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Setup and Motivation

Objective

observe a sample ((Xi, Yi); i = 1, . . . , n) i.i.d. of (X,Y ).

predict the output Y for an input X at location x

with minimal assumptions on the law of (X,Y ) (Nonparametric setup).

Notation

(X,Y )→ joint c.d.f FX,Y , joint density fX,Y ;

X → c.d.f. F , density f ;

Y → c.d.f. G, density g.
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Why estimating the conditional density ?

What is a good prediction ?

1 Classical approach (L2 theory): the conditional mean or regression
function r(x) = E(Y |X = x),

2 Fully informative approach: the conditional density f(y|x)
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Estimating the conditional density - 1

A first density -based approach

f(y|x) =
fX,Y (x, y)
f(x)

← f̂X,Y (x, y)

f̂(x)

f̂X,Y , f̂ : Parzen-Rosenblatt kernel estimators with kernels K, K ′,
bandwidths h and h′.

The double kernel estimator

f̂(y|x) =

n∑
i=1

K ′h′(Xi − x)Kh(Yi − y)

n∑
i=1

K ′h′(Xi − x)
→ ratio shaped
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Estimating the conditional density - 2

A regression strategy

Fact: E
(
1|Y−y|≤h|X = x

)
= F (y + h|x)− F (y − h|x) ≈ 2h.f(y|x)

Conditional density estimation problem → a regression framework
1 Transform the data:

Yi → Y ′i := (2h)−11|Yi−y|≤h

Yi → Y ′i := Kh(Yi − y) smoothed version

2 Perform a nonparametric regression of Y ′i on Xis by local averaging
methods (Nadaraya-Watson, local polynomial, orthogonal series,...)

Nadaraya-Watson estimator

f̂(y|x) =

n∑
i=1

K ′h′(Xi − x)Kh(Yi − y)

n∑
i=1

K ′h′(Xi − x)
→ (same) ratio shape.
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The trouble with ratio shaped estimators

Drawbacks

quotient shape of estimator is tricky to study;

explosive behavior when the denominator is small → numerical
implementation delicate (trimming);

minoration hypothesis on the marginal density f(x) ≥ c > 0.

How to remedy these problems?
→ build on the idea of using synthetic data:
find a representation of the data more adapted to the problem.
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The quantile transform

What is the “best” transformation of the data in that context ?

The quantile transform theorem

when F is arbitrary, if U is a uniformly distributed random variable

on (0, 1), X
d= F−1(U);

whenever F is continuous, the random variable U = F (X) is
uniformly distributed on (0, 1).

→ use the invariance property of the quantile transform to construct a
pseudo-sample (Ui, Vi) with a prescribed uniform marginal distribution.

(X1, . . . , Xn) (Y1, . . . , Yn)
↓ ↓

(U1 = F (X1), . . . , Un = F (Xn)) (V1 = G(Y1), . . . , Vn = G(Yn))

Olivier P. Faugeras A quantile-copula approach to conditional density estimation.
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The copula representation

→ leads naturally to the copula function:

Sklar’s theorem [1959]

For any bivariate cumulative distribution function FX,Y on R2, with
marginal c.d.f. F of X and G of Y , there exists some function
C : [0, 1]2 → [0, 1], called the dependence or copula function, such as

FX,Y (x, y) = C(F (x), G(y)) , −∞ ≤ x, y ≤ +∞.

If F and G are continuous, this representation is unique with respect to
(F,G). The copula function C is itself a c.d.f. on [0, 1]2 with uniform
marginals.

→ captures the dependence structure of the vector (X,Y ), irrespectively
of the marginals.
→ allows to deal with the randomness of the dependence structure and
the randomness of the marginals separately.
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A product shaped estimator

Assume that the copula function C(u, v) has a density c(u, v) = ∂2C(u,v)
∂u∂v

i.e. c(u, v) is the density of the transformed r.v. (U, V ) = (F (X), G(Y )).

A product form of the conditional density

By differentiating Sklar’s formula,

fY |X(y|x) =
fXY (x, y)
f(x)

= g(y)c(F (x), G(y))

A product shaped estimator

f̂Y |X(y|x) = ĝn(y)ĉn(Fn(x), Gn(y))

Olivier P. Faugeras A quantile-copula approach to conditional density estimation.
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Construction of the estimator - 1

→ get an estimator of the conditional density by plugging estimators of
each quantities.

density of Y : g ← kernel estimator ĝn(y) := 1
nhn

n∑
i=1

K0

(
y−Yi

hn

)

c.d.f.

