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Abstract

Contracts in a dynamic model must address a number of issues absent from static frame-

works. Shocks to �rm value may weaken the incentive e¤ects of securities (e.g. cause

options to fall out of the money), and the impact of some CEO actions may not be felt

until far in the future. We derive the optimal contract in a setting where the CEO can

a¤ect �rm value through both productive e¤ort and costly manipulation, and may undo

the contract by privately saving. The optimal contract takes a surprisingly simple form,

and can be implemented by a �Dynamic Incentive Account.�The CEO�s expected pay

is escrowed into an account, a fraction of which is invested in the �rm�s stock and the

remainder in cash. The account features state-dependent rebalancing and time-dependent

vesting. It is constantly rebalanced so that the equity fraction remains above a certain

threshold; this threshold sensitivity is typically increasing over time even in the absence

of career concerns. The account vests gradually both during the CEO�s employment and

after he quits, to deter short-termist actions before retirement.
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1 Introduction

Many classical models of CEO compensation consider only a single period, or multiple inde-

pendent periods. However, the optimal static contract may be ine¤ective in a dynamic world

where the CEO�s current actions impact future periods. For example, short-term contracts can

encourage the CEO to manipulate the current stock price at the expense of long-run value. By

privately saving, the CEO can achieve a higher future income than intended by the contract,

reducing his incentives to exert e¤ort. Securities given to incentivize the CEO may lose their

power over time: if �rm value declines, options fall out-of-the-money and bear little sensitivity

to the stock price. In addition to the above challenges, a dynamic setting provides opportunities

to the �rm �it can reward e¤ort with future rather than current pay.

This paper analyzes a dynamic model that allows for all of the above complications, which

are likely important features in real life. We take an optimal contracting approach which

allows for fully history-dependent contracts without restrictions to particular contractual forms.

Despite the complexity of the setting, the e¢ cient contract is surprisingly simple. The model�s

closed form solutions allow the economic forces behind the contract to be transparent and its

intuition to be clear, as well as facilitating its implementation in practice.

In our baseline model, the CEO makes only an e¤ort decision and has no option to manipu-

late earnings or privately save or borrow. This provides a benchmark against which to analyze

the e¤ect of introducing these complications. In the optimal contract, log consumption is a

linear function of current and all past stock returns. The rewards for exerting e¤ort are thus

spread across all future periods, to achieve intertemporal risk-sharing. In an in�nite-horizon

model, the sensitivity to returns is time-independent: in a given period, consumption is a¤ected

by current and past returns to the same degree, and this sensitivity remains the same in every

period. With a �nite horizon, the sensitivity is increasing over time �the �increasing incentives

principle.�The contract is more sensitive to current than past returns, and the sensitivity to

current returns intensi�es as the CEO becomes older. This is for two reasons. First, holding

constant the total lifetime reward for e¤ort (i.e. change in NPV of future pay, or change in

wealth), this reward is spread across fewer periods and so the reward in the current period

(i.e. change in pay) must increase. Second, the total lifetime reward must also increase. As a

risk-averse agent becomes older, a given increase in wealth provides him with less utility as he

is forced to consume it over fewer periods; therefore, the increase in wealth for exerting e¤ort

must rise to maintain incentives. We thus generate a similar prediction to Gibbons and Murphy

(1992), but without invoking career concerns.

We then allow the CEO to engage in manipulation, i.e. in�ate the current stock price at the

expense of future returns. In practice, this may entail changing accounting policies, concealing

information or scrapping positive-NPV projects; we also allow for negative manipulation. The

possibility of manipulation requires the optimal contract to change in two ways to prevent

such behavior. The CEO�s income is now sensitive to �rm returns after retirement, to deter
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him from in�ating the stock price just before he leaves. In addition, the contract sensitivity

now rises over time, even in an in�nite-horizon model. The CEO bene�ts immediately from

short-termism as it boosts current pay, but the cost is only su¤ered in the future and thus has

a discounted e¤ect. An increasing slope o¤sets the e¤ect of discounting by ensuring that the

CEO loses more dollars in the future than he gains today. We also allow the CEO to engage

in private savings. This possibility does not change the contract�s sensitivity but a¤ects the

level of pay, causing it to increase faster over time. Rising pay e¤ectively saves for the CEO,

removing the incentive for him to do so privately.

In practice, our optimal contract can be implemented in a simple manner. When appointed,

the CEO is given a �Dynamic Incentive Account�(�DIA�): a portfolio of which a given fraction

is invested in the �rm�s stock and the remainder in cash. Mathematically, the fraction of pay

in stock equals the sensitivity of log pay to stock returns, and so it represents the contract�s

sensitivity. As time evolves, and �rm value changes, this portfolio is constantly rebalanced to

ensure the fraction of stock remains su¢ cient to induce e¤ort at minimum risk to the CEO. For

example, a fall in the share price reduces the equity in the account below the required fraction;

this is addressed by using cash in the account to purchase stock. If the stock appreciates, some

equity can be sold without falling below the threshold, to reduce the CEO�s risk.

The following numerical example illustrates the role of rebalancing. The CEO is considering

whether to work, which will increase �rm value by 10%, or take a holiday that is worth 6% of

his salary to him. (The higher the salary, the more the holiday is worth since he can spend his

salary on holiday.) If salary is $10m, the holiday is worth $600,000. If the CEO has $6m of

stock, working will increase its value by 10%, or $600,000, thus deterring the holiday. Therefore,

his $10m salary will comprise $6m of stock and $4m of cash. Now assume that the �rm�s stock

price halves, so that his stock is worth $3m. His total salary is $7m and the holiday is worth

$420,000, but working will increase his $3m stock by only $300,000. To ensure continued e¤ort

incentives, the CEO�s gains from working must be $420,000. This requires him to have $4.2m

of stock, and is achieved by selling $1.2m of cash in the account to purchase new stock. The

account now comprises $4.2m of stock and $2.8m of cash. Importantly, the $1.2m additional

equity is not given to the CEO for free, but accompanied by a reduction in cash. This addresses

a concern with the current practice of restoring incentives after stock price declines by repricing

options �the CEO is rewarded for failure. While new to executive compensation, the idea of

rebalancing incentive portfolios is similar to the widespread practice of rebalancing investment

portfolios: both are ways of maintaining desired weights in response to stock price changes.

In addition to continuous rebalancing, the DIA also features gradual vesting: the CEO can

only withdraw a percentage of the account in each period. This has two roles. First, it ensures

that the CEO has su¢ cient equity in future periods to induce e¤ort. This role requires vesting

to be gradual during the CEO�s employment. Second, it deters the CEO from in�ating earnings

and cashing out just before retirement. This role requires vesting to be gradual even after the

CEO leaves. Thus, if manipulation is possible, the account does not fully vest until a su¢ cient
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period has elapsed after departure for the e¤ects of any manipulation to have been reversed.

In sum, the DIA has two key features, which each achieve separate objectives. State-

dependent rebalancing ensures that the CEO always exerts the required level of e¤ort, while

minimizing his risk. Time-dependent vesting ensures that the CEO always abstains from ma-

nipulation, and that he has su¢ cient equity in future periods to incentivize e¤ort. The model

thus o¤ers theoretical guidance on how executive compensation might be reformed to address

the problems that manifested in the recent crisis, such as short-termism and weak incentives

after stock price declines. A number of commentators (e.g. Bebchuk and Fried (2004), Holm-

strom (2005), Bhagat and Romano (2009)) have argued that lengthening vesting horizons on

stock and options may deter manipulation. Even if such a change could be achieved at little

cost, it only solves myopia and does not ensure continued incentive compatibility over time, as

it does not involve rebalancing.

Moreover, existing theories demonstrate costs of lengthening vesting horizons, which lead

to the optimal vesting horizon being short. In Peng and Roell (2009), long vesting periods

increase the CEO�s risk by delaying the rebalancing of stock for cash; Bhattacharyya and Cohn

(2008) and Brisley (2006) show that this increased risk can deter the CEO from taking risky

projects. Such costs arise because vesting and rebalancing are the same event in these models:

the CEO can only sell stock when it vests, and so long vesting prevents timely rebalancing and

risk reduction. The �rst two papers show that short-vesting stock is optimal; Brisley analyzes

options where rebalancing is only necessary upon strong performance, since only in-the-money

options subject the CEO to risk. Therefore, as in our model, state-dependent rebalancing

is e¢ cient; since rebalancing and vesting are the same event in Brisley, this requires state-

dependent vesting. Indeed, recent empirical studies (e.g. Bettis, Bizjak, Coles and Kalpathy

(2008)) document that performance-based (i.e. state-dependent) vesting is becoming increas-

ingly popular, where vesting is accelerated upon high returns.1 This may induce the CEO to

in�ate the stock price (an action not featured in the last two theories) and cash out before the

manipulation becomes apparent. Here, vesting and rebalancing are separate events, allowing

risk reduction without inducing manipulation �high returns permit sales of equity, but criti-

cally the proceeds must remain in the account in case the returns are subsequently reversed.

The combination of time-dependent vesting and state-dependent rebalancing thus achieves a

di¤erent result from state-dependent vesting �the two separate features achieve the two goals

of deterring manipulation and maintaining e¤ort incentives.

In addition to the above papers on vesting horizons, our paper is also related to contracting

theories in the presence of manipulation. Lacker and Weinberg (1989) identify a class of one-

period settings in which no manipulation is optimal and linear contracts obtain. Goldman and

Slezak (2006) restrict compensation to being on short-term performance, and so feature a trade-

o¤ between e¤ort inducement (which increases the optimal equity stake) and manipulation

1State-dependent vesting is also featured in the �Bonus Bank�advocated by Stern Stewart, where the amount
of the bonus that the executive can withdraw depends on the total bonuses accumulated in the bank.
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deterrence (which reduces it). Here, the incentive horizon is endogenous and so we achieve

both goals without a trade-o¤. More generally, our paper is related to dynamic models of the

principal-agent problem2, such as DeMarzo and Sannikov (2006), DeMarzo and Fishman (2007),

He (2008a), Sannikov (2008), Biais et al. (2007, 2009) and Garrett and Pavan (2009), and the

macroeconomic literature on optimal incentives (e.g. taxation and regulation) in a dynamic

setting, such as Atkeson and Lucas (1992), Golosov, Kocherlakota and Tsyvinski (2003), Shimer

andWerning (2008), Phelan and Skrzypacz (2008) and Farhi andWerning (2009). Our modeling

setup builds on the multi-period framework of Edmans and Gabaix (2009a) (�EG�), which

allows us to derive contracts that are both attainable in closed form and �detail-neutral��

the functional form is independent of the noise distribution and agent�s utility function. Since

EG restrict the CEO to consuming in the �nal period only, manipulation and private saving

are non-issues; Holmstrom and Milgrom (1987) similarly have only terminal consumption. He

(2008b) also considers a dynamic model with private saving and manipulation. By using the

modeling setup of EG, we generate a closed-form contract which allows transparency of the

economic intuition and simple implementation via the DIA. Our framework also allows for a

continuous action choice and non-linear cost functions.

Since our contract links log consumption to stock returns, the relevant measure of incen-

tives is the percentage change in CEO pay for a percentage change in �rm value. This result

extends to a dynamic setting Edmans, Gabaix and Landier (2009), who theoretically justify

this incentive measure in a one-period model with a risk-neutral CEO, and empirically show

that it is independent of �rm size and thus comparable across �rms of di¤erent size.

