetric state. If η is even, then there is
no symmetric state; i∗ − 1

2 and i∗ + 1
2 are the two states closest to symmetry.
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Proposition 4 Suppose that Properties 1 and 2 hold. There exist δ′, λ′, θ′

such that, if δ < δ′, then: (a) q(i) ≥ 1
2

if and only if i > i∗; (b) If i is close to
zero or close to η−1, then the state moves toward i∗ in expected terms; (c) If i
is close to i∗, and either λ(i∗+1)−λ(i∗) > λ′ or θ(i∗+1)+θ(i∗−1)−2 θ(i∗) >
θ′, then the state moves away from i∗ in expected terms.

In other words, Proposition 4 states that, if δ is small, then weak market
dominance results. However, when market shares are close to zero or to
100%, the death rate of a large network exceeds its birth rate, resulting in
reversion to the mean (the opposite of strong market dominance). Around
symmetric states, if either θ(i) is very convex or λ(i) very steep, then strong
market dominance takes place.

To conclude the set of analytical results, I present a complete characteri-
zation of the equilibrium solution in the case when network effects are small,
linear, and accrue to consumers in the form of aftermarket benefits.

Proposition 5 Suppose that λ(i) = ψ i and θ(i) = 0. There exists a ψ′ such
that, if ψ < ψ′, then: (a) Prices are increasing in network size; (b) Larger
networks are more likely to attract a new consumer; (c) In expected terms,
larger networks decrease in size; (d) Firm value is increasing in network size;
(e) Industry profits are decreasing in the degree of network effects.

Parts (a), (b) and (c) of Proposition 5 are in line with Propositions 3
and 4. Parts (d) and (e) pertain to firm value in equilibrium. Together,
they imply that, under network effects, having a larger network leads to
greater firm value, but network effects uniformly decrease industry value.
This is reminiscent of Theorem 3.5 in Cabral and Riordan’s (1994) model of
learning-by-doing. They show that, in equilibrium, industry value is lower
than it would be in an environment where no learning-by-doing took place.
In other words, while learning-by-doing and network effects increase total
social value, they decrease total industry value.24

4 Numerical results

As I mentioned earlier, the model presented in the previous section does not
admit a general analytical solution. The results I presented above pertain to

24. See Cabral and Villas-Boas (2005) for a generalization of this idea.
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particular regions of the parameter space. I next proceed to derive the equi-
librium numerically and compute it for a variety of values in the parameter
space.25

In what follows, I assume that Φ(x) is a standardized Normal. Moreover,
I assume that aftermarket payoffs are given by

λ(i) = (1− α) ψ i

θ(i) = α ψ i2

One advantage of this parameterization is that, by changing the value of α
from 0 to 1, I can consider the extreme cases when all of the aftermarket
value is captured by consumers (α = 0) or by firms (α = 1), while keeping
total aftermarket value constant (that is, i λ(i) + j λ(j) + v(i) + v(j) is held
constant for each i). Finally, for simplicity I consider η = 101. Recall that
the state space is given by {0, . . . , η − 1}, in this case {0, . . . , 100}.

The main parameters of interest are therefore: δ, the discount factor; ψ,
the degree of network effects; and α, the degree to which network effects are
captured by firms.26

Discount factor (δ). Let us first consider the effect of changing the
value of δ. Proposition 3 pertains to the case when the value of δ is small.
It states that, if network benefits are solely received by consumers, then p(i)
is increasing, whereas if network benefits are solely received by firms then
the opposite is true. Does this characterization extend to higher values of
δ? Figure 3 shows equilibrium prices for various values of δ. The left-hand
panels (case A) correspond to the case when θ(i) = 0 and λ(i) = ψ i

η
, that

is, all network benefits are captured by consumers (α = 0). The right-hand
panels (case B) correspond to the case when θ(i) = ψ i2

η
and λ(i) = 0, that

is, all network benefits are captured by firms (α = 1).
Solid lines correspond to δ = 0. As can be seen, p(i) is increasing in

case A and decreasing in case B, as predicted by Proposition 3. In fact, this

25. The Gaussian method I use is fairly standard and will be furnished upon request.
Important references on such numerical methods include Doraszelski and Pakes
(2007) and Doraszelski and Satterthwaite (2007).

26. I could also change the degree of product differentiation by assuming that the
variance of x is given by σ and considering values of σ different from 1. However,
by an appropriate change of units, I can normalize σ = 1. In other words, the
value of ψ should be interpreted as the degree of network effects relative to degree
of product differentiation.
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(B) θ(i) = ψ i2

η , λ(i) = 0

Figure 3: Effects of changing δ. Values of δ are 0, 0.6 and 0.9 (solid, dashed
and dotted lines, respectively). In all cases, ψ = .1
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pattern holds true for higher values of δ, e.g., δ = .6. However, for very high
values of δ we see that, in case B, p(i) becomes increasing for high values of
i. To understand the factors underlying these patters, it is useful to recall
that p(i) = h(i) − w(i), where h(i) is associated to short-run market power
and w(i) denotes the value, in terms of future payoffs, of winning the current
sale. When θ(i) = 0 (left panels), the value of winning a sale (attracting a
new consumer), in terms of future payoff, is relatively low compared to the
revenue obtained from that new consumer. In other words, the value of h(i)
dominates the value of w(i). Since h(i) is increasing in i, we obtain p(i) also
increasing in i.

When θ(i) is “convex,” however (right panels), then the value of winning a
new consumer is increasing in i and becomes significantly larger as δ increases;
but so does the value of h(i). We thus have a “race” between “harvesting,”
the incentive to exploit market power and price higher, and “investing,” the
incentive to price low so as to maintain a high market share. The result of
this “race” is that, for high values of δ, p(i) becomes U shaped. As can be
seen from the right-hand panels in Figure 3, the reason for p(i) to become U
shaped is that h(x) is convex.

