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Abstract

Recent papers show that all-pay auctions are better at raising money for charity than
first-price auctions with symmetric bidders and under incomplete information. Yet, this
result is lost with sufficiently asymmetric bidders and under complete information. In
this paper, we consider a framework on charity auctions with asymmetric bidders under
some incomplete information. We find that all-pay auctions still earn more money than
first-price auction. Thus, all-pay auctions should be seriously considered when one wants
to organize a charity auction.
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1 Introduction

Fundraising activities for charitable purposes have become increasingly popular. One reason is
the growing number of non-governmental organization with humanitarian or social purposes.
Another one is the decrease of government participation in culture, education and related
activities. The purpose of these associations are either the development and promotion of
culture or aid and humanitarian services. Even in France, a country without any fundraising
tradition, some organizations began to appear, such as the French Association of Fundraiser1

in 2007.
Commonly used mechanisms to raise money are voluntary contributions, lotteries and

auctions. Even though most of the fundraisers still use voluntary contributions2, auctions are
increasingly used. Indeed, for some special events or particular situations, auctions provide a
particular atmosphere. The popularity of auctions for charity purposes can also be observed
by the increase in internet sites offering the sale of objects and donating a part of their pro-
ceeds to charity. Well-known examples include Yahoo! and Giving Works of eBay. Many
others have been created, such as the Pass It On Celebrity Charity Auction3 in 2003, where
celebrities donated objects whose sale revenue contributed to a “charity of the month”. We
can also cite cMarket Charitable Auctions Online4 created in 2002 and selected as a charity
vehicle by more than 930 organizations.

Consequently, there is a growing and recent literature on charity auctions. Goeree et al.
(2005) and Engers and McManus (2007) investigate an independent private values model and
show that all-pay auctions are better at raising money for charity than winner-pay auctions.
Moreover, Onderstal and Schram (2009) lead a lab experiment and confirm these theoretical
results. However, Carpenter et al. (2008) run a field experiment in four American preschools.
In their experiments the ranking of the revenues is reversed. They attribute this result to the
unfamiliarity of the participants to the mechanism and endogenous participation (see Carpen-
ter et al. (2007) for a theoretical justification of the endogenous participation). In addition,
we can also investigate this question in a situation where people are different in the sense that
they do not have the same believes. Indeed, Goeree et al. (2005) and Engers and McManus
(2007) assume that bidders have the same altruism parameter and valuations are drawn from
the same distribution. Bos (2008) provides an answer with complete information. He investi-
gates a model with complete information and heterogeneity on the bidders’ values. Then, he
shows that when the asymmetry among bidders is strong enough, the ranking of revenues is
reversed. In particular, winner-pay auctions outperfom all-pay auctions.

1http://www.fundraisers.fr/
2There is further evidence of this phenomenon on the Internet with the emergence of sites such as http:

//www.JustGive.org.
3http://www.passitonline.org/
4http://www.cmarket.com/

2

http://www.fundraisers.fr/
http://www.JustGive.org
http://www.JustGive.org
http://www.passitonline.org/
http://www.cmarket.com/


The point of this paper is then to determine, whether all-pay auctions are still better at
raising money for charity when bidders are asymmetric under some incomplete information.
If we conclude that all-pay auctions are still better with asymmetric bidders and incomplete
information we should consider implementing all-pay auctions to raise money for charity in
some environments. Indeed, to the best of our knowledge, all-pay auctions have never been
implemented in real life for charity purposes. However, it seems easy to do it. For example,
every bidder could buy a number of tickets simultaneously as in a tombola. Contrary to a
tombola, though, the winner will be the buyer with the highest number of tickets in hand.

In charity auctions, bidders make their bid decisions taking into account two parameters:
Their valuation for the item sold and their altruism or sensitivity to the charity purpose. In
this paper we consider valuations drawn with the same distribution in an independent pri-
vate values model. Then, we introduce asymmetry in the altruism parameter with complete
information. As in Bulow et al. (1999) and Wasser (2008), this framework has the advantage
of avoiding the complexity and the narrow results of asymmetric auctions with incomplete
information. In the usual asymmetric auction literature, valuations are drawn from different
distributions. Changing these distributions could change the ranking of the revenue among
different auction designs (for example, see Krishna (2002)). Maskin and Riley (2000), de Fru-
tos (2000) and Cantillon (2008) succeed in determining the revenue ranking between first-price
and second-price auctions under some conditions that the distributions should satisfy. Con-
sequently, in this literature, distributions of the bidders’ value are crucial elements.

This paper is closest the spirit to Bulow et al. (1999). They compare first-price and
second-price auctions in an independent private signals model with common values and two
bidders. The signals are drawn from the uniform distribution and some parameters, that could
be interpreted as altruism parameter to the charity purpose, are asymmetric under complete
information. Although they apply this framework to toeholds and takeovers, it is well suited
for charity. In their paper, they determine that when these parameters are asymmetric and
small enough, the revenue ranking could be reverse so that the first-price outperforms the
second-price auction. Unlike them, we compare first-price to all-pay auctions in an indepen-
dent private values model. The only other papers on asymmetric auctions with this kind
of externalities are de Frutos (2000) and Wasser (2008). de Frutos (2000) compares first-
price and second-price auctions with altruism parameters equal to 1/2 and bidders’ values
drawn from different distribution. Her framework is quite different to ours as she does not
investigate all-pay auctions and the asymmetry concerns bidders values and not altruism pa-
rameters. However, dividing our all-pay auction by 1 minus the bidder’s altruism parameter
leads to study the all-pay auction in her framework with uniform distributions.5 Thus, in a

5Remark this is not true for the first-price auction.
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technical way, our papers are connected. Wasser (2008) invetigates k-price winner-pay auc-
tions with asymmetry on the altruistic parameters. Yet, he does not compare the expected
revenue among the auction design but focuses on the performance of auctions as mechanisms
for partnership dissolution. Thus our papers are complements as they are related thanks to
the existence and uniqueness of the first-price auction but differs on economic problems raised
and results.