The result that the optimal contract exhibits memory (i.e. current pay depends on past

output) was �rst derived in Lambert (1983) and Rogerson (1985), who consider a two-period

model where the agent only makes an e¤ort decision. We extend it to a multi-period model

where the agent can also privately save and manipulate. Indeed, Boschen and Smith (1995)

�nd empirically that �rm performance has a much greater e¤ect on the present value of future

pay rather than on current pay. Moreover, the execution of the contract through an incentive

account and thus wealth- rather than pay-based compensation allows a memory-dependent

contract to be implemented simply. Bolton and Dewatripont (2005) note that a �disappointing

implication of [memory-dependence] is that the long-term contract will be very complex,�which

appears to contradict the relative simplicity of real-life contracts. This complexity is indeed

unavoidable if the CEO is rewarded exclusively through new �ows of pay, as these �ows will

have to depend on the entire history of past outcomes. However, in the DIA, the CEO is also

incentivized through his wealth of previously-granted shares. A fall in the share price reduces

the CEO�s wealth and thus his entire path of future consumption. Future consumption is thus

sensitive to past returns without requiring new �ows of pay to be history-dependent.

In addition to its results, our paper contributes a number of methodological innovations.

2See Edmans and Gabaix (2009b) for a survey of recent optimal contracting theories.
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To our knowledge, it is the �rst to derive conditions on the model primitives which guarantee

the validity of the �rst-order approach to solve a dynamic agency problem with private savings.

The �rst-order approach replaces the agent�s incentive constraints against complex multi-period

deviations with weaker local constraints (i.e. �rst-order conditions), with the hope that the

solution to the relaxed problem satis�es all constraints.3 This method is often valid if private

saving is impossible (hence the one-shot deviation principle), but problematic when the agent

can engage in joint deviations to save and reduce e¤ort. This is because saving insures against

future shocks to income and thus reduces e¤ort incentives. Our method of verifying the �rst-

order approach involves linearizing the agent�s utility function and showing that, if the costs

of e¤ort and manipulation are su¢ ciently convex, the linear utility function is jointly concave

in leisure and manipulation (it is automatic that there is no incentive to save under linear

utility). Since the actual utility function is concave, linearized utility is an upper bound for the

agent�s actual utility. Thus, since there is no pro�table deviation under a linear utility function,

there is no pro�table deviation under the actual utility function either. This technique may be

applicable in other agency theories to verify the su¢ ciency of the �rst-order approach.

The second methodological innovation allows us to solve the full contracting problem. Gross-

man and Hart (1983) solved the one-period contracting problem in two stages: �nding the

cheapest contract that implements a given e¤ort level, and the optimal e¤ort level. We prove

in the no-manipulation case that, if �rm value is su¢ ciently large relative to the CEO�s wage,

the optimal contract must implement maximum e¤ort in every state and in every period (the

�maximum e¤ort principle�). This is because the bene�ts of increasing e¤ort are multiplicative

in �rm size, but the costs of higher e¤ort (direct disutility of e¤ort, ine¢ cient risk-sharing and

informational rents to the CEO) are multiplicative in the CEO�s salary. If �rm size is signi�-

cantly greater than the CEO�s salary, which is true in the vast majority of practical applications,

the bene�ts outweigh the costs and so maximum e¤ort is optimal. This solves the second stage

of the contracting problem and allows the analysis to focus exclusively on the �rst stage. It thus

markedly simpli�es contract design and may be useful for future contracting theories. Similarly,

in multi-period models, wealth e¤ects typically cause the optimal e¤ort level to depend on past

wealth accumulation, leading to complex intertemporal linkages. The maximum e¤ort principle

leads to tractable contracts even in a fully dynamic setup.

This paper is organized as follows. Section 2 presents the model setup and Section 3 derives

the optimal contract when the CEO has logarithmic utility, as this version of the model is

most tractable. Section 4 shows that the key results continue to hold under general CRRA

utility and autocorrelated noise. It also provides a full justi�cation of the contract: it derives

su¢ cient conditions that ensure that the agent will not undertake global deviations, and shows

3Another method of verifying the validity of the �rst-order approach is to verify global incentive compatibility
of each individual solution numerically rather than �nding conditions on primitives that ensure validity. For
example, see Werning (2001), Dittmann and Maug (2007) and Dittmann and Yu (2009). See also Kocherlakota
(2004) for the analytical challenges of dynamic agency problems with private savings.
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that the principal cannot improve upon implementing maximum e¤ort. Section 5 concludes

and Appendix A contains proofs of theorems. In the Online Appendix, Appendix B show that

the model is robust to a time-varying cost of e¤ort, Appendix C provides analysis supporting

some of the comparative statics, Appendix D o¤ers a microfoundation for the optimality of no

manipulation, Appendix E gives the continuous-time version of the contract, and Appendix F

contains proofs of lemmas.

2 The Core Model

2.1 Assumptions

We consider a multiperiod model featuring a �rm (also referred to as the �principal�) which

employs a CEO (�agent�). The �rm pays only a terminal dividend D� (�earnings�) in the �nal

period � . In the core model, the terminal dividend is given by

D� = X exp

 
�X
s=1

(as + �s)

!
; (1)

where X represents baseline �rm size and as 2 [0; �a] is the agent�s action (�e¤ort�). The action
as is broadly de�ned to encompass any decision that improves �rm value but is personally

costly to the manager. The main interpretation is e¤ort, but a low as can also re�ect cash �ow

diversion or private bene�t consumption. �s is noise, which is independent across periods, has

a log-concave density4, and is bounded above and below by � and ��. (Section 4.1 allows for

autocorrelated noises). As in EG we assume that, in each period t, the agent privately observes

�s before choosing his action as. EG show that this assumption leads to tractable contracts in

discrete time and consistent results with the continuous time case, where noise and actions are

simultaneous. This timing is also featured in models where the CEO sees total output before

deciding how much to divert (DeMarzo and Fishman (2007)) or report (Lacker and Weinberg

(1989)), as well as models where the CEO observes the �state of nature�before choosing e¤ort

(e.g. Harris and Raviv (1979), Sappington (1983) and Baker (1992)).

After at is taken, the principal observes a public signal of �rm value, given by:

St = X exp

 
tX

s=1

(as + �s)

!
:

The incremental news contained in St, over and above the information known in period t � 1

4A random variable is log-concave if it has a density with respect to the Lebesgue measure, and the log of
this density is a concave function. Many standard density functions are log-concave, in particular the Gaussian,
uniform, exponential, Laplace, Dirichlet, Weibull, and beta distributions (see, e.g., Caplin and Nalebu¤ (1991)).
On the other hand, most fat-tailed distributions are not log-concave, such as the Pareto distribution.
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(and thus contained in St�1) can be summarized by rt = lnSt � lnSt�1, i.e.

rt = at + �t: (2)

With a slight abuse of terminology, we call rt the �rm�s �return�.5 By observing St, the

principal learns rt, but not its constituent components at and �t. The agent�s strategy is a

function at(r1; : : : rt�1; �t) that speci�es how his action depends on the current level of noise for

each history of returns before time t:

After St (and thus rt) is publicly observed, the principal pays the agent an amount yt.

We allow for a fully history-dependent contract in which the agent�s compensation yt(r1; : : : rt)

depends on the entire history of past returns. 6

Having received income yt, the agent consumes ct and saves (yt � ct) at the continuously

compounded risk-free rate R. We allow (yt � ct) to be negative, i.e. the agent may borrow as

well as save. Such borrowing and saving are unobserved by the principal. Following a standard

argument, we can restrict attention to contracts in which the agent chooses not to save or

borrow, and instead consumes his entire income in each period (i.e. ct = yt). For brevity, we

use the term �private saving�to refer to saving or borrowing.

The agent�s utility over consumption ct 2 [0;1) and e¤ort at in each period is given by

u(cth(at)); (3)

where g (a) = � lnh (a), the utility cost of taking action a, is an increasing, convex function. u
is a CRRA utility function with relative risk aversion coe¢ cient  > 0, i.e. u (x) = x1�= (1� )

if  6= 1, and u (x) = lnx for  = 1.
The agent lives in periods 1 through T � � and retires after period L � T . After retirement,

the �rm replaces him with a new CEO and continues to contract optimally. The agent discounts

5rt is the actual increase in the expected dividend as a result of the action and noise at time t. Given rational
expectations, the innovation in the stock return is the unexpected increase in �rm value. In turn, �rm value
is the discounted expected dividend. We later derive su¢ cient conditions under which the optimal contract
implements the maximal e¤ort �a in every period. Therefore, �rm value is given by

Pt = X exp

 
tX

s=1

(as + �s) + (� � t) (a�R+ lnE [e�t ])
!
;

where R is the risk-free rate. Therefore, the �rm�s actual log return is lnPt � lnPt�1 = rt � �a+R� lnE[e�t ].
6A fully general contract can involve the income yt depending on messages sent by the agent regarding �t.

The bulk of the analysis conjectures that the optimal contract implements a �xed target action, a , in every
period. With a �xed target action, such messages are redundant: the agent�s announcement of �t would be
uniquely determined by rt, since he will make the announcement that maximizes his expected utility. Therefore,
the principal can automatically back out the message after seeing rt, and so such messages would convey no
additional information to the history of returns: see also EG. We allow the contract to depend on messages
when providing the optimality of a �xed target action in Section 4.3.
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future utility at rate �, so that his total discounted utility is given by:

U =

TX
t=1

�tu(cth(at)): (4)

As in Edmans, Gabaix and Landier (2009), we model e¤ort as having a multiplicative e¤ect on

both CEO utility (equation (3)) and �rm earnings (equation (1)). Multiplicative preferences

consider private bene�ts as a normal good (i.e. the utility they provide is increasing in con-

sumption), consistent with the treatment of most goods and services in consumer theory; they

are also common in macroeconomic models. With a multiplicative production function, e¤ort

has a percentage e¤ect on �rm earnings and so the dollar bene�ts of working are higher for

larger �rms. This assumption is plausible for the majority of CEO actions, since they can be

�rolled out�across the entire �rm and thus have a greater e¤ect in a larger company.7 Edmans

et al. �nd empirically that the percentage change in pay for a percentage change in �rm value

is independent of size, and show that a model requires these multiplicative speci�cations to

deliver the result that this incentive measure is size-invariant.8

The principal is risk-neutral and uses discount rate R. Her objective function is thus:

max
fat;t=1;:::Lg;fyt;t=1;:::Tg

E

"
e�R�D� �

TX
t=1

e�Rtyt

#

i.e. the expected discounted dividend, minus expected pay. The individual rationality (IR)

constraint is that the agent achieves his reservation utility of u; i.e.

E

"
TX
t=1

�tu(cth(at))

#
= u:

The incentive compatibility constraints require that any deviation (in either the action or

consumption) by the agent reduces his utility, i.e.

E

"
TX
t=1

�tu(bcth(ât))# � u

for all alternative e¤ort strategies fât; t = 1; : : : Lg and feasible consumption strategies fbct; t =
7See Bennedsen, Perez-Gonzalez and Wolfenzon (2009) for empirical evidence that CEOs have the same

percentage e¤ect on �rm value, regardless of �rm size.
8Thus, multiplicative speci�cations allow an incentive model (such as the present one) to be embedded into

a market equilibrium (e.g. the one of Gabaix and Landier (2008)) and generate correct scalings of incentive
measures with respect to size.
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1; : : : Tg: A consumption strategy is feasible if it satis�es the budget constraint

TX
t=1

e�Rtct �
TX
t=1

e�Rtyt:

We use the notation Ea and E â to highlight that the agent�s e¤ort strategy a¤ects the proba-

bility distribution over return paths.

In some versions of the model, we allow the agent to manipulate the �rm�s returns. Ma-

nipulation is broadly de�ned to encompass any action that increases current returns at the

expense of future returns. The literal interpretation is changing accounting policies, but it can

also involve real decisions such as scrapping positive-NPV investments (as modeled by Stein

(1988) and Edmans (2009)) or taking negative-NPV projects that generate an immediate return

but have a downside that may not manifest for several years (such as sub-prime lending). We

also allow for downward manipulation: the CEO may sacri�ce current returns to boost future

returns via overinvestment or �big bath�accounting (taking large write-downs).