Convexity of h(x) depends importantly on the primitive functional forms
of the model. In fact, h(i) ≡ q(i)/q′(i), where q(i) = 1− Φ

(
x(i)

)
. If Φ(·) is

a Normal distribution, as I am assuming, then
(
1− Φ(x)

)
/φ(x) is not only

increasing (as implied by Assumption 1) but also convex. Convexity also
holds for other distributions, such as the lognormal or the student or the
Cauchy, but not all: for example, it does not hold for the uniform. It thus
appears that, beyond the characterization provided by Proposition 3, there
isn’t much that can be said in terms of the shape of p(i).

Strength of network effects (ψ). Figure 4 describes the effect of
changing the value of ψ, the parameter measuring the intensity of network
effects. As before, I distinguish between the extremes when all aftermarket
network benefits accrue to consumers (α = 0, left panels) and when all
aftermarket network benefits accrue to firms (α = 1, right panels). The
patterns of pricing (top panels) are consistent with those obtained in Figure 3,
where we consider different values of the discount factor. In particular, p(i) is
increasing when α = 0 and decreasing or U shaped when α = 1. Consistently
with Proposition 5, we observe that the pricing function is approximately
linear when ψ is small. However, higher values of ψ lead to a convex pricing
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(B) θ(i) = ψ i2

η , λ(i) = 0

Figure 4: Effects of changing ψ. Values of ψ are 0, 0.1, 0.3 and 0.5 (solid,
long-dashed, short-dashed and dotted lines, respectively). In all cases, δ = .9

25



0

ψ

0 η

λ(i)

i

ν = 1
2

ν = 2
.........
...........
.............
.............
................
...................

.....................
.......................

.........................
............................

...............................
............................

...........................
............................

..............................
................................

........

...................................................................
..............................

.............................
..........................

......................
....................

...................
.................

................
................
...............
...............
.............
.............
..............
............
............
.............................................................................................................................

(A) λ(i) = ψ
(

i
η

)ν

0

ψ

0 ν = 1
4

η ν = 3
4

η η

λ(i)

i............
..........
..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..........
.........
...........
...............................................................................................................................................................................................................................................

................................
....................

................
...............
.............
............
............
............
..............
............
............
............
............
.............
...............
................
.....................

................................................................................................................................................................................................. ....
....
....
....
....
....
....
....
....
....
....
....
....
....
.

(B) λ(i) = ψ
(

i
ν

)2
(
3− 2 i

ν

)
(i ≤ ν)

Figure 5: Alternative functional forms of benefit function λ(i). In case (A),
λ(i) is concave if and only if ν ≤ 1. In case (B), λ(i) plateaus at ν.

function. Moreover, when α = 0, as the degree of network effects increases,
small networks decrease their price and large networks increase their price.
By contrast, when α = 1, an increase in ψ uniformly leads to a decrease in
prices.

The middle set of panels in Figure 4 show the effect of increasing ψ on q(i),
the probability that a newborn consumer joins network i. For small values of
ψ (e.g., ψ = .1), q(i) is approximately linear, as predicted by Proposition 5.
Higher values of ψ, however, are associated with an S shaped q(i) function;
and the greater ψ is, the steeper the middle section of the S is. This is
consistent with Proposition 4, which states that, if λ(i) is sufficiently steep
or θ(i) sufficiently convex, then, around i∗ (in the present case, i∗ = 50),
market share dynamics are characterized by strong market dominance, that
is, the large network’s birth rate is greater than its death rate, and so market
shares move away from symmetry (in expected value).

Finally, the bottom panels in Figure 4 depict the stationary distribution
of market shares as a function of ψ. For small values of ψ, the distribution of
market shares in unimodal and centered around i∗ = 50. For higher values,
however, it becomes bimodal. Specifically, if q(i) (birth rate) crosses the
diagonal (death rate) from below at i∗, then we obtain a bimodal stationary
distribution. Moreover, the modes of such bimodal distribution are given by
the points where q(i) crosses the diagonal from above.

Aftermarket payoff functional forms (λ, θ). All of the above nu-
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merical simulations were performed assuming a linear consumer benefit func-
tion λ(i). This was done for convenience and because a linear function is a
natural starting point. However, there is no theoretical reason for such func-
tional form. There are at least two ways in which we can extend the analysis.
One is to consider a fixed exponent benefit function (with the linear function
being a particular case). A second one is to consider a benefit function that
plateaus at some market share level. Figure 5 depicts the benefit function

λ(i) in these two cases. The left panel depicts the case when λ(i) = ψ
(

i
η

)ν

and ν takes on the values 1
2

(concave benefit function) and 2 (convex benefit

function). The right panel depicts the case when λ(i) = ψ
(

i
ν

)2
(
3− 2 i

ν

)
and

ν takes on the values 1
4

η (low critical mass) and 3
4

η (high critical mass).27

As in my previous simulations, I consider separately the cases when α = 0
and α = 1. Moreover, in the latter case, I choose θ(i) so as to maintain total
aftermarket value constant with respect to the α = 0 case.

Figure 6 presents results for the case when λ(i) = ψ
(

i
η

)ν

. The top pan-

els show the equilibrium price function. These panels essentially confirm the
patterns previously observed: if aftermarket benefits accrue to consumers,
then the pricing function is increasing; if aftermarket benefits accrue to firms,
however, then the pricing function is decreasing for low values of i and in-
creasing for high values of i. The bottom panels show birth rates. As before,
α = 1 leads to steeper q(i) mappings. Moreover, we see that an increase in
the plateau threshold ν also leads to steeper q(i) mappings. To understand
the intuition, consider for example the case when ν = 1

4
η. This implies that,

whenever 1
4

η < i < 3
4

η, both firms have maximized their network benefits.
As a result, consumers treat both firms equally and the birth probability is
not very different from 1

2
. If however ν = 3

4
η, for example, then we are closer

to the base case considered before.

Summary of numerical simulations. I performed a series of addi-
tional simulations that largely confirm the patterns described above. For
example, while I consider the extreme values α = 0 and α = 1, I could also
try intermediate values of α. When I do so, the results are themselves inter-
mediate. I have also attempted various combinations of δ and ψ. Again, the
patterns remain the same.