Section 2 sets out our simple model of two bidders with altruistic asymmetric parameters
that have independent private values about the item sold. Then in Section 3 and Section 4
we characterize the bidding equilibrium strategies for the all-pay auction and the first-price
auction. In Section 5, we compare revenues and show that all-pay auction still outperforms
first-price auction independently of level of asymmetry in their sensibility parameter. All the
proofs are in Appendix.

2 Preliminaries

Suppose two bidders take part in an auction through a fundraising event such as a charity din-
ner. Each bidder is risk neutral and cares about how much she pays as well as her competitor
pays in the auction. Indeed, as the amount of money will be used for a charity purpose, the
bidders include in their utility function the bids payd. Thus, their bidding functions depend
of two parameters: Their valuation of the object sold and their altruism or their interest for
the charity purpose that the auction should finance. The more a bidder is sensitive to the
charity event the higher this parameter will be. Denote as vi the valuation and as ai bidder
i’s altruism parameter. Bidder valuations V1, V2 are independently and identically distributed
and we normalize them to uniform distributions on [0, 1]. Moreover, the altruism parameters
are common knowledge and heterogeneous such that a1 > a2. Then, bidder 1 has a higher
preference for the charity purpose than bidder 2. When a bidder takes part in a charity auc-
tion, she obtains a positive externality from the amount of money raised. Indeed, she hopes
that the highest amount will be collected to finance the charity event. This is equivalent to
a situation in which she would benefit from a percentage of the revenue collected as a return
from the bids paid. In this paper we consider two auction designs: the all-pay auction, also
called first-price all-pay auction, and the usual first-price auction.

In the all-pay auction the winner as well as the loser pays her own bid. Yet, each bidder
receives an externality from her own bid as well as from her competitor’s bid. Denote as
UAi (vi, bi, bj ; ai) the utility of bidder i
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UAi (vi, bi, bj ; ai) =


vi − bi + ai(bi + bj) if bi > bj

−bi + ai(bi + bj) if bi < bj
vi
2 − bi + ai(bi + bj) if bi = bj

(1)

In contrast, in the first-price auction the bidder with the highest bid is the winner and
pays her own bid while the loser does not pay anything. Contrary to the all-pay auction, here
each bidder benefits an externality only from the winner’s bid which could be her own bid.
Denote as UFi (vi, bi, bj ; ai); the utility of bidder i the follows

UFi (vi, bi, bj ; ai) =


vi − bi + aibi if bi > bj

aibj if bi < bj
vi
2 − bi + aibi if bi = bj

(2)

It is clear that the payment rule affects the returns that bidders obtain. In the all-pay
auction, bidder i’s utility is a function of her opponent’s bid for each outcome of the auction. In
the first-price auction, on the other hand, if the bidder i is the winner her payoff is independent
of her opponent’s bid.

Assumption (The limit of the bidders’ altruism). Bidders are not fully altruistics.

Indeed, they strictly prefer to keep their money for personal use rather than to spend it
for the charitable purpose even if they win. The limit of the bidders’ altruism is a consistent
assumption.

In the all-pay auction, the limit of the bidders altruism leads to ∂UA
i

∂bi
(vi, bi, bj ; ai) < 0 which

is equivalent to ai < 1. As bidders pay if they win as well as when they lose, the limit of the
altruism requires us to compute the derivatives of the bidders’ utility in these two situations.
Yet, since the limit of the bidders’ altruism is independent of the outcome of the auction.
Thus, these derivatives lead to the same result.

In the first-price auction the limit of the bidders altruism leads to ∂UF
i

∂bi
(vi, bi, bj ; ai) < 0

which is also equivalent to ai < 1. As only the winner pays in the first-price auction only the
outcome where he wins matter for the altruism level.

Bidder i’s strategy is a function α(.; ai) : [0, 1]→ R+ in the all-pay auction and a function
β(.; ai) : [0, 1] → R+ in the first-price auction which determines her bid for any value given
her altruism parameter. Given a sensitivity level ai different for each bidder, we focus on the
asymmetric equilibria such that α(.; ai) ≡ αi(.) and β(.; ai) ≡ βi(.). However, as the bidders
are distinguished only thanks to their altruism parameter, their equilibrium bidding functions
would be symmetric in these parameters. Denote as ϕi(.) = α−1

i (.) and φi(.) = β−1
i (.) the

inverse functions of bidder i’s strategy functions given her altruism ai. Notice that (αi, αj) is
a Bayesian Nash equilibrium such that its meets the first and the second order conditions if
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and only if (ϕi, ϕj) also fulfill the first and the second order conditions. The same relationship
also holds in the first-price auction with (βi, βj) and (φi, φj).

3 All-Pay Auction

As we said in the preliminary section, in the all-pay auction all bidders pay their own bid.
Moreover, each bidder benefits an externality from her own bid as well as her from her com-
petitor. Then, using (1) we can compute the expected payoff of bidder i

EUAi (vi, bi, αj ; ai) = viα
−1
j (bi)− bi + ai(bi + Eαj(V )). (3)

To determine the effect of the altruism on the expected payoff we can divide (3) in two terms,
the usual expected utility and the return from the charity purpose, κAi . Then,

EUAi (vi, bi, αj ; ai) = viα
−1
j (bi)− bi + κAi (bi, αj ; ai)

with κAi (bi, αj ; ai) = ai(bi +Eαj(V )). Thus, if bidder i does not take account of the term κAi ,
she would face the usual all-pay auction expected payoff.