In each period t � L, at the same time as taking his action, the agent can also engage in

manipulation. A single manipulative activity mt;i changes the return from rt = at + �t to

r0t = rt +mt;i � � (mt;i)

r0t+i = rt+i �mt;i

r0s = rs for s 6= t; t+ i;

i.e. it rises in period t by mt;i � � (mt;i) and falls in period t + i by mt;i.9 � (ms;i) is the

fundamental cost of manipulation, where � (0) = �0 (0) = 0, and �00 (ms;i) > 0. Manipulation

destroys value, since it involves undertaking negative-NPV projects, forsaking positive-NPV

projects, or using resources to change accounting policies. 1 � i � M is the �release lag�of

the manipulation: the number of periods before the e¤ects of manipulation are reversed. For

example, forgoing an project that pays o¤ in the long run will only worsen earnings far into

the future, and so the release lag is high. M is the maximum release lag, where M � � � L,

i.e. the e¤ects of all manipulation are reversed before the terminal dividend is paid. We allow

the CEO to take a vector of M manipulations each period, mt = fmt;1; :::;mt;Mg, where some

9Similarly, the signal changes from St = X exp
�Pt

s=1 (�s + as)
�
to

S0t+j =

�
St+je

mt;i��(mt;i) for j = 0; :::; i� 1
St+je

��(mt;i) for j � i: :
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or all of the mt;i may equal zero.10 The terminal dividend (1) now becomes

D� = X exp

 
�X
s=1

(�s + as)�
�X
s=1

MX
i=1

� (ms;i)

!
; (5)

The principal�s problem is complex because contracts are history-dependent, the agent can

manipulate returns and privately save, and the principal must choose the optimal e¤ort level.

Our solution strategy is as follows. We start with a conjecture that the optimal contract

involves binding local constraints and, if �rm size X is su¢ ciently high, maximal e¤ort in each

period. Following this conjecture we (i) derive the necessary local incentive constraints that

a candidate contract must satisfy in Section 3.1; (ii) �nd the cheapest contract that satis�es

these local constraints and show that this contract involves binding constraints (Theorem 2

in Section 4.1); (iii) verify that the candidate contract is also fully incentive-compatible, i.e.

prevents global deviations (Theorem 3 in Section 4.2); (iv) verify that the candidate contract is

optimal among all contracts, i.e. the optimal contract must enforce maximum e¤ort (Theorem

4 in Section 4.3).

3 Log Utility

3.1 Local Constraints

A candidate contract must satisfy (up to) three local incentive compatibility constraints. The

e¤ort (EF) constraint ensures that the agent exerts the maximum level of e¤ort (at = a). The

private savings (PS) constraint ensures that the agent consumes the full income provided by the

contract (ct = yt). The no-manipulation (NM) constraint ensures that the agent does not engage

in manipulation (mt;i = 0). To show the e¤ect of allowing private savings and manipulation on

the contract, we consider versions of the model in which private savings and/or manipulation

are impossible (and so the PS and/or NM constraints are not imposed).

Consider an arbitrary contract fyt; t = 1; : : : Tg, a consumption strategy fct; t = 1; : : : Tg;
an e¤ort strategy fat; t = 1; : : : Lg and a manipulation strategy fmt; t = 1; : : : Lg, where mt 2
RM : Recall that yt; ct and mt depend on the entire history (r1; : : : rt) and at depends on

(r1; : : : rt�1; �t):
11 To capture history-dependence, we denote by Et the expectation conditional

on the history (r1; : : : rt).

We �rst address the EF constraint and consider a local deviation in the action at after

10If the CEO engages in multiple manipulations at time t, the signal becomes S0t+j = St+j exp(ms;i1s+i>t +P
s�t
i�M

�� (ms;i)) and the return changes to r0t = rt +
PM

i=1 (mt;i � � (mt;i))�
PminfM;t�1g

i=1 mt�i;i:

11Since the agent has observed �t, his action choice pins down rt and so he knows rt when choosing his
manipulation.
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history (r1; : : : rt�1; �t): The derivative of CEO utility with respect to at is

Et

�
@U

@rt

@rt
@at

+
@U

@at

�
:

Since @rt=@at = 1 and @U=@at = �tct(�h0(at))u0(cth(at)), the EF constraint is:

EF : Et

�
@U

@rt

�
� �tct(�h0(at))u0(cth(at)): (6)

We next consider the PS constraint. If the CEO saves a small amount dt in period t and

invests it until t+ 1; his utility increases to the leading order by:

�Et
�
@U

@ct

�
dt + Et

�
@U

@ct+1

�
eRdt:

To deter private saving or borrowing, this change should be zero to the leading order, i.e.

PS : �th(at)u
0(cth(at)) = Et

�
�t+1eRh(at+1)u

0(ct+1h(at+1))
�
: (7)

This is the standard Euler equation for consumption smoothing: discounted marginal utility

eRt�th(at)u
0(cth(at)) is a martingale. Intuitively, if it were not a martingale, the agent would

privately reallocate consumption to the time periods with higher marginal utility.

The Euler equation can be contrasted with the �Inverse Euler Equation� (IEE), which

characterizes solutions to agency problems without the possibility of private saving and thus

the PS constraint, when utility is additively separable in consumption and e¤ort (Rogerson

(1985), Golosov, Kocherlakota and Tsyvinski (2003) and Farhi and Werning (2009)). In our

model, utility becomes additive if u(x) = lnx, and the IEE is:

IEE: ��tct = Et
�
e�R��t�1ct+1

�
. (8)

The IEE states that the inverse of the agent�s discounted marginal utility e�Rt��tct, which

equals the marginal cost of delivering utility to the agent, is a martingale. If (8) did not hold,

the principal would shift the agent�s utility to periods with a lower marginal cost of delivering

utility. This argument is invalid for  6= 1, because the agent�s marginal cost of e¤ort depends
on his consumption when utility is nonadditive.

Finally, we consider the NM constraint. If the agent engages in a small manipulation (mt;i)

at time t, his utility changes to the leading order by

Et

�
@U

@rt

�
(mt;i � � (mt;i)) + Et

�
@U

@rt+i

�
(�mt;i) :
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To prevent manipulation, this change must be zero. Since � (0) = �0 (0) = 0, this implies

NM : Et

�
@U

@rt

�
= Et

�
@U

@rt+i

�
for t � L, 0 � i �M: (9)

3.2 The Contract

We now derive the cheapest contract that satis�es the local constraints. We �rst consider log

utility as the expressions are most tractable; Section 4 considers  6= 1.

Theorem 1 (Log utility.) The cheapest contract that satis�es the local constraints and imple-
ments maximum e¤ort and zero manipulation is as follows. In each period t, the CEO is paid

ct which satis�es:

ln ct = ln c0 +

tX
s=1

�srs +
tX

s=1

ks; (10)

where �s and ks are constants. If manipulation is impossible, the slope �s is given by

�s =

(
g0(�a)

1+�+:::�T�s for s � L;

0 for s > L:
(11)

If manipulation is possible, �s is given by:

�s =

(
g0(�a)

1+�+:::�T�s�
1�s for s � L+M;

0 for s > L+M
(12)

If private saving is impossible, the constant ks is given by:

ks = R + ln �� lnE[e�s(�a+�)]: (13)

If private saving is possible, ks is given by:

ks = R + ln �+ lnE[e��s(�a+�)]: (14)

The initial condition c0 is chosen to give the agent his reservation utility u:

Heuristic proof. The Appendix contains a full proof; here we present a heuristic proof in
a simple case that gives the key intuition. We consider a two-period model with no discounting,

i.e. L = T = 2, � = 1, R = 0, with the PS constraint but without the NM constraint. We wish

to show that the optimal contract is given by:

ln c1 = g0 (a)
r1
2
+ �1; ln c2 = g0 (a)

�r1
2
+ r2

�
+ �1 + k2 (15)
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for some constants �1 (the equivalent of ln c0 + k1 in the Theorem) and k2 that make the IR

constraint bind.

Step 1: Optimal log-linear contract

We �rst solve the problem in a restricted class where contracts are log-linear, i.e.:

ln c1 = �1r1 + �1, ln c2 = �21r1 + �2r2 + �1 + k2 (16)

for some constants �1, �21; �2, �1; k2. This �rst step is not necessary but clari�es the economics,

and is helpful in more complex cases to guess the form of the optimal contract.

First, intuitively, the optimal contract entails consumption smoothing, i.e. shocks to con-

sumption are permanent. This implies �21 = �1. To prove this, the PS constraint (7) yields:

1 = E1

�
c1
c2

�
= e(�1��21)r1E1

�
e��2r2�k2

�
: (17)

This must hold for all r1. Therefore, �21 = �1 and k2 = lnE1
�
e��2r2

�
, as in (14).

Next, consider total utility U :

U = ln c1 + ln c2 � g (a1)� g (a2)

= 2�1r1 + �2r2 � g (a1)� g (a2) + 2�1 + k2:

From (6), the two EF conditions are E2
h
@U
@r1

i
� g0 (a) and E2

h
@U
@r2

i
� g0 (a), i.e.:

2�1 � g0 (a) ; �2 � g0 (a) :

Intuitively, the EF constraints should bind (proven in the Appendix), else the CEO is exposed

to unnecessary risk. Combining the binding version of these constraints with (16), the optimal

contract is given by (15).

Step 2: Optimality of log-linear contracts

We next verify that optimal contracts should be log-linear. Equation (6) yields: d (ln c2) =dr2 �
g0 (a). The cheapest contract involves this local EF condition binding, i.e.

d (ln c2) =dr2 = g0 (a) � �2: (18)

Integrating yields the contract:

ln c2 = �2r2 +B (r1) ; (19)

where B (r1) is a function of r1 which we will determine shortly. It is the integration �constant�

of equation (18) viewed from time 2.
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We next apply the PS constraint (7) for t = 1:

1 = E1

�
c1
c2

�
= E1

h c1
e�2r2+B(r1)

i
= E1

�
e��2r2

�
c1e

�B(r1): (20)

Hence, we obtain

ln c1 = B (r1) +K; (21)

where the constant K is independent of r1. (In this proof, K, K 0and K 00 are constants inde-

pendent of r1 and r2.) Total utility is:

U = ln c1 + ln c2 +K 0 = �2r2 + 2B(r1) + 2K +K 0: (22)

We next apply (6) to (22) to yield: 2B0 (r1) � g0 (a) : Again, the cheapest contract involves

this condition binding, i.e. 2B0 (r1) = g0 (a) : Integrating yields:

B (r1) = g0 (a)
r1
2
+K 00: (23)

Combining (23) with (21) yields: ln c1 = g0 (a) r1
2
+�1, for another constant �1. Combining (23)

with (19) yields:

ln c2 = g0 (a)
�r1
2
+ r2

�
+ �1 + k2;

for some constant k2. �
We now discuss the economics behind the contract. (10) shows that time-t income should

be linked to the return not only in period t, but also in all previous periods. Therefore, e¤ort

boosts income in both the current and all future periods. We call this the �deferred reward

principle�: since the CEO is risk-averse, it is e¢ cient to spread the reward for e¤ort over the

future. Similarly, to optimize intertemporal risk-sharing, the impact of any negative shock to

r1 (due to a low �1) should be spread over all future periods.

