A quantile-copula approach to conditional density estimation.

Applications to prediction.

Olivier P. Faugeras

Université Toulouse 1 Capitole - GREMAQ

15/09/2009

Introduction

The Quantile-Copula estimator Asymptotic results Comparison with competitors Application to prediction and discussions Why estimating the conditional density? Two classical approaches for estimation The trouble with ratio shaped estimators

Outline

Introduction

- Why estimating the conditional density?
- Two classical approaches for estimation
- The trouble with ratio shaped estimators

2 The Quantile-Copula estimator

- The quantile transform
- The copula representation
- A product shaped estimator

3 Asymptotic results

- Consistency and asymptotic normality
- Sketch of the proofs
- 4 Comparison with competitors
 - Theoretical comparison
 - Finite sample simulation
- 5 Application to prediction and discussions
 - Application to prediction
 - Discussions

Setup and Motivation

Why estimating the conditional density? Two classical approaches for estimation The trouble with ratio shaped estimators

Objective

- observe a sample $((X_i, Y_i); i = 1, \dots, n)$ i.i.d. of (X, Y).
- \bullet predict the output Y for an input X at location x

with minimal assumptions on the law of (X, Y) (Nonparametric setup).

Notation

•
$$(X,Y) \rightarrow \text{ joint c.d.f } F_{X,Y}, \text{ joint density } f_{X,Y};$$

- $X \rightarrow \text{c.d.f.} F$, density f;
- $Y \rightarrow \text{c.d.f.} G$, density g.

Why estimating the conditional density? Two classical approaches for estimation The trouble with ratio shaped estimators

Setup and Motivation

Objective

- observe a sample $((X_i, Y_i); i = 1, \dots, n)$ i.i.d. of (X, Y).
- $\bullet\,$ predict the output Y for an input X at location x

with minimal assumptions on the law of (X, Y) (Nonparametric setup).

Notation

•
$$(X,Y) \rightarrow \text{ joint c.d.f } F_{X,Y}, \text{ joint density } f_{X,Y};$$

- $X \rightarrow \text{c.d.f.} F$, density f;
- $Y \rightarrow \text{c.d.f.} G$, density g.

Why estimating the conditional density? Two classical approaches for estimation The trouble with ratio shaped estimators

Setup and Motivation

Objective

- observe a sample $((X_i, Y_i); i = 1, \dots, n)$ i.i.d. of (X, Y).
- $\bullet\,$ predict the output Y for an input X at location x

with minimal assumptions on the law of (X, Y) (Nonparametric setup).

Notation

- $(X, Y) \rightarrow \text{joint c.d.f } F_{X,Y}$, joint density $f_{X,Y}$;
- $X \rightarrow \text{c.d.f.} F$, density f;
- $Y \rightarrow \text{c.d.f.} G$, density g.

Why estimating the conditional density? Two classical approaches for estimation The trouble with ratio shaped estimators

Why estimating the conditional density ?

What is a good prediction ?

• Classical approach (\mathbb{L}_2 theory): the conditional mean or *regression* function r(x) = E(Y|X = x),

(2) Fully informative approach: the *conditional density* f(y|x)

Why estimating the conditional density? Two classical approaches for estimation The trouble with ratio shaped estimators

Why estimating the conditional density ?

What is a good prediction ?

• Classical approach (\mathbb{L}_2 theory): the conditional mean or *regression* function r(x) = E(Y|X = x),

② Fully informative approach: the *conditional density* f(y|x)

Why estimating the conditional density? Two classical approaches for estimation The trouble with ratio shaped estimators

Why estimating the conditional density ?

What is a good prediction ?

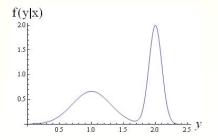
- Classical approach (\mathbb{L}_2 theory): the conditional mean or *regression* function r(x) = E(Y|X = x),
- **2** Fully informative approach: the *conditional density* f(y|x)

Why estimating the conditional density? Two classical approaches for estimation The trouble with ratio shaped estimators

Why estimating the conditional density ?

What is a good prediction ?

- Classical approach (L₂ theory): the conditional mean or regression function r(x) = E(Y|X = x),
- **2** Fully informative approach: the *conditional density* f(y|x)

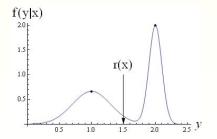


Why estimating the conditional density? Two classical approaches for estimation The trouble with ratio shaped estimators

Why estimating the conditional density ?

What is a good prediction ?

- Classical approach (L₂ theory): the conditional mean or regression function r(x) = E(Y|X = x),
- **2** Fully informative approach: the *conditional density* f(y|x)



Why estimating the conditional density? Two classical approaches for estimation The trouble with ratio shaped estimators

Estimating the conditional density - 1

A first *density*-based approach

$$f(y|x) = rac{f_{X,Y}(x,y)}{f(x)} \quad \leftarrow rac{\hat{f}_{X,Y}(x,y)}{\hat{f}(x)}$$

 $\hat{f}_{X,Y},\hat{f}\colon$ Parzen-Rosenblatt kernel estimators with kernels $K,\,K',$ bandwidths h and h'.

$$\hat{f}(y|x) = \frac{\sum_{i=1}^{n} K'_{h'}(X_i - x)K_h(Y_i - y)}{\sum_{i=1}^{n} K'_{h'}(X_i - x)} \to \text{ratio shaped}$$

Why estimating the conditional density? Two classical approaches for estimation The trouble with ratio shaped estimators

Estimating the conditional density - 1

A first *density*-based approach

$$f(y|x) = \frac{f_{X,Y}(x,y)}{f(x)} \quad \leftarrow \frac{\hat{f}_{X,Y}(x,y)}{\hat{f}(x)}$$

 $\hat{f}_{X,Y},\hat{f}\colon$ Parzen-Rosenblatt kernel estimators with kernels $K,\,K',$ bandwidths h and h'.

$$\hat{f}(y|x) = \frac{\sum_{i=1}^{n} K'_{h'}(X_i - x)K_h(Y_i - y)}{\sum_{i=1}^{n} K'_{h'}(X_i - x)} \to \text{ratio shaped}$$

Why estimating the conditional density? Two classical approaches for estimation The trouble with ratio shaped estimators

Estimating the conditional density - 1

A first *density*-based approach

$$f(y|x) = \frac{f_{X,Y}(x,y)}{f(x)} \quad \leftarrow \frac{\hat{f}_{X,Y}(x,y)}{\hat{f}(x)}$$

 $\widehat{f}_{X,Y}, \widehat{f}$: Parzen-Rosenblatt kernel estimators with kernels K, K', bandwidths h and h'.

$$\hat{f}(y|x) = \frac{\sum\limits_{i=1}^{n} K'_{h'}(X_i - x)K_h(Y_i - y)}{\sum\limits_{i=1}^{n} K'_{h'}(X_i - x)} \to \text{ratio shaped}$$