Lemma 1. The bidders’ equilibrium strategies must be pure stragies that are continuous and
increasing functions.

Lemma 2. Minimum and maximum bids must be the same for both bidders so that α1(0) =

α2(0) = 0 and α1(1) = α2(1) = b̄.

In an all-pay auction, bidders care about their bids if they win as well as when they lose. In
both cases, they get a positive return from their opponent’s bid. Thus, their equilibrium bid
depends on their own altruism parameter as well as on their competitor’s. An immediate con-
sequence of the Lemma 1 is that the inverse function of αi, ϕi, is increasing and differentiable
almost everywhere on [0, b̄]. Furthermore, ϕi(0) = 0 and ϕi(b̄) = 1 where b̄ = α1(1) = α2(1).

To derive the equilibrium, we state here only the necessary condition while the sufficient
condition is given in Appendix. Differentiating (3) with respect to bi it follows that

ϕ1(b) =
1− a1

ϕ′2(b)
for all b ∈ (0, b̄] (4)

ϕ2(b) =
1− a2

ϕ′1(b)
for all b ∈ (0, b̄]. (5)

Then, from (4) and (5) and using the boundary conditions ϕi(0) = 0 we get

ϕi(b)ϕj(b) = (1− ai)b+ (1− aj)b for all b ∈ (0, b̄]. (6)

As ϕi(b̄) = 1 for all i, b̄ =
1

2− a1 − a2
follows from (6). Then, for some level of the altruism

parameters, bidders could submit a maximum bid higher than their valuation. Indeed, this
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would be the case if the sum of the altruism parameters is higher than 1. Moreover, if each
altruism parameter is close to 1, the maximum bid would be infinite as in the case of sym-
metric bidders (see Goeree et al. (2005)). Thus, revenue is not bounded and could potentially
be infinite.

Using (5), for i = 1, 2 equation (6) leads to6

ϕi(b) =
2− aj − aj

1− aj
ϕ′i(b)b for all b ∈ (0, b̄].

From this we obtain an explicit solution to the inverse bid functions which characterize the
unique Bayesian Nash equilibrium (ϕ1(.), ϕ2(.)):

ϕi(b) = [(2− ai − aj)b]
1−aj

2−ai−aj for all b ∈ (0, b̄], for i = 1, 2 (7)

Proposition 1. There exists a unique Bayesian Nash equilibrium (α1, α2) such that

αi(v) =
1

2− ai − aj
v

2−ai−aj
1−aj for all v ∈ [0, 1], i = 1, 2 and i 6= j.

Obviously, for a1 = a2 ≡ a we get the symmetric Nash equilibrium

α1(v) = α2(v) =
1

2(1− a)
v2.

The equilibrium strategy function of bidder i is increasing in her own altruism parameter.
Indeed, the more she is concerned with the charity purpose the higher her bid will be. On
the other hand, the higher her opponent’s sensitivity, the less she would like to bid. A higher
sensitivity leads to a higher aggressiveness which affects her bid. These results can be verified
by computing the derivatives

∂αi
∂ai

(v; ai, aj) = − 1

(2− ai − aj)2
v

2−ai−aj
1−aj

(
1 +

2− ai − aj
1− aj

ln v

)
≥ 0

∂αi
∂aj

(v; ai, aj) =
−1 + (2− ai − aj)v

2−ai−aj
1−aj 1−ai

(1−aj)2
ln v

(2− ai − aj)2
≤ 0

Figure 1 depicts the equilibrium bidding strategies for a1 = 0, 75 and a2 = 0, 25.

Corollary 1. In the all-pay auction, the more altruistic bidder is the more agressive one.
More precisely, if a1 > a2 then α1(v) > α2(v) for all v ∈ (0, 1).

6From equation (7) there is only one equilibrium.
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Symmetric Bidders
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Figure 1: Equilibrium Bidding Strategies

4 First-Price Auction

In the first-price auction the bidder with the highest bid gets the object and pays her own
bid while the loser does not pay anything (see Section 2). Moreover, each bidder experiences
a positive externality from the winner’s bid. Using (2) we can then compute the expected
payoff of bidder i

EUFi (vi, bi, βj ; ai) = [vi − (1− ai)bi]β−1
j (bi) + ai

∫ 1

β−1
j (bi)

βj(v)dv (8)

= [vi − (1− ai)bi]β−1
j (bi) + ai

∫ b̄j

bi

v(β−1
j )′(v)dv (9)

= [vi − bi]β−1
j (bi) + ai

(
b̄j −

∫ b̄j

bi

β−1
j (v)dv

)
(10)

where b̄j is bidder j’s maximum bid. Define y = βj(v). With this, (9) follows from (8)
and (10) is obtained through integration by parts. Again, we can split the expected payoff in
two terms. The first one is the expected payoff of the usual first-price auction and the second
the return from the charity purpose, κFi :

[vi − bi]β−1
j (bi) + κFi (bi, βj ; ai)

with κFi (bi, βj ; ai) = ai

(
b̄j −

∫ b̄j

bi

β−1
j (v)dv

)
. As in the all-pay auction, if bidder i does not

take account the term κFi she would face the usual first-price auction expected payoff.

Lemma 3. The bidders’ equilibrium strategies must be pure stragies that are continuous and
increasing functions.

8



Lemma 4. Minimum and maximum bids must be the same for both bidders so that β1(0) =

β2(0) = 0, β1(1) = β2(1) = b̄ and b̄ ∈
[

1
2 , 1
)
.

Lemma 5. Each bidder submit a non-negative bid inferior to her value such that βi(v) < v

for all v ∈ (0, 1] and i = 1, 2.