27. The second functional form is the lowest polynomial λ(i) with the properties that
the derivative of benefit with respect to network size is zero at i = 0 and i = ν.
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Figure 6: Non-linear benefit function. Values of ν: .5, 1, 2 (solid, dashed
and dotted line, respectively). In all cases, δ = .9, ψ = .3.
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Figure 7: S-shaped plateau benefit function. Values of ν: 25, 50, 75 (solid,
dashed and dotted line, respectively). In all cases, δ = .9, ψ = .5.
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Overall, the numerical simulations of the model confirm the theoretical
results and, moreover, suggest that they are extensive to a wide range of the
parameter set. Regarding the pricing function, when after market benefits
accrue primarily to consumers, we obtain an increasing pricing function (har-
vesting effect dominates); if, however, after market benefits accrue primarily
to firms, then we obtain a decreasing pricing function (investment effect dom-
inates), unless δ is high and market share is high, in which case the pricing
function is again positively sloped. Overall, these results are consistent with
Proposition 3 (except for the case when δ is high).

Regarding market dominance, all numerical simulations confirm that q(i)
is increasing, thus extending the prediction of Propositions 1 and 4. More-
over, if network benefits are sufficiently strong, then strong market domi-
nance takes place. Again, this is consistent with, and extends, the prediction
of Propositions 1 and 4. Finally, one result that I do not derive analytically
but is rather salient in the numerical simulations is that, as α changes from
0 to 1, there is a shift towards greater market dominance.

5 Application: wireless telecommunications

In this section, I consider the application of my general framework to the
study of wireless telecommunications. The application consists of adapting
the static model of Laffont, Rey and Tirole (1998a,b) (hereafter LRT) to
produce specific functional forms θ(i), λ(i). I then use the dynamic model
developed in the previous sections to study the effects of regulatory policy
regarding termination charges (also known as access charges).

In most developed countries, direct network effects play a relatively small
role in telecommunications: by means of interconnection agreements, all
callers are able to communicate with all other callers. However, if calls are
priced differently depending on the calling parties’ networks (typically with
off-net calls being more expensive than on-net calls) then we have what LRT
refer to as tariff-mediated network externalities (or network effects).

I assume that (as is the case in Europe) termination charges are set by
regulators, and examine the implications of alternative policies. I show that,
in addition to the immediate (or static) effect, one must also consider how
different levels of termination charges lead to different dynamic paths of
network market structure. Specifically, I show that higher markups over
marginal cost, in addition to the short run deadweight loss characterized by
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Figure 8: On-net and off-net calls.

LRT, imply a higher degree of market dominance, that is, a greater tendency
for larger networks to become even larger.

Figure 8 illustrates the game played between networks in the aftermarket.
This figure is essentially identical to Figure 1 in LRT, though the notation
is slightly different. Each network sets the prices of on-net calls and off-net
calls. For example, if A calls B, who is in the same network, then A is
charged p̃(i), the on-net call price for network i. If however A calls C, who
is in a different network, then A is charged p̂(i), the off-net call price for
network i. (I assume the receiving party is never charged.)

In terms of costs, I follow LRT in assuming that the social cost of a call
is given by c0 + c1 + c0, where c0 is the cost at each end of the call and
c1 is the trunk cost. Notice that cost is the same regardless of whether the
call is on-net or off-net. In other words, like LRT I assume there are no
“physical” benefits from network size. For on-net calls (say, from A to B),
the cost c0 + c1 + c0 is all borne by the network in question. For off-net calls
(say, from A to C), the calling network (i, in this case) pays the cost c0 + c1,
corresponding to one end of the call and the trunk cost, plus the termination
charge a(j) which network j requires for the service of terminating the call.

Suppose that, for each user pair, there is a utility of initiating calls given
by

uC(qC) =

(
ω − 1

2
qC

)
qC ,

where qC is the quantity of calls (or number of minutes) between the two
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users. In the appendix, I show this leads to the following consumer and firm
aftermarket payoff functions:

λ(i) = (i− 1)
1

2

(
ω − 2 c0 − c1

2

)2

+ j
1

2

(
ω − c0 − c1 − a(j)

2

)2

θ(i) = i (i− 1)

(
ω − 2 c0 − c1

2

)2

+ i j

(
ω − c0 − c1 − a(j)

2

)2

+

+ i j

(
ω − c0 − c1 − a(i)

2

) (
a(i)− c0

)

I now use my model to consider the static and dynamic implications of
different values of the access charge a(i) paid by network j to network i. I
consider three possible cases:

(A) Access charges are regulated at marginal cost level: a(i) = c0.

(B) Access charges are set at twice marginal cost level: a(i) = 2 c0.

(C) Access charges are inversely related to network size, specifically,

a(i) =

(
2− i

η

)
c0

In a certain sense, case C is a combination of cases A and B: a network of
size zero charges 2 c0 (as in case B), whereas a network of size η charges c0

(as in case A).
The above cases, while obviously very stylized, roughly reflect the policies

of various European regulators in recent years. In particular, the consensus
has been to converge to case A from the scenarios of recent years, which have
been closer to B or C.

Figure 9 depicts firm profit and consumer surplus in the aftermarket as a
function of market share.28 Consider first the left panel, firm profit. If access
charges are set at marginal cost level (solid lines), then on-net and off-net calls
cost the same. As a result, a firm’s profit per period is simply proportional
to its market share. If however firms set a fixed markup over cost, as in
case B (dashed lines), then we have a situation of double marginalization

28. In all of the simulations presented in this section, I assume δ = .9, c0 = c1 = 1,
ω = 5. Different parameter values lead to equivalent qualitative results.
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Figure 9: Firm profit and consumer surplus, under cases A (solid line), B
(dashed line), and C (dotted line).

(also characterized by LRT). This implies equilibrium profits below the case
when access charges are set at marginal cost level.29 Finally, in case C, the
profit function θ(i), while still increasing, is now concave for low values of i
(thus violating Property 2) and convex for high values of i. Moreover, for
low values of i, θ(i) is greatest in case C: in terms of current profits, small
networks prefer asymmetric regulation, whereby they are able to charge a
high termination charge while the rival (large) network is forced to charge a
low one.

