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Abstract

The traditional regression methodology of estimating “optimal” capital struc-

ture is profoundly misspecified if firms follow dynamic financial policies. In-

stead, capital structure researchers, under many reasonable scenarios, should

estimate the conditional mode of the leverage distribution. This metric is the-

oretically motivated and robust to a wide range of modeling assumptions. We

introduce an empirical methodology to estimate the conditional mode of lever-

age and apply it to Compustat firms between 1950 and 2005. The estimated

cross-sectional optimal leverage ratio decreases from a standard regression es-

timate of 37% to a mode estimate of 25%. Our findings should apply to most

other areas of corporate finance research and call for a widespread rethinking

of empirical tests.
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Obtaining estimates of “optimal” or “target” leverage ratios is at the heart of

most traditional (i.e. non-structural) empirical capital structure research as well as

perhaps the most important link between empirical analysis and capital structure

theory. Starting from classical early studies of Taggart (1977), Marsh (1982), Tit-

man and Wessels (1988)1 to most recent contributions in the field (e.g. Baker and

Wurgler (2002), Fama and French (2002), Korajczyk and Levy (2003), Flannery and

Rangan (2006), Kayhan and Titman (2007), Lemmon, Roberts, and Zechner (2008),

Byoun (2008), Huang and Ritter (2009), Chang and Dasgupta (2009)), the goal has

been either to estimate the cross-sectional determinants of corporate financial deci-

sions and compare the results with predictions of various theories, or to use such

an estimate as the first step to conducting further investigation such as the analysis

of mean-reversion in leverage. This empirical search for “target” leverage ratios is

well-grounded in a number of static models of corporate financial structure, which

contain many comparative statics predictions.

In this paper we show that traditional empirical methodology, in many realistic

situations, yields highly misleading implications about even such a “simple” parame-

ter as the average cross-sectional target leverage ratio. We claim that the traditional

methods cannot be used to make any empirical statements about the extent of lever-

age or its determinants or as a qualitative link between empirics and theory. In short,

we suggest the need to rethink the way traditional empirical methods are used and

we propose an alternative way to study target capital structure that is more robust,

yet not substantially more complicated. As will become obvious, our critique as well

as our suggested remedy are not confined to capital structure but can be directly

applied to other areas of financial economics.

To understand the crux of the matter, note that the standard econometric method-

ology in the extant literature is to estimate conditional expected leverage ratios,

E(L∣X), where L is the leverage ratio andX is the set of determinants, using method-

of-moment estimators, either OLS or GMM. These estimates are then used to pro-

1For a comprehensive overview of classical empirical studies in capital structure, see Harris and

Raviv (1991).
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vide insights about target capital structure. Unfortunately, in a dynamic world this

method works only if firms readjust to the target instantaneously, an unlikely sce-

nario. We show that in a dynamic world with a fixed transaction costs component

(or, more generically, if firms do not re-adjust leverage to the target leverage ratio

continuously), an estimate of E(L∣X) is not the target leverage ratio. Instead, un-

der many reasonable scenarios, one should use the conditional mode of the leverage

distribution, which we denote as m(L∣X).

This apparently minor distinction (from the economic point of view, especially for

those versed in static models) turns out to be crucial because the dynamic behavior of

individual firms produces cross-sectional distributions which are highly asymmetric

around the target leverage ratio. To see the implications, consider a simple world

where all firms have identical target leverage ratios. Even though their target is the

same across firms, firms will have different leverage in the cross-section if they do not

instantaneously mean-revert and there is an imperfect correlation in shocks across

firms (both features are highly plausible, the pre-requisite for the latter being the

presence of firm-specific idiosyncratic shocks). There are many reasons why in this

case the cross-sectional distribution will be asymmetric around the target leverage

ratio. One reason (perhaps not the most important but the easiest one to identify

intuitively; more reasons will be identified later) is that firms have non-zero growth

rates, so for example a firm with a positive growth rate is likely to have more frequently

a lower leverage ratio (measured relative to its target) than a higher leverage ratio. It

turns out that the mode of this distribution in most cases is the target leverage ratio

and the mean is not. That the mean is not equal to the target leverage ratio should

follow from the asymmetry. Therefore, any estimates based on the “conditional mean”

are biased, and often have little or no economic meaning in a dynamic model.

How large is the bias? Of course, it depends on the values of too many real-

life parameters to claim any unequivocal conclusions, and the results are subject to

discussion and interpretation, but a surprising result of our work is that for too many

sets of parameters the bias is uncomfortably large. For example, consider a firm whose

earnings grow at an annual rate of 1% with 25% volatility, and which rebalances to
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an assumed optimal leverage ratio of 30% when leverage hits 20%, and which files

for bankruptcy when leverage is 100% (i.e. equity is worthless at bankruptcy). As

mentioned above, the mode of the cross-sectional distribution is the optimal leverage

of 30%. However, the mean leverage ratio of this cross-sectional distribution is 52%,

a difference of 22%!

To investigate whether such a difference between the mean and the mode is empir-

ically plausible, we analyze all non-financial Compustat firms with positive leverage

between 1950 and 2005. We find a mean leverage ratio of 37% compared to a mode

of 25%. One consequence of this finding is that in order to come to grips with such

a significantly lower target leverage ratio, either the costs of financial distress and/or

net agency costs of debt must be larger than previously thought or there must be

other economically substantial costs to leverage. We also find that asset tangibility

is a more important determinant of capital structure than the traditional regression

approach implies, whereas market-to-book ratios are significantly less important than

usually thought. The importance of market-to-book in the traditional regression re-

sults has spurred a flurry of research based on dynamic debt overhang but out results

suggest that theories explaining asset tangibility deserve more attention based on

their relative empirical importance.

One result that empirical capital structure researchers working on non-structural

estimations should take from our findings is that it is incorrect to run cross-sectional

or panel OLS regressions (or their more sophisticated moment-based cousins) with

leverage ratio as the dependent variable. This is a far-reaching result and begs the

question what methods should replace the existing ones. We propose two related

methods to estimate the conditional mode of the leverage distribution: i) a linear

mode regression in the spirit of least squares, and ii) a non-parametric kernel method.

Both methods are easy to use and yield quantitatively similar results. Their properties

have been studied to some extent in the statistics and econometrics literature. In

particular, the mode regression is a version of “robust regression” that has been

applied in the economics and finance literature as a robustness test to OLS (e.g.

Strömberg (2004) and Deschênes and Greenstone (2007)). The second method uses a
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kernel approximation to the conditional leverage density to estimate the mode. It is a

non-parametric maximum likelihood estimator, which has been used in asset pricing

applications (e.g. Stanton (1997)) but not as an alternative to OLS in corporate

finance research. Because of its perceived importance for future research, we devote

a separate section of this paper to introduce the major features of the econometric

methodology using capital structure as an example so that empirical researchers can

use it as a starting base for their analysis right away.

On a theoretical level, we show under what conditions the mode of the cross-

sectional leverage distribution is the optimal leverage ratio upon refinancing. The nat-

ural benchmark case is based on a leverage process that is consistent with contingent-

claims models of the firm in the Black-Scholes (1973) and Merton (1974) tradition,

even though our results should go through for more general firm-value and cash-flow

processes. The degree to which the average leverage ratio is above or below the

optimum is determined by the growth rate of assets or cash flows and the relative

propensity to refinance when the firm is above or below its target leverage ratio (i.e.,

its mean-reversion behavior).

The importance of fixed costs for economic applications has been emphasized in

economics for many decades. In a similar fashion, it has been argued in dynamic cap-

ital structure models (e.g. Fischer, Heinkel and Zechner (1989), Goldstein, Ju and

Leland (2001)) that the presence of fixed costs can generate a large spread in leverage

ratios. Strebulaev (2007) showed that the non-trivial dynamic cross-sectional behav-

ior of leverage indeed can be generated by relatively small frictions and Korteweg

(2010) gives empirical evidence of the size of friction costs. We assume, following the

multitude of theoretical literature, that firms follow some optimal capital structure.