Why estimating the conditional density? Two classical approaches for estimation The trouble with ratio shaped estimators

Estimating the conditional density - 1

A first *density*-based approach

$$f(y|x) = \frac{f_{X,Y}(x,y)}{f(x)} \quad \leftarrow \frac{\hat{f}_{X,Y}(x,y)}{\hat{f}(x)}$$

 $\widehat{f}_{X,Y}, \widehat{f}$: Parzen-Rosenblatt kernel estimators with kernels K, K', bandwidths h and h'.

$$\hat{f}(y|x) = \frac{\sum_{i=1}^{n} K'_{h'}(X_i - x)K_h(Y_i - y)}{\sum_{i=1}^{n} K'_{h'}(X_i - x)} \to \text{ratio shaped}$$

Why estimating the conditional density? Two classical approaches for estimation The trouble with ratio shaped estimators

Estimating the conditional density - 2

A regression strategy

Fact:
$$E\left(\mathbbm{1}_{|Y-y|\leq h}|X=x\right) = F(y+h|x) - F(y-h|x) \approx 2h.f(y|x)$$

Conditional density estimation problem → a regression framework **•** *Transform* the data:

$$\begin{split} Y_i &\to Y_i' := (2h)^{-1} \mathbb{1}_{|Y_i - y| \leq h} \\ Y_i &\to Y_i' := K_h (Y_i - y) \text{ smoothed version} \end{split}$$

Perform a nonparametric regression of Y_i on X_is by local averaging methods (Nadaraya-Watson, local polynomial, orthogonal series,...)

Nadaraya-Watson estimator

$$\hat{f}(y|x) = \frac{\sum_{i=1}^{n} K'_{h'}(X_i - x)K_h(Y_i - y)}{\sum_{i=1}^{n} K'_{h'}(X_i - x)} \to \text{(same) ratio shape.}$$

Olivier P. Faugeras

A quantile-copula approach to conditional density estimation.

Why estimating the conditional density? Two classical approaches for estimation The trouble with ratio shaped estimators

Estimating the conditional density - 2

A *regression* strategy

$$\mathsf{Fact:} \ E\left(\mathbbm{1}_{|Y-y| \leq h} | X=x\right) = F(y+h|x) - F(y-h|x) \approx 2h.f(y|x)$$

Conditional density estimation problem \rightarrow a regression framework **Transform** the data:

$$\begin{split} Y_i &\to Y_i' := (2h)^{-1} \mathbb{1}_{|Y_i - y| \leq h} \\ Y_i &\to Y_i' := K_h(Y_i - y) \text{ smoothed version} \end{split}$$

Perform a nonparametric regression of Y' on X is by local averaging methods (Nadaraya-Watson, local polynomial, orthogonal series,...)

Nadaraya-Watson estimator

$$\hat{f}(y|x) = \frac{\sum_{i=1}^{n} K'_{h'}(X_i - x)K_h(Y_i - y)}{\sum_{i=1}^{n} K'_{h'}(X_i - x)} \to \text{(same) } \text{ratio shape.}$$

Why estimating the conditional density? Two classical approaches for estimation The trouble with ratio shaped estimators

Estimating the conditional density - 2

A *regression* strategy

$$\mathsf{Fact:} \ E\left(\mathbbm{1}_{|Y-y|\leq h}|X=x\right)=F(y+h|x)-F(y-h|x)\approx 2h.f(y|x)$$

Conditional density estimation problem \rightarrow a regression framework **Transform** the data:

$$\begin{split} Y_i &\to Y_i' := (2h)^{-1} \mathbb{1}_{|Y_i - y| \leq h} \\ Y_i &\to Y_i' := K_h(Y_i - y) \text{ smoothed version} \end{split}$$

Perform a nonparametric regression of Y' on X is by local averaging methods (Nadaraya-Watson, local polynomial, orthogonal series,...)

Nadaraya-Watson estimator

$$\hat{f}(y|x) = \frac{\sum_{i=1}^{n} K'_{h'}(X_i - x)K_h(Y_i - y)}{\sum_{i=1}^{n} K'_{h'}(X_i - x)} \to \text{(same) } ratio \text{ shape.}$$

Why estimating the conditional density? Two classical approaches for estimation The trouble with ratio shaped estimators

Ratio shaped estimators

Bibliography

- Double kernel estimator: Rosenblatt [1969], Roussas [1969], Stute [1986], Hyndman, Bashtannyk and Grunwald [1996];
- 2 Local Polynomial: Fan, Yao and Tong [1996], Fan and Yao [2005];
- Local parametric and constrained local polynomial: Hyndman and Yao [2002]; Rojas, Genovese, Wasserman [2009];
- Partitioning type estimate: Györfi and Kohler [2007];
- Projection type estimate: Lacour [2007].

Why estimating the conditional density? Two classical approaches for estimation **The trouble with ratio shaped estimators**

The trouble with ratio shaped estimators

Drawbacks

- quotient shape of estimator is tricky to study;
- explosive behavior when the denominator is small → numerical implementation delicate (trimming);
- minoration hypothesis on the marginal density $f(x) \ge c > 0$.

How to remedy these problems?

→ build on the idea of using synthetic data: find a *representation* of the data more adapted to the problem.

Why estimating the conditional density? Two classical approaches for estimation **The trouble with ratio shaped estimators**

The trouble with ratio shaped estimators

Drawbacks

- quotient shape of estimator is tricky to study;
- explosive behavior when the denominator is small → numerical implementation delicate (trimming);
- minoration hypothesis on the marginal density $f(x) \ge c > 0$.

How to remedy these problems?

 \rightarrow build on the idea of using synthetic data:

find a *representation* of the data more adapted to the problem.

Outline

Introduction

- Why estimating the conditional density?
- Two classical approaches for estimation
- The trouble with ratio shaped estimators

2 The Quantile-Copula estimator

- The quantile transform
- The copula representation
- A product shaped estimator

3 Asymptotic results

- Consistency and asymptotic normality
- Sketch of the proofs
- 4 Comparison with competitors
 - Theoretical comparison
 - Finite sample simulation
- 5 Application to prediction and discussions
 - Application to prediction
 - Discussions

The quantile transform The copula representation A product shaped estimator

The quantile transform The copula representation A product shaped estimator

The quantile transform

What is the "best" transformation of the data in that context ?

The quantile transform theorem

- when F is arbitrary, if U is a uniformly distributed random variable on (0,1), $X \stackrel{d}{=} F^{-1}(U)$;
- whenever F is continuous, the random variable U = F(X) is uniformly distributed on (0, 1).

 \rightarrow use the invariance property of the quantile transform to construct a pseudo-sample (U_i, V_i) with a *prescribed uniform* marginal distribution.

The quantile transform The copula representation A product shaped estimator

The quantile transform

What is the "best" transformation of the data in that context ?