As in the case of the all-pay auction, from the Lemma 3 the inverse function of βi, φi, is
increasing and differentiable almost everywhere on [0, b̄]. Furthermore, φ1(0) = φ2(0) = 0 and
φ1(b̄) = φ2(b̄) = 1. Bidders could not submit a maximum bid higher than their valuation.
Furthermore, the maximum bid is bounded because of the limit on the bidders’ altruism. The
maximum bid in the all-pay auction is therefore higher than the one in the first-price auction.7

To derive the equilibrium, as above we state only the necessary condition while the suffi-
cient condition is given in Appendix. Differentiating (8) with respect to bi it follows

φ
′
1(b) =

1− a2

φ2(b)− b
φ1(b) for all b ∈ (0, b̄] (11)

φ
′
2(b) =

1− a1

φ1(b)− b
φ2(b) for all b ∈ (0, b̄]. (12)

There is no explicit solution to this differential equation systems with our boudary condi-
tions. The equations (11) and (12) and the boundary conditions define equilibrium strategies
if they define the optimal decision for each bidder.

Proposition 2. The unique Bayesian Nash equilibrium (β1, β2) is characterized by the inverse
bidding functions (φ1, φ2) such that

φi(b) = (1− ai)
φj(b)

φ′j(b)
+ b for all b ∈ [0, b̄]

which satisfies the boundary conditions φi(0) = 0, φi(b̄) = 1, for i = 1, 2 and i 6= j.

For a1 = a2 ≡ a we get the symmetric Nash equilibrium (see Engers and McManus (2007)
for details) such that βi(v) =

v

2− a
for i = 1, 2. The maximum bids, and therefore the

expected revenue, are bounded. As in the all-pay auction we can established a strict ranking
of the bidding functions.

Corollary 2. In the first-price auction, the more altruistic bidder is the more agressive one.
More precisely, if a1 > a2 then β1(v) > β2(v) for all v ∈ (0, 1).

This result is useful to determine the shape of the bidding strategies at the equilibrium.
Indeed, β1 and β2 cannot intersect. Moreover, the equilibrium bidding strategies are concave
for bidder 1 and convex for bidder 2.8 Figure 2 depicts the curves of β1 and β2.

7This result is not obvious as for some value of the altruism parameters the maximum bid in the all-pay
auction is inferior to 1. Claim 1 establishes this result in Appendix.

8A proof is given in Appendix, Claim 3.
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Figure 2: Equilibrium Bidding Strategies

5 Revenue Comparisons

In this section we examine the performance of the all-pay and first-price auctions in terms of
the expected revenue. As before we assume that bidder 1 is more concerned about the purpose
of charity than bidder 2 which means that a1 > a2. Our next result describes the ranking of
the equilibrium bidding strategies for each bidder.

Proposition 3. Bidders’ i bidding strategies in the all-pay and the first price auction intersect
only once such that

βi(v) ≥ αi(v) for all v ∈ [0, v̄i] and αi(v) > βi(v) for all v ∈ (v̄i, 1], for i = 1, 2 and i 6= j.

Let us denote eAi and eFi the expected payment of bidder i in the all-pay and first-price
auctions. These expected payments are eAi (v) = αi(v) and eFi (v) = φj(βi(v))βi(v) for all
v ∈ [0, 1]9. Comparing the expected payments will be useful for ranking the expected revenues.

Lemma 6. The expected payment of bidder i in the all-pay auction is greater than her expected
payment in the first-price auction if her valuation is sufficiently high. Moreover, her expected
payment is the same in both auctions if her valuation is sufficiently low.

The expected payment in both auctions are convex functions for bidder 2, while for bidder
1 the expected payment function is convex in the all-pay auction and concave in the first-price
auction. Thus it is not clear if the expected payment of bidder i from the all-pay auction is

9Indeed, eFi (v) = P(βj(Vj) ≤ βi(v))βi(v) = φj(βi(v))βi(v).
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greater than from the first-price auction. Indeed it could happen that for a range of middle
valuations the latter outperforms the former. The next proposition determines the ranking of
the expected revenue.

Proposition 4. If the bidders’ altruism parameters for charity are non-negative, the expected
revenue in the all-pay auction is strictly higher than in the first-price auction.

Thus, the introduction of the asymmetry on the altruism parameters does not change the
ranking of the expected revenue (Goeree et al., 2005, Engers and McManus, 2007). This result
was not predictable as the asymmetry can reverse the ranking of the expected revenue in first
and second-price auctions (Bulow et al., 1999). Furthermore, this contradicts results with
complete information (Bos, 2008). Thus, our result confirms the dominance of the all-pay
auction at raising money for charity in an incomplete information framework.

Moreover, the expected revenue in the all-pay auction is given by

ERA(a1, a2) =

∫ 1

0
α1(v)dv +

∫ 1

0
α2(v)dv

=
1

2− a1 − a2

(
1− a2

3− a1 − 2a2
+

1− a1

3− 2a1 − a2

)
It is interesting to see how the asymmetry affects the expected revenues in the all-pay

auction. In what follows, we do no longer strictly order the altruistic parameters so that a1

could be inferior as well as superior than a2. Let us denote ā = a1+a2, such as ā ∈ [0, 2). Upon
substitution, we can see that ERA(a1, ā− a1) is maximized at a1 = ā

2 and then increasing for
a1 <

ā
2 and decreasing for a1 >

ā
2 . For example, Figure 3 depicted the situation where ā = 1.

Then, we get the following results.

Lemma 7. The greater asymmetry in the altruism parameters the higher the expected revenue
will be in the all-pay auction.

This result is in line with results on asymmetric all-pay auctions with complete information.
Hillman and Riley (1989) determine that the expected revenue decreases when the bidders
become more asymmetric.
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Figure 3: Expected Revenue of the All-Pay Auction for ā = 1.