Consider now the right panel, which depicts consumer surplus as a func-
tion of network size. Under marginal cost pricing (solid lines), consumer
surplus is independent of network size: to the extent that on-net and off-net
prices are the same, consumers do not care about the size of their network.
Consider now case B, when termination charges are constant but greater
than marginal cost. This leads networks to set higher off-net call prices than
on-net call prices. As a result, consumer surplus is (linearly) increasing in
i. Finally, consider case C. If network size is either equal to zero or to η,
then consumer surplus is the same as under marginal cost pricing. If i = 0,
the rival network charges a termination charge that is equal to marginal cost
and so, from a consumer’s perspective, it is as if we were in case A. If i = η,
then consumers do not care about access charges as none of their calls will
be off-net anyway. For intermediate values of i, we observe that asymmetric

29. Notice we are considering the case when both firms charge an access fee above cost.
Given firm j’s access fee, firm i is better off by charging an access fee above cost.
In other words, the one-shot game of setting access fees is a prisoner’s dilemma:
firms are better off with marginal cost pricing, but each firm has an incentive to
set fees above marginal cost.
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regulation of termination charges may lead to a non-monotonic consumer
surplus function (thus violating Property 1).

To summarize, setting termination charges above marginal cost implies
a short-run economic loss which generally leads to a loss in firm profits and
consumer surplus. Under asymmetric regulation, however, small networks
are better off. Finally, notice that, while Properties 1 and 2 hold in cases A
and B, they both fail in case C.

The short-run implications of markups in access charges are well known
from LRT and other papers. My main point in the present application is that
different regulatory regimes also have important dynamic implications. This
is illustrated in Figure 10, where I plot the values of of various endogenous
variables under each of the three scenarios I have been considering.

Consider first the top left-hand panel, which depicts the price paid by a
newborn consumer in order to join a network of size i. Under marginal cost
access pricing, this price is independent of network size. In fact, to the extent
that profits are proportional to market share, a firm’s incentive to attract a
new consumer is independent of its network size; and moreover consumer
do not care about network size either. If however a(i) = ā > c0, then two
things happen: First, consumers are more willing to join a larger network
(everything else constant). Second, firm i’s payoff per period is a convex
function of its market share. Together, these facts lead to a U shaped price
function: for low values of i, the investment price incentive is very low (given
convexity of the v(i)), leading to high prices; whereas for high values of i, the
harvesting effect dominates is very high (given an increasing u(i)), leading
again to high prices. (Strategic complementarity between firm prices is also
a factor here.) This is broadly consistent with the analytical and numerical
results presented in Section 3.

Finally, consider now the case of asymmetric regulation. As mentioned
earlier, this case implies that the derivative of firm profit with respect to
network size is very large for very low or very high i. The pattern of the short
run θ(i) function is reflected in the value function v(i), as can be seen from
the second right-hand panel. This leads firms to compete very aggressively
for new consumers when i is close to zero or close to η. As a result, the
pricing function has an inverted-U shape. This is very different from the
results obtained in Section 3, but recall that then I assumed Properties 1
and 2 held, whereas under case C these properties are violated.

Consider now the top right-hand panel. Under marginal cost termination
charges, consumers are indifferent regarding network size. This leads to a
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Figure 10: Representative results of access charge regulation simulations:
Cases A (solid line), B (dashed line), and C (dotted line).
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constant 50% probability of joining network i. Under a constant markup,
however, larger networks become more attractive to consumers. Consistently
with the results in Section 3, this leads to an increasing q(i) function. In
fact, if the markup over marginal costs is sufficiently high (as is the case
with a(i) = 2 c0), then the slope of q(i) is greater than one at i = η/2.
Finally, under scenario C we obtain a non-monotonic q(i) mapping. This is
different from the theoretical results in Section 3, where I assume Properties
1 and 2 hold. These properties are violated under Scenario 3. In particular,
consumer benefit is decreasing in network size for small i.

Different mappings q(i) lead to different stationary distributions over mar-
ket shares. Under Scenarios A and C, the birthrate q(i) is greater than the
death rate if and only if i < η/2. As a result, the dynamics are characterized
by reversion to the mean and the stationary distribution of markets shares
in unimodal. Under Scenario B, for intermediate values of i the birth rate is
greater than the death rate if and only if i > η/2. As a result, the dynamics
are characterized by strong market dominance. This is illustrated in the third
right-hand panel of Figure 10. The two bottom panels illustrate the dynam-
ics implied by the stationary distributions. The bottom left panel simulates
Scenarios A and B for 1000 periods (Scenario C implies a similar pattern
to Scenario A). Starting from the symmetric state, i = i∗ = 50, the system
remains around i∗ most of the time under Scenario A but rapidly converges
to one of the asymmetric states under Scenario B (i = 18 in the particular
example). Under Scenario B, the system hovers around the asymmetric state
for a “long” time. However, if we simulate the system for long enough, then
“tipping” takes place, that is, the system moves across asymmetric statea.
This is illustrated by the bottom right panel, where I simulate the system
under Scenario B for one million periods instead of one thousand.

I next turn to profits and welfare. The third left panel from the top shows
that social welfare is lower the higher the markup of termination charges over
marginal cost: lowest in Case B, highest in Case A. Not surprisingly, the
welfare loss is greater at intermediate states. In fact, at i = 0 there are no
off-net calls, and so all cases lead to the same level of social welfare. Notice
that the panel only gives welfare as a function of the state. Average long-run
welfare is then given by the “integral” of the sw (i) mapping weighted by
the stationary distribution over states. This distinction is important. For
example, the simple average difference between Scenarios B and C, in terms
of social welfare, is favorable to the latter by about 5.65%. However, when
weighted by long-run probabilities, it is considerably lower, 2.57%. In fact,
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it is theoretically conceivable that the two averages have different sign.
Regarding consumer welfare, the left-hand panel in the second row shows

that, when i is close to zero, consumers are better off in case B than in case
A: although in terms of current surplus consumers are worse off (they have
to pay higher off-net call prices), they gain from the increased competition
to attract new consumers to the network (that is, they pay lower hookup
charges).