We now consider how the contract sensitivity changes over time. We �rst consider the case

where manipulation is impossible and so the NM constraint is not imposed. (11) shows that,

in an in�nite horizon model (T = � !1), the sensitivity is constant and given by:

�t = � = (1� �) g0(a): (24)

This time-independent sensitivity is intuitive: the contract must be su¢ ciently sharp to com-

pensate for the disutility of e¤ort, which is constant. However, for any �nite model, (11) shows

that �t is increasing over time. To understand the intuition for this �increasing incentives

principle�, we distinguish between the following variables: the increase in lifetime utility for

exerting e¤ort (@U=@at), the increase in current utility (@ut=@at), the increase in current pay

(@ct=@at) and the increase in wealth (@At=@at, where At = Et

hPT
s=t e

�R(s�t)cs

i
is wealth, i.e.

the NPV of all future pay). The increase in lifetime utility @U=@at is constant, given the con-
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stant disutility of e¤ort. When there are fewer remaining periods over which to smooth out this

lifetime increase, the current increase in utility (@ut=@at) must be higher; this in turn requires

a greater increase in current pay (@ct=@at). In addition, a given lifetime increase in utility

@U=@at translates into a greater increase in wealth @At=@at.12 As the CEO becomes older, a

given increase in wealth provides the CEO with less lifetime utility, because he is forced to

consume it over fewer future periods. Thus, a greater increase in wealth is needed to provide

the same utility gain and maintain incentives. Gibbons and Murphy (1992) also predict that

the current reward for e¤ort (both @ct=@at and @ut=@at) rises over time, but not because of

consumption smoothing considerations. Instead it is because the CEO is incentivized not only

through pay but by the fact that improved performance boosts his labor market reputation.

As the CEO approaches retirement, career concerns become weaker and so monetary incentives

must be strengthened: the increase in lifetime utility for e¤ort given by the current contract

(@U=@at) goes up. In Garrett and Pavan (2009), @U=@at increases over time to minimize the

agent�s informational rents. Here, @U=@at is constant since we have no adverse selection or

career concerns: there is no uncertainty about CEO quality and returns are a signal of e¤ort

alone.

Next, we study the impact of manipulation on the contract. From (12), the possibility

of manipulation has three e¤ects. First, the CEO�s income remains sensitive to �rm returns

after his retirement in period L: it remains sensitive until period L +M , by which time all

manipulation has been reversed. This deters him from in�ating returns just before retirement.13

Second, the contract sensitivity �t is higher in each period, because the contract must now satisfy

the NM constraint as well as the EF constraint. Third, �t trends upwards more rapidly over

time. If �t were constant, the CEO would have an incentive to in�ate the time-t return, thus

increasing his time-t consumption. Even though the return at time t + it will be lower, the

e¤ect on the CEO�s utility is discounted. Therefore, an increasing sensitivity is necessary to

deter manipulation. For example, in an in�nite horizon model (T = 1), the possibility of
manipulation changes the slope from the constant (24) to

�t = (1� �) �1�tg0 (a) :

The �1�t term demonstrates the increasing slope. The more impatient the CEO, the greater

the incentives to manipulate, and so the greater the required increase in sensitivity over time

to deter manipulation. In a �nite horizon model, �t is already increasing if manipulation is

12In Theorem 1 we have At = ct=�t for some constant �t. Thus,

lnAt = lnA0 +
tX

s=1

�srs +
tX

s=1

ks � ln�t + ln�0;

and so the sensitivity of lnAt to current returns is �t, which is increasing over time.
13An additional bene�t is that delayed vesting will motivate the CEO to help choose an optimal successor,

rather than a friend or a low-quality successor to make his performance appear stronger in retrospect.
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impossible; the feasibility of manipulation causes it to rise even faster.

Finally, the possibility of private saving a¤ects the constant kt but not the sensitivity �t.

Since private saving does not a¤ect the agent�s action and thus �rm returns, the sensitivity of

pay to returns is unchanged. Instead, it alters the time trend in the level of pay. The constant

kt, which is related to the rate of increase in the agent�s pay, is greater in (14) where private

saving is possible than in (13) where private saving is impossible. The faster upward trend

means that the contract e¤ectively saves for the agent, removing the need for him to do so

himself. This result is consistent with He (2008b), who �nds that the optimal contract under

private savings involves a wage pattern that is non-decreasing over time.

The contract in Theorem 1 involves binding local constraints and implements maximum

e¤ort and zero manipulation in each period. The remaining steps are to show that the agent

will not wish to undertake global deviations (e.g. make large single-action changes, or si-

multaneously reduce e¤ort, save and/or manipulate) and that the principal cannot improve by

implementing a di¤erent e¤ort level or allowing slack constraints. Since these proofs are equally

clear for general  as for log utility, we delay them until Section 4.

3.2.1 A Numerical Example

This optional section uses a simple numerical example to show most clearly the deferred reward

and increasing incentives principles, as well as the e¤ect of manipulation on the contract. We

�rst set T = 3, L = 3, � = 0 and g0 (a) = 1, and assume that manipulation is impossible. From

(11), the contract is given by:

ln c1 =
r1
3
+ �1

ln c2 =
r1
3
+
r2
2
+ �2

ln c3 =
r1
3
+
r2
2
+
r3
1
+ �3

where �t =
Pt

s=1 ks. This example shows both principles at work. First, an increase in r1
leads to a permanent increase in log consumption (and thus utility) �it rises by r1

3
in all future

periods. Second, the sensitivity increases over time, from 1=3 to 1=2 to 1=1.

We now allow the CEO to continue to live after he retires, by now considering T = 5 but
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retaining all of the previous parameters. The optimal contract is now:

ln c1 =
r1
5
+ �1

ln c2 =
r1
5
+
r2
4
+ �2

ln c3 =
r1
5
+
r2
4
+
r3
3
+ �3

ln c4 =
r1
5
+
r2
4
+
r3
3
+ �4

ln c5 =
r1
5
+
r2
4
+
r3
3
+ �5:

Since the CEO takes no action from t = 4, his pay does not depend on r4 or r5. However, it

depends on r1, r2 and r3 as his earlier e¤orts a¤ect his wealth, from which he consumes.

If the CEO can manipulate returns with M = 1, the contract changes to:

ln c1 =
r1
5
+ �1

ln c2 =
r1
5
+
r2
4
+ �2

ln c3 =
r1
5
+
r2
4
+
r3
3
+ �3

ln c4 =
r1
5
+
r2
4
+
r3
3
+
r4
2
+ �4

ln c5 =
r1
5
+
r2
4
+
r3
3
+
r4
2
+ �5:

The possibility of manipulation means that the CEO�s income now depends on r4, otherwise

he would have an incentive to boost r3 at the expense of r4. The contract is unchanged for

t � 3, i.e. for the periods in which the CEO works. Even under the original contract, there is
no incentive to manipulate at t = 1 or t = 2 because two conditions are satis�ed. First, there is

no discounting, and so the negative e¤ect of manipulation on future returns reduces the CEO�s

lifetime utility by as much as the positive e¤ect on current returns increases it. Comparing (11)

and (12) shows that, if � < 1 (i.e. there is discounting), the possibility of manipulation causes

the contract slope to rise at all t. Second, because the marginal cost of e¤ort is constant across

periods, the lifetime e¤ect of increasing returns is the same regardless of the period in which the

higher returns arise. For example, increasing r1 by one unit raises consumption in each period

by 1=5 units, and so 1 unit in total. Decreasing r2 by one unit reduces consumption in each

period by 1=4 units, and so 1 unit in total. Again, the costs and bene�ts of manipulation are the

same, so there is no incentive to manipulate (i.e. increase r1 at the expense of r2) even under

the original contract. Appendix B in the Online Appendix shows that the contract changes for

t � 3 under a variable cost of e¤ort.
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3.3 Implementation: the Dynamic Incentive Account

From Theorem 1, we have

ln ct � ln ct�1 = �trt + kt: (25)

The percentage change in CEO pay is linear in the �rm�s return rt, i.e. the percentage change

in �rm value. The relevant measure of incentives is thus the elasticity of CEO pay to �rm

value; this elasticity must be �t for incentive compatibility. Empiricists have used a number of

statistics to measure incentives �Jensen and Murphy (1990) calculate �dollar-dollar� incen-

tives (the dollar change in CEO pay for a dollar change in �rm value) and Hall and Liebman

(1998) measure �dollar-percent�incentives (the dollar change in CEO pay for a percentage �rm

return.) By contrast, Murphy (1999) advocates elasticities (�percent-percent� incentives) on

empirical grounds: they are invariant to �rm size and thus comparable across �rms of di¤erent

size (as found by Gibbons and Murphy (1992)), and �rm returns have much greater explanatory

power for percentage than dollar changes in pay. Thus, �rms behave as if they target percent-

percent incentives. However, he notes that �elasticities have no corresponding agency-theoretic

interpretation.�Our framework provides a theoretical justi�cation for using elasticities to mea-

sure incentives. Edmans, Gabaix and Landier (2009) show that multiplicative preferences and

production functions generate elasticities as the incentive measure and thus achieve the cor-

rect scaling of incentives with �rm size, which motivates their use in this paper (equations

(1) and (3)).14 Their result was derived in a one-period model with a risk-neutral CEO; we

extend it to a dynamic model with risk aversion, manipulation and private saving. In real vari-

ables, percent-percent incentives equal the fraction of total pay that is comprised of stock. The

required fraction (�t) is independent of total pay and �rm size, i.e. scale-independent.

To ensure that percent-percent incentives equal �t in each period t, the contract can be

implemented in the following simple manner. The present value of the CEO�s expected pay

is escrowed into a �Dynamic Incentive Account�(�DIA�) at the start of t = 1. A proportion

�1 is invested in the �rm�s stock and the remainder in cash. At the start of each subsequent

period t, the DIA is rebalanced so that the proportion invested in the �rm�s stock is �t.15 This

14Peng and Roell (2009) also use a multiplicative speci�cation and restrict analysis to contracts where log
pay is linear in �rm returns. This paper endogenizes the contract form and provides a microfoundation for
considering only loglinear contracts.
15The justi�cation is as follows. Consider the account value At = Et

hPT
s=t e

�R(s�t)cs

i
. We have At�1 �

ct�1 = e
�REt�1 [At]. The contract in Theorem 1 implies At = Et�1 [At] e�trt=Et�1

�
e�trt

�
. Thus,

At = (At�1 � ct�1) eR
e�trt

Et�1 [e�trt ]
:

At is obtained by investing account the residual value At�1 � ct�1 in a continuously rebalanced portfolio with
a proportion �t in stocks. ($1 invested at time t � 1 in such an asset yields eRe�trt=Et�1

�
e�trt

�
, because the

stock�s expected return is R.) This is precisely the implementation via a DIA. Note that the stock pays the
�rm�s actual return. As noted in footnote 5, rt is not the �rm�s actual return, but the actual return plus a
constant. This does not a¤ect the implementability with stock because it only changes the constant kt, which
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rebalancing addresses a common problem of options: if �rm value declines, their delta and

thus incentive e¤ect is reduced. Unrebalanced shares su¤er a similar problem, even though

their delta is �xed at 1 regardless of �rm value. The relevant measure of incentives is not

the delta of the CEO�s portfolio (which represents dollar-dollar incentives) but the value of

the CEO�s equity as a fraction of his total wealth (percent-percent incentives). When the

stock price falls, this fraction, and thus the CEO�s incentives, are reduced. The DIA addresses

this problem by exchanging stock for cash, to maintain the fraction at �t. Importantly, the

additional stock is accompanied by a reduction in cash �it is not given for free. This addresses

a major concern with repricing options after negative returns to restore incentives �the CEO

is rewarded for failure.16 On the other hand, if the share price rises, the stock fraction grows.