The quantile transform theorem

- when F is arbitrary, if U is a uniformly distributed random variable on (0, 1), $X \stackrel{d}{=} F^{-1}(U)$;
- whenever F is continuous, the random variable U = F(X) is uniformly distributed on (0, 1).

 \rightarrow use the invariance property of the quantile transform to construct a pseudo-sample (U_i , V_i) with a *prescribed uniform* marginal distribution.

The quantile transform The copula representation A product shaped estimator

The quantile transform

What is the "best" transformation of the data in that context ?

The quantile transform theorem

- when F is arbitrary, if U is a uniformly distributed random variable on (0, 1), $X \stackrel{d}{=} F^{-1}(U)$;
- whenever F is continuous, the random variable U = F(X) is uniformly distributed on (0, 1).

 \rightarrow use the invariance property of the quantile transform to construct a pseudo-sample (U_i, V_i) with a *prescribed uniform* marginal distribution.

The quantile transform The copula representation A product shaped estimator

The copula representation

\rightarrow leads naturally to the copula function:

Sklar's theorem [1959]

For any bivariate cumulative distribution function $F_{X,Y}$ on \mathbb{R}^2 , with marginal c.d.f. F of X and G of Y, there exists some function $C:[0,1]^2 \to [0,1]$, called the dependence or copula function, such as

 $F_{X,Y}(x,y) = C(F(x),G(y)) , -\infty \le x, y \le +\infty.$

If F and G are continuous, this representation is unique with respect to (F,G). The copula function C is itself a c.d.f. on $[0,1]^2$ with uniform marginals.

 \rightarrow captures the dependence structure of the vector (X,Y), irrespectively of the marginals.

 \rightarrow allows to deal with the randomness of the dependence structure and the randomness of the marginals *separately*.

The quantile transform The copula representation A product shaped estimator

The copula representation

 \rightarrow leads naturally to the copula function:

Sklar's theorem [1959]

For any bivariate cumulative distribution function $F_{X,Y}$ on \mathbb{R}^2 , with marginal c.d.f. F of X and G of Y, there exists some function $C:[0,1]^2 \to [0,1]$, called the dependence or copula function, such as

$$F_{X,Y}(x,y) = C(F(x),G(y)) , -\infty \le x, y \le +\infty.$$

If F and G are continuous, this representation is unique with respect to (F,G). The copula function C is itself a c.d.f. on $[0,1]^2$ with uniform marginals.

 \rightarrow captures the dependence structure of the vector (X,Y), irrespectively of the marginals.

 \rightarrow allows to deal with the randomness of the dependence structure and the randomness of the marginals *separately*.

The quantile transform The copula representation A product shaped estimator

The copula representation

 \rightarrow leads naturally to the copula function:

Sklar's theorem [1959]

For any bivariate cumulative distribution function $F_{X,Y}$ on \mathbb{R}^2 , with marginal c.d.f. F of X and G of Y, there exists some function $C:[0,1]^2 \to [0,1]$, called the dependence or copula function, such as

$$F_{X,Y}(x,y) = C(F(x),G(y)) , -\infty \le x, y \le +\infty.$$

If F and G are continuous, this representation is unique with respect to (F,G). The copula function C is itself a c.d.f. on $[0,1]^2$ with uniform marginals.

 \rightarrow captures the dependence structure of the vector (X,Y), irrespectively of the marginals.

 \rightarrow allows to deal with the randomness of the dependence structure and the randomness of the marginals *separately*.

The quantile transform The copula representation A product shaped estimator

A product shaped estimator

Assume that the copula function C(u,v) has a density $c(u,v) = \frac{\partial^2 C(u,v)}{\partial u \partial v}$ i.e. c(u,v) is the density of the transformed r.v. (U,V) = (F(X), G(Y)).

A product form of the conditional density

By differentiating Sklar's formula,

$$f_{Y|X}(y|x) = \frac{f_{XY}(x,y)}{f(x)} = g(y)c(F(x),G(y))$$

A product shaped estimator

 $\hat{f}_{Y|X}(y|x) = \hat{g}_n(y)\hat{c}_n(F_n(x), G_n(y))$

The quantile transform The copula representation A product shaped estimator

A product shaped estimator

Assume that the copula function C(u,v) has a density $c(u,v) = \frac{\partial^2 C(u,v)}{\partial u \partial v}$ i.e. c(u,v) is the density of the transformed r.v. (U,V) = (F(X), G(Y)).

A product form of the conditional density

By differentiating Sklar's formula,

$$f_{Y|X}(y|x) = \frac{f_{XY}(x,y)}{f(x)} = g(y)c(F(x),G(y))$$

A product shaped estimator

$$\hat{f}_{Y|X}(y|x) = \hat{g}_n(y)\hat{c}_n(F_n(x), G_n(y))$$

The quantile transform The copula representation A product shaped estimator

Construction of the estimator - 1

\rightarrow get an estimator of the conditional density by plugging estimators of each quantities.

• density of
$$Y: g \leftarrow$$
 kernel estimator $\hat{g}_n(y) := \frac{1}{nh_n} \sum_{i=1}^n K_0\left(\frac{y-Y_i}{h_n}\right)$
 $F(x) \leftarrow F_n(x) = \frac{1}{n} \sum_{j=1}^n \mathbf{1}_{X_j \leqslant x}$
• c.d.f. $G(y) \leftarrow G_n(y) := \frac{1}{n} \sum_{j=1}^n \mathbf{1}_{Y_j \leqslant y}$ empirical c.d.f.

• copula density $c(u,v) \leftarrow c_n(u,v)$ a bivariate Parzen-Rosenblatt kernel density (*pseudo*) estimator

$$c_n(u,v) := \frac{1}{na_n^2} \sum_{i=1}^n K\left(\frac{u - U_i}{a_n}, \frac{v - V_i}{a_n}\right)$$
(1)

The quantile transform The copula representation A product shaped estimator

Construction of the estimator - 1

 \rightarrow get an estimator of the conditional density by plugging estimators of each quantities.

• density of $Y: g \leftarrow \text{kernel estimator } \hat{g}_n(y) := \frac{1}{nh_n} \sum_{i=1}^n K_0\left(\frac{y-Y_i}{h_n}\right)$ $F(x) \leftarrow F_n(x) = \frac{1}{n} \sum_{j=1}^n \mathbb{1}_{X_j \leqslant x}$ • c.d.f. $G(y) \leftarrow G_n(y) := \frac{1}{n} \sum_{j=1}^n \mathbb{1}_{Y_j \leqslant y}$ empirical c.d.f.

• copula density $c(u, v) \leftarrow c_n(u, v)$ a bivariate Parzen-Rosenblatt kernel density (*pseudo*) estimator

$$c_n(u,v) := \frac{1}{na_n^2} \sum_{i=1}^n K\left(\frac{u - U_i}{a_n}, \frac{v - V_i}{a_n}\right)$$
(1)

The quantile transform The copula representation A product shaped estimator

Construction of the estimator - 1

 \rightarrow get an estimator of the conditional density by plugging estimators of each quantities.