While social welfare is uniformly lower with termination charges markups,
the different policies also have significant distributional implications. This is
illustrated by the second row of panels in Figure 10. The left panel shows
that, for i close to zero (or close to η) consumers are better off under scenario
C. This is because firms compete vigorously for a new consumer; and, from
the point of view of termination charges, consumers are nearly indifferent
because there are very few off-net calls. However, notice that, in the long
run, these states are visited very infrequently. From the right-hand panel,
we see that there is a range of low values of i such that a firm is better off
under Scenario C than Scenario A. It should be noted, however, that v(0)
is actually lower under Scenario C than under Scenario A. The difference is
small and can hardly be noticed in Figure 10, but the idea should be clear.
From a short-run aftermarket profit point of view, Scenarios A and C are not
very different: a small network cares little about charging high termination
charges since there are very few calls to terminate. However, Scenario C has
an immediate negative effect: it increases competition for new customers, as
shown in the top left panel.

In addition to Scenario C, firm value at i = 0 is also lower under Scenario
B than under Scenario A. More generally markups in access charges decrease
the value of a firm with zero network (an “entrant”), regardless of whether
termination charges are symmetric or asymmetric. My conclusion for the
symmetric case is consistent with various static models, including those by
Calzada and Valetti (2007) and Hoernig (2007). Peitz (2005), who consid-
ers a static model of network competition, shows that the small network’s
profit increases if the regulator sets a higher price to access the small network
(asymmetric termination charge regulation). Consistently with his conclu-
sion, my model predicts that the small network’s profit in the after market
is greater under asymmetric regulation. However, differently from the static
model, the small network’s value is lower under asymmetric regulation, be-
cause of increased competition for new consumers.

The discussion of the merits of asymmetric termination charge regulation

37



is not of purely academic interest. Consider for example the following quote
from a recent Common Position by the European Regulation Group (ERG):

Under some circumstances asymmetric mobile termi-
nation rates may be justified for example . . . to en-
courage the growth of a new entrant on the market,
which suffers from a lack of scale due to late market
entry (European Regulation Group, 2008, p. 82)

In its contribution to the ERG consultation, and referring to asymmetric ter-
mination charge regulation, telecommunications operator Vodafone affirmed
that

Asymmetries for ‘late entrants’ are entirely subjective
and have no justification at all. Worse, they discour-
age later entrants from growing. (Vodafone, 2008, p.
2)

My analysis suggests that, differently from the ERG’s claim, it is not nec-
essarily the case that asymmetric regulation increases short-run profits of
small operators or strengthens their relative competitive position (unless we
interpret the latter as fast market share growth). Moreover, while my anal-
ysis agrees with Vodafone that asymmetric regulation may not help small
operators, the reason is rather different: the value upon entry is lower, but
conditional on entry growth takes place faster (because small operators have
so much to gain from increasing market share).

Admittedly, my model is very stylized; for example, I only consider two
operators. However, it suggests that competition dynamics lead to a variety
of effects that a static analysis may miss.

Summary. There is now an extensive literature dealing with the prob-
lem of wireless network competition and regulation of termination charges.30

To the best of my knowledge, all of the models developed are static in na-
ture. The model I present in this section, in addition to illustrating my
general framework, contributes to the literature in several ways. First, I
show that, in addition to the static efficiency effects of different regulation
modes, one must also consider the dynamic market share effects. Specifically,
higher termination charges, by inducing tariff mediated network effects, lead

30. For a survey, see Harbord and Pagnozzi (2008).
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to more dispersed market shares, possibly a bi-modal stationary distribu-
tion. Second, allowing small networks to charge higher termination charges,
while increasing their short-run profits, may actually lead to lower firm value
because of the more aggressive behavior by the large “incumbent” network.

6 Final remarks

In this paper, I propose a novel framework with which to analyze the dynam-
ics of price competition with network effects. I provide a series of analytical
results which characterize equilibrium dynamics: conditions for equilibrium
existence and uniqueness; conditions such that the price function is increas-
ing (larger firms set higher prices); and conditions such that market share
dynamics are characterized by weak or strong market dominance. The nu-
merical solution of the model suggests that the properties uncovered for ex-
treme parameter values (low η, low δ, low ψ) largely extend to other regions
of the parameter space.

I then apply my framework to the study of termination charges (or access
charges) in wireless telecommunications. I do so by embedding the Laffont,
Rey and Tirole (1998a,b) model of competition between networks into my
dynamic framework. I consider various forms of termination charge regu-
lation and solve for the resulting equilibrium. The results suggest that, in
addition to the static effects uncovered in previous research, there are inter-
esting dynamic effects resulting from different regulatory regimes. For exam-
ple, high markups of termination charges over marginal cost imply greater
market dominance, and possibly the switch from a uni-modal to a bi-modal
stationary distribution of market shares.

There are other interesting issues that one can analyze with the framework
presented in this paper. One is to estimate the barrier to entry created by
network effects: how does the value of a new entrant depend on the degree
of network effects? A second issue is innovation incentives under network
effects: do larger networks have a greater incentive to improve their product
than smaller networks?31

31. In order to answer this question, one would need to extend the present framework
to the case of asymmetric firms. This is notationally painful; and increases the
state space from η/2 to η states; but otherwise it is feasible.
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Appendix

Proof of Lemma 1: Subtracting the first-order conditions, I have

P (i) = H(i)−W (i). (12)

From (7), we have

H(i) =
1− Φ

(
x(i)

)

φ
(
x(i)

) − 1− Φ
(
x(j)

)

φ
(
x(j)

) =
1− 2 Φ

(
x(i)

)

φ
(
x(i)

)

since x(j) = −x(i), Φ(−x) = 1 − Φ(x) and φ(−x) = φ(x). Given that
x(i) = P (i)− U(i), equation (12) may then be re-written as

P (i) +
2 Φ

(
P (i)− U(i)

)− 1

φ
(
P (i)− U(i)

) = −W (i) (13)

Given U(i) and W (i), the above equation has only one unknown, P (i).
Note that, by part (ii) of Assumption 1,

2 Φ(x)− 1

φ(x)
=

Φ(x)

φ(x)
− Φ(−x)

φ(−x)
(14)

Part (iv) of Assumption 1 then implies that the left-hand side of (14) is
increasing in x. It follows that, given U(i), the left-hand side of (13) is an
increasing function of P (i), ranging from−∞ to +∞. The intermediate value
theorem implies that there exists a unique equilibrium value P (i). Given
{P (i)} (as well as {U(i)}), the values of q(i) and p(i) are uniquely determined
by (3) and (6). (By {P (i)} I mean the set of values P (i) for all i.)