The economic forces behind determining the optimal leverage ratio are not particu-

larly important to us as long as they lead to specifying a certain target leverage ratio

that firms would like to follow. It is important to stress that while in many existing

contingent-claims models the optimal capital structure is the result of the trade-off

between the present value of debt tax shields and bankruptcy costs, our results do

not rely on the exact economic mechanism (other reasons may include an attempt to
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resolve various agency problems, information asymmetry, product market competi-

tion, and so on and so forth), as long as that mechanism leads to a target leverage

ratio.

We should note that at this stage we do not consider incomplete rebalancing i.e.

firms refinancing towards the target only partially. In this setting leverage ratios even

at restructuring may not equal long-term target leverage ratios, and we consider this

an important issue for future research.

We wish to stress that, although we present our results only for capital structure,

its implications are likely to be applicable to a much broader range of topics as long

as the dynamic behavior of agents (firms, consumers, investors, governments) leads

to an asymmetric cross-sectional distribution of the variables of interest. Examples of

such topics are cash flow and payout policies, corporate investment policy with fixed

adjustment costs, or government economic policy under which intervention occurs

only when a certain indicator such as unemployment rises above a threshold. Average

investment or average unemployment are meaningless in these settings and alternative

measures akin to the ones in this paper need to be developed.

The paper is structured as follows. Section I describes our model of the firm and

characterizes the leverage distribution. Section II introduces our empirical method-

ology. Section III describes the data, and Section IV discusses the empirical results.

Section V shows robustness and Section VI concludes.

I Model

A A simple model

To establish the intuition of our main results, consider the following toy model of

the firm leverage. Although the model is very simple, most of the results borne out

by the model will hold in our benchmark model as well. Assume that firms follow

target leverage policy but because of imperfections, such as fixed transaction costs,
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they deviate from their target leverage ratio.2 Define the firm’s target leverage ratio

as L∗ and assume that it is a constant.3 Intuitively, the firms follow a so-called (s, S)

policy – they are inactive if the leverage, due to market fluctuations, deviates a little

and they refinance when the shocks are too large, i.e. when leverage deviates too

much from L∗. Define a lower refinancing boundary by Ld and an upper refinancing

boundary by Lu, 0 ≤ Ld ≤ L∗ ≤ Lu ≤ 1. As long as Lt ∈ (Ld, Lu), the firm is in

the inaction region: it does not take any actions to change its leverage. The moment

that leverage reaches one of the boundaries, the firm refinances, as illustrated in

Figure 1. We consider the case of “complete” refinancing, by which we mean that

the firm refinances to the optimal leverage ratio L∗ whenever it hits either boundary,

a case considered in most dynamic capital structure models to date, such as Fischer,

Heinkel and Zechner (1989), Goldstein, Ju, and Leland (2001), and Dangl and Zechner

(2003).4

Assume that the firm’s leverage ratio follows a Geometric Brownian Motion (GBM)

in the inaction regime, i.e., in between refinancings :

dLt = �Ltdt+ �LtdWt, (1)

where the constant � is the instantaneous growth rate of leverage, the constant � is

the instantaneous volatility, and dW is the Wiener process under the actual measure.

Even though this may look as an ad hoc haphazard model of leverage, in fact dynamic

contingent claims capital structure models lead to the same structure, with the major

difference that parameters � and � are state-dependent.

2Note that for our purposes the optimality of “target” leverage as well as other parameters of

interest is immaterial.
3Theoretically, the market leverage ratio (the ratio of the market value of debt to the sum of

the market values of debt and equity) is used. Empirically, market values of debt are not always

available and therefore the so-called quasi-market leverage ratio (the ratio of the book value of debt

to the sum of the book value of debt and the market value of equity) is used. For our purposes, the

distinction is not important and in this section we do not specify “leverage ratio” any further.
4In many models, the upper refinancing boundary implies that the firm enters financial distress

and defaults. This is a partial case of our framework, when Lu = 1, assuming that the firm levers

up to the same target ratio once it leaves the bankruptcy process.
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Figure 1

Example of time-series of leverage

This figure illustrates the rebalancing of leverage at the boundaries Ld and Lu.

time

Ld

L*

Lu

Proposition 1 derives the stationary cross-sectional distribution of leverage under

these assumptions.

Proposition 1 Stationary distribution of leverage.

The stationary distribution of leverage when the leverage follows the process (1)

in the inaction region L ∈ (Ld, Lu) and the leverage re-starts at L∗ at both triggers

Ld and Lu is:5

f(L) =

[
Ld

L
−

(
Ld

L

)−k+2
]
/C1 for Ld < L ≤ L∗ (2)

f(L) =
[
Lu

L
−
(
Lu

L

)−k+2
]
/C2 for L∗ < L < Lu, (3)

5The proposition omits a special and uninteresting case, where � = 1

2
�2. The details are available

from the authors upon request.
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for k ∕= 1, where k ≡ 2�/�2 and

C1 ≡ Ld

[
− log

(
Ld

L∗

)
+ log

(
Lu

L∗

)
⋅ 1− (L

d

L∗
)−k+1

1− (L
u

L∗
)−k+1

]
(4)

C2 ≡ Lu

[
− log

(
Ld

L∗

)
⋅ 1− (L

u

L∗
)−k+1

1 − (L
d

L∗
)−k+1

+ log

(
Lu

L∗

)]
. (5)

Figure 2 shows a typical example of this distribution, assuming Ld = 0.1, Lu = 0.6,

L∗ = 0.2, � = 0.05 and � = 0.4. Several features stand out. First, the distribution is

asymmetric, skewed to the right, and the density is non-differentiable at the mode.

Second, the mode of the distribution equals the optimal leverage ratio, L∗. Third, in

this particular exercise, the mean of the distribution is 0.24, higher than the target

leverage ratio.

The comparative statics of the cross-sectional distribution is intuitive. Higher val-

ues of the growth rate � make higher leverage more likely and shift the distribution

to the right of L∗. Higher values of the volatility � tone down the drift effect as

it increases the probability of leverage moving in the opposite direction of the drift.

Higher values of the lower refinancing boundary Ld and the upper refinancing bound-

ary Lu imply that the firm spends more time in the higher-leverage region, shifting

the distribution to the right of L∗.

The first important result, illustrated in Figure 2, is that the target leverage is the

mode of the distribution, which we denote as m(L). How general is this condition?

Proposition 2 finds the mode of the distribution f(L):

Proposition 2 The mode of the distribution. The mode of the distribution

f(L) is:

m(L) =

⎧
⎨
⎩

L∗, if k ≥ 2,

min{L∗,
(

1
2−k

) 1
k−1 Ld}, if k < 2.

(6)

It follows that the target leverage ratio L∗ is the mode of the cross-sectional leverage

distribution either if � > �2 or if L∗ <
(

1
2−k

) 1
k−1 Ld. The latter condition is satisfied

whenever � or Ld are sufficiently large. For example, for the value of parameters in
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Figure 2

Stationary leverage distribution: Geometric Brownian

Motion

This figure shows the stationary distribution of leverage, with lower and upper refinancing

boundaries Ld = 0.1, Lu = 0.6, and optimal leverage L∗ = 0.2. The leverage process follows

a Geometric Brownian Motion in between refinancings, with � = 0.05 and � = 0.4.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

1

2

3

4

5

6

Leverage

Figure 2 L∗ is the mode as long as � ≥ 0 or Ld ≥ 0.0856. In short, this condition is

likely to hold for most reasonable scenarios.6 7 Intuitively, when � is very small or

when Ld is very small, firms are likely to spend more time in the low-leverage region

and rarely return to the target leverage ratio so that the mode can theoretically be

lower than the target leverage ratio. However, the proposition implies that the mode

6Interestingly, if the leverage follows a standard (not geometric) Brownian Motion, the mode is

always equal to L∗. The details are available upon request.
7With E expected to increase one might suspect that L is expected to drift downwards. However,

in many such scenarios leverage in fact drifts upwards due to Jensen’s Inequality, since L is convex

in E.