• density of
$$Y: g \leftarrow \text{kernel estimator } \hat{g}_n(y) := \frac{1}{nh_n} \sum_{i=1}^n K_0\left(\frac{y-Y_i}{h_n}\right)$$

 $F(x) \leftarrow F_n(x) = \frac{1}{n} \sum_{j=1}^n \mathbf{1}_{X_j \leqslant x}$
• c.d.f. $G(y) \leftarrow G_n(y) := \frac{1}{n} \sum_{j=1}^n \mathbf{1}_{Y_j \leqslant y}$ empirical c.d.f.

• copula density $c(u, v) \leftarrow c_n(u, v)$ a bivariate Parzen-Rosenblatt kernel density (*pseudo*) estimator

$$c_n(u,v) := \frac{1}{na_n^2} \sum_{i=1}^n K\left(\frac{u - U_i}{a_n}, \frac{v - V_i}{a_n}\right)$$
(1)

The quantile transform The copula representation A product shaped estimator

Construction of the estimator - 1

 \rightarrow get an estimator of the conditional density by plugging estimators of each quantities.

• density of $Y: g \leftarrow \text{kernel estimator } \hat{g}_n(y) := \frac{1}{nh_n} \sum_{i=1}^n K_0\left(\frac{y-Y_i}{h_n}\right)$ $F(x) \leftarrow F_n(x) = \frac{1}{n} \sum_{j=1}^n \mathbf{1}_{X_j \leqslant x}$ • c.d.f. $G(y) \leftarrow G_n(y) := \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{Y_j \leqslant y}$ empirical c.d.f.

• copula density $c(u, v) \leftarrow c_n(u, v)$ a bivariate Parzen-Rosenblatt kernel density (*pseudo*) estimator

$$c_n(u,v) := \frac{1}{na_n^2} \sum_{i=1}^n K\left(\frac{u - U_i}{a_n}, \frac{v - V_i}{a_n}\right)$$
(1)

The quantile transform The copula representation A product shaped estimator

Construction of the estimator - 2

But, ${\boldsymbol{F}}$ and ${\boldsymbol{G}}$ are unknown: the random variables

 $(U_i = F(X_i), V_i = G(Y_i))$ are not observable.

 $\Rightarrow c_n$: is not a true statistic.

 \rightarrow approximate the pseudo-sample $(U_i, V_i), i = 1, \dots, n$ by its empirical counterpart $(F_n(X_i), G_n(Y_i)), i = 1, \dots, n$.

A genuine estimator of c(u,v)

$$\hat{c}_n(u,v) := \frac{1}{na_n^2} \sum_{i=1}^n K_1\left(\frac{u - F_n(X_i)}{a_n}\right) K_2\left(\frac{v - G_n(Y_i)}{a_n}\right).$$

The quantile transform The copula representation A product shaped estimator

Construction of the estimator - 2

But, F and G are unknown: the random variables $(U_i = F(X_i), V_i = G(Y_i))$ are not observable.

 $\Rightarrow c_n$: is not a true statistic.

 \rightarrow approximate the pseudo-sample $(U_i, V_i), i = 1, \dots, n$ by its empirical counterpart $(F_n(X_i), G_n(Y_i)), i = 1, \dots, n$.

A genuine estimator of c(u, v)

$$\hat{c}_n(u,v) := \frac{1}{na_n^2} \sum_{i=1}^n K_1\left(\frac{u - F_n(X_i)}{a_n}\right) K_2\left(\frac{v - G_n(Y_i)}{a_n}\right).$$

The quantile transform The copula representation A product shaped estimator

Construction of the estimator - 2

But, F and G are unknown: the random variables $(U_i = F(X_i), V_i = G(Y_i))$ are not observable. $\Rightarrow c_n$: is not a true statistic.

 \rightarrow approximate the pseudo-sample $(U_i, V_i), i = 1, \dots, n$ by its empirical counterpart $(F_n(X_i), G_n(Y_i)), i = 1, \dots, n$.

A genuine estimator of c(u, v)

$$\hat{c}_n(u,v) := \frac{1}{na_n^2} \sum_{i=1}^n K_1\left(\frac{u - F_n(X_i)}{a_n}\right) K_2\left(\frac{v - G_n(Y_i)}{a_n}\right).$$

The quantile transform The copula representation A product shaped estimator

Construction of the estimator - 2

But, F and G are unknown: the random variables $(U_i = F(X_i), V_i = G(Y_i))$ are not observable. $\Rightarrow c_n$: is not a true statistic.

 \rightarrow approximate the pseudo-sample $(U_i, V_i), i = 1, ..., n$ by its empirical counterpart $(F_n(X_i), G_n(Y_i)), i = 1, ..., n$.

A genuine estimator of c(u,v)

$$\hat{c}_n(u,v) := \frac{1}{na_n^2} \sum_{i=1}^n K_1\left(\frac{u - F_n(X_i)}{a_n}\right) K_2\left(\frac{v - G_n(Y_i)}{a_n}\right).$$

The quantile transform The copula representation A product shaped estimator

Construction of the estimator - 2

But, F and G are unknown: the random variables $(U_i = F(X_i), V_i = G(Y_i))$ are not observable. $\Rightarrow c_n$: is not a true statistic.

 \rightarrow approximate the pseudo-sample $(U_i, V_i), i = 1, ..., n$ by its empirical counterpart $(F_n(X_i), G_n(Y_i)), i = 1, ..., n$.

A genuine estimator of c(u, v)

$$\hat{c}_n(u,v) := \frac{1}{na_n^2} \sum_{i=1}^n K_1\left(\frac{u - F_n(X_i)}{a_n}\right) K_2\left(\frac{v - G_n(Y_i)}{a_n}\right).$$

The quantile transform The copula representation A product shaped estimator

The quantile-copula estimator

Recollecting all elements, we get,

The quantile-copula estimator

$$\hat{f}_n(y|x) := \hat{g}_n(y)\hat{c}_n(F_n(x), G_n(y)).$$

that is to say,

$$\hat{f}_n(y|x) := \left[\frac{1}{nh_n} \sum_{i=1}^n K_0\left(\frac{y-Y_i}{h_n}\right)\right] \cdot \left[\frac{1}{na_n^2} \sum_{i=1}^n K_1\left(\frac{F_n(x) - F_n(X_i)}{a_n}\right)\right]$$
$$K_2\left(\frac{G_n(y) - G_n(Y_i)}{a_n}\right)\right]$$

Outline

Introduction

- Why estimating the conditional density?
- Two classical approaches for estimation
- The trouble with ratio shaped estimators

2 The Quantile-Copula estimator

- The quantile transform
- The copula representation
- A product shaped estimator

3 Asymptotic results

- Consistency and asymptotic normality
- Sketch of the proofs
- Comparison with competitors
 - Theoretical comparison
 - Finite sample simulation
- 5 Application to prediction and discussions
 - Application to prediction
 - Discussions

Hypothesis

Consistency and asymptotic normality Sketch of the proofs

Assumptions on the densities

- i) the c.d.f F of X and G of Y are strictly increasing and differentiable;
- ii) the densities g and c are twice differentiable with continuous bounded second derivatives on their support.