Therefore, some shares can be sold for cash, thus reducing the CEO�s risk, without incentives

falling below �t. Indeed, Fahlenbrach and Stulz (2008) �nd that decreases in CEO ownership

typically follow good performance. Core and Larcker (2002) study stock ownership guidelines,

whereby boards set minimum requirements for executive shareholdings. In only 7% of cases do

the requirements relate to the number of shares, which would require no rebalancing and imply

that boards target dollar-dollar incentives. In all other cases, they relate to the value of shares

as a multiple of salary: consistent with our model, this involves some rebalancing and implies

targeting of percent-percent incentives.

The DIA thus features dynamic rebalancing to ensure that the EF constraint is satis�ed in

the current period. This rebalancing is state-dependent: if the stock price rises (falls), stock

is sold (bought) for cash. The second key feature of the DIA is gradual vesting. This vesting

is time-dependent: regardless of the account�s value, the CEO can only withdraw a percentage

�t in each period for consumption (we will later derive �t in speci�c cases). This gradual

vesting plays two roles. First, it helps ensure that the EF constraint is satis�ed in future

periods, by guaranteeing that the CEO has su¢ cient wealth in the account for the principal

to �play with� so that she can achieve the required equity stake by rebalancing this wealth.

This role exists during the CEO�s employment. Second, it ensures that the NM constraint

is satis�ed in the current period: it prevents the CEO from manipulating returns and then

cashing out his equity before the manipulation is revealed. This role exists both during the

CEO�s employment and after retirement.17 Thus, if manipulation is impossible, vesting is

gradual only during employment and the account fully vests in period L. If manipulation is

possible, gradual vesting continues after retirement and the account only fully vests in period

rises by �t(a�R+ lnE [e�t ]).
16Achraya, John and Sundaram (2000) show that the cost of rewarding failure may be outweighed by the

bene�t of reincentivization, and so repricing options can be optimal. The rebalancing in the DIA achieves the
bene�t of reincentivization without the cost of rewarding failure.
17Put di¤erently, satisfying the time-t EF constraint requires su¢ cient equity in period t, which is achieved

by gradual vesting before period t to ensure that the CEO will have enough wealth in the account in period t,
and rebalancing what wealth he does have in period t. Satisfying the time-t NM constraint requires su¢ cient
equity in periods t+ i, i �M , which is achieved by slow vesting between period t and each future period.
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L+M . Commentators have argued that short vesting periods may have induced myopia in the

recent �nancial crisis. For example, Angelo Mozilo, the former CEO of Countrywide, made over

$100m from stock sales prior to his �rm�s collapse; a November 20, 2008 Wall Street Journal

article entitled �Before the Bust, These CEOs Took Money O¤ the Table� provides further

examples. More broadly, Johnson, Ryan and Tian (2009) �nd a positive correlation between

corporate fraud and unrestricted (i.e. immediately vesting) stock compensation.

In sum, the DIA has two key features: time-dependent vesting to deter current manipula-

tion and induce future e¤ort, and state-dependent rebalancing to induce current e¤ort while

minimizing the CEO�s risk. Some existing compensation schemes satisfy the �rst feature, but

not the second. For example, restricted stock and options satisfy the NM constraint but not

the EF constraint when �rm value changes over time.

Note that the DIA represents only one possible implementation of the optimal contract.

Other implementations are possible: rather than placing the present value of future salary into

an account and rebalancing, the principal can simply pay the agent the amount ct speci�ed by

the contract in each period, i.e. implement the contract with purely �ow compensation without

the need to set up an account. The DIA implementation highlights the economic interpretation

of such a payment scheme: it has the same e¤ect as if the CEO�s present value of future pay

was escrowed, rebalanced and gradually vested.

Finally, we calculate the vesting percentage in a number of core cases. Recall

At = Et

"
TX
s=t

e�R(s�t)cs

#
(26)

denotes the value of the DIA at date t, i.e. the present value of future consumption under

maximum e¤ort, where ct = c0e
Pt

s=1�srs+ks . While At typically involves a complex sum of

very many terms, in certain core cases these terms collapse into simple expressions. If private

savings are impossible, the IEE gives us that inverse discounted marginal utility ��te�Rtct is

a martingale, and so At = ct
�
1� �T�t

�
= (1� �). Thus the vesting fraction is �t = ct=At =

� (1� �) =
�
1� �T�t

�
. In an in�nite horizon, the vesting fraction is � = 1 � � and time-

independent, just like the contract sensitivity.18 If the horizon is �nite, �t is increasing over

time. This is intuitive: since the CEO has fewer periods over which to enjoy his wealth,

he should consume a greater percentage in later periods. The account vests at time L if

manipulation is possible, and L+M if manipulation is possible.

We can also calculate � in an in�nite horizon model where manipulation is impossible. Since

the problem is stationary and the CEO exhibits constant relative risk aversion, he wishes to

consume a constant fraction � of his wealth in each period and so ct = �At. If private saving is

18Where private savings are impossible (i.e. the PS constraint is not imposed), the vesting fraction during
employment is independent of whether manipulation is possible, since we can apply the IEE. This will not be
true if private savings are possible.
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impossible, we have just seen that � = 1� �. If private saving is possible and noise �s is i.i.d.,

we �nd � = 1� �E
�
e��
�
E
�
e���

�
< 1� �.19 The intuition is as follows. The agent would like

to invest zero wealth in the stock as it carries a zero risk premium, but he is forced to invest �

and bear unrewarded risk. Therefore, he wishes to save to insure himself against this risk. To

remove these incentives, we must have � < 1� � so that the account grows faster than it vests,
thus providing automatic saving for the agent.

4 Generalization and Justi�cation

Section 4.1 generalizes our contract to all CRRA utility functions and autocorrelated noise, and

shows that the local EF constraint must bind. Section 4.2 derives su¢ cient conditions for the

contract to be fully incentive compatible (i.e. the agent deters global deviations) and Section

4.3 proves that, if the �rm is su¢ ciently large, the optimal contact indeed requires maximum

e¤ort in every period and after every history.

4.1 General CRRA Utility and Autocorrelated Signals

The core model assumes that the signal rt was the �rm�s stock return and so it is reasonable

to assume the noises �t are uncorrelated. However, in private �rms, there is no stock return,

and so alternative signals of e¤ort must be used such as pro�ts. Unlike stock returns, shocks to

pro�ts may be serially correlated. This subsection extends the model to such a case. We now

assume that �t follows an AR(1) process with autoregressive parameter �, i.e. �t = ��t�1 + "t;

� 2 [0; 1]; where "t are independent and bounded above and below by "t and "t.
We also now allow for a general CRRA utility function. Note that for  6= 1, the IEE is not

valid if private savings are impossible, so we only consider the case where the PS constraint is

imposed. We de�ne Bt = �te�(1�)g(a) for t � L and Bt = �t otherwise.

Theorem 2 (General CRRA utility, autocorrelated noise, with the PS constraint.) The cheap-
est contract that satis�es the local constraints and implements maximum e¤ort and zero ma-

nipulation is as follows. In each period t, the CEO is paid ct which satis�es:

ln ct = ln c0 +
tX

s=1

�s (rs � �rs�1) +
tX

s=1

ks; (27)

where �s and ks are constants and r0 = 0. If manipulation is impossible, the slope �s is given

19We have ks = R + ln � + lnE
�
e��(�a+�)

�
, and E

�
e�rs+k

�
= E

�
e��
�
eR�E

�
e���

�
= eR��, where

�� = �E
�
e��
�
E
�
e���

�
. Hence, for s � t, Et

�
e�R(s�t)cs

�
= ct�

s�t
� and At = Et

�P1
s=t e

�R(s�t)csds
�
=

Et [
P1

s=t �
s�t
� ctds] = ct= (1� ��).
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by:

�t =

8<:
Bt(g0(a)���t+1)PT

s=tBs
Qs
n=t+1 Et[e(1�)[�n("n+a(1��))+kn]]

+ ��t+1 for t � L;

0 for t > L:
(28)

If manipulation is possible, �t is given by:

�t =

8<: 0 for t > L+M;
D
QL+M
n=t+1 Et[e(1�)[�n("n+a(1��))+kn]]�Bt��t+1PT
s=tBs

Qs
n=t+1 Et[e(1�)[�n("n+a(1��))+kn]]

+ ��t+1 for t � L+M:

The constant kt is given by

kt = R + ln �� (1� )g(a)1t=L+1 + lnE
�
e��t("t+a(1��))

�
for t � T: (29)

The initial condition c0 is chosen to give the agent his reservation utility u, and D is the lowest

constant such that:

D
L+MY
n=t+1

Et
�
e(1�)[�n("n+a(1��))+kn]

�
� Btg

0(a); for all t � L:

Proof See Appendix.
From (27) we can see the e¤ect of allowing for general CRRA utility functions and auto-

correlated noise. Moving from log to CRRA utility but retaining independent noise has little

e¤ect on the functional form of the optimal contract, which remains independent of the utility

function and the noise distribution in a particular period. The deferred reward and increasing

incentive principles, the e¤ect of the NM constraint, and the implementation via the DIA re-

main the same. The di¤erence is that the parameters � and k are somewhat more complex.

To understand the intuition behind the drivers of �, consider the benchmark case where � = 0,

L = T and manipulations are impossible. Then, the slope (27) becomes

�t =
Btc

1�
tPT

s=tE
�
Bsc

1�
s

�g0 (a) : (30)

which stems directly from the EF condition. Under plausible parameterizations of the model

(e.g., Gaussian noise), when  � 1, the slope increases over time up to �T = g0 (a) and is higher

if the agent is more risk averse (higher ) and less patient (lower �), and stock return volatility

is higher. (The full derivations are in the Online Appendix.) Intuitively, these changes decrease

the utility the agent derives from future consumptions, E
�
�tc1�t

�
, which is in the denominator

of (30). Since future rewards are insu¢ cient to induce e¤ort, the CEO must be given a higher

sensitivity to current consumption.

Equation (27) shows that, with autocorrelated signals, the optimal contract links the per-

centage change in CEO pay in period t to innovations in the signal (rt � �rt�1) between t and
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t � 1, rather than the absolute signal in period t. This is intuitive: since good luck (i.e. a
positive shock) in the last period carries over to the current period, the contract should control

for the last period�s signal to avoid paying the CEO for luck.20

4.2 Global Constraints

We have thus far derived the best contract that satis�es the local constraints. The next stage

is to verify that this contract also satis�es the global constraints, i.e. the agent does not wish

to undertake global deviations. The following analysis derives su¢ cient conditions on g and �

to guarantee this.

The contract in Theorem 2 pays the agent an income yt, given by:

ln yt = ln c0 +
tX

s=1

�s(as + �s +ms � �(as�1 + �s�1 +ms�1)) +

tX
s=1

ks; (31)

where

ms =
MX
i=1

(ms;i � �(ms;i))�
minfM;s�1gX

i=1

ms�i;i; (32)

with ms;i = 0 for s > L; is the overall e¤ect of manipulations on the return in period s.

The following Theorem states that if the cost functions g and � are su¢ ciently convex, the

CEO has no pro�table global deviation.

Theorem 3 (No global deviations are pro�table.) Consider the maximization problem:

max
at;ct;mt adapted

E

"
TX
t=1

�tu
�
cte

�g(at)
�#

(33)

with
PT

t=1 e
�rt (yt � ct) � 0 and yt satisfying (31). If functions g and � are su¢ ciently convex,

i.e. infm �00 (m) and infa g00 (a) are su¢ ciently large, the solution of this problem is ct � yt;

t � T; and at � a; mt � 0; t � L. In other words, there is no global deviation from the

recommended policy that makes the agent better o¤.