Unfortunately, as we do not have explicit bidding functions in the first-price auction we
cannot provide the expected revenue for this design and determine how the asymmetry affects
it.

6 Conclusion

The purpose of this paper was to determine which of the two auction designs – all-pay auction
or first-price auction – is better at raising money for charity when bidders are asymmetric in
their altruism parameters with complete information and values are drawn in a independent
private values model. As in the case with symmetric bidders (Goeree et al., 2005) we conclude
that the all-pay auction is better than the first-price auction. These results show that differ-
ent auction designs are better for different environments. Indeed, in a complete information
framework Bos (2008) shows first-price auctions outperform all-pay auctions when the asym-
metry among bidders is strong enough. Moreover, Carpenter et al. (2007) conclude there is
no strict ranking of revenue when the participation is endogenous.

Our result confims the one of Goeree et al. (2005) and indicates that all-pay auctions
should be considered seriously to raise money for charity purposes. As we pointed out, the
organization of an all-pay is unproblematic. A one-shot sale of tickets with the winner being
determined by the highest number of tickets bought is equivalent to an all-pay auction.

This paper and more generally the idea that the optimal auction design for charity depends
on the informational setup is good candidate for experiments in a lab. In this way one could
expect to determine which elements in the knowledge of bidders are crucial to the ranking of
auctions by revenue.
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7 Appendix

The derivation of statements in lemmata 1 and 3 uses similar arguments than in de Frutos
(2000).

Proof of Lemma 1. First, let us show that the equilibrium bidding strategies are monotonically
increasing. Denote, for a fixed ai, b̄ = αi(v̄) and b = αi(v) with v̄ ≥ v. Then, at the
equilibrium, we should get

EUAi (v̄, b̄, αj ; ai) ≥ EUAi (v̄, b, αj ; ai)

EUAi (v, b, αj ; ai) ≥ EUAi (v, b̄, αj ; ai)

which could be written

v̄α−1
j (b̄)− (1− ai)b̄+ aiEαj(V ) ≥ v̄α−1

j (b)− (1− ai)b+ aiEαj(V )

vα−1
j (b)− (1− ai)b+ aiEαj(V ) ≥ vα−1

j (b̄)− (1− ai)b̄+ aiEαj(V ).

Then, subtracting the second inequality from the first one leads to (v̄−v)(α−1
j (b̄)−α−1

j (b)) ≥ 0.
Then, b ≤ b̄.

Let us assume there is a gap [b′, b′′] in αi(.). Then, if bidder j planned to submit a bid
in (b′, b′′) he would strictly prefer to bid b′. Indeed, this does not affect her probability of
winning and decreases her payment. Consequently, bidding b′′ for bidder i is dominated by
bidding b′ + ε with ε > 0. Thus the equilibrium bidding strategies are without any gap.

Let us consider there is an atom in αi(.) such as it exists b′ with P(αi(vi) = b′) > 0. Then
there is an ε > 0 such that there is a gap (b′ − ε, b′) in αi(.), leading to a contradiction to the
previous paragraph.

As the equilibrium bidding strategies are without any atom and monotonically increasing,
they are strictly monotonically increasing. Furthermore the equilibrium bidding strategies are
in pure strategies as there is no gap. Then, the equilibrium strategies are differentiable almost
everywhere. �

Proof of Lemma 2. Assume that 0 ≤ αi(0) ≤ αj(0). Each bidder gets the same payoff by
winning as well as losing. As bidders have a strict preference for a higher payoff independently
of the outcome, it follows that αi(0) = αj(0) = 0. Assume that αj(1) > αi(1). Then, the
bidder 1 can decrease her bid without alterate her winning probability and increasing her
payoffs. Similarly, αi(1) > αj(1) cannot be part of the equilibrium. Thus, α1(1) = α2(1). �

Proof of Proposition 1. It is clear that at the equilibrium αi(0) = 0. Indeed, if bi = 0 the
payoff of the bidder i for vi > 0 is strictly inferior to the one for vi = 0. Consider now the
payoff of the bidder i for all bi ∈ (0, b̄].

∂UAi
∂bi

(vi, bi, αj ; ai) = viϕ
′
j(bi)− (1− ai)

= (vi − ϕi(bi))ϕ′j(bi).
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To get the last line we used the necessary condition ϕi(bi)ϕ′j(bi) = 1−ai. When vi > ϕi(bi) it

follows that
∂UAi
∂bi

(vi, bi, αj ; ai) > 0. In a similar manner, when vi < ϕi(bi),
∂UAi
∂bi

(vi, bi, αj ; ai) <

0. Thus,
∂UAi
∂bi

(vi, αi, αj ; ai) = 0. As a result, the maximum of UAi (vi, αi, αj ; ai) is achieved

for vi = ϕi(bi) and then bi = αi(vi). �

Proof of Corollary 1. Recall that we assume a1 > a2. As αi(x) ∈ [0, 1] for all i and all x.
Then we get ϕ1(x) < ϕ2(x) for all x. The result follows. �

Proof of Lemma 3. First, let us show that the equilibrium bidding strategies are monotonically
increasing. Denote, for a fixed ai, b̄ = βi(v̄) and b = βi(v) with v̄ ≥ v. Then, as for the all-pay
auction at the equilibrium, we should get

(v̄ − (1− ai)b̄)β−1
j (b̄) + ai

∫ 1

β−1
j (b̄)

βj(v)dv ≥ (v̄ − (1− ai)b)β−1
j (b) + ai

∫ 1

β−1
j (b)

βj(v)dv

(v − (1− ai)b)β−1
j (b) + ai

∫ 1

β−1
j (b)

βj(v)dv ≥ (v − (1− ai)b̄)β−1
j (b̄) + ai

∫ 1

β−1
j (b̄)

βj(v)dv

From this we obtain (v̄−v)(β−1
j (b̄)−β−1

j (b)) ≥ 0. Then, b ≤ b̄. By arguments similar to those
in Lemma 1 the equilibrium bidding strategies must be gapless and atomless. In consequence
the equilibrium bidding strategies are in pure strategies and strictly monotonically increasing.
Then, the equilibrium strategies are differentiable almost everywhere. �

Proof of Lemma 4 and 5. Assume that βi(0) < βj(0). When the valuation is 0, the payoff
of losing is higher than the payoff of winning. Then, both bidders deviate and submit a bid
equal to 0 such that β1(0) = β2(0) = 0.