Assumptions on the kernels

- (i) K and K_0 are of bounded support and of bounded variation;
- (ii) $0 \le K \le C$ and $0 \le K_0 \le C$ for some constant C;
- (iii) K and K_0 are second order kernels: $m_0(K) = 1$, $m_1(K) = 0$ and $m_2(K) < +\infty$, and the same for K_0 .
- (iv) K is twice differentiable with bounded second partial derivatives.

 \rightarrow classical regularity assumptions in nonparametric literature.

Hypothesis

Consistency and asymptotic normality Sketch of the proofs

Assumptions on the densities

- i) the c.d.f F of X and G of Y are strictly increasing and differentiable;
- ii) the densities g and c are twice differentiable with continuous bounded second derivatives on their support.

Assumptions on the kernels

- (i) K and K_0 are of bounded support and of bounded variation;
- (ii) $0 \le K \le C$ and $0 \le K_0 \le C$ for some constant C;
- (iii) K and K_0 are second order kernels: $m_0(K) = 1$, $m_1(K) = 0$ and $m_2(K) < +\infty$, and the same for K_0 .
- (iv) K is twice differentiable with bounded second partial derivatives.

 \rightarrow classical regularity assumptions in nonparametric literature.

Consistency and asymptotic normality Sketch of the proofs

Asymptotic results - 1

Under the above regularity assumptions, with $h_n \rightarrow 0$, $a_n \rightarrow 0$,

Pointwise Consistency

 \bullet weak consistency $h_n\simeq n^{-1/5}$, $a_n\simeq n^{-1/6}$ entail

$$\hat{f}_n(y|x) = f(y|x) + O_P\left(n^{-1/3}\right)$$

• strong consistency $h_n \simeq (\ln \ln n/n)^{1/5}$ and $a_n \simeq (\ln \ln n/n)^{1/6}$

$$\hat{f}_n(y|x) = f(y|x) + O_{a.s.}\left(\left(\frac{\ln \ln n}{n}\right)^{1/3}\right).$$

• asymptotic normality $h_n \simeq n^{-1/5}$ and $a_n = o(n^{-1/6})$ entail

$$\sqrt{na_n^2} \left(\hat{f}_n(y|x) - f(y|x) \right) \stackrel{d}{\rightsquigarrow} \mathcal{N}\left(0, g(y)f(y|x) ||K||_2^2 \right).$$

Consistency and asymptotic normality Sketch of the proofs

Asymptotic results - 2

Uniform Consistency

Under the above regularity assumptions, with $h_n \to 0$, $a_n \to 0$, for x in the interior of the support of f and [a, b] included in the interior of the support of g,

• weak consistency $h_n \simeq (\ln n/n)^{1/5}$, $a_n \simeq (\ln n/n)^{1/6}$ entail

$$\sup_{y \in [a,b]} |\hat{f}_n(y|x) - f(y|x)| = O_P\left(\left(\ln n / na_n^2 \right)^{1/2} \right).$$

• strong consistency $h_n\simeq (\ln n/n)^{1/5}$, $a_n\simeq (\ln n/n)^{1/6}$ entail

$$\sup_{y \in [a,b]} |\hat{f}_n(y|x) - f(y|x)| = O_{a.s.}\left(\left(\frac{\ln n}{n}\right)^{1/3}\right)$$

Consistency and asymptotic normality Sketch of the proofs

Asymptotic Mean square error

Asymptotic Bias and Variance for the quantile-copula estimator

• Bias:

$$E(\hat{f}_n(y|x)) - f(y|x) = g(y)m_2(K).\nabla^2 c(F(x), G(y))\frac{a_n^2}{2} + o(a_n^2)$$

with
$$m_2(K) = (m_2(K_1), m_2(K_2)), \nabla^2 c(u, v) = (\frac{\partial^2 c(u, v)}{\partial u^2}, \frac{\partial^2 c(u, v)}{\partial v^2}).$$

• Variance:

$$Var(\hat{f}(y|x)) = 1/(na_n^2)g(y)f(y|x)||K||_2^2 + o(1/(na_n^2)).$$

Consistency and asymptotic normality Sketch of the proofs

Sketch of the proofs

Decomposition diagram

$$\begin{array}{ccc} \hat{g}(y)\hat{c}_{n}(F_{n}(x),G_{n}(y)) & \downarrow \\ g(y)\hat{c}_{n}(F_{n}(x),G_{n}(y)) & \rightarrow & g(y)\hat{c}_{n}(F(x),G(y)) & \rightarrow & g(y)c_{n}(F(x),G(y)) \\ & \downarrow \\ & g(y)c(F(x),G(y)) \end{array}$$

- \downarrow : consistency results of the kernel density estimators
- \rightarrow : two approximation lemmas

•
$$\hat{c}_n$$
 from $(F_n(x), F_n(y)) \to (F(x), G(y))$

$$\hat{c}_n \to c_n.$$

(

Tools: results for the K-S statistics $||F - F_n||_{\infty}$ and $||G - G_n||_{\infty}$. \rightarrow Heuristic: rate of convergence of density estimators < rate of approximation of the K-S Statistic.

Theoretical comparison Finite sample simulation

Outline

Introduction

- Why estimating the conditional density?
- Two classical approaches for estimation
- The trouble with ratio shaped estimators

2 The Quantile-Copula estimator

- The quantile transform
- The copula representation
- A product shaped estimator

3 Asymptotic results

- Consistency and asymptotic normality
- Sketch of the proofs
- 4 Comparison with competitors
 - Theoretical comparison
 - Finite sample simulation
 - 5 Application to prediction and discussions
 - Application to prediction
 - Discussions

Theoretical comparison Finite sample simulation

Theoretical asymptotic comparison - 1

Competitor: e.g. Local Polynomial estimator, $\hat{f}_n^{(LP)}(y|x) := \hat{\theta}_0$ with

$$R(\theta, x, y) := \sum_{i=1}^{n} \left(K_{h_2}(Y_i - y) - \sum_{j=0}^{r} \theta_j (X_i - x)^j \right)^2 K'_{h_1}(X_i - x),$$

where $\hat{\theta}_{xy} := (\hat{\theta}_0, \hat{\theta}_1, \dots, \hat{\theta}_r)$ is the value of θ which minimizes $R(\theta, x, y)$.