10



can never be higher than the target leverage ratio. This gives an important upper

bound on the cross-sectional target leverage ratio.

The intuition behind the mode result is that the optimal leverage ratio is visited

most frequently because not only does the firm pass it by as any other leverage ratio in

between refinancings, it is also the ratio that is adopted whenever the firm refinances.

Therefore, the leverage ratio that the firm shows most often is exactly the target

leverage ratio.

The second important result, illustrated in Figure 2, is that the cross-sectional

average leverage ratio, which is equal to 0.24, is higher than the target leverage ratio

and the mode. This is inconsistent with the traditional applications of the standard

dynamic capital structure models, which was noted by Strebulaev (2007). Because

the cross-sectional distribution is generically asymmetric, we should expect the mean

leverage ratio to be generally different from L∗, barring knife-edge type solutions.

Proposition 2 implies therefore that in many, if not most, realistic scenarios, the

average leverage ratio cannot be the target leverage ratio. This is an important

result because it shows that the empirical estimates of the average leverage ratio

in the cross-section are very unlikely to be informative about the optimal financial

policies firms. The mean of the cross-sectional distribution can be above or below

L∗ depending on the parameter choice. To study the relation of these to quantities

better, Proposition 3 gives the value of the mean:

Proposition 3 The mean of the distribution. The mean of the distribution

f(L) is:

E(L) =
Ld

C1

(
L∗ − Ld

)
+

Lu

C2
(Lu − L∗) +

(Ld)2

kC1

[
1−

(
Ld

L∗

)−k
]
− (Lu)2

kC2

[
1−

(
Lu

L∗

)−k
]
. (7)

To explore the relation between the mean and the mode, Figure 3 shows the

values of these two quantities as the value of the primitive parameters changes. In

the benchmark case, we set � = 0.05, � = 0.4, Ld = 0.1, Lu = 1, and L∗ = 0.2.
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Figure 3

Comparative Statics: Geometric Brownian Motion

This figure shows the mean and mode of the stationary distribution of leverage. For each

plot, one parameter is allowed to vary (on the horizontal axis), and the remaining parameters

are kept at default values: � = 0.05, � = 0.4, Ld = 0.1, L∗ = 0.2 and Lu = 1.
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Each plot in the figure shows comparative statics as a single parameter value varies

while the remaining parameters are kept at default values. The results illustrated by

the figure can be summarized as follows: the average cross-sectional leverage ratio is

always larger than the mode and in many cases is also larger than the optimal leverage

ratio, in the benchmark case by about 9%. The bias becomes larger for larger values

of the growth rate, the lower leverage trigger, and for smaller values of the volatility

parameter. For the benchmark set of parameters, the mode is the optimal leverage

ratio. The mode is below the optimal leverage ratio when either the growth rate is

12



very low or when the difference between Ld and L∗ is too large. As we show in the

next section, in the context of the contingent-claim model of capital structure, which

results in a more realistic stochastic leverage process, the comparative statics results

show the mode in a much more favorable light even though the main intuition is

preserved.

B A benchmark dynamic model of capital structure

In this section we re-consider the results derived in Section A for a benchmark model

in the standard contingent claims framework of optimal dynamic capital structure

based on the trade-off considerations. It should be intuitively clear that our results

are qualitatively robust to various assumptions and extensions, as well as to the

precise nature of the economic mechanism leading to the optimal target leverage,

but to get quantitative predictions we consider the simplest model in the framework

which admits tractable solutions. The model follows the previous work such as of

Fisher, Heinkel, Zechner (1989) and Goldstein, Ju, and Leland (2001).

To emphasize, our model does not impose a single assumption that is not present in

the extant models, even though we simplify some assumptions for clarity. The main

economic assumption is that adjustment costs lead the firm to follow an impulse

control policy by adjusting its leverage back to the optimal refinancing ratio in a

lumpy way only when its cash flow reaches lower or upper trigger points. The main

technical assumption is that the variables are chosen in such a way that the first-order

homogeneity (i.e. the ubiquitous scaling property) is preserved which enables us to

solve an otherwise high-dimensional dynamic problem.

A single firm’s cash flow, �t, follows, under the actual probability measure, a

stochastic process:

d�t = �P
t dt+ �tdW

P
t , (8)

where �P
t is the instantaneous growth rate under the actual measure, �t is the instan-

taneous volatility of the growth rate, and dW P
t is a Brownian motion defined on a

filtered probability space (Ω,ℱ ,ℙ, (ℱt)t≥0).
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To follow the standard assumptions, we specify further by assuming that �P
t =

�P �t and �t = ��t, where � and � are constants. Therefore, the cash flow process

follows the geometric Brownian motion

d�t = �P �tdt + ��tdWt. (9)

This process is usually called the EBIT-process, emphasizing that the value of �

represents is the pre-tax earnings. For our purposes, this is of less importance.

For the pricing purposes, we will also require the cash flow process under the

risk-neutral measure ℚ, which follows

d�t = ��tdt+ ��tdW
Q
t , (10)

where � is the instantaneous growth rate under the risk-neutral measure and dWQ
t is

a Brownian motion defined on a filtered probability space (Ω,ℱ ,ℚ, (ℱt)t≥0).

Equityholders maximize their value by following optimal financial policy in the

presence of the trade-off between tax benefits from debt and costs of default. Two

securities are allowed: common stock and debt, which takes the form of a callable

perpetuity (an assumption of noncallable debt that may dilute yields similar results)

with coupon level c, chosen by the firm.

Assume that the proportional tax rate on corporate earnings is � , the proportional

debt issuance cost is 
, the proportional bankruptcy cost is �, and the riskless interest

rate is r.

B.1 Contingent claims values and leverage

In the presence of adjustment costs, the firm will adjust its leverage infrequently. Let

�0 be the initial cash flow level, and, without any loss of generality, we may assume

that �0 = 1. Then the firm will refinance whenever the cash flow level either reaches

the upper threshold, �R, �R > 1, or a lower threshold, �B, �B < 1. The notation

reflects the intuition that �R is the refinancing point and �B could be the point

of bankruptcy, default, or distress, as in Goldstein, Ju, Leland (2001), Strebulaev

(2007), and other work, although this should not necessarily be the case. The model
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will provide specific values for optimal �R and �B, but for our results the only fact

that will be important about these optimal parameters is that both of them could be

reached in finite time, so that �R < ∞ and �B > 0.

To summarize, the firm has three controls at its disposal: the coupon level c, the

upper trigger cash flow level �R and the lower trigger cash flow level �B. At either

trigger point, the firm refinances (at �B we can assume that debtholders take over

and refinance the new firm) and, because of the scalability property (achieved by

the combination of the geometric Brownian motion, perpetuity form of debt, and the

nature of debt issuance costs), it is a proportionally smaller or larger copy of itself at

the previous refinancing.

To derive the market values of equity and debt, we start by introducing the primi-

tive Arrow-Debreu-type securities in this economy. Specifically, define A(�, �B, �R) to

be the value of the security that pays $1 when the bankruptcy trigger �B is reached

before the refinancing trigger �R conditional on the current value of � (we will assume

henceforth that �B < � < �R). Analogously, define A(�, �R, �B) as the value of the

security that pays $1 when �R is reached before �B.