Assume that b̄i > b̄j . Then bidder i wins for sure and get an expected payoff 1 − bi. As
b̄i > b̄j , she could increase her expected payoff without changing her probability of winning
by decreasing her bid to b̄j . It follows that b̄i = b̄j = b̄. Furthermore, we determine that a
bidder will never submit an equilibrium bid higher than her valuation v. To see this, compare
the cases where bidder i with a valuation v, either bids b = v or b = v + ε with ε > 0. Using
(8) it follows that

UFi (v, v, βj ; ai)− UFi (v, v + ε, βj ; ai) = aiv(β−1
j (v)− β−1

j (v + ε)) + (1− ai)εβ−1
j (v + ε)

+ ai

∫ β−1
j (v+ε)

β−1
j (v)

βj(x)dx

= (1− ai)εβ−1
j (v + ε) + ai

∫ β−1
j (v+ε)

β−1
j (v)

βj(x)− vdx

For all x ∈ [β−1
j (v), β−1

j (v+ε)] βj(x)−v ≥ 0. Hence, UFi (v, v, βj ; ai)−UFi (v, v+ε, βj ; ai) > 0.
Thus, βi(v) ≤ v for all v ∈ [0, 1] and b̄ ≤ 1. It follows that φi(b) ≥ b. In addition, as (11) and
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(12) leads to φi(b) = (1 − ai)φj(b)
φ′j(b)

+ b for i = 1, 2 and i 6= j we get φi(b) > b for all b > 0.

Hence, b̄ < 1.
Summing differential equations (11) and (12) it follows

φ
′
1(b)φ2(b) + φ

′
2(b)φ1(b)− b(φ′1(b) + φ

′
2(b))− (φ1(b) + φ2(b)) = −a1φ2(b)− a2φ1(b)

Intregrating this equation and using φi(b̄) = 1,

1− 2b̄ = −
∫ b̄

0
a1φ2(x) + a2φ1(x)dx

Hence, b̄ ≥ 1

2
. �

Proof of Proposition 2. Before solving for the equilibrium, its existence and uniqueness must
be determine. Equations (11) and (12) could be written as

d

db
lnφi(b)

1
1−aj =

1

1− φj(b)
for i, j = 1, 2, i 6= j

As in de Frutos (2000), existence follows from Therorem 2 in Lebrun (1999) and uniqueness
follows directly from Corollary 4 in Lebrun (1999).

It is clear that at the equilibrium βi(0) = 0. Indeed, if bi = 0 the payoff of the bidder i for
vi > 0 is strictly inferior to the one for vi = 0. Consider now the payoff of the bidder i for all
bi ∈ (0, b̄i].

∂UFi
∂bi

(vi, bi, βj ; ai) = (vi − bi)φ′j(bi)− (1− ai)φj(bi)

=
vi − bi

φi(bi)− bi
(1− ai)φj(bi)− (1− ai)φj(bi)

To get the last line we used the necessary condition provided by equations (11) and (12).

φi(bi)φ
′
j(bi) = 1 − ai. When vi > φi(bi) it follows that

∂UFi
∂bi

(vi, bi, βj ; ai) > 0. In a similar

manner, when vi < φi(bi),
∂UFi
∂bi

(vi, bi, βj ; ai) < 0. Thus,
∂UFi
∂bi

(vi, βi, βj ; ai) = 0. As a result,

the maximum of UFi (vi, βi, βj ; ai) is achieved for vi = φi(bi) and then bi = βi(vi). �

Proof of Corollary 2. Remark that if ∃ y ∈ (0, b̄) and φ1(y) = φ2(y) = z, then (10) and
a1 > a2 imply that

φ′2(y) =
1− a1

z − y
z < φ′1(y) =

1− a2

z − y
z

Hence, due to properties of the inverse functions, if there exists a z such that β1(z) = β2(z) = y

then β′2(z) > β′1(z). In consequence, β1 and β2 intersect at most once.
To prove the result let us assume the contrary. Suppose ∃x ∈ (0, 1) such that β2(x) ≥

β1(x). Then either β2(v) > β1(v) for all v ∈ (0, 1) or they intersect in z ∈ (0, 1) and for all
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x ∈ (z, 1), β2(x) > β1(x). In the latter case, φ2(b) < φ1(b) for all b close to b̄. Notice that
from (11) and (12) it follows

φ1(b) =
φ2(b)

φ′2(b)
(1− a1) + b and φ2(b) =

φ1(b)

φ′1(b)
(1− a2) + b.

Using a1 > a2 and φ1(b) > φ2(b) we obtain
φ2(b)

φ′2(b)
>

φ1(b)

φ′1(b)
for b close to b̄. Therefore,

φ2(b) > φ1(b); hence a contradiction.10 �

Proof of Proposition 3.

Claim 1. The maximum bid in all-pay auction is higher than is first-price auction for non-
negative altruism parameters.