Comparative Bias

$$B_{LP} = \frac{h_1^2 m_2(K')}{2} \frac{\partial^2 f(y|x)}{\partial x^2} + \frac{h_2^2 m_2(K)}{2} \frac{\partial^2 f(y|x)}{\partial y^2} + o(h_1^2 + h_2^2)$$
$$B_{QC} = g(y) m_2(K) \cdot \nabla_2 c(F(x), G(y)) \frac{a_n^2}{2} + o(a_n^2)$$

Theoretical comparison Finite sample simulation

Theoretical asymptotic comparison - 2

Asymptotic bias comparison

- All estimators have bias of the same order $pprox h^2 pprox n^{-1/3}$;
- Distribution dependent terms:
 - difficult to compare
 - sometimes less unknown terms for the quantile-copula estimator
- c of compact support : the "classical" kernel method to estimate the copula density induces bias on the boundaries of $[0,1]^2$ \rightarrow techniques to reduce the bias of the kernel estimator on the edges (boundary kernels, beta kernels, reflection and transformation methods,...)

Theoretical comparison Finite sample simulation

Theoretical asymptotic comparison - 2

Asymptotic bias comparison

- All estimators have bias of the same order $\approx h^2 \approx n^{-1/3}$;
- Distribution dependent terms:
 - difficult to compare
 - sometimes less unknown terms for the quantile-copula estimator

• c of compact support : the "classical" kernel method to estimate the copula density induces bias on the boundaries of $[0,1]^2$ \rightarrow techniques to reduce the bias of the kernel estimator on the edges (boundary kernels, beta kernels, reflection and transformation methods,...)

Theoretical comparison Finite sample simulation

Theoretical asymptotic comparison - 2

Asymptotic bias comparison

- All estimators have bias of the same order $\approx h^2 \approx n^{-1/3}$;
- Distribution dependent terms:
 - difficult to compare
 - sometimes less unknown terms for the quantile-copula estimator
- c of compact support : the "classical" kernel method to estimate the copula density induces bias on the boundaries of $[0,1]^2$ \rightarrow techniques to reduce the bias of the kernel estimator on the edges (boundary kernels, beta kernels, reflection and transformation methods,...)

Theoretical comparison Finite sample simulation

Theoretical asymptotic comparison - 3

Asymptotic Variance comparison

Main terms in the asymptotic variance:

- Ratio shaped estimators: $Var(LP) := \frac{f(y|x)}{f(x)} \rightarrow \text{explosive variance}$ for small value of the density f(x), e.g. in the tail of the distribution of X.
- Quantile-copula estimator: $Var(QC) := g(y)f(y|x) \rightarrow \text{does not}$ suffer from the unstable nature of competitors.
- Asymptotic relative efficiency: ratio of variances

$$\frac{Var(QC)}{Var(LP)} := f(x)g(y)$$

Theoretical comparison Finite sample simulation

Theoretical asymptotic comparison - 3

Asymptotic Variance comparison

Main terms in the asymptotic variance:

- Ratio shaped estimators: $Var(LP) := \frac{f(y|x)}{f(x)} \rightarrow \text{explosive variance}$ for small value of the density f(x), e.g. in the tail of the distribution of X.
- Quantile-copula estimator: $Var(QC) := g(y)f(y|x) \rightarrow \text{does not}$ suffer from the unstable nature of competitors.
- Asymptotic relative efficiency: ratio of variances

$$\frac{Var(QC)}{Var(LP)} := f(x)g(y)$$

Theoretical comparison Finite sample simulation

Theoretical asymptotic comparison - 3

Asymptotic Variance comparison

Main terms in the asymptotic variance:

- Ratio shaped estimators: $Var(LP) := \frac{f(y|x)}{f(x)} \rightarrow \text{explosive variance}$ for small value of the density f(x), e.g. in the tail of the distribution of X.
- Quantile-copula estimator: $Var(QC) := g(y)f(y|x) \rightarrow \text{does not}$ suffer from the unstable nature of competitors.
- Asymptotic relative efficiency: ratio of variances

$$\frac{Var(QC)}{Var(LP)} := f(x)g(y)$$

Theoretical comparison Finite sample simulation

Theoretical asymptotic comparison - 3

Asymptotic Variance comparison

Main terms in the asymptotic variance:

- Ratio shaped estimators: $Var(LP) := \frac{f(y|x)}{f(x)} \rightarrow \text{explosive variance}$ for small value of the density f(x), e.g. in the tail of the distribution of X.
- Quantile-copula estimator: $Var(QC) := g(y)f(y|x) \rightarrow \text{does not}$ suffer from the unstable nature of competitors.
- Asymptotic relative efficiency: ratio of variances

$$\frac{Var(QC)}{Var(LP)} := f(x)g(y)$$

Theoretical comparison Finite sample simulation

Finite sample simulation

Model

Sample of n = 100 i.i.d. variables (X_i, Y_i) , from the following model:

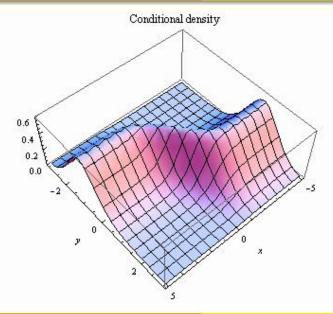
- X,Y is marginally distributed as $\mathcal{N}(0,1)$
- X, Y is linked via Frank Copula .

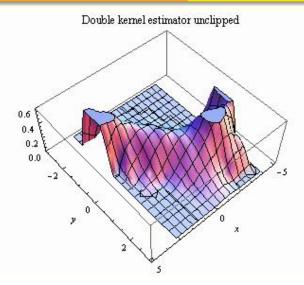
$$C(u, v, \theta) = \frac{\ln[(\theta + \theta^{u+v} - \theta^u - \theta^v)/(\theta - 1)]}{\ln \theta}$$

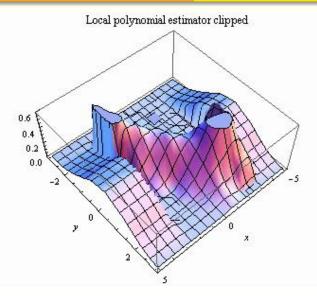
with parameter $\theta = 100$.

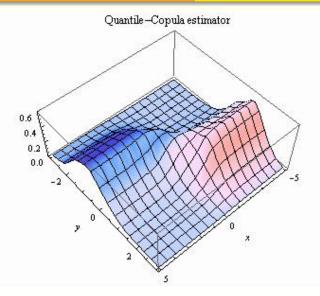
Practical implementation:

- Beta kernels for copula estimator, Epanechnikov for other.
- simple Rule-of-thumb method for the bandwidths.