The reverse is straightforward. In fact, for given {p(i)} and {q(i)}, (4)
defines a linear system in {u(i)}; and (9) defines a linear system in {v(i)};
and {U(i)} and {W (i)} are uniquely determined by {u(i)} and {v(i)}.

Proof of Lemma 2: Equation (12) may be re-written as

P (i)− U(i) + H(i) = − (
U(i) + W (i)

)

or simply

x(i) +
2 Φ

(
x(i)

)− 1

φ
(
x(i)

) = − (
U(i) + W (i)

)
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since x(i) = P (i)− U(i).32

The left-hand side is increasing in x(i) and is equal to zero if x(i) = 0.
It follows that x(i) is decreasing in U(i) + W (i) and x(i) ≤ 0 if and only
if U(i) + W (i) ≥ 0. Finally, the result follows from the equation for q(i),
namely q(i) = 1− Φ

(
x(i)

)
.

Proof of Lemma 3: Equation (13) may be rewritten as

G
(
P (i)

)
= −W (i)

where

G
(
P (i)

) ≡ 2 Φ
(
P (i)− U(i)

)− 1

φ
(
P (i)− U(i)

)

is an increasing function of P (i). It follows that P (i) > 0 if and only if
G(0) < −W (i). Since

we conclude that P (i) > 0 if and only if

2 Φ
(− U(i)

)− 1

φ
(
P − U(i)

) < −W (i)

or simply
2 Φ

(
U(i)

)− 1

φ
(
U(i)

) > W (i)

where I use the facts, implied by part (ii) of Assumption 1, that Φ(−x) =
1− Φ(x) and φ(−x) = −φ(x). Since the left-hand side is increasing in U(i),
the result follows.

Proof of Proposition 1: If η = 2, then the consumer value functions (4)
become

u(1) = λ(1) + δ
1

2

(
q(1) u(2) + q(0) u(1)

)

u(2) = λ(2) + δ
1

2

(
q(1) u(2) + q(0) u(1)

)

32. I am grateful to a referee for suggesting this approach.
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It follows that U(1) = λ(2)− λ(1) is a constant (and so is U(0) = −U(1)).
The firm value functions (7) become

w(0) = θ(1)− θ(0) + δ
1

2

(
v(1)− v(0)

)

w(1) = θ(2)− θ(1) + δ
1

2

(
v(1)− v(0)

)

It follows that W (1) = θ(2)− 2 θ(1) + θ(0) is a constant (and so is W (0) =
−W (1)).

Since {U(i),W (i)} and all constants, Lemma 1 implies that there exist
unique {p(i), q(i)}, satisfying the equilibrium conditions; and {u(i), v(i)} are
also uniquely determined by the equilibrium conditions. Moreover, Proper-
ties 1 and 2 imply that U(1) + W (1) > 0, which in turn implies q(1) > q(0),
by Lemma 2.

If η = 2, then the value functions (8) become

v(0) = r(0) + θ(0) + δ v(0)

v(1) = r(1) + θ(1) + δ

(
1

2
v(1) +

1

2
v(0)

)

Subtracting the first equation from the second one, we get

v(1)− v(0) =
(
r(1)− r(0)

)
+

(
θ(1)− θ(0)

)
+

δ

2

(
v(1)− v(0)

)

Since q(1) > q(0), we have r(1) > r(0). Property 2 implies θ(1) > θ(0). It
follows that v(1) > v(0).

Finally, the result regarding prices follows from Lemma 3 and the fact
that U(1) = λ(2)− λ(1) and W (1) is a constant.

Proof of Proposition 2: First notice that uniqueness of equilibrium follows
by the same argument as when consumers are rational. From the proof of
Proposition 1, we know that U(1) = λ(2)−λ(1). Property 1 implies U(1) > 0.
From (11), we have ũ(i) = (1− δ)−1λ(i), and thus

Ũ(1) = (1− δ)−1
(
λ(2)− λ(1)

)
= (1− δ)−1 U(1) > U(1)

Lemma 2 implies q̃(1) > q(1). From (9) and η = 2, we have v(0) =
(1− δ)−1

(
r(0) + θ(0)

)
. Lemma 2 implies ṽ(0) < v(0).
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Proof of Proposition 3: Suppose that δ = 0. Then

U(i) = λ(i)− λ(j)

W (i) =
(
θ(i + 1)− θ(i)

)− (
θ(j + 1)− θ(j)

) (15)

that is, {U(i),W (i)} are all constants. Lemma 1 then implies that there
exists a unique solution to the equilibrium system. This proves equilibrium
uniqueness for δ = 0.

By the same argument as in the proof of Lemma 2, there exists a finite
p̄ such that, if p(i) /∈ [−p̄, p̄ ], then the equilibrium equations fail to hold by
an amount ε that is bounded away from zero. By continuity, if δ is in the
neighborhood of δ = 0 there can be no solution to the system of equilibrium
equations outside of [−p̄, p̄ ]. I thus henceforth restrict to this compact set of
p(i) values.