Proof. Let us denote by b̄A and b̄F the maximum bids in the all-pay and first-price auction.
Clearly, b̄A ≥ 1 > b̄F for all a1 + a2 ≥ 1. Let us assume that b̄F ≥ b̄A for some a1 + a2 < 1.
Then, by continuity there exists a value of a1 + a2 such that b̄F = b̄A. If this case happens
with asymmetric bidders then it also happens with symmetric bidders. In the latter case,

a1 + a2 = a, b̄F =
1

2− a
and b̄A =

1

2(1− a)
. Hence the result.

As b̄A > b̄F and the bidding strategies are strictly increasing functions, there exists v̄i ∈
(0, 1) such that αi(v̄i) = b̄F for i = 1, 2. Then, αi(v) > βi(v) for all v ∈ [v̄i, 1] for i = 1, 2.
Hence, ϕi(b̄F ) < φi(b̄

F ) for i = 1, 2.

Claim 2. ϕi(b) > φi(b) and ϕj(b) > φj(b) for all b close to 0.

Proof. Using L’Hôspital’s rule in (11) implies:

1− ai = lim
b→0

φ′j(b)
φi(b)− b
φj(b)

= φ′j(0) lim
b→0

φi(b)− b
φj(b)

= φ′j(0) lim
b→0

φ′i(b)− 1

φ′j(b)

= φ′i(0)− 1

Thus, φ′i(0) = 2− ai for i = 1, 2.

As ϕ′i(b) = (1 − aj)((2 − ai − aj)b)
−1+ai

2−ai−aj , and ai > aj , limb→0 ϕ
′
i(b) = +∞. Hence,

ϕ′i(0) > φ′i(0) for i = 1, 2. Therefore, ϕi(b) > φi(b) for all b sufficiently close to 0 and
βi(v) > αi(v) for all v sufficiently close to 0.

Claim 3. The inverse bidding strategies φ1 and φ2 are respectively convex and concave func-
tions.

10As φi(b̄) = 1, φi(0) = 0 and φ′i(b) > 0 it follows that
φ2(b)

φ′2(b)
>
φ1(b)

φ′1(b)
implies φ2(b) > φ1(b). That can be

shown as the dominance in terms of the reverse hazard rate implies the stochastic dominance (see Krishna
(2002) for an example of the proof).
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Proof. Remark that from (11) and (12) φ1 and φ2 are continuous functions and therefore
differentiable. From (11) and (12) we obtain

φ′′i (b) =
1− aj

(φj(b)− b)2
(φ′i(b)(φj(b)− b)− (φi(b)(φ

′
j(b)− 1)) for i = 1, 2 and i 6= j. (13)

Let us assume that φ′′2(b) > 0 for all b ∈ [0, b̄F ]. Note that φ′′1(b) < 0 is equivalent to
φ′1(b)

φ1(b)
<
φ′2(b)− 1

φ2(b)− b
Using (11), this is also equivalent to φ′2(b) > 2−a2. Thus, as φ′2(0) = 2−a2

φ2 convex leads to φ1 concave. Yet, φ1 concave, φ2 convex and the boundary conditions
contradict the Corollary 2. Hence, φ2 cannot be convex.

Let us assume that φ2 is neither convex nor concave. Then there exists at least one inflexion
point b such as φ′′2(b) = 0. Denote b̃ the first inflexion point. Then, φ′′2(b̃) = 0 and (13) imply
φ′1(b̃) = 2 − a1. As φ′1(0) = 2 − a1, φ′1 is not strictly monotone on [0, b̃] and there exists ˜̃

b

such as φ′′1(
˜̃
b) = 0 with ˜̃

b < b̃.11 In the same way, φ′′1(
˜̃
b) = 0 and (13) imply φ′2(

˜̃
b) = 2 − a2.

As φ′2(0) = 2 − a2, φ′2 is not monotone on [0,
˜̃
b] which contradicts that b̃ is the first inflexion

point of φ2.12 Hence, φ2 has to be either convex or concave. With a symmetric argument we
get the same result for φ1.

In consequence φ′′2(b) ≤ 0 for all b ∈ [0, b̄F ]. Furthermore, φ′′1(b) ≥ 0 if and only if
2− a2 ≥ φ′2(b) which is true as φ2 is concave and φ′2(0) = 2− a2. Hence, φ1 is convex.

Claim 4. The inverse bidding strategy ϕi is a concave function.

Proof. Differentiating twice (7) leads to ϕ′′i (b) = −(1− aj)(1− ai)((2− ai− aj)b)
−3+2ai+aj
2−ai−aj for

all b ∈ [0, b̄A], which is negative.

Claim 2–4 imply that the curves φi and ϕi intersect once and only once. Moreover,
ϕi(b) ≥ φi(b) for all b ∈ [0, b̃i] with b̃i < b̄F and ϕi(b) < φi(b) for all b ∈ [b̃i, b̄

F ]. Furthermore,
we have shown that αi(v) > βi(v) for all v ∈ [v̄i, 1] with αi(v̄i) = b̄F . This compeletes the
proof. �

Proof of Lemma 6. The expected payment of the bidder 1 from the first-price auction is given
by eF1 (v) = φ2(β1(v))β1(v). Then, eF1 (0) = 0 and eF1 (1) = b̄F . As β1 and φ2 are both positive,
increasing and concave functions and eF1 is the composition and the product of them, eF1 is
also increasing and concave. Moreover, eF ′1 (0) = α′1(0) and eF1 (1) < α1(1). As eA1 is convex,
the result follows.

Due to the same technical arguments, it follows that eA2 and eF2 are both convex functions.
In addition, eF ′2 (0) = α′2(0), eF2 (0) = α2(0) = 0 and eF2 (1) < α2(1). Lemma 6 follows. �

Proof of Proposition 4. Before showing the result, let us establish inequality (14).