Application to prediction Discussions

Outline

Introduction

- Why estimating the conditional density?
- Two classical approaches for estimation
- The trouble with ratio shaped estimators

2 The Quantile-Copula estimator

- The quantile transform
- The copula representation
- A product shaped estimator

3 Asymptotic results

- Consistency and asymptotic normality
- Sketch of the proofs
- 4 Comparison with competitors
 - Theoretical comparison
 - Finite sample simulation

6 Application to prediction and discussions

- Application to prediction
- Discussions

Application to prediction Discussions

Application to prediction - definitions

Point predictors: Conditional mode predictor

Definition of the mode: $\theta(x) := \arg \sup_y f(y|x)$

 \rightarrow plug in predictor : $\theta(x) := \arg \sup_y f_n(y|x)$

Set predictors: Level sets

Predictive set $C_{\alpha}(x)$ such as $P(Y \in C_{\alpha}(x)|X = x) = \alpha$ \rightarrow Level set or Highest density region $C_{\alpha}(x) := \{y : f(y|x) \ge f_{\alpha}\}$ with f_{α} the largest value such that the prediction set has coverage probability α .

 \rightarrow plug-in level set: $\mathcal{C}_{\alpha,n}(x) := \{y : f_n(y|x) \ge f_\alpha\}$ where f_α is an estimate of f_α .

Application to prediction Discussions

Application to prediction - definitions

Point predictors: Conditional mode predictor

Definition of the mode: $\theta(x) := \arg \sup_y f(y|x)$ $\rightarrow \text{ plug in predictor} : \hat{\theta}(x) := \arg \sup_y \hat{f}_n(y|x)$

Set predictors: Level sets

Predictive set $C_{\alpha}(x)$ such as $P(Y \in C_{\alpha}(x) | X = x) = \alpha$ \rightarrow Level set or Highest density region $C_{\alpha}(x) := \{y : f(y|x) \ge f_{\alpha}\}$ with f_{α} the largest value such that the prediction set has coverage probability α .

 \rightarrow plug-in level set: $\mathcal{C}_{\alpha,n}(x) := \{y : f_n(y|x) \ge f_\alpha\}$ where f_α is an estimate of f_α .

Application to prediction Discussions

Application to prediction - definitions

Point predictors: Conditional mode predictor

Definition of the mode: $\theta(x) := \arg \sup_y f(y|x)$ $\rightarrow \text{ plug in predictor} : \hat{\theta}(x) := \arg \sup_y \hat{f}_n(y|x)$

Set predictors: Level sets

Predictive set $C_{\alpha}(x)$ such as $P(Y \in C_{\alpha}(x)|X = x) = \alpha$ \rightarrow Level set or Highest density region $C_{\alpha}(x) := \{y : f(y|x) \ge f_{\alpha}\}$ f_{α} the largest value such that the prediction set has coverage pr

α.

→ plug-in level set: $C_{\alpha,n}(x) := \{y : \hat{f}_n(y|x) \ge \hat{f}_\alpha\}$ where \hat{f}_α is an estimate of f_α .

Application to prediction Discussions

Application to prediction - definitions

Point predictors: Conditional mode predictor

Definition of the mode: $\theta(x) := \arg \sup_y f(y|x)$ $\rightarrow \text{ plug in predictor} : \hat{\theta}(x) := \arg \sup_y \hat{f}_n(y|x)$

Set predictors: Level sets

Predictive set $C_{\alpha}(x)$ such as $P(Y \in C_{\alpha}(x)|X = x) = \alpha$ \rightarrow Level set or Highest density region $C_{\alpha}(x) := \{y : f(y|x) \ge f_{\alpha}\}$ with f_{α} the largest value such that the prediction set has coverage probability α .

 \rightarrow plug-in level set: $\mathcal{C}_{\alpha,n}(x) := \{y : f_n(y|x) \ge f_\alpha\}$ where f_α is an estimate of f_α .

Application to prediction Discussions

Application to prediction - definitions

Point predictors: Conditional mode predictor

Definition of the mode: $\theta(x) := \arg \sup_y f(y|x)$ $\rightarrow \text{ plug in predictor} : \hat{\theta}(x) := \arg \sup_y \hat{f}_n(y|x)$

Set predictors: Level sets

Predictive set $C_{\alpha}(x)$ such as $P(Y \in C_{\alpha}(x)|X = x) = \alpha$ \rightarrow Level set or Highest density region $C_{\alpha}(x) := \{y : f(y|x) \ge f_{\alpha}\}$ with f_{α} the largest value such that the prediction set has coverage probability α .

 \rightarrow plug-in level set: $\mathcal{C}_{\alpha,n}(x) := \{y : \hat{f}_n(y|x) \geq \hat{f}_\alpha\}$ where \hat{f}_α is an estimate of f_α .

Application to prediction Discussions

Application to prediction - results

Point predictors: Conditional mode predictor

Under regularity conditions, uniform convergence on a compact set of the conditional density estimator entails that

$$\hat{\theta}(x) \stackrel{a.s.}{\to} \theta(x)$$

Set predictors: Level sets

Under regularity conditions, uniform convergence on a compact set of the conditional density estimator entails that

$$\lambda(\Delta(\mathcal{C}_{\alpha,n}(x),\mathcal{C}_{\alpha}(x))) \stackrel{a.s.}{\to} 0$$

where $\Delta(.,.)$ stands for the symmetric difference, and λ for Lebesgue measure.

Application to prediction Discussions

On the efficiency estimation of the empirical margins

Deficiency of the empirical distribution functions

- the order statistics $X_{1,n} < \ldots < X_{n,n}$ is complete sufficient for estimating F with a density f.
 - $\rightarrow F_n$ is the UMVU estimator of F.
- its smoothed version $\hat{F}(x) = n^{-1} \sum_{i=1}^{n} L\left(\frac{X_i x}{b_n}\right)$ where b_n bandwidth and $L(x) = \int_{-\infty}^{x} l(t) dt$, with l density kernel, is such that

$$\left| E(\hat{F}(x) - F(x))^2 - E(F_n(x) - F(x))^2 + 2h/nF'(x) \int tl(t)L(t)dt \right|$$

$$\leq h^4 A C^2 + O(h^2/n)$$

 $ightarrow F_n$ is deficient w.r.t \hat{F} .

On the efficiency estimation of the empirical margins

Deficiency of the empirical distribution functions

- the order statistics $X_{1,n} < \ldots < X_{n,n}$ is complete sufficient for estimating F with a density f.
 - $\rightarrow F_n$ is the UMVU estimator of F.
- its smoothed version $\hat{F}(x) = n^{-1} \sum_{i=1}^{n} L\left(\frac{X_i x}{b_n}\right)$ where b_n bandwidth and $L(x) = \int_{-\infty}^{x} l(t) dt$, with l density kernel, is such that

$$\begin{aligned} & \left| E(\hat{F}(x) - F(x))^2 - E(F_n(x) - F(x))^2 + 2h/nF'(x) \int t l(t)L(t)dt \\ & \leq h^4 A C^2 + O(h^2/n) \end{aligned} \right. \end{aligned}$$

 $\rightarrow F_n$ is deficient w.r.t \hat{F} .