Consider the system of equations producing the equilibrium. This is given
by the price equations (6), the quantity equations (3), the consumer value
functions (4), and the firm value functions (9). Let

x ≡ (p(0), . . . , p(η − 1), q(0), . . . , q(η − 1), u(1), . . . , u(η), v(0), . . . , v(η − 1))

be the corresponding vector of equilibrium variables. We thus have a system
of 4 η equations and 4 η unknowns. Represent this system as fi(x; δ) = 0.
The matrix of partial derivatives at δ = 0, 5f , is a block matrix:

5f =




I I 0 0

A I B 0

0 0 I 0

0 I 0 I




where A and B have non-zero values in both diagonals and zero in every
other position. It follows that 5f has full rank. Since moreover all fi are
continuously differentiable, the Implicit Function Theorem implies that there
exists a unique equilibrium in the neighborhood of x∗ and δ = 0, where x∗

is the equilibrium at δ = 0. Finally, by continuity and the assumption
that prices belong to a compact set, there exists no equilibrium outside the
neighborhood of x∗, which finally implies there exists a unique equilibrium in
the neighborhood of δ = 0. This establishes the first part of the proposition.

I next turn to the equilibrium characterization. Consider first the case
when θ(i + 1)− θ(i) is constant and Property 1 holds. If δ = 0, then w(i) =
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θ(i + 1) − θ(i). It follows that w(i) is constant and thus W (i) = 0. Since
λ(i) > λ(i−1), it follows that U(i) = U(i)+W (i) is strictly increasing, which
by Lemma 2 implies that x(i) is strictly decreasing. Finally, since w(i) = θ1,
where θ1 is a constant, (6) reduces to

p(i) =
1− Φ

(
x(i)

)

φ
(
x(i)

) − θ1,

which, by part (iv) of Assumption 1, implies that p(i) is strictly increasing
in i.

Consider now the case when λ(i) is constant and Property 2 holds. If
δ = 0, then this implies that u(i) = λ(i + 1) is constant, and thus U(i) = 0.
Define H ′(i) ≡ ∂ H(i) / ∂ x(i). Note that, by part (iv) of Assumption 1,
H ′(i) < 0; and that ∂ H(i) / ∂ P (i) = H ′(i). Applying the Implicit Function
Theorem to (12) we get

dP (i)

dW (i)
= − 1

1−H ′(i)
< 0.

Since W (i) = w(i)− w(j), we have

∂ P (i)

∂ w(i)
=

∂ P (i)

∂ W (i)
.

Moreover, since

h(i) =
1− Φ

(
P (i)

)

φ
(
P (i)

)

and

H(i) =
1− 2 Φ

(
P (i)

)

φ
(
P (i)

)

we have
∂ h(i)

∂ P (i)
=

1

2

∂ H(i)

∂ P (i)
=

1

2
H ′(i).

Differentiating the right-hand side of (6) with respect to w(i), we get

d p(i)

dw(i)
=

(
1

2
H ′(i)

)(
− 1

1−H ′(i)

)
− 1 < 0.

If δ = 0, then w(i) = θ(i + 1) − θ(i), which is strictly increasing. It follows
that p(i) is strictly decreasing in i. Finally, the results follow from continuity
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in δ.

Proof of Proposition 4: Equations (15) and Properties 1–2 imply that
U(i) ≥ 0 if and only if i ≥ i∗, and likewise W (i) > 0 if and only if i ≥ i∗.
Lemma 2 then implies that q(i) ≥ 1

2
if and only if i ≥ i∗.

Suppose that i∗ < i < η − 1. From (10), the state moves away from i∗ in
expected terms if and only if

η − 1− i

η
q(i) >

i

η

(
1− q(i)

)
,

which is equivalent to

q(i) >
i

η − 1
. (16)

In other words, the system moves away from i∗ if and only if the leader’s
birth rate, q(i), is greater that the leader’s death rate, i

η−1
.

By the same argument as in the proof of Proposition 3, at δ = 0 and in
the neighborhood of δ = 0 equilibrium prices are finite. This implies that
x(i) is bounded. Part (iii) of Assumption 1 then implies that q(i) is bounded
away from 1. Therefore, at i = η − 1, q(i) < i

η−1
. Part (b) of the result

follows.
Suppose now that λ(i∗+1)−λ(i∗) > λ′ > 0 or θ(i∗+1)+θ(i∗−1)−2 θ(i∗) >

θ′ > 0. Note that, by Property 1, the first inequality implies U(i) > 0 for
all i > i∗; and, by Property 2, the second equality implies W (i) > 0 for all
i > i∗. By making λ′ or θ′ large enough, I can make U(i) + W (i) arbitrarily
large. By Lemma 2, this implies I can make q(i) arbitrarily close to 1. The
death rate, by contrast, is close to 1

2
. It follows that, for i close to i∗, (16)

holds true. Part (c) of the result follows.

Proof of Proposition 5: Let ŷ be the derivative of a generic variable
y with respect to ψ measured at ψ = 0. Note that, at ψ = 0, we have
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q(i) = q̄ = 1
2

and u(i) = ū. Therefore, by differentiating (4), we get

û(i) = i + 1 + δ


 j

η

(
q̂(i + 1) ū + q̄ û(i + 2)

)
+

(
j

η
q̂(j − 1) +

i

η
q̂(i)

)
ū+

+

(
j

η
q̄ +

i

η
q̄

)
û(i + 1) +

i

η

(
q̂(j) ū + q̄ û(i)

)

 ,

= i + 1 + δ ū

(
j

η

(
q̂(i + 1) + q̂(j − 1)

)
+

i

η

(
q̂(i) + q̂(j)

))
+

+ δ q̄

(
j

η
û(i + 2) +

η − 1

η
û(i + 1) +

i

η
û(i)

)

= i + 1 + δ
1

2

(
j

η
û(i + 2) +

η − 1

η
û(i + 1) +

i

η
û(i)

)

Subtracting by the corresponding expression for j, we have

Û(i) = i− j +
1

2
δ

(
j

η
Û(i + 1) +

η − 1

η
Û(i) +

i

η
Û(i− 1)

)

This system has an exact linear solution:

Û(i) = η
2 ψ i− (η − 1) ψ

η (1− δ) + 2 δ

Since θ(i) = 0, the firm value function is given by

v(i) = r(i) + δ

(
j + 1

η
v(i) +

i

η
v(i− 1)