It is well known that the value of these Arrow-Debreu securities can be written

as follows:

A(�, �B, �R) =
�x�yR − �xR�

y

�xB�
y
R − �xR�

y
B

, (11)

A(�, �R, �B) =
�xB�

y − �x�yB
�xB�

y
R − �xR�

y
B

, (12)

where x and y are:

x = − 1

�2

⎛
⎝�− �2

2
−

√(
�− �2

2

)2

+ 2�2r

⎞
⎠ , (13)

y = − 1

�2

⎛
⎝�− �2

2
+

√(
�− �2

2

)2

+ 2�2r

⎞
⎠ . (14)

All other contingent claims in this economy could be expressed using the value of
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these securities. The market value of equity can be written as:

E = (1− �)

(
�

r − �
− c

r
+ A(�, �B, �R)

(
− �B
r − �

+
c

r

))

+A(�, �R, �B)

[
(1− �)

(
− �R
r − �

+
c

r

)
−B + �R(1− 
)B + �RE0,

]
(15)

where E0 is the value of equity at the moment of refinancing (but after new debt is

issued), i.e. when �0 = 1. This value is found by equating E and E0. Also, B is the

book value of debt. It equals the market value of debt at the moment of refinancing,

i.e. B = B(�0, c) and it does not depend on the current value of �.

To understand the expression above, note that the first term, �
r−�

− c
r
, is the

pre-tax equity value in the world without refinancing and bankruptcy. The second

term is the adjustment for bankruptcy, upon which the equity foregoes the right to

future cash flows and does not have to pay coupons any longer. The final term is

the adjustment for refinancing, which can be thought of in the following way. The

equity exchanges all its current rights and obligations for the future equity value.

The first term in the square brackets represents the after-tax cash flows from the old

equity which shareholders forego. In addition, the equity has to recall debt at its

original value, B. In replacement, shareholders issue new debt at the cost 
. Because

of the scalability, the value of the new debt issued is �RB. After the debt is issued,

equityholders also get the residual value of equity, �RE0.

Define GE as:

GE(�) = (1− �)

(
�

r − �
− c

r
+ A(�, �B , �R)

(
− �B
r − �

+
c

r

))

+A(�, �R, �B)(1− �)

(
− �R
r − �

+
c

r

)
. (16)

Then the value of equity at refinancing is equal to:

E0 =
GE(1)− A(1, �R, �B)B (1− �R(1− 
))

1− A(1, �R, �B)�R
. (17)

Because B is the par value of debt, when �0 = 1, the book value of B can similarly

be expressed as:
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B =
c

r
+A(1, �B, �R)

(
−c

r
+ (1− �) (�B((1− 
)B + E0))

)
+A(1, �R, �B)

(
−c

r
+B

)
.

(18)

The first term is the value of riskless perpetuity. The second term is the ad-

justment for bankruptcy. The debtholders forego the right to coupon payments

but instead become the new equityholders. Note that we assume that new equi-

tyholders optimally lever up at default and choose the same optimal leverage ratio.

Therefore, the value of the new firm is �B ((1− 
)B + E0), adjusted for bankruptcy

costs. Alternatively, if they do not lever up, the second term would change to

A(�, �B, �R)
(
− c

r
+ (1− �)(1 − �) �B

r−�

)
. Although the former assumption is easier in

our case because we can keep the number of the firms in the cross-sectional distribu-

tion constant, the results on optimal financial policies are very little affected by the

assumption on what happens at default. Finally, the third term is the adjustment

for refinancing when the debtholders forego future coupon payments and get their

principal back.

From equations (17) and (18), the value of B can be written as:

B =

c
r
(1− A(1, �B, �R)−A(1, �R, �B)) +

A(1,�B ,�R)GE(1)
1−A(1,�R,�B)�R

1−A(1, �B, �R)(1− �)�B(1− 
) + A(1,�R,�B)A(1,�B ,�R)(1−�R(1−
))
1−A(1,�R,�B)�R

− A(1, �R, �B)
.

(19)

The quasi-market leverage, L(�), is defined at any point in time within the initial

refinancing cycle as:

L(�) =
B

E(�) +B
. (20)

Note that because we are interested entirely in the leverage distribution properties,

the homogeneity feature allows us to rescale the level at any next refinancing to �0, so

that this way of defining leverage applies equally to any point in time. We will study

the behavior of the quasi-market leverage because empirically the market value of

leverage is usually not available, but the results are, in fact, remain almost unchanged

if we consider instead the market value of leverage.
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We assume that the conflict of interests prevents equityholders from internalizing

outstanding debtholders’s value in choosing a default boundary, and therefore �B is

found from maximizing the value of equity alone. This leads to a smooth-pasting

condition

0 =
∂E

∂�
∣�=�B =

∂GE(�)

∂�
+

∂A(�, �R, �B)

∂�
[−B + �R(1− 
)B + �RE0] (21)

for any feasible values of c and �R. Finally, the optimization problem is for equity-

holders to maximize the value of the firm at date 0, at �0 = 1:

max
c,�R

E0 + (1− 
)B (22)

subject to the optimal choice of �B.
8

B.2 Analysis of the model

We derive the stationary distribution of � analogously to the stationary distribution

of leverage when leverage follows a GBM. Assuming that when a firm refinances we

rescale � back to �0 and when it defaults a new firm enters at �0:

f(�) =
[
�B
�
−

(
�B
�

)−k+2
]
/C1 for �B < � ≤ �0 (23)

f(�) =
[
�R
�
−
(
�R
�

)−k+2
]
/C2 for �0 < � < �R, (24)

for k ∕= 1, where k ≡ 2�/�2 and

C1 ≡ �B

[
− log

(
�B
�0

)
+ log

(
�R
�0

)
⋅
1− ( �B

�0
)−k+1

1− ( �R
�0
)−k+1

]
(25)

C2 ≡ �R

[
− log

(
�B
�0

)
⋅
1− ( �R

�0
)−k+1

1− ( �B
�0
)−k+1

+ log

(
�R
�0

)]
. (26)

Since leverage is a monotonically decreasing function of � we can derive the sta-

tionary distribution of L:

fL(L) = −f�(�(L)) ⋅
∂

∂L
�(L)

8We assume, following Goldstein, Ju, and Leland (2001), that equityholders internalize debthold-

ers’ value in deciding on the refinancing boundary. Although the conflict of interest in choosing a

refinancing boundary may lead to interesting implications for optimal capital structure, this assump-

tion is of no importance to our study.
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Figure 4

Stationary leverage and � distribution: The benchmark

model

This figure shows the stationary distribution of leverage and cash flows for the benchmark

model and for the following parameter values: � = 0.01, � = 0.25, � = 0.2, � = 0.1,


 = 0.01, r = 0.05, and �P = 0.06.
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where �(L) is the inverse function of L = B/(B + E(�)).

Figure 4 shows a stationary distribution of � and leverage for one set of parameters.

The properties of the leverage distribution are similar to the distribution, when the

leverage follows the GBM. Because the stochastic process of leverage is further away

from the GBM as the leverage drifts further from the optimal leverage, the difference

becomes more visible in the tails of the distribution (for example, a non-trivial fraction

of firms have a very high leverage, though in the simple model the density attenuates

to zero). In this case, the optimal leverage ratio, of 55%, equals the mode, and the

mean, of 65%, is substantially higher.

To understand the relation between the optimal leverage, the mode, and the mean,

we need to understand better the properties of the leverage stationary distribution.

In particular, if f ′
L > 0 for L < L∗ and f ′

L > 0 for L > L∗, then the mode always

equals the optimal leverage ratio. The derivative of fL is:

f ′
L(L) = −f ′

�(�(L)) ⋅
[
∂

∂L
�(L)

]2
− f�(�(L)) ⋅

∂2

∂L2
�(L)
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For L > L∗ the first term (including the negative sign) is negative (since L > L∗

corresponds to � < �∗). For L < L∗ the first term (including the negative sign) is

positive. However, the conditions for the convexity of �(L) (which determines the

second derivative of �(L) in the expression) is more challenging to establish. We have

checked that �(L) is convex over most of the space (except when L∗ is very close to

1) for many parameter values, and for now present the comparative statics around

the benchmark set of parameters that are used in Figure 4.