The proof, in the Appendix, may be of general methodological interest. It involves three

steps. First, we reparameterize the agent�s utility from being a function of consumption and

e¤ort to one of consumption and leisure, where the new variable, leisure, is de�ned to ensure

that utility is jointly concave in both arguments. Second, we construct an �upper-linearization�

function: we create a surrogate agent with a linear state-dependent utility. Third, we prove

20Similarly, if there is an industry-wide component to rt, the optimal contract will �lter out this component,
just as it �lters out �rt�1. Thus, relative performance evaluation can be combined with the contract: the
su¢ cient statistics principle holds.
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that any global deviation by the surrogate agent weakly reduces his utility. Since there is no

motive to save under linear utility, we only need to show that the present value of the agent�s

income is concave in the agent�s two other decisions, leisure (and thus e¤ort) and manipulation.

This is true if the cost of e¤ort g and the cost of manipulation � are su¢ ciently convex.21

Since utility is linear in consumption, and consumption equals income, the utility function is

concave in leisure and manipulation and so there is no pro�table deviation. Since our original

agent�s utility function is concave, his utility is the same as the surrogate agent�s under the

recommended policy, and weakly lower under any other policy. Thus, any deviation also reduces

the original agent�s utility. The third step is a Lemma that shows that the present value of

income is a concave function of actions under suitable reparameterization. It thus may have

broader applicability to other agency theories, allowing the use of the �rst-order approach to

signi�cantly simplify the problem.

4.3 The Optimality of Maximum E¤ort

This section derives conditions under which the principal wishes to implement maximum e¤ort

in every period and after every history (the �maximum e¤ort principle�), for the baseline case

in which manipulation is impossible.22 We conjecture that a similar result holds for the case

where manipulation is possible, but given the high complexity of the existing proof, we leave

this extension to future research.

Theorem 4 (Maximum e¤ort is optimal.) Assume that inf�2(�;�) f (�) > 0 and supa2(a;a)
g00(a)
g02(a) <

1, where f is the probability density of �. There exists X� such that if baseline �rm size X is

greater than X�, implementing maximum e¤ort as in Theorems 1 and 2 is optimal.

The intuition is as follows. For any alternative contract satisfying the incentive constraints,

we compare the bene�ts and costs of moving to a maximum e¤ort contract. The bene�ts are

multiplicative in �rm size. The costs comprise the direct disutility from working (which are

multiplicative in the CEO�s wage), the risk premium required to compensate the CEO for a

variable contract, and the change in CEO�s informational rent (which are both also a function

of the CEO�s wage). Since the CEO�s wage is substantially smaller than �rm size, the bene�ts

of maximum e¤ort outweigh the costs. In practice, a maximum e¤ort level arises because

there is a limit to the number of productive activities the CEO can undertake to bene�t the

principal. Under the literal interpretation of a as e¤ort, there is a �nite number of positive-

NPV projects available and a limit to the number of hours a day the CEO can work while

21See Dittmann and Yu (2009) for a similar convexity condition to ensure that the local optimum is globally
optimal. They consider a one-period model where private saving and manipulation are not possible, but the
CEO chooses risk as well as e¤ort.
22EG derive this result in a one-period model; this section extends this maximum e¤ort principle to a multi-

period setting with intermediate consumption and private saving.

25



remaining productive. Under the interpretation of a as rent extraction, a re�ects zero stealing.

The Online Appendix o¤ers a similar microfoundation for the optimality of zero manipulation.

The complexity in the proof lies in deriving an upper bound on the cost of the information

rent (which stems from the CEO�s private information about the noise �) and the risk imposed

on the CEO from a performance-sensitive contract (which depends on the CEO�s ability to self-

insure via privately saving). Any change in the implemented e¤ort level requires adjusting the

wage not only in a particular period for the whole range of noises, but also across time periods

to deter private saving. Speci�cally, in any period t and given any past history, any incentive

compatible contract must satisfy the di¤erential equation generalizing (6). We use this fact to

bound the expected cost of providing additional incentives to implementing maximum e¤ort in

period t. Implementing maximum e¤ort in period t requires the time-t contract to change, to

ensure incentive compatibility for any �t. Moreover, the change in the time-t contract has a

knock-on e¤ect on the time t� 1 contract, which must change to deter private saving between
time t� 1 and time t. The change in the time t� 1 contract impacts the time t� 2 contract,
and so on: due to private saving, the contract adjustments �resonate�across all time periods.

It is this non-separability which signi�cantly complicates the problem.

5 Conclusion

This paper studies optimal CEO compensation in a dynamic setting in which the CEO con-

sumes in each period, can privately save, and may temporarily manipulate returns. The optimal

contract involves consumption smoothing, where current e¤ort is rewarded in all future periods,

and the relevant measure of incentives is the percentage change in pay for a percentage change

in �rm value. This required elasticity is constant over time in an in�nite horizon model where

manipulation is impossible, and rising if the horizon is �nite or if manipulation is possible. De-

terring manipulation also requires the CEO to remain sensitive to �rm returns after retirement.

While the possibility of manipulation a¤ects the sensitivity of pay, the option to privately save

impacts the level of pay. It augments the rise in compensation over time, removing the need

for the CEO to save himself.

The optimal contract can be implemented using a Dynamic Incentive Account. The CEO�s

expected pay is placed into an account, of which a certain proportion is invested in the �rm�s

stock. The account features state-dependent rebalancing to ensure that, as the stock price

changes, the CEO always has su¢ cient incentives to exert e¤ort at minimum risk. It also

features time-dependent vesting, even after retirement, to deter manipulation.

Our key results are robust to a broad range of settings: general CRRA utility functions,

all noise distributions with interval support, and autocorrelated noise. However, our setup

imposes some limitations, in particular that the CEO remains with the �rm for a �xed period.

Abstracting from imperfect commitment problems allows us to focus on a single source of market

imperfection �moral hazard �and is common in the dynamic moral hazard literature (e.g.
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Lambert (1983), Rogerson (1985), Biais et al. (2007, 2009)). An interesting extension would be

to allow for quits and �rings. In a competitive labor market, the contract will have to account

for the possibility of voluntary departures (e.g. Gabaix and Landier (2008), de Bettignies and

Chemla (2008)); �rings may provide an additional source of incentives (DeMarzo and Sannikov

(2006), DeMarzo and Fishman (2007)).23 We leave such extensions to future research.

23In addition, the implementation of the contract via the DIA will involve the CEO forfeiting a portion of the
account if he leaves early. Indeed, such forfeiture provisions are common in practice (see Dahiya and Yermack
(2008)).
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A Proofs

A.1 Proof of Theorem 1

This is a direct corollary of Theorem 2.

A.2 Proof of Theorem 2

We �rst analyze the case where manipulation is impossible and consider manipulation later.

Case t > L. For t > L, rt is independent of the CEO�s actions. Since the CEO is strictly

risk averse, ct will depend only on r1; :::; rL. Therefore either the PS constraint (7) or the IEE

(if  = 1) immediately give

ln ct(r1; :::; rt) = ln cL(r1; :::; rL) + �0t; (34)

for some constants �0t independent of the returns, where �
0
t =

Pt
�=1 k� .

Case t = L: The EF constraint in period L requires that

0 2 argmax
"�0

U(r1; :::; rL�1; a+ �L + "): (35)

Since g is di¤erentiable, this yields (6) (see EG, Lemma 6), i.e.

d

d"�
ln cL (r1; :::; a+ �L + ") j"=0

"
TX
s=L

Bs

#
� BLg

0(a); for  = 1;

d

d"�

cL (r1; :::; a+ �L + ")1�

1� 
j"=0

"
TX
s=L

Bs

sY
n=L+1

e(1�)(�
0
n��0n�1)

#
� BLcL (r1; :::; a+ �L + ")1� g0(a)

for  6= 1:

and so
d

d"�
ln cL (r1; :::; a+ �L + ") � Btg

0(a)PT
s=LBs

Qs
n=L+1 e

(1�)(�0n��0n�1)
= �L: (36)

We now show that (36) binds. First, (36) implies that for any r0 � r (see EG, Lemma 4)

ln cL (r1; :::rL�1; r
0)� ln cL (r1; :::rL�1; r) � �L(r

0 � r): (37)

Consider now the contract fc0tgt�T that coincides with fctgt�T for t < L, ln c0t = ln c
0
L + �0t for

t > L and �0t as in (34), and such that c
0
L(r1; :::; rL) = eB(r1;:::;rL�1)+�LrL , where B(r1; :::; rL�1) is

chosen to satisfy

EL�1

"
(c0L)

1�
(r1; :::; rL)

1� 

#
= EL�1

"
(cL)

1� (r1; :::; rL)

1� 

#
: (38)
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Condition (37) guarantees that the random variable ln cL (r1; :::rL�1; erL) is weakly more dis-
persed than ln c0L (r1; :::rL�1; erL) :24 It also follows from the EF that both ln cL (r1; :::rL�1; �) and
ln c0L (r1; :::rL�1; �) are weakly increasing. These facts, together with (38), imply that for the
convex function  and increasing function �, where  �1(x) = x1�

1� , �(x) =
e(1�)x

1� for  6= 1 and
 (x) = ex, �(x) = x for  = 1, we have (see EG, Lemmas 1 and 2):

EL�1[c
0
L(r1; :::; rL)] = EL�1

�
 � � � ln c0L(r1; :::; rL)

�
� EL�1 [ � � � ln cL(r1; :::; rL)] = EL�1[cL(r1; :::; rL)]:

Consequently the contract fc0tgt�T is cheaper than fctgt�T :
Integrating out the binding version of (36), the optimal contract is given by:

ln ct(r1; :::; rL) = B(r1; :::; rL�1) + �LrL + �t; for t � L;

for some function B and constants �L; �t = �L+�
0
t for t > L, which will be computed explicitly

at the end of the proof.

Case t < L. Suppose that for all t0, T � t0 > t, the optimal contract ct0 is such that

ln ct0(r1; :::; rt0) = B(r1; :::; rt) + �t0rt0 +
t0�1X
s=t+1

(�s � ��s+1)rs + �t0 ;

for some function B, constants �t, and �s as in the Theorem. The PS constraint yields

c�t = eR
Bt+1

Bt

Et
�
c�t+1

�
= Et

�
e��t+1rt+1

�
e�B(r1;:::;rt)+R��t+1+lnBt+1�lnBt : (39)

We therefore have25

ln ct = B(r1; :::; rt) + ��t+1rt + �t; (40)

24LetX and Y denote two random variables with cumulative distribution functions F andG and corresponding
right continuous inverses F�1 and G�1. X is said to be less dispersed than Y if and only if F�1 (�)�F�1 (�) �
G�1 (�)�G�1 (�) whenever 0 < � � � < 1.
25Equation (40) can also be derived from the IEE if  = 1:
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for the appropriate constant �t. As in the case t = L, the EF implies that:

Btc
1�
t ��t+1 +

d

d"�
B (r1; :::rt�1; a+ �t + ")

TX
s=t

BsEt
�
c1�s

�
� Btct

1�g0(a); (41)

Btc
1�
t ��t+1 +

d

d"�
B (r1; :::rt�1; a+ �t + ") c1�t �

�
TX
s=t

Bs

sY
n=t+1

Et
�
e(1�)[�n("n+(1��)a)+(�n��n�1)]

�
� Btct

1�g0(a);

d

d"�
B (r1; :::rt�1; a+ �t + ") � Bt (g

0(a)� ��t+1)PT
s=tBs

Qs
n=t+1Et [e

(1�)[�n("n+(1��)a)+(�n��n�1)]]
= �t � ��t+1:

The second equivalence above follows from the fact that for s > t

Et
�
c1�s

�
= c1�t Et

h
e(1�)

Ps
n=t+1[�n("n+(1��)a)+(�n��n�1)]

i
= c1�t

sY
n=t+1

Et
�
e(1�)[�n("n+(1��)a)+(�n��n�1)]

�
:

One can inductively show that for any t � L, 0 � �t � ��t+1 � g0(a). Therefore, proceeding

analogously as in the proof for t = L, we can establish that indeed (41) holds with equality.