Application to prediction Discussions

Implication for the quantile copula estimator

The doubly smoothed quantile copula conditional density estimator

- ightarrow replace F_n and G_n by \hat{F} and \hat{G}
 - beneficial for small samples
 - graphically more appealing: less wiggly behaviour

Consequence for local averaging

With smooth margin estimators \hat{F} and \hat{G} ,

or
$$\hat{F}(x) - \hat{F}(X_i) \approx \hat{f}(X_i)(x - X_i)$$
 (2)

$$\hat{F}(X_i) - \hat{F}(x) \approx \hat{f}(x)(X_i - x)$$
(3)

Application to prediction Discussions

Implication for the quantile copula estimator

The doubly smoothed quantile copula conditional density estimator

- \rightarrow replace F_n and G_n by \hat{F} and \hat{G}
 - beneficial for small samples
 - graphically more appealing: less wiggly behaviour

Consequence for local averaging

With smooth margin estimators \hat{F} and \hat{G} ,

or
$$\hat{F}(x) - \hat{F}(X_i) \approx \hat{f}(X_i)(x - X_i)$$
 (2)

$$\hat{F}(X_i) - \hat{F}(x) \approx \hat{f}(x)(X_i - x)$$
(3)

Application to prediction Discussions

Connection with the variable bandwidth kernel estimators

Connection with the variable bandwidth kernel estimators

Therefore, the copula density part of the estimator writes

$$\hat{c}_n(\hat{F}_n(x), \hat{G}_n(y)) = (na_n b_n)^{-1} \sum_{i=1}^n K_1\left(\frac{\hat{F}_n(X_i) - \hat{F}_n(x)}{a_n}\right) K_2(\ldots)$$
$$\approx (na_n b_n)^{-1} \sum_{i=1}^n K_1\left(\frac{X_i - x}{a_n/\hat{f}(X_i)}\right) K_2\left(\frac{Y_i - y}{b_n/\hat{g}(Y_i)}\right)$$

with approximation (2), and

$$\approx (na_nb_n)^{-1}\sum_{i=1}^n K_1\left(\frac{X_i-x}{a_n/\hat{f}(x)}\right)K_2\left(\frac{Y_i-y}{b_n/\hat{g}(y)}\right)$$

with approximation (3).

Connection with the variable bandwidth kernel estimators

Connection with the variable bandwidth kernel estimators

 \rightarrow the copula density estimator with smoothed margin estimates is like a kernel estimator with an adaptive local bandwidth

- $a_n/\hat{f}(X_i)$: sample smoothing bandwidth
- $a_n/\hat{f}(x)$: balloon smoothing bandwidth

\rightarrow Work-in-Progress: use the CDF transform approach to improve on kernel density estimation methods

The beta kernel is an unbiased estimate of the uniform density

- Parametric start: set a family of CDF $\mathcal{F} = \{F(, \theta)\}.$
- Estimate $\theta \leftarrow \hat{\theta}$
- Transform $Z_i = F(X_i, \hat{\theta})$ to get a semiparametric estimator with rate nearly parametric on \mathcal{F}

Connection with the variable bandwidth kernel estimators

Connection with the variable bandwidth kernel estimators

 \rightarrow the copula density estimator with smoothed margin estimates is like a kernel estimator with an adaptive local bandwidth

- $a_n/\hat{f}(X_i)$: sample smoothing bandwidth
- $a_n/\hat{f}(x)$: balloon smoothing bandwidth

 \rightarrow Work-in-Progress: use the CDF transform approach to improve on kernel density estimation methods

The beta kernel is an unbiased estimate of the uniform density

- Parametric start: set a family of CDF $\mathcal{F} = \{F(, \theta)\}.$
- Estimate $\theta \leftarrow \hat{\theta}$
- Transform $Z_i = F(X_i, \hat{\theta})$ to get a semiparametric estimator with rate nearly parametric on \mathcal{F}

Application to prediction Discussions

Perspectives and work-in-progress - 1

Prediction for extreme values. Application in Insurance and Finance, with S. Loisel and E. Masiello, ISFA, Lyon 1.

Aim: make inference on Y for large values of X.

- \rightarrow design an extreme-specific estimator by combining
 - estimators based on Extreme value theory or the Peak-Over Threshold approach for F_n ;
 - the wavelet estimator \hat{c}_n of C. Genest, E. Masiello, K. Tribouley (2009).

on a problem related to insurance and finance.

Application to prediction Discussions

Perspectives and work-in-progress - 2

A semi-parametric multivariate extension via a Single Index model, with O. Lopez, Paris 6.

- The issues when $X \in \mathbb{R}^d$, d > 1:
 - the product shape of the estimator breaks down;
 - curse of dimensionality.

 \rightarrow use a dimension-reduction hypothesis such as a Single-Index-Model:

$$\exists \theta_0 \in \mathbb{R}^d, \quad f_{Y|X} = f_{Y|\theta_0^T \cdot X}$$

 \rightarrow use the quantile copula estimator on the auxiliary data $Z = \theta^T X$ to estimate θ_0 by maximum pseudo-likelihood method.

Application to prediction Discussions

Perspectives and work-in-progress - 3

Conditional Cumulative distribution function, conditional quantile, and regression estimation.

 \rightarrow use the same quantile-copula approach to estimate

$$F_{Y|X}(x,y) = \int_{-\infty}^{y} g(t)c(F(x), G(t))dt = E[1_{Y \le y}c(F(x), G(Y))]$$

by

$$\hat{F}_{Y|X}(x,y) := \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{Y_i \le y} \hat{c}_n(F_n(x), G_n(Y_i))$$

 \rightarrow get conditional quantiles (VaR) and confidence intervals.

 \rightarrow proceed similarly for the regression.

$$\hat{r}(x) = \frac{1}{n} \sum_{i=1}^{n} Y_i \hat{c}_n(F_n(x), G_n(Y_i))$$

Application to prediction Discussions

Perspectives and work-in-progress - 4

Extension to time series by coupling arguments for Markovian models. Application to tests of adequacy.

 \rightarrow Estimate $\pi(x, y)dy = P(\zeta_{i+1} \in dy | \zeta_i = x)$, the transition density of a Markov chain (ζ_t) , $t \in \mathbb{N}$.

 \rightarrow Extend the results from the i.i.d. case to the mixing framework, by coupling and blocks arguments, and the substitution

$$(X_i, Y_i) \longleftarrow (\zeta_i, \zeta_{i+1})$$

 \rightarrow use the estimate as a proxy to test the adequacy of parametric models.

Bibliography

Application to prediction Discussions

Reference

- O. P. Faugeras. (2009), A quantile-copula approach to conditional density estimation. *Journal of Multivariate Analysis*, in press.
- O. P. Faugeras. (2009) Modal regression and prediction via the quantile-copula estimator. *Submitted*