Figure 5 shows the comparative statics of the mean and mode of the leverage

distribution in the model. As can be seen, the mode is generally very close to the

optimal leverage at refinancing, while the mean is generally non-trivially larger. The

figure shows that the mode performs much better in the contingent claims model than

in the simple model, when leverage is unrealistically set to follow the GBM. There

are several reasons for that. First, the contingent claims model is more parsimonious,

because it allows us to disentangle between risk-neutral and actual measures and

introduce a risk premium. Second, the simple model performed particularly badly

when the difference between the optimal leverage ratio and the lower leverage trigger

were large. In the benchmark model, however, the difference is a function of the

underlying parameters and the optimal leverage ratio and the lower leverage trigger

typically move in the same direction, preserving the magnitude of the difference.

Our preliminary evidence therefore strongly suggests that the mode is likely to

be equal to the optimal leverage ratio at refinancing in the stationary cross-section

for most realistic scenarios, and that the mean leverage ratio is not. Moreover, the

relation between the mean, on the one hand, and the mode and L∗, on the other

hand, changes substantially as the fundamental parameters vary.

B.3 Discussion

There are several important caveats to these results: (1) This is the complete re-

financing case; (2) We assumed that the firm is in a stationary setting, with fixed

refinancing policies; (3) We assumed that there are no systematic shocks, i.e. all cash

flow processes for the cross-section of firms are independent. Relaxing these assump-
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Figure 5

Comparative Statics: Structural Model

This figure shows the mean and mode of the stationary distribution of leverage of the

structural model. We also show the optimal leverage ratio. For each plot, one parameter is

allowed to vary (on the horizontal axis), and the remaining parameters are kept at default

values: � = 1%, � = 25%, � = 20%, � = 10%, 
 = 1%, r = 5%, and �P = 0.06.
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tions and testing the robustness of our measure is an important avenue for future

research.

II Mode Estimation

The previous section establishes the result that the (conditional) mode of leverage is

generally the optimal capital structure upon refinancing, in contrast to the common

practice of using the conditional mean estimated by least-squares regression or GMM.

In this section we develop two empirical methods for estimating the conditional mode.

The first method, mode regression, is akin to OLS but uses a different objective

function. The second method is a non-parametric maximum likelihood approach

(NPMLE) using a kernel approximation to the conditional distribution of leverage.

We also discuss how the two methods are related.

A Mode Regression

The mode regression developed by Lee (1989, 1993) is based on work going back as

far as Parzen (1962) and Chernoff (1964). The intuition behind mode regression is

similar to OLS. Assume we have N draws (L, x)i=1...N from the joint distribution of

leverage, L, and a vector of J covariates, x. In OLS we assume that the conditional

mean of leverage is linear in x, E(L∣x) = x′�, and find � by minimizing the sum of

squared errors. In a mode regression we assume that the conditional mode is linear

in x, m(L∣x) = x′�, and estimate � by minimizing the loss function:

Q =
N∑

i=1

1

{∣∣∣∣
Li − x′

i�

ℎ

∣∣∣∣ ≥ 1

}
, (27)

where 1{⋅} is the indicator function, and ℎ is the bandwidth.9

The loss function (27) is minimized at the middle value of the interval of length

2ℎ around x′� that contains the highest number of observations. In the limit this is

the interval that captures the most probability under f(L∣x).
9In essence the mode regression is a specific implementation of Huber’s (1972) M-class estimator,

which maximizes
∑N

i=1
�(Li − x′

i�) for some function �(⋅). Here, � = 1
{∣∣∣Li−x′

i
�

ℎ

∣∣∣ < 1
}
.
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Table I

Mode Regression with Sample Data

Panel A: Objective function Q for � = 0.4

L data 0.1 0.2 0.3 0.3 0.3 0.4 0.6 0.7 0.8 0.9

L− x′� -0.3 -0.2 -0.1 -0.1 -0.1 0 0.2 0.3 0.4 0.5∣∣∣Li−x′

i�

ℎ

∣∣∣ 6 4 2 2 2 0 4 6 8 10
∣∣∣Li−x′

i�

ℎ

∣∣∣ ≥ 1 1 1 1 1 1 0 1 1 1 1

Panel B: Q as a function of � and h

�

h 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.05 9 9 7 9 10 9 9 9 9 10

0.1 9 6 6 9 8 8 8 8 8 9

0.2 5 5 5 5 7 7 7 7 8 8

A simple example illustrates the method. Suppose we observe the ten leverage

ratios shown in the top line of Table I Panel A. We want to estimate the mode of this

distribution. For now assume there are no covariates but only an intercept, x = 1, so

that � is the mode. Suppose we guess that � = 0.4. The second line in Table I shows

the deviation of observed leverage from the fitted mode. In the third line we calculate

the absolute deviation, scaled by a bandwidth ℎ of 0.05 (we will discuss the bandwidth

choice in more detail below). The last line indicates whether an observation is inside

(“0”) or outside (“1”) the bandwidth. For this choice of � and ℎ nine observations

are outside the bandwidth, hence Q = 9. Panel B of Table I shows the value of Q for

a range of � and ℎ. For ℎ = 0.05 it is clear that Q is minimized at � = 0.3, which

is indeed the mode in this dataset.10 An alternative to the grid search to find the

minimum of Q is to use standard optimizers that are built into statistical packages.

Dealing with covariates in the data is straightforward. The only twist to the above

procedure is that xi is now a vector, and we need to search over multiple betas to find

10Note that � = 0.29 or � = 0.31 would give the same minimized value of Q. With more

datapoints, this problem disappears.

23



the minimum of Q. For example with a constant and one covariate in x, we have to

find a set of two betas (the intercept and the loading on the covariate) to minimize Q.

As above, this can be done on a grid (of two dimensions) or using standard optimizers.

The bandwidth ℎ > 0 is chosen by the econometrician. A higher bandwidth

increases the number of observations that are included in calculating Q and reduces

the standard error. On the flipside, a higher bandwidth raises the bias in estimated �

if f(L∣x) is asymmetric. This trade-off between precision and bias guides the choice

of bandwidth. If we let ℎ decrease with sample size, the estimator �̂ converges in

probability to the true � that determines the conditional mode. Lee (1989) suggests

using a bandwidth such that the proportion of datapoints that falls within 2ℎ of the

mode is around 70% (i.e. 1−Q/N ≈ 0.7). For the empirical leverage data of section

III, a good choice of bandwidth is 0.2.11

We illustrate the trade-off embodied in the choice of bandwidth with our numerical

example in panel B of Table I. If we increase the bandwidth to 0.1 we include more

observations (i.e. Q is lower for most choices of �), but we can no longer distinguish

� = 0.2 from 0.3. Raising the bandwidth to 0.2 gives the same value of Q for � in the

range 0.1 to 0.4. Choosing � = 0.25, the middle of the optimal range, as our mode

estimate we find lower bootstrapped standard errors for ℎ = 0.2 compared to ℎ = 0.05:

More observations are included in the mode estimate so that more resampled datasets

give the same or similar � estimates. Of course this is an extreme example and for

larger datasets the estimated � is not ambiguous for reasonable choices of ℎ, but it

nicely highlights the intuition about the trade-off between bias and precision.

To summarize, the algorithm for mode regression is as follows:

1. Choose an initial bandwidth ℎ > 0.

2. Choose an initial �, for example from an OLS regression.

3. (a) Calculate residuals ei = Li − x′
i� for all observations i = 1 . . . N .

(b) Calculate the absolute value of standardized residuals ui = ∣ei/ℎ∣.
11This is close to the optimal bandwidth from kernel estimation as derived below.
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(c) Count the number of cases where ui is larger than 1:

Q =

N∑

i=1

1{ui ≥ 1}.

(d) Search for the � that minimizes Q by repeating steps 3(a)-(c).

4. Check how many observations fall outside 2ℎ of the mode. If Q/N is more than

40% then increase the bandwidth and go back to step 1. If Q/N is less than

20%, lower the bandwidth and go back to step 1.

5. Calculate standard errors by bootstrap:

(a) Sample K datasets of the same size as the original data, with replacement.