)
(17)

where

r(i) =
q(i)2

−q′(i)

q(i) = 1− Φ
(
P (i)− U(i)

)

Taking into account that, at ψ = 0, q(i) = q̄ = 1
2
; and that φ′(0) = 0; it

follows that

r̂(i) =
2 q̄

(−φ(0)
)(

P̂ (i)− Û(i)
)
φ(0)

φ(0)2
= Û(i)− P̂ (i)
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Taking derivatives of (17) with respect to ψ at ψ = 0, we get

v̂(i) = Û(i)− P̂ (i) + δ

(
j + 1

η
v̂(i) +

i

η
v̂(i− 1)

)

Since j = η − 1− i, this can be rearranged as

(1− δ) v̂(i) = Û(i)− P̂ (i)− δ
i

η

(
v̂(i)− v̂(i− 1)

)

Likewise, for firm j,

(1− δ) v̂(j) = Û(j)− P̂ (j)− δ
j

η

(
v̂(j)− v̂(j − 1)

)

Since U(j) = −U(i) and P (j) = −P (i), we can add the above equations to
get

(1− δ)
(
v̂(i) + v̂(j)

)
= − δ

i

η

(
v̂(i)− v̂(i− 1)

)− δ
j

η

(
v̂(j)− v̂(j − 1)

)
(18)

which has a linear solution (notice that a linear v̂ implies that both the
left-hand side and the right-hand side are constant in i, j).

The price equation is given by

p(i) = h(i)− δ
i

η

(
v(i + 1)− v(i)

)− δ
j

η

(
v(i)− v(i− 1)

)
(19)

where

h(i) =
q(i)

−q′(i)

q(i) = 1− Φ
(
P (i)− U(i)

)

Taking into account that, at ψ = 0, q(i) = q̄ = 1
2
; and that φ′(0) = 0; it

follows that

ĥ(i) =
−φ(0)

(
P̂ (i)− Û(i)

)
φ(0)

φ(0)2
= Û(i)− P̂ (i)

Taking derivatives of (19) with respect to ψ at ψ = 0, we get

p̂(i) = Û(i)− P̂ (i)− δ
i

η

(
v̂(i + 1)− v̂(i)

)− δ
j

η

(
v̂(i)− v̂(i− 1)

)
,
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Subtracting the p̂(j) equation from the p̂(i) equation, and taking into account
that v̂(i) is linear, we have

P̂ (i) = 2 Û(i)− 2 P̂ (i)

or simply

P̂ (i) =
2

3
Û(i) (20)

Plugging this back into the price function, we get

p̂(i) =
1

3
Û(i)− κ,

where κ is a constant (since v(i) is linear and i + j = η − 1). Since Û(i) is
increasing, it follows that p̂(i) is increasing. This in turn implies part (a) of
the proposition.

Since
q(i) = 1− Φ

(
P (i)− U(i)

)

it follows, by (20), that

q̂(i) = −φ(0)
(
P̂ (i)− Û(i)

)
=

φ(0)

3
Û(i)

Since Û(i) is increasing, so is q̂(i), which proves part (b) of the proposition.
Part (c) is fairly straightforward: since ψ is small, q(i), the birth rate, is

approximately constant. The death rate, however, is given by i/η.
Plugging (20) into the value function, we get

(1− δ) v̂(i) =
1

3
Û(i)− δ

i

η

(
v̂(i)− v̂(i− 1)

)
(21)

Since v̂ is linear and U is increasing, the right-hand side is increasing in i.
It follows that v̂ is also increasing, which in turn implies part (d) of the
proposition.

Finally, the fact that v is increasing implies that the left-hand side of (18)
is negative, which in turn implies part (e) of the proposition.

Derivation of θ(i) and λ(i) in wireless telecommunications exam-
ple. Utility per consumer pair is given by

uC(qC) =

(
ω − 1

2
qC

)
qC , (22)
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This leads to a demand curve qC = ω − pC . Firm profit (for a pair of users)
is given by

π = (pC − c) qC = (ω − qC − c) qC (23)

where c is the cost of a call. Optimal output and price are therefore given by

q∗C =
ω − c

2
(24)

p∗C =
ω + c

2
(25)

Substituting (24) for qC in (22) and (23), and subtracting expenditure from
gross surplus, I obtain equilibrium net consumer surplus and profit:

µ∗ =
1

2

(
ω − c

2

)2

(26)

π∗ =

(
ω − c

2

)2

(27)

I now apply these generic expressions to the particular values of cost of on-
net and off-net calls. Specifically, profit per on-net caller pair and profit per
off-net caller pair are respectively given by

π̃(i) =

(
ω − 2 c0 − c1

2

)2

(28)

π̂(i) =

(
ω − c0 − c1 − a(j)

2

)2

(29)

Finally, the number of off-net calls originating in network j, per caller pair,
is given by

q̂C(j) =
ω − c0 − c1 − a(i)

2
.

Pulling all of these expressions together, I get the following equilibrium profit
function:

θ(i) = i (i− 1) π̃(i) + i j π̂(i) + i j q̂(j)
(
a(i)− c0

)

= i (i− 1)

(
ω − 2 c0 − c1

2

)2

+ i j

(
ω − c0 − c1 − a(j)

2

)2

+

+ i j

(
ω − c0 − c1 − a(i)

2

) (
a(i)− c0

)
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The first term corresponds to calls from a consumer to the other consumers
in the same network. The second term corresponds to calls from a consumer
to consumers in the other network. Finally, the third term corresponds to
revenues from charging termination fees to the other network.

As to the consumer net utility function, we have

λ(i) = (i− 1)
1

2

(
ω − 2 c0 − c1

2

)2

+ j
1

2

(
ω − c0 − c1 − a(j)

2

)2

Again, the first term corresponds to on-net calls and the second one to off-net
calls. Notice that, if a(j) > c0, then the coefficient on (i− 1) is greater than
the coefficient on j. It follows that λ(i) is strictly increasing in i, that is,
Property 1 holds.
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