Integrating out this equality we establish that for t0 � t,

ln ct0(r1; :::; rt0) = B(r1; :::; rt�1) + �t0rt0 +
t0�1X
s=t

(�s � ��s+1)rs + �t0 ;

where �s are as required. Writing �0 = ln c0 and kt = �t � �t�1 establishes (27).

We now determine the values of the constants �t. First, we have c
�
0 = e� ln c0 = eRtBtE

�
c�t
�

for t � T for all t: This yields, for all t:

�s = Rt+ lnBt +

tX
s=1

lnE
�
e��s("s+(1��)a)

�
;

yielding (29). When the PS constraint is not imposed, we use (8) to derive (13) analogously.

We now impose the NM constraint. Proceeding inductively as above, we have

ln ct =
tX

s=1

�s(rs � �rs�1) + ln c0 +
tX

s=1

kt;

with �t = 0 for t > L +M , and kt as in the Theorem. The �t are the lowest values such that

the EF and NM constraints are satis�ed, i.e.:

EF : �t � ��t+1 �
Bt (g

0(a)� ��t+1)PT
s=tBs

Qs
n=t+1Et [e

(1�)[�n("n+(1��)a)+kn]]
; for 0 � t � L; (42)
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NM : Et

�
@U

@rt

�
= Et

�
@U

@rt+i

�
, for 0 � t � L, 0 � i �M: (43)

If we set

�L+i =
DiPT

s=L+iBs

Qs
n=L+i+1Et [e

(1�)[�n("n+(1��)a)+kn]]
;

for some constants Di, i �M , (43) is equivalent to

Btc
1�
t ��t+1 + �tc

1�
t

TX
s=t

Bs

sY
n=t+1

Et
�
e(1�)[�n("n+(1��)a)+kn]

�
= Et

�
c1�L+i(BL+i��L+i+1 +Di)

�
= c1�t

L+iY
n=t+1

Et
�
e(1�)[�n("n+(1��)a)+kn]

�
(BL+i��L+i+1 +Di);

for 0 � t � L, i �M . This yields the desired expressions for �
0
t; t � L+M; with D = DM :

A.3 Proof of Theorem 3

We divide the proof into the following steps.

Step 1. Change of variables. Consider the new variable xt, t � L, and per period utility

functions u(ct; xt) de�ned as:

xt =

(
�g(at) if  = 1

e�g(at)
1�
 � if  6= 1

; u(ct; xt) =

(
ln ct + xt if  = 1
ct1�(�xt)

1� if  6= 1
;

where � = sign(1 � ); and let at = f(xt). xt measures the agent�s leisure and f is the

�production function�from leisure to e¤ort, which is decreasing and concave. The new variables

are chosen so that u (c; x) is jointly concave in both arguments.

Let U
�
(ct)t�T ; (xt)t�L

�
=
PT

t=1 �
tu(ct; xt) be total discounted utility and consider the max-

imization problem:

max
xt;ct;mt adapted

E
�
U
�
(ct)t�T ; (xt)t�L

��
; (44)

with
PT

t=1 e
�rt (yt � ct) � 0 and yt satisfying

ln yt = ln c0 +
tX

s=1

�s(�s + f(xs) +ms � �(�s�1 + f(xs�1) +ms�1)) +
tX

s=1

ks; (45)

for ms de�ned in (32), and f(xs) = a for s > L. Problems (44) and (33) are equivalent: (xt)t�L;

(ct)t�T and (mt)t�L solve (44) if and only if (f(xt))t�L; (ct)t�T and (mt)t�L solve (33). The

utility function U
�
(ct)t�T ; (xt)t�L

�
is jointly concave in (ct)t�T and (xt)t�L:

Step 2. Deriving an �upper linearization� utility function. Consider c�t (�) =

c0 exp
�Pt

s=1 �s(�s + f(x�s)� �(�s�1 + f(x�s�1))) +
Pt

s=1 ks
�
, the consumption for the recom-
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mended sequence of leisure on the path of noises � = (�t)t�T (where f(x�t ) = a), under no

saving or manipulation. For any path of noises � = (�t)t�T we introduce the �upper lineariza-

tion�utility function bU�:
bU� �(ct)t�T ; (xt)t�L� = U +

TX
t=1

(ct � c�t (�))
@U

@ct
+

LX
t=1

(xt � x�t )
@U

@xt
; (46)

where U; @U
@ct

and @U
@xt

are evaluated at the (noise dependent) target consumption and leisure

levels (c�t (�))t�T ; (x
�
t )t�L). Since U = U

�
(ct)t�T ; (xt)t�L

�
is jointly concave in (ct)t�T and

(xt)t�L, we have:

bU� �(ct)t�T ; (xt)t�L� � U
�
(ct)t�T ; (xt)t�L

�
for all paths �; (ct)t�T ; (xt)t�L.bU� �(c�t (�))t�T ; (x�t )t�L� = U

�
(c�t (�))t�T ; (x

�
t )t�L

�
for all paths �.

Hence, to show that there are no pro�table deviations for EU , it is su¢ cient to show that there

are no pro�table deviations for E bU�. Moreover, since
ert
@ bU�
@ct

= ert
@U
�
(c�t (�))t�T ; (x

�
t )t�L

�
@ct

=
Bt(c

�
t )
�

e�rt
;

when private savings are allowed, the PS constraint (7) implies that ert @
bU�
@ct

is a martingale.

Therefore, the agent is indi¤erent about when he consumes income yt, and so we can evaluate

E bU� for ct � yt. Since the agent has no motive to save, we only need to show that he has

no motive to manipulate or change leisure (and thus e¤ort).26 We also let utility be a func-

tion of (xt)t�L and (mt)t�L; since they fully determine the process of income (yt)t�T and thus

consumption (ct)t�T .

The results are summarized in the following Lemma.

Lemma 1 (Upper linearization.) Let eU� ((mt)t�L; (xt)t�L) = bU� �(yt)t�T ; (xt)t�L� for bU� de-
�ned as in (46) and yt as in (45), and consider the following maximization problem:

max
xt;mt adapted

E
heU� ((mt)t�L; (xt)t�L)

i
: (47)

If the target leisure level (x�t )t�L and no manipulation, mt � 0; t � L; solve the maximization

problem (47) then (c�t )t�T , (x
�
t )t�L and mt � 0; t � L; solve the maximization problem (44).

Step 3. Pathwise concavity of utility in leisure and manipulation for  = 1. We
must demonstrate that expected utility is jointly concave in leisure (xt)t�L and manipulations

26For the same reason, it is satisfactory that we have linearized utility at the recommended consumption level.
Since expected linearized utility does not depend on the agent�s saving strategy, we can evaluate it with respect
to an arbitrary savings strategy such as no saving (i.e. consuming the recommended amount).
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(mt)t�L, if the cost functions g and � are su¢ ciently convex. For  = 1, we can do so by proving

pathwise concavity, i.e. that bU� is concave for every path of noises. (We will deal with the case
 6= 1 in step 4). We have:

eU� ((mt)t�L; (xt)t�L) =
TX
t=1

�t(ln c�t (�)�1)+
LX
t=1

�txt+

TX
t=1

e
Pt
s=1 �s(f(xs)�a+ms��(f(xs�1)�a+ms�1))+t ln �:

(48)

Joint concavity of (48) in (xt)t�L and (mt)t�L, is equivalent to the joint concavity of �PV

of income�function

I ((mt)t�L; (xt)t�L) =
TX
t=1

e
Pt
s=1 �s(f(xs)�a+ms��(f(xs�1)�a+ms�1))+t ln �: (49)

To prove the latter we will use the following general Lemma.

Lemma 2 (Concavity of present values.) Let

I((bt)t�T ) =
TX
t=1

exp

 
t�MX
s=1

js(bs) +
tX

s=t�M+1

qts(bs)

!
;

where bs 2 RM+1 and all js and qts are twice di¤erentiable functions with
@

@bs;i@bs;k
js =

@
@bs;i@bs;k

qts =

0, @
@bs;i

js � @
@bs;i

qts. Suppose that for every s:

sup

"
2(M + C)(M + 1)2

�
@

@bs;i
qts

�2
+

@2

(@bs;i)2
qts

#
� 0; i �M + 1; t � s+M (50)

sup

"
2C(M + 1)2

�
@

@bs;i
js

�2
+

@2

(@bs;i)2
js

#
� 0; i �M + 1;

for C = eM(sup qts�inf qts)=2
PT

n=0 e
n sup jt=2, and at least one of these inequalities is strict. Then the

function I is concave.

Loosely speaking, the Lemma states that, if js and qts are su¢ ciently concave, then the

�present value of income� function I ((bt)t�L) associated with them is also jointly concave in

the sequence of decisions (bt)t�L. (The decision vector b is an M + 1-vector that incorporates

both the scalar x and the M -vector m.) This is non-trivial to prove when T ! 1: for
su¢ ciently large t, exp (tj (b)) is a convex function of b, because its second derivative (when b

is one-dimensional) is exp (tj (b)) t
�
tj

0
(b)2 + j00 (b)

�
, which is positive for su¢ ciently large t. It

is discounting (expressed by � < 1) that allows the income function to be concave.

We use Lemma 2 to prove the following result.
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Lemma 3 (Concavity of present value of income.) The present value of income

I ((mt)t�L; (xt)t�L) =
TX
t=1

e
Pt
s=1 �s(f(xs)�a+ms��(f(xs�1)�a+ms�1))+t ln �

is jointly concave in leisure (xt)t�L and manipulations (mt)t�L:

Step 4. Concavity of expected utility in leisure and manipulation for  6= 1.

When  6= 1, linearized utility eU� is:
eU� �(mt)t�T ; (xt)t�L

�
=

LX
t=1



1� 
�tc�t (�)

1�
�

xt
(�x�t )

1�

�

+

TX
t=1

�t(�x�t )
c1�0 e

Pt
s=1 �s(f(xs)�a+ms��(f(xs�s)�a+ms�1)+(1�)"s)+(1�)ks :

(51)

Unlike when  = 1, the second term in (51), i.e. the �PV of income function�, now depends on

noise �. We therefore cannot prove pathwise concavity of linearized utility, and instead prove

concavity of expected utility directly.

Expected utility is given by

E
heU�((mt)t�L; (xt)t�L)

i
= E

"
LX
t=1

Atxt +
TX
t=1

Mt(�)e
Pt
s=1[�s(f(xs)�a+ms)��(f(xs�s)�a+ms�1)+lnE(e(1�)�s"s)+(1�)ks]+t ln �

#

= E

"
LX
t=1

Atxt +MT (�)
TX
t=1

e
Pt
s=1[�s(f(xs)�a+ms)��(f(xs�s)�a+ms�1)+lnE(e(1�)�s"s)+(1�)ks]+t ln �

#
;

whereMt(�) = e
Pt
s=1[(1�)�s"s�lnE(e(1�)�s"s)]+(1�)(ln c0�g(a)) is a martingale. The second equality

follows from the law of iterated expectations and Mt(�) being a martingale.

We use Lemma 2 to prove the following result.