(b) for each dataset, k = 1 . . .K, compute the �k vector that minimizes Q,

using the same method and bandwidth as in step (3) above.

(c) Calculate the standard error �(�̂) as the standard deviation of �k across

the K sampled datasets.

B Kernel Estimation (NPMLE)

Another method of estimating the mode is to estimate the maximum of the conditional

density of L given x. We start with a non-parametric estimate of the joint density of

L and x using a kernel, Kℎ(u):

f̂ℎ(L, x) =
1

N

N∑

i=1

Kℎ (Li − L)Kℎ(Xi − x). (28)

Two popular choices for the kernel are:

∙ Epanechnikov: Kℎ(u) =
1
ℎ
⋅ 3
4

[
1−

(
u
ℎ

)2]
1{
∣∣u
ℎ

∣∣ ≤ 1}.

∙ Gauss: Kℎ(u) =
1
ℎ
⋅ 1√

2�
exp

(
−1

2
(u/ℎ)2

)
.

The bandwidth ℎ > 0 determines the influence of observations that are further away

from x and L. A higher ℎ means more influence of far-away observations (i.e. more

smoothing).
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Table II

Kernel Mode Estimate with Sample Data, no Covariates

Panel A: Kernel density at each datapoint

L data 0.1 0.2 0.3 0.3 0.3 0.4 0.6 0.7 0.8 0.9

Kℎ(Li − 0.4) 0.232 0.963 2.265 2.265 2.265 3.012 0.963 0.232 0.032 0.002

Panel B: Density across leverage ratios

L 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f̂ℎ(L, x) 0.840 1.307 1.480 1.223 0.891 0.816 0.883 0.855 0.648 0.349

The mode estimator is the value of L that maximizes the density:

m̂(x) = argmax
L

f̂ℎ(L, x). (29)

Essentially we are doing maximum likelihood but using a non-parametric likelihood,

hence the term Non-Parametric Maximum Likelihood Estimation (NPMLE).12 Ro-

mano (1988) derives asymptotic convergence results of this kernel density estimate of

the mode.

Coming back to the previous example, we now illustrate how to calculate the

kernel density for a guess of the mode of L = 0.4 using the Gaussian kernel with a

bandwidth ℎ = 0.1324. Without a covariate, we can omit the factor Kℎ(Xi − x).13

Table II Panel A gives the kernel density of L, Kℎ(Li − L) for each datapoint. For

example, Kℎ(L2 − 0.4) = 1
ℎ
⋅ 1√

2�
exp

(
−1

2
((0.2− 0.4)/ℎ)2

)
= 0.963. The joint density

estimate f̂ℎ(L = 0.4, x) = 1.223 is simply the average of Kℎ(Li − L) over the ten

datapoints.

12Note that we want to find the maximum of the conditional density f̂ℎ(L∣x). Maximizing the

joint density f̂ℎ(L, x) is equivalent since conditioning on x is just scaling the joint density by a

constant factor.
13With X = 1 for all datapoints, Kℎ(0) = 1/(ℎ

√
2�) for all datapoints. Hence, it is simply a

scaling factor and can be omitted for the purpose of finding a mode estimate that maximizes the

density. It does matter when we have covariates in X that are not constants, as we illustrate below.
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In Table II Panel B we calculate the density estimate for a range of L. The mode

estimate is the value of L that maximizes the density. From the table it is clear

that the mode estimate is 0.3. As before, using a numerical maximizer is a great

alternative to using a grid search as shown here.

With covariates, X , we need to calculate the density at the value of X for which

we want to estimate the conditional mode of leverage. Suppose we have one covariate

as shown in Table III Panel A. For illustration, let’s calculate f̂ℎ(L = 0.4, x = 0.15),

the density estimate at L = 0.4 and x = 0.15. Panel A of Table III shows the

density Kℎ(Xi − x) evaluated at x = 0.15. The optimal bandwidth for this X is

0.066 (calculated using the algorithm below). Panel A also shows the product of

Kℎ(Li − L) and Kℎ(Xi − x) for each datapoint. The joint density estimate f̂ℎ(L =

0.4, x = 0.15) = 5.738 is simply the average over this product. Repeating this exercise

for various values of L, Panel B shows that the joint density is maximized at L = 0.3.

We conclude that the conditional mode at x = 0.15 is L = 0.3.

For comparison, Table III also show the calculation of the conditional mode at

x = 0.3, which turns out to be L = 0.7.

The choice of bandwidth is quite important for kernel methods. We use the

popular solve-the-equation plug-in method of Sheather-Jones (1991), with a simple

adjustment to account for autocorrelation. In theory this bandwidth minimizes the

distance between the true and fitted densities. We use a different bandwidth for each

variable.14

The algorithm for NPMLE estimation of the mode, m̂(x), for a particular realiza-

tion of x is:

1. Calculate the optimal bandwidth for leverage, ℎL:

(a) Select a set of observations, S, with observations of each firm that are at

least one standard deviation apart (this controls for correlation in resid-

uals between observations that are close, and is only used for calculating

14The plug-in method has been shown to have superior convergence rates and to work better in

simulations compared to the popular “leave-one-out cross-validation” method (Gasser, Kneip and

Köhler (1991)).
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Table III

Kernel Mode Estimate with Sample Data, One Covariate X

Panel A: Kernel density at each datapoint for X = 0.15 and X = 0.3

L data 0.1 0.2 0.3 0.3 0.3 0.4 0.6 0.7 0.8

X data 0.05 0.15 0.15 0.15 0.1 0.2 0.35 0.3 0.4

Kℎ(Xi − 0.15) 1.940 5.991 5.991 5.991 4.519 4.519 0.066 0.474 0.005

Kℎ(Li − 0.4)Kℎ(Xi − 0.15) 0.449 5.770 13.570 13.570 10.237 13.613 0.064 0.110 0.000

Kℎ(Xi − 0.3) 0.005 0.474 0.474 0.474 0.066 1.940 4.519 5.991 1.940

Kℎ(Li − 0.4)Kℎ(Xi − 0.3) 0.001 0.457 1.074 1.074 0.149 5.844 4.353 1.387 0.061

Panel B: Density across leverage ratios for X = 0.15 and X = 0.3

L 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f̂ℎ(L, x = 0.15) 3.635 6.417 7.541 5.738 2.818 0.964 0.317 0.134 0.050 0.012

f̂ℎ(L, x = 0.3) 0.253 0.576 0.977 1.440 2.195 3.128 3.362 2.490 1.264 0.447

optimal bandwidth).

(b) Calculate the standard deviation, �, of the selected observations.15

(c) Calculate Φ6 =
−15
16

√
�
�−7

(d) Calculate Φ8 =
105
32

√
�
�−9

(e) Calculate g1 =
[

−6√
2�Φ6S

]1/7
, where S is the number of observations in the

restricted sample S.

(f) Calculate g2 =
[

30√
2�Φ8S

]1/9

(g) Calculate

Φ4(g1) =
1

S2

∑

i=S

∑

j=S

K(4)
g1
(Li − Lj),

where K(r)
ℎ is the r-th derivative of the kernel with bandwidth ℎ.

15An alternative to restricting the sample used for calculating the optimal bandwidth is to use the

spectral density estimate of the standard deviation at this step to account for correlation between

residuals.
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(h) Recalculate

Φ6(g2) =
1

S2

∑

i=S

∑

j=S
K(6)

g2 (Li − Lj),

(i) Find the optimal bandwidth ℎL by solving the non-linear equation

ℎL =

[
R(K)

�2(K)2Φ4[
(ℎL)]S

]1/5
,

where Φ4[
(ℎL)] is calculated as in step (g) but using bandwidth 
(ℎL)

instead of g1:


(ℎL) =

[−2K(4)(0)�2(K)Φ4(g1)

R(K)Φ6(g2)

]1/7
ℎ
5/7
L .