F (x) ← Fn(x) = 1
n

n∑
j=1

1Xj6x

G(y) ← Gn(y) := 1
n

n∑
j=1

1Yj6y
empirical c.d.f.

copula density c(u, v)← cn(u, v) a bivariate Parzen-Rosenblatt
kernel density (pseudo) estimator

cn(u, v) :=
1
na2

n

n∑
i=1

K

(
u− Ui
an

,
v − Vi
an

)
(1)

with kernel K(u, v) = K1(u)K2(v), and bandwidths an.

Olivier P. Faugeras A quantile-copula approach to conditional density estimation.
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Construction of the estimator - 2

But, F and G are unknown: the random variables
(Ui = F (Xi), Vi = G(Yi)) are not observable.
⇒ cn: is not a true statistic.
→ approximate the pseudo-sample (Ui, Vi), i = 1, . . . , n by its empirical
counterpart (Fn(Xi), Gn(Yi)), i = 1, . . . , n.

A genuine estimator of c(u, v)

ĉn(u, v) :=
1
na2

n

n∑
i=1

K1

(
u− Fn(Xi)

an

)
K2

(
v −Gn(Yi)

an

)
.
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But, F and G are unknown: the random variables
(Ui = F (Xi), Vi = G(Yi)) are not observable.
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ĉn(u, v) :=
1
na2

n

n∑
i=1

K1

(
u− Fn(Xi)

an

)
K2

(
v −Gn(Yi)

an

)
.

Olivier P. Faugeras A quantile-copula approach to conditional density estimation.



Introduction
The Quantile-Copula estimator

Asymptotic results
Comparison with competitors

Application to prediction and discussions

The quantile transform
The copula representation
A product shaped estimator

Construction of the estimator - 2

But, F and G are unknown: the random variables
(Ui = F (Xi), Vi = G(Yi)) are not observable.
⇒ cn: is not a true statistic.
→ approximate the pseudo-sample (Ui, Vi), i = 1, . . . , n by its empirical
counterpart (Fn(Xi), Gn(Yi)), i = 1, . . . , n.

A genuine estimator of c(u, v)
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The quantile-copula estimator

Recollecting all elements, we get,

The quantile-copula estimator

f̂n(y|x) := ĝn(y)ĉn(Fn(x), Gn(y)).

that is to say,

f̂n(y|x) :=

[
1
nhn

n∑
i=1

K0

(
y − Yi
hn

)]
.

[
1
na2

n

n∑
i=1

K1

(
Fn(x)− Fn(Xi)

an

)
K2

(
Gn(y)−Gn(Yi)

an

)]
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Hypothesis

Assumptions on the densities

i) the c.d.f F of X and G of Y are strictly increasing and differentiable;

ii) the densities g and c are twice differentiable with continuous
bounded second derivatives on their support.

Assumptions on the kernels

(i) K and K0 are of bounded support and of bounded variation;

(ii) 0 ≤ K ≤ C and 0 ≤ K0 ≤ C for some constant C;

(iii) K and K0 are second order kernels: m0(K) = 1, m1(K) = 0 and
m2(K) < +∞, and the same for K0.

(iv) K is twice differentiable with bounded second partial derivatives.

→ classical regularity assumptions in nonparametric literature.
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Asymptotic results - 1

Under the above regularity assumptions, with hn → 0, an → 0,

Pointwise Consistency

weak consistency hn ' n−1/5, an ' n−1/6 entail

f̂n(y|x) = f(y|x) +OP

(
n−1/3

)
.

strong consistency hn ' (ln lnn/n)1/5 and an ' (ln lnn/n)1/6

f̂n(y|x) = f(y|x) +Oa.s.

((
ln lnn
n

)1/3
)
.

asymptotic normality hn ' n−1/5 and an = o(n−1/6) entail√
na2

n

(
f̂n(y|x)− f(y|x)

)
d
 N

(
0, g(y)f(y|x)||K||22

)
.
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Asymptotic results - 2

Uniform Consistency

Under the above regularity assumptions, with hn → 0, an → 0, for x in
the interior of the support of f and [a, b] included in the interior of the
support of g,

weak consistency hn ' (lnn/n)1/5, an ' (lnn/n)1/6 entail

sup
y∈[a,b]

|f̂n(y|x)− f(y|x)| = OP

(
(lnn/na2

n)1/2
)
.

strong consistency hn ' (lnn/n)1/5, an ' (lnn/n)1/6 entail

sup
y∈[a,b]

|f̂n(y|x)− f(y|x)| = Oa.s.