11Remark that if φ′1 is constant on [0, b̃], φ′2 is also constant on this interval and b̃ cannot be an inflexion
point.

12Remark that if φ′2 is constant on [0,
˜̃
b], φ′1 is also constant on this interval. Thus, ˜̃

b cannot be an inflexion
point for φ1.
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Claim 5. ∫ 1

0

x2

2
β′i(x)dx ≥

∫ 1

0

x2

2
dx

∫ 1

0
β′i(x)dx for i = 1, 2 (14)

Proof. β′2 is an increasing function. Then, for i = 2 (14) is a special case of the Chebyshev’s
inequality for monotone functions. Yet, this inequality cannot be applied for i = 1 as β′1

is decreasing. However, (14) is equivalent to
∫ 1

0

x2

2
(β′1(x) − b̄F )dx. Then, let us show that

β′1(x) ≥ b̄F for all x ∈ [0, 1]. Moreover, β′1(x) ≥ β′1(1) and b̄F ≤ 1

2− a2
as β′1 is decreasing

and the maximum bid with asymmetric bidders cannot be higher than the maximum bid with

symmetric bidders. Therefore, we need to establish that β′1(1) ≥ 1

2− a2
. Suppose the contrary

which is equivalent to φ1(b̄F )′ ≥ 2− a2. This inequality is also equivalent to
1− a1

1− b̄F
≥ 2− a2

which leads to b̄F ≥ 1− a2 + a1

2− a2
. As

1− a2 + a1

2− a2
>

1

2− a2
we obtain b̄F >

1

2− a2
; hence a

contradiction.

Denote by ∆i the difference among
∫ 1

0
eAi (v)dv and

∫ 1

0
eFi (v)dv such as

∆i =

∫ 1

0
(αi(v)− φj(βi(v))βi(v))dv

Then,

∆2 ≥
∫ 1

0
(α2(v)− φ1(β2(v))β2(v))dv (15)

= b̄A −
∫ 1

0
vα2(v)dv − b̄F

2
+

∫ 1

0

v2

2
β′2(v)dv (16)

Using Corollary 2 v ≥ φ1(β2(v) and then (15) follows. Integrating by parts we obtain (16).
In addition for the bidder 1,

∆1 = b̄A −
∫ 1

0
vα1(v)dv − b̄F

2
+

∫ 1

0
β′1(v)

(∫ 1

0
φ2(β1(x))dx

)
dv (17)

≥ b̄A −
∫ 1

0
vα1(v)dv − b̄F

2
+

∫ 1

0
β′1(v)

v2

2
dv (18)

Integrating by parts we obtain equation (17) and, from Corollary 2, equation (18). Thus for
i = 1, 2,

∆i ≥ b̄A −
∫ 1

0
vαi(v)dv − b̄F

3
(19)

≥ 1

2− a1 − a2
− 1

3− 2aj − ai
− 1

3(2− a2)
(20)

Using the Claim 5, (16) and (18) lead to (19). To get (20) we use the fact that the maximum
bid with asymmetric bidders cannot be higher than the maximum bid with symmetric bidders.
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Then it follows

∆1 =
5a1 − a2

1 − 3a1a2 − 2a2 + a2
2

3(2− a2)(2− a1 − a2)(3− a1 − 2a2)

∆2 =
a1 − 2a2

1 + 2a2 − a2
2

3(2− a2)(2− a1 − a2)(3− 2a1 − a2)

and ∆1 + ∆2 ≥
δ(a1, a2)

3(2− a2)(2− a1 − a2)(3− 2a1 − a2)(3− a1 − 2a2)
with δ(a1, a2) = (3−a1−2a2)(a1−2a2

1 +2a2−a2
2)+(3−2a1−a2)(5a1−a2

1−3a1a2−2a2 +a2
2).

Let us show that the function δ(a1, a2) is positive for all a1 given a2 fixed and a1 > a2.
First, note that for each value of a2 inferior to a1, the minimum and the maximum of

the function δ are given by δ(a2, a2) = 18(−1 + a2)2a2 > 0 and δ(1, a2) = 2 − 3a2 + a3
2 > 0.

Moreover,
∂δ

∂a1
(a1, a2) = 2[6a2

1 + a1(11a2 − 20) + 9 − 7a2 + a2
2]. Then, to determine the

monoticity of δ given a2 requires the determination of the sign of the polynomial

6a2
1 + a1(11a2 − 20) + 9− 7a2 + a2

2 (21)

The discriminant of the equation (21) is 85a2
2 − 188a2 + 76 and thus non-positive for all

a2 > a2 ≡ 94−2
√

594
85 ∼ 0, 532. Therefore, for all a1 ∈ (a2, 1) given a2 > a2 the function δ is

increasing in a1. Hence, ∆1 + ∆2 > 0.
Yet, when a2 ≤ a2 equation (21) could positive as well as negative. Indeed, (21) is positive

for all a1 ≤ a1 and non-positive for all a1 > a1 with a1 ≡
20−11a2+

√
85a22−188a2+76

12 . Note
that a1 is positive but superior to 1 when a2 > ã2 ≡ −1+

√
13

6 ∼ 0, 4342. Then, we have to
distinguish 2 cases.

• For all a1 ∈ (0, 1) given a2 < ã2, δ is increasing for a1 ∈ (0, a1] and decreasing for
a1 ∈ [a1, 1). It follows that ∆1 + ∆2 > 0.

• For all a1 ∈ [ã2, 1) such as a2 ∈ [ã2, a2], δ is increasing. Hence, ∆1 + ∆2 > 0.

Finally, we have determined that the function δ is non-negative for all a1 given each value of
a2 inferior to a1. This completes the proof. �
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