The constants R(K) =
∫
K(x)2dx, �2(K) =

∫
x2K(x)dx and K(4)(0) are

determined by the choice of kernel. For example, for the Gaussian kernel

R(K) = 1/(2
√
�), �2(K) = 1 and K(4)(0) = 3/

√
2�.

2. Repeat 1(a)-(i) to calculate the optimal bandwidth, ℎj, for each covariate xj ,

j = 1 . . . J .

3. For each observation i = 1 . . . N , calculate the kernel weight for the covariates:

f̂(Xi) =
J∏

j=1

Kℎj
(Xij − xj),

where Xij is the i-th observation of the j-th covariate and xj is the j-th compo-

nent of the vector x for which we want to estimate the mode m̂(x)

4. Calculate the kernel density f(L, x) for a grid of L = 0 . . . 1:

f̂(L, x) =

N∑

i=1

[
KℎL

(Li − L) ⋅ f̂(Xi)
]
,

where Li is the leverage of the i-th observation.

5. Find the L in the grid that maximizes f̂(L, x). This is the point estimate of

the mode, m̂(x).

6. Calculate standard errors by bootstrap:
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(a) Sample K datasets of the same size as the original data, with replacement.

(b) for each dataset, k = 1 . . .K, repeat steps 3 through 5 to compute the

mode estimate m̂k(x).

(c) Calculate the standard error �(m̂(x)) as the standard deviation of m̂k(x)

across the K sampled datasets.

To calculate the another point estimate and standard errors at a different x, we

can skip the bandwidth estimation step and start at 3(a).

Finding the optimal bandwidth is a bit involved. We show its implementation

for our ten datapoint sample of the leverage variable, using all ten datapoints, for

illustration. First, the standard deviation of L is 0.272. This gives the values Φ6 =

−4849.1, Φ8 = 23004, g1 = 0.243 and g2 = 0.259. For the next step we need the

fourth and sixth derivative of the Gaussian kernel:

K(4)
ℎ (u) =

1

ℎ5
√
2�

exp

(
−1

2
(u/ℎ)2

)
⋅
[
3− 6(u/ℎ)2 + (u/ℎ)4

]
(30)

K(6)
ℎ (u) =

1

ℎ7
√
2�

exp

(
−1

2
(u/ℎ)2

)
⋅
[
−15 + 45(u/ℎ)2 − 15(u/ℎ)4 + (u/ℎ)6

]
(31)

We calculate Φ4(g1) by summing K(4)
g1 (Li − Lj) for all combinations of i and j and

find Φ4(g1) = 187.226. Similarly we calculate Φ6(g2) = −9952.7, using the sixth

derivative of K and the bandwidth g2. Now we iterate on 
(ℎL) and ℎL in step 1(i)

until we find the bandwidth ℎL that solves both equations. We start with a bandwidth

ℎL = g1 = 0.243. This yields a value of


(ℎL) =

[
−2 ⋅ (3/

√
2�) ⋅ 187.226

1/(2
√
�) ⋅ −9952.7

]1/7

0.2435/7 = 0.280. (32)

We recalculate Φ4(
(ℎL)) = 93.630 and plug in to find

ℎL =

[
1/(2

√
�)

93.630

]1/5
= 0.198. (33)

Iterating on the latter two equations converges to an optimal bandwidth of ℎL =

0.1324.
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C Comparison of the Methods and Simulation

Mode regression is closely related to kernel estimation. Essentially, we can think

of mode regression as kernel estimation with the kernel 1
{∣∣∣Li−m(x)

ℎ

∣∣∣ ≤ 1
}

for the

dependent, and a flat kernel for the conditioning variables. One important difference

is that the mode regression assumes that the mode is a globally linear function of

x, whereas kernel estimation presumes it is locally constant. Although this makes

the mode regression estimates easier to compare to OLS estimates, the linear form

is restrictive. Moreover, the asymptotic and optimal bandwidth properties of kernel

estimators are better developed.

To get a sense of the empirical performance of the mode regression in comparison

to a mean estimator such as OLS, we run a set of simulations on our simple dynamic

model of capital structure presented above. Specifically, for each firm we draw a

random coupon from a uniform distribution between 0.12 and 0.9, and a random

refinancing boundary, �R, from a uniform distribution between 1.1 and 2.5. The

other parameters are as before. Each firm now has a different target leverage and

refinancing boundary. Holding the parameters constant over time for each firm, we

simulate 10,000 firms for 10 years.

If we could observe the true L∗ in the final year and regress the cross-section

of target leverage ratios on the exogenous coupon and �R, then we would find the

results in the left-most column of the table below. However, in reality we do not

observe L∗ but instead we have to work with L. Using OLS regression on the final

cross-section of leverage, the middle column of the table reveals that the coefficients

on both coupon and �R are severely biased downwards, and the intercept is biased

upwards. In contrast, the mode regression estimates are very close to their true

values.

We conclude that the conditional mode estimates do a good job of identifying the

coefficients in cross-sectional capital structure regressions where moment estimators

fail.
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Table IV

True OLS Mode regression

Intercept 0.051 0.428 0.054

coupon 0.564 0.379 0.569

�R 0.013 -0.047 0.009

III Data

We collect panel data on leverage and company characteristics from Compustat be-

tween 1950 and 2005. Leverage (L) is measured as the book value of debt divided

by the book value of debt plus the market value of equity. Many firms persistently

have zero leverage. To avoid the issue of bimodality of the leverage distribution, we

drop all firm-years with leverage smaller than 0.05 (see Strebulaev and Yang (2008)).

Profitability (PROF ) is defined as EBITDA over sales, truncated at ±100%. De-

preciation relative to book assets (DEPR) is truncated between 0 and 1. We de-

fine tangible assets (PPE) as property, plant & equipment divided by book assets.

Firm size (SIZE) is the natural logarithm of book assets, and M/B is the equity

market-to-book ratio, truncated between 0 and 10. The final sample contains 137,623

firm-years.

Table ?? reports summary statistics. Mean (median) leverage is 0.371 (0.323).

This is somewhat high relative to the extant literature because we eliminated the

extremely low-leverage firms. In contrast, the mode of leverage is 0.250.

IV Cross-sectional Results

TO BE COMPLETED
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V Conclusion

Traditional moment-based estimators are flawed measures of target leverage in dy-

namic models of capital structure with fixed adjustment costs. We establish that the

conditional mode is a theoretically motivated and robust measure of target capital

structure, and we introduce empirical methods to estimate the conditional mode of

leverage.

We present two main empirical results: i) optimal leverage is lower than tradition-

ally thought, and; ii) asset tangibility is a relatively more important determinant of

capital structure than market-to-book ratio, compared to results in the literature. The

latter finding suggests that collateralization is deserving of more attention, whereas

theories of debt overhang may be less important in explaining capital structures.

Our methodology needs to be subjected to more robustness tests. Most impor-

tantly, the robustness of our results to incomplete refinancing when firms opportunis-

tically rebalance (e.g. a maturing debt issue) needs to be explored. In addition, the

impact of systematic shocks to firms’ leverage ratios should be investigated. Finally,

relaxing the stationarity assumption.

On the methodological side, an interesting avenue for future research is to filter the

estimates of the conditional mode. This would allow the target leverage of the firm to

vary over time. Filtering estimates of the conditional mode are used in meteorology

and imaging applications (known as the “variational approach”).
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Appendix: Proofs

In this appendix we derive the stationary distribution of leverage, conditions under

which the mode of this distribution is the optimal leverage ratio upon refinancing.

We close with some examples, in particular the geometric Brownian Motion used in

the main text.

The stationary distribution of leverage.

Assume that between refinancing points, leverage (Lt) follows a stochastic process:

dLt = �(Lt)dt+ �(Lt)dBt (34)

with a lower and upper resetting barrier at Ld and Lu, respectively. When the firm

hits either a lower resetting barrier, Ld, or an upper barrier Lu then Lt is reset to the

optimal ratio L∗.

We derive the form of the stationary distribution and the necessary and sufficient

condition for its existence.