((
lnn
n

)1/3
)
.
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Asymptotic Mean square error

Asymptotic Bias and Variance for the quantile-copula estimator

Bias:

E(f̂n(y|x))− f(y|x) = g(y)m2(K).∇2c(F (x), G(y))
a2
n

2
+ o(a2

n)

with m2(K) = (m2(K1),m2(K2)), ∇2c(u, v) = (∂
2c(u,v)
∂u2 , ∂

2c(u,v)
∂v2 ).

Variance:

V ar(f̂(y|x)) = 1/(na2
n)g(y)f(y|x)||K||22 + o(1/(na2

n)).
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Sketch of the proofs

Decomposition diagram

ĝ(y)ĉn(Fn(x), Gn(y))
↓

g(y)ĉn(Fn(x), Gn(y)) → g(y)ĉn(F (x), G(y)) → g(y)cn(F (x), G(y))
↓

g(y)c(F (x), G(y))

↓ : consistency results of the kernel density estimators
→ : two approximation lemmas

1 ĉn from (Fn(x), Fn(y))→ (F (x), G(y))
2 ĉn → cn.

Tools: results for the K-S statistics ||F − Fn||∞ and ||G−Gn||∞.
→ Heuristic: rate of convergence of density estimators < rate of
approximation of the K-S Statistic.
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Theoretical asymptotic comparison - 1

Competitor: e.g. Local Polynomial estimator, f̂
(LP )
n (y|x) := θ̂0 with

R(θ, x, y) :=
n∑
i=1

(
Kh2(Yi − y)−

∑r

j=0
θj(Xi − x)j

)2

K ′h1
(Xi − x),

where θ̂xy := (θ̂0, θ̂1, . . . , θ̂r) is the value of θ which minimizes R(θ, x, y).

Comparative Bias

BLP =
h2

1m2(K ′)
2

∂2f(y|x)
∂x2

+
h2

2m2(K)
2

∂2f(y|x)
∂y2

+ o(h2
1 + h2

2)

BQC = g(y)m2(K).∇2c(F (x), G(y))
a2
n

2
+ o(a2

n)
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Theoretical asymptotic comparison - 2

Asymptotic bias comparison

All estimators have bias of the same order ≈ h2 ≈ n−1/3;

Distribution dependent terms:

difficult to compare
sometimes less unknown terms for the quantile-copula estimator

c of compact support : the “classical” kernel method to estimate
the copula density induces bias on the boundaries of [0, 1]2

→ techniques to reduce the bias of the kernel estimator on the
edges (boundary kernels, beta kernels, reflection and transformation
methods,... )
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Theoretical asymptotic comparison - 3

Asymptotic Variance comparison

Main terms in the asymptotic variance:

Ratio shaped estimators: V ar(LP ) := f(y|x)
f(x) → explosive variance

for small value of the density f(x), e.g. in the tail of the distribution
of X.

Quantile-copula estimator: V ar(QC) := g(y)f(y|x) → does not
suffer from the unstable nature of competitors.

Asymptotic relative efficiency: ratio of variances

V ar(QC)
V ar(LP )

:= f(x)g(y)

→ the QC has a lower asymptotic variance for a large amount of x,y
values.
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Finite sample simulation

Model

Sample of n = 100 i.i.d. variables (Xi, Yi), from the following model:

X,Y is marginally distributed as N (0, 1)
X,Y is linked via Frank Copula .

C(u, v, θ) =
ln[(θ + θu+v − θu − θv)/(θ − 1)]

ln θ

with parameter θ = 100.

Practical implementation:

Beta kernels for copula estimator, Epanechnikov for other.

simple Rule-of-thumb method for the bandwidths.
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Application to prediction - definitions

Point predictors: Conditional mode predictor

Definition of the mode: θ(x) := arg supy f(y|x)
→ plug in predictor : θ̂(x) := arg supy f̂n(y|x)

Set predictors: Level sets

Predictive set Cα(x) such as P (Y ∈ Cα(x)|X = x) = α
→ Level set or Highest density region Cα(x) := {y : f(y|x) ≥ fα} with
fα the largest value such that the prediction set has coverage probability
α.
→ plug-in level set: Cα,n(x) := {y : f̂n(y|x) ≥ f̂α} where f̂α is an
estimate of fα.
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Application to prediction - results

Point predictors: Conditional mode predictor

Under regularity conditions, uniform convergence on a compact set of the
conditional density estimator entails that

θ̂(x) a.s.→ θ(x)

Set predictors: Level sets

Under regularity conditions, uniform convergence on a compact set of the
conditional density estimator entails that

λ(∆(Cα,n(x), Cα(x))) a.s.→ 0

where ∆(., .) stands for the symmetric difference, and λ for Lebesgue
measure.
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On the efficiency estimation of the empirical margins