Lemma 4 (Concavity of modi�ed present value of income.) The modi�ed present value of

income

I 0((mt)t�L; (xt)t�L) =
TX
t=1

e
Pt
s=1[�s(f(xs)�a+ms)+lnE(e(1�)�s"s)+(1�)ks]+t ln �;

for ms de�ned in (32) and f(xs) = a if s > L, is pathwise jointly concave in leisure (xt)t�L
and manipulations (mt)t�L:
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We now conclude the proof of the Theorem. From Theorem 2, E eU� satis�es the �rst-order
conditions at (x�t )t�L and (mt)t�L. From step 4, E eU� is also concave in (xt)t�L and (mt)t�L, and

so the target leisure level (x�t )t�L and no manipulations, mt � 0, t � L; solve the maximization

problem (47). Therefore, from Lemma 1, (c�t )t�T , (x
�
t )t�L and mt � 0; t � L; solve the

maximization problem (44), establishing the result.

A.4 Proof of Theorem 4

We wish to show that, if baseline �rm size X is su¢ ciently large, the optimal contract imple-

ments maximum e¤ort (at � a for all t).

Fix any contract (A; Y ) that is incentive compatible and gives expected utility u, where

A = fa1; :::; aLg is the e¤ort schedule, at : [�; �]t ! [0; a], and Y = fy1; :::; yTg is the payo¤
schedule, yt : [�; �]t ! R. The timing in each period is as follows: the agent reports noise
�t, then is supposed to exert e¤ort at(�1; :::; �t). If the return is �t + at(�1; :::; �t) he receives

payo¤yt(�1; :::; �t), else he receives a payo¤that is su¢ ciently low to deter such �o¤-equilibrium�

deviations. We require this richer framework, since in general the noises might not be identi�able

from observed returns (when �t + at(�1; :::; �t) = �0t + at(�1; :::; �t�1; �
0
t) for �t 6= �0t ). Note that

the required low payo¤ may be negative. A limited liability constraint would be simple to

address, e.g. by imposing a lower bound on �.

To establish the result it is su¢ cient to show that we can �nd a di¤erent contract (A�; Y �)

that implements maximum e¤ort (at � a for all t), and is not signi�cantly costlier than (A; Y ),

in the sense that

E

"
TX
t=1

e�rt(y�t (�t)� yt(�t))

#
� h(E [a� a1(�1)] ; :::; E [a� aL(�L)]); (52)

for some linear function h; h : RL ! R; with h(0; :::; 0) = 0: This is su¢ cient, because if

initial �rm size X is su¢ ciently large, then for every sequence of noises and actions, �rm value

Xe
Pt�1
s=1(�s+as(�s))+� is greater than D, where D is the highest slope coe¢ cient of h. This in turn

implies

Xe
Pt�1
s=1(�s+as(�s))+� � E

�
ea � eat(�t)

�
� D � E [a� at(�t)] ; (53)

and so the bene�ts of implementing maximum e¤ort outweigh the costs, i.e. the RHS of (52)

exceeds the LHS of (52). To keep the proof concise we assume �er = 1, T = L and the noises

�t are independent across time. The general case is proven along analogously.

We introduce the following notation. For any contract (A; Y ) and history �t let ut(�t) =
[yt(�t)e�g(at(�t))]1�

1� (or ut(�t) = ln yt(�t)� g(at(�t)) for  = 1) denote the CEO�s stage game util-
ity for truthful reporting in period t after history �t when he consumes his income, let Ut(�t) =

Et

hPL
s=t �

s�tus(�s)
i
denote his continuation utility, and mut(�t) = y�t (�t)e

�(1�)g(at(�t)) de-

note his marginal utility of consumption. We divide the proof into the following six steps.
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Step 1. Local necessary conditions. First, we generalize the local e¤ort constraint (6)
to contracts that need not implement maximum e¤ort.

Lemma 5 Fix an incentive compatible contract (A; Y ), with each at(�t�1; �) continuous almost
everywhere and bounded on every compact subinterval, and a history �t�1. The CEO�s contin-

uation utility Ut(�t�1; �t) must satisfy the following:

Ut(�t�1; �t) = Ut(�t�1; �) +

Z �t

�

[yt(�t�1; x)e
�g(at(�t�1;x))]1�g0(at(�t�1; x))dx; (54)

with yt(�t) > 0:

Step 2. Bound on the cost of incentives per period. For any history �t�1 and

contract (A; Y ), consider �repairing�the contract at time t as follows. Following any history

�t�1; �, multiply all the payo¤s by the appropriate constant �(�t�1; �) such that the continuation

utilities U#t (�t�1; �t) for the resulting contract satisfy (54) with at(�t�1; �t) = a for all �t: In

other words, the local EF constraint for maximum e¤ort at time t after history �t�1 is satis�ed.

The following Lemma bounds the expectation of how much we have to scale up the payo¤s by

the expectation of how much the target e¤ort falls short of the maximum e¤ort.

Lemma 6 Fix an incentive compatible contract (A; Y ) and a history �t�1, and consider the

contract (A#; Y #) such that:

a#t (�t�1; �t) = a for all �t; else a#s � as;

y#s (�s) = ys(�s)� �(�t�1; �t) if �sjt = �t�1; �t; and else y#s (�s) � ys(�s);

where �(�t�1; �t) � 1 is the unique number such that U
#
t (�t�1; �) = Ut(�t�1; �) and

U#t (�t�1; �t) = U#t (�t�1; �) +

Z �t

�

[�(�t�1; x)yt(�t�1; x)e
�g(a)]1�g0(a)dx: (55)

Then:

Et�1
�
�(�t�1; �t)

�
� '(Et�1 [a� at(�t)]); (56)

where '(x) = e
g0(a) sup g00

fg02 x
�
1 + 1<1e

g(a)�g(a)g0(a)(1� )x
�
for  6= 1,

'(x) = e
g0(a) sup g00

fg02 x
�
1 + eg(a)�g(a)g0(a)x

�
for  = 1, and f is the pdf of noise �.

Step 3. Constructing the contract that satis�es the local EF constraint in every
period. We want to use the procedure from step 2 to construct a new contract (Ax; Y x) that

requires maximum e¤ort, satis�es the local EF in every period, and has a cost di¤erence over

(A; Y ) that is bounded by how much (A; Y ) falls short of maximum e¤ort. For this we need

the following Lemma.
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Lemma 7 For a contract (A; Y ) and any � > 0 consider the contract (A; �Y ) in which all the
payo¤s are multiplied by �;

i) if (A; Y ) satis�es the local EF constraint then so does (A; �Y );

ii) if (A; Y ) satis�es the local PS constraint then so does (A; �Y ).

Given an incentive compatible contract (A; Y ), we construct the contract (Ax; Y x) as follows.

The contract always prescribes maximum e¤ort. Regarding the payo¤s, for any period t after a

history �t�1 we �rst multiply all payo¤s after history (�t�1; �) with �xed constants �(�t�1; �) > 1

as in Lemma 6 so that the resulting utilities U#t (�t) satisfy (55). Then we multiply all payo¤s

following history �t�1 by the appropriate constant �
pu(�t�1) < 1 so that for the resulting

contract (Ax; Y x) we obtain the original promised utility, i.e. Ut�1(�t�1) = Ux
t�1(�t�1). By

construction and the above Lemmas, the contract (Ax; Y x) satis�es the local EF constraint. In

particular, due to Lemma 7, repairing the contract after history �t�1 will not upset the local

EF constraint after history
�
�t�1; �t

�
.

The original contract (A; Y ) satis�es the local PS constraint, i.e. the current marginal utility

of consumption always equals the next-period expected marginal utility. Providing incentives

for maximum e¤ort in contract (Ax; Y x) upsets this condition. In the following two steps,

given (Ax; Y x); we construct the contract (A�; Y �) that also satis�es the local PS constraint

and is not much costlier. In particular, we show that the extent to which the marginal utilities

of consumption in (A�; Y �) depart from the marginal utilities in (Ax; Y x) is bounded by the

extent to which e¤ort falls short of maximum e¤ort in contract (A; Y ):

Step 4. Bound on the decrease of expected MU of consumption per period. We
split this step into two Lemmas. The �rst bounds the expected decrease in marginal utility of

consumption from providing incentives for maximum e¤ort in the current period, as in step 2.

The second bounds the decrease in expected marginal utility by the expected decrease of the

marginal utility.

Lemma 8 Fix any history �t�1 and look at the original contract (A; Y ) and the contract
(A#; Y #) from step 1. Then:

Et�1

"
mu#t (�t�1; �t)

mut(�t�1; �t)

#
�

e
�g0(a) sup g00

fg02Et�1[a�at(�t)]
�
1� 1<1e�(1+)(1�)[g(a)�g(a)]g0(a)(1� )(1 + )Et�1 [a� at(�t)]

�
:

Lemma 9 Fix any history �t�1 and look at any two contracts (Al; Y l) (Ah; Y h) with positive

payo¤s that satisfy (54) and for every �t, mult(�t�1; �t) � muht (�t�1; �t). Then, for some

D2 > 0 :
Et�1

�
mult(�t�1; �t)

�
Et�1

�
muht (�t�1; �t)

� � 1�D2

�
1� Et�1

�
mult(�t�1; �t)

muht (�t�1; �t)

��
:
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Step 5. Constructing the contract that satis�es the local PS constraint in every
period. Providing incentives for maximum e¤ort in (Ax; Y x) at (say) time L a¤ects the mar-

ginal utility of consumption in period L and upsets the PS constraint in period L�1: However,
restoring the PS constraint in period L � 1 will a¤ect the marginal utility of consumption in
period L�1 and so upset the PS constraint in period L�2, and so on. In the following Lemma
we bound this overall e¤ect using Lemma 8 and iteratively Lemma 9.

Lemma 10 There is a contract (A�; Y �) that implements maximal e¤ort and satis�es the local

EF and PS constraints, and for every history �t:

mu�t (�t)

muxt (�t)
�

LY
s=t+1

�s�t(Et [ (Es�1 [a� as(�s)])]), (57)

where �(x) = 1�D2 (1� x) ;  (x) = e
�g0(a) sup g00

fg02 x
�
1� 1<1e�(1+)(1�)[g(a)�g(a)]g0(a)(1� )(1 + )x

�
:

Step 6. Bounding the cost di¤erence (52). By construction, contract (A�; Y �) from

Lemma 10 implements maximum e¤ort, causes the local EF constraint to bind, satis�es the

local PS constraint and leaves the CEO with the expected discounted utility u. Therefore it is

identical to the contract from Theorem 2, and so also satis�es the global constraints (Theorem

3). It therefore remains to prove (52).

One can verify that for some D3 > 0 for every history �t we have y
�
t (�t) < D3: Moreover,

for any a; b; c 2 R,

a� b � a

�
maxfa� c

c
; 0g+maxfc� b

b
; 0g
�
= a

�
maxfa

c
; 1g � 1 + maxfc

b
; 1g � 1

�
:

Consequently,

E

"
LX
t=1

e�rt(y�t (�t)� yt(�t))

#
� D3 � E

"
LX
t=1

e�rt
�
maxfy

�
t (�t)

yxt (�t)
; 1g � 1 + maxfy

x
t (�t)

yt(�t)
; 1g � 1

�#
�

� D3 � E

24 LX
t=1

e�rt

0@ LY
s=t+1

�s�t(Et [ (Es�1 [a� as(�s)])])

!� 1


� 1 + ' (Et�1 [a� at(�t)])� 1

1A35 ;
where ' is as in Lemma 6, while � and  are as in Lemma 10. All functions '; �;  ;

QL
s=t+1 xs

and x�
1
 are continuously di¤erentiable and take value 1 for argument(s) equal to 1, whereas

a� at(�t) is bounded. Therefore there is a linear function h : RL ! R with h(0; :::; 0) = 0 such
that (52) is satis�ed.

The above proof is for the case where private saving is possible as this is the more complex

case. If  = 1 and private saving is impossible, step 4 is not needed and Lemma 10 in step 5

and step 6 become signi�cantly simpler.
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