If it exists, the stationary distribution of leverage, f(L), satisfies the well-known

forward equation (e.g. Karlin and Taylor, 1981, p.220-221):

1

2

∂2

∂L2

(
�2(L)f(L)

)
− ∂

∂L
(�(L)f(L)) = 0. (35)

To find f(L), first integrate the forward equation with respect to L:

∂

∂L

[
�2(L)f(L)

]
− 2�(L)f(L) = A1, (36)

with A1 the constant of integration.

Define


(L) ≡ exp

[
−
∫ L 2�(y)

�2(y)
dy

]
, (37)

and multiply (36) by (37):

∂

∂L

(

(L)�2(L)f(L)

)
= A1
(L). (38)

Integrate with respect to L to recover the stationary distribution:

f(L) = m(L)

[
A1

∫ L


(y)dy +B1

]
, (39)
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where B1 is another constant of integration, and

m(L) ≡ 1


(L)�2(L)
. (40)

We postulate the solution:

f(L) = m(L)

[
A1

∫ L


(y)dy +B1

]
for Ld ≤ L ≤ L∗, (41)

f(L) = m(L)

[
A2

∫ L


(y)dy +B2

]
for L∗ ≤ L ≤ Lu, (42)

and impose the following four boundary conditions to pin down the four constants

A1, A2, B1 and B2:

1. f(Ld) = 0,

2. f(Lu) = 0,

3. f(L∗−) = f(L∗+),

4.
∫ Lu

Ld f(L)dL = 1.

The first two conditions imply

f(L) = A1m(L)Γ(Ld, L) for Ld ≤ L ≤ L∗, (43)

and

f(L) = −A2m(L)Γ(L, Lu) for L∗ ≤ L ≤ Lu, (44)

with the standard scale measure defined as

Γ(a, b) ≡
∫ b

a


(y)dy. (45)

To ensure non-negativity of the pdf, A1 > 0 and A2 < 0.

The third condition enforces a continuous distribution function and results in

A1Γ(L
d, L∗) = −A2Γ(L

∗, Lu). (46)

The fourth condition ensures that we have a proper probability distribution func-

tion and requires

A1

∫ L∗

Ld

m(L)Γ(Ld, L)dL− A2

∫ Lu

L∗

m(L)Γ(L, Lu)dL = 1 (47)
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We group the latter two conditions into a linear system:

X ⋅

⎡
⎣ A1

A2

⎤
⎦ =

⎡
⎣ 0

1

⎤
⎦ (48)

where

X =

⎡
⎣ Γ(Ld, L∗) Γ(L∗, Lu)

∫ L∗

Ld m(L)Γ(Ld, L)dL −
∫ Lu

L∗
m(L)Γ(L, Lu)dL

⎤
⎦ (49)

A stationary distribution exists if and only if the determinant of the matrix X is

non-zero.

The mode of f(L)

Assuming that a stationary leverage distribution exists, we show that L∗ is the

mode of the stationary distribution under the following sufficient conditions on �(L),

�(L), Ld, L∗ and Lu:

�(L)− �(L) ⋅ �′(L) > −1

2

1

Γ(Ld, L)m(L)
for Ld < L < L∗ (50)

�(L)− �(L) ⋅ �′(L) <
1

2

1

Γ(L, Lu)m(L)
for L∗ < L < Lu (51)

PROOF: Sufficient conditions under which L∗ is the mode are (note that f(L) is not

necessarily differentiable at L∗):

1. f ′(L) > 0 for Ld < L < L∗,

2. f ′(L) < 0 for L∗ < L < Lu.

For Ld < L < L∗, take the derivative of (43) with respect to L,

f ′(L) =
m′(L)

m(L)
f(L) +

A1

�2(L)
. (52)

Plugging in
m′(L)

m(L)
=

2�(L)

�2(L)
− 2�′(L)

�(L)
, (53)

and equation (43) yields

f ′(L) = A1

(
2�(L)

�2(L)
− 2�′(L)

�(L)

)
m(L)Γ(Ld, L) +

A1

�2(L)
. (54)
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We know that A1 > 0, so f ′(L) > 0 iff

�(L)− �(L)�′(L)

�2(L)
> −1

2


(L)

Γ(Ld, L)
. (55)

Similarly, condition (51) follows from the derivative of equation (44) and A2 < 0.

The conditions are not dependent on the values of A1 and A2, but depend only on

the specification of �(L) and �(L).

Examples

1. Brownian Motion

Consider the standard Brownian Motion with constant drift and variance i.e.

�(Lt) = � and �(Lt) = �. Therefore


(L) = exp

[
−
∫ L 2�(y)

�2(y)
dy

]
= exp (−kL) , (56)

Γ(a, b) =

∫ b

a


(y)dy =
1

k
[exp(−ka)− exp(−kb)] , (57)

where k ≡ 2�/�2.

Next we solve (48) for A1 and A2:

A1 = −k�2/
[
−(Ld − L∗) + (Lu − L∗) 1−
(Ld−L∗)

1−
(Lu−L∗)

]
(58)

A2 = −k�2/
[
−(Ld − L∗) 1−
(Lu−L∗)

1−
(Ld−L∗)+(Lu−L∗)

]
. (59)

Plugging into (43) and (44) yields the stationary distribution of L:

f(L) = 1−
(Ld−L)

−(Ld−L∗)+(Lu−L∗) 1−
(Ld
−L∗)

1−
(Lu
−L∗)

for Ld < L ≤ L∗ (60)

f(L) = 1−
(Lu−L)

−(Ld−L∗) 1−
(Lu
−L∗)

1−
(Ld
−L∗)

+(Lu−L∗)
for L∗ < L < Lu. (61)

For k ∕= 0, this stationary distribution exists only if Ld < L∗ < Lu.

Typically, k < 0 since the expected return to equity is higher than debt. Condi-

tions (50) and (51) under which the mode of the distribution is L∗, are then

1

1− 
(Ld − L)
> 1 for Ld < L < L∗ (62)

1

1− 
(Lu − L)
< 1 for L∗ < L < Lu, (63)
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Both conditions clearly hold for k < 0.

2. Geometric Brownian Motion

The drift and volatility of the geometric Brownian motion are �(Lt) = �Lt and

�(Lt) = �Lt. By Itô’s lemma this is equivalent to the natural logarithm of Lt following

a Brownian motion with drift �− 1
2
�2:

d log(Lt) = (�− 1

2
�2)dt+ �dBt (64)

Since the geometric Brownian motion is a strictly increasing transformation of a

standard Brownian motion, the results for existence of a stationary distribution and

the mode of the distribution that we derived for the standard Brownian motion apply

to the geometric Brownian motion as well.

By changing variables from log(L) to L we find the expression for the stationary

distribution of L:

f(L) =

[
Ld

L
−

(
Ld

L

)−k+2
]
/C1 for Ld < L ≤ L∗ (65)

f(L) =
[
Lu

L
−

(
Lu

L

)−k+2
]
/C2 for L∗ < L < Lu, (66)

for k ∕= 0, where k ≡ 2�/�2 and

C1 ≡ Ld

[
− log

(
Ld

L∗

)
+ log

(
Lu

L∗

)
⋅ 1− (L

d

L∗
)−k+1

1− (L
u

L∗
)−k+1

]
(67)

C2 ≡ Lu

[
− log

(
Ld

L∗

)
⋅ 1− (L

u

L∗
)−k+1

1 − (L
d

L∗
)−k+1

+ log

(
Lu

L∗

)]
. (68)

The mode of this distribution is L∗ iff L∗ <
(

1
2−k

) 1
1−k Ld and k < 2. The mean is

E(L) =
Ld

C1

(
L∗ − Ld

)
+

Lu

C2

(Lu − L∗) +

(Ld)2

kC1

[
1−

(
Ld

L∗

)−k
]
− (Lu)2

kC2

[
1−

(
Lu

L∗

)−k
]
. (69)
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