Deficiency of the empirical distribution functions

the order statistics X1,n < . . . < Xn,n is complete sufficient for
estimating F with a density f .
→ Fn is the UMVU estimator of F .

its smoothed version F̂ (x) = n−1
∑n
i=1 L

(
Xi−x
bn

)
where bn

bandwidth and L(x) =
∫ x
−∞ l(t)dt, with l density kernel, is such that∣∣∣∣E(F̂ (x)− F (x))2 − E(Fn(x)− F (x))2 + 2h/nF ′(x)

∫
tl(t)L(t)dt

∣∣∣∣
≤ h4AC2 +O(h2/n)

→ Fn is deficient w.r.t F̂ .
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Implication for the quantile copula estimator

The doubly smoothed quantile copula conditional density estimator

→ replace Fn and Gn by F̂ and Ĝ

beneficial for small samples

graphically more appealing: less wiggly behaviour

Consequence for local averaging

With smooth margin estimators F̂ and Ĝ,

or F̂ (x)− F̂ (Xi) ≈ f̂(Xi)(x−Xi) (2)

F̂ (Xi)− F̂ (x) ≈ f̂(x)(Xi − x) (3)
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Therefore, the copula density part of the estimator writes

ĉn(F̂n(x), Ĝn(y)) = (nanbn)−1
n∑
i=1

K1

(
F̂n(Xi)− F̂n(x)

an

)
K2 (. . .)

≈ (nanbn)−1
n∑
i=1

K1

(
Xi − x
an/f̂(Xi)

)
K2

(
Yi − y
bn/ĝ(Yi)

)
with approximation (2), and

≈ (nanbn)−1
n∑
i=1

K1

(
Xi − x
an/f̂(x)

)
K2

(
Yi − y
bn/ĝ(y)

)
with approximation (3).
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→ the copula density estimator with smoothed margin estimates is like a
kernel estimator with an adaptive local bandwidth

an/f̂(Xi) : sample smoothing bandwidth

an/f̂(x) : balloon smoothing bandwidth

→ Work-in-Progress: use the CDF transform approach to improve on
kernel density estimation methods

The beta kernel is an unbiased estimate of the uniform density

Parametric start: set a family of CDF F = {F (, θ)}.
Estimate θ ← θ̂

Transform Zi = F (Xi, θ̂) to get a semiparametric estimator with
rate nearly parametric on F
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Perspectives and work-in-progress - 1

Prediction for extreme values. Application in Insurance and Finance, with
S. Loisel and E. Masiello, ISFA, Lyon 1.

Aim: make inference on Y for large values of X.
→ design an extreme-specific estimator by combining

estimators based on Extreme value theory or the Peak-Over
Threshold approach for Fn;

the wavelet estimator ĉn of C. Genest, E. Masiello, K. Tribouley
(2009).

on a problem related to insurance and finance.
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Perspectives and work-in-progress - 2

A semi-parametric multivariate extension via a Single Index model, with
O. Lopez, Paris 6.

The issues when X ∈ Rd, d > 1:

the product shape of the estimator breaks down;

curse of dimensionality.

→ use a dimension-reduction hypothesis such as a Single-Index-Model:

∃θ0 ∈ Rd, fY |X = fY |θT
0 .X

→ use the quantile copula estimator on the auxiliary data Z = θT .X to
estimate θ0 by maximum pseudo-likelihood method.
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Perspectives and work-in-progress - 3

Conditional Cumulative distribution function, conditional quantile, and
regression estimation.

→ use the same quantile-copula approach to estimate

FY |X(x, y) =
∫ y

−∞
g(t)c(F (x), G(t))dt = E[1Y≤yc(F (x), G(Y ))]

by

F̂Y |X(x, y) :=
1
n

n∑
i=1

1Yi≤y ĉn(Fn(x), Gn(Yi))

→ get conditional quantiles (VaR) and confidence intervals.
→ proceed similarly for the regression.

r̂(x) =
1
n

n∑
i=1

Yiĉn(Fn(x), Gn(Yi))
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Perspectives and work-in-progress - 4

Extension to time series by coupling arguments for Markovian models.
Application to tests of adequacy.

→ Estimate π(x, y)dy = P (ζi+1 ∈ dy|ζi = x), the transition density of a
Markov chain (ζt), t ∈ N.
→ Extend the results from the i.i.d. case to the mixing framework, by
coupling and blocks arguments, and the substitution

(Xi, Yi)←− (ζi, ζi+1)

→ use the estimate as a proxy to test the adequacy of parametric models.
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