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Subjective Risk, Confidence, and Ambiguity

1 Introduction

The paper extends the standard recursive utility model by introducing a degree of

confidence into probabilistic beliefs. The idea of attributing a degree of confidence

to lotteries goes back to Ellsberg’s (1961) suggestion for solving the paradox today

carrying his name. In distinction to most of the ambiguity literature that took up

the challenge of the Ellsberg paradox, the present paper keeps the concept of proba-

bilities rather than extending it to capacities or sets of priors. Moreover, instead of

abandoning independence, I show that labeling lotteries by their degree of confidence

makes it possible to capture Ellsberg type and more general behavior in a setting

building on the classical von Neumann & Morgenstern (1944) axioms. A different

perspective on the confidence index is as a label for the degree of subjectivity of a

lottery.

For the special case of two degrees of subjectivity I obtain a generalized version

of the smooth ambiguity model by Klibanoff, Marinacci & Mukerji (2009). It is

more general in two respects. First, the current model does not assume a restrictive

two stage hierarchical structure of subjective lotteries over objective lotteries, but

permits any composition of objective and subjective lotteries in an arbitrary amount

of layers. More importantly, the current model relaxes the assumption that objective

lotteries are evaluated intertemporally risk neutral, meaning that risk aversion to

objective risk is only driven by aversion to intertemporal consumption fluctuations

while risk aversion to subjective lotteries incorporates as well intrinsic risk aversion.

My generalized framework incorporates both, intrinsic risk aversion to objective as

well as to subjective risk. Relating the two gives a better understanding and a more

precise definition of the measure of smooth ambiguity aversion promoted in Klibanoff

et al. (2009). The two degree of subjectivity version of the model facilitates a three-

fold disentanglement of dimensions of preference. One way to span these dimensions

is in terms of intertemporal substitutibility, aversion to objective risk, and ambiguity

aversion. Alternative coordinates for these dimensions are offered.

I extend the concept of smooth ambiguity aversion to situations with an arbitrary

number of subjectivity labels. Here, a generalized form of ambiguity aversion trans-

lates into an aversion to the degree of subjectivity of (or the lack of confidence into)

a probabilistic belief. A vantage of the current formulation as opposed to other rep-

resentations is that the present work detaches uncertainty attitude from the lottery
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level. Because other papers do not introduce the notion of subjectivity or confidence

explicitly, they have to make evaluation depend on on the layer in a compound lottery

in which it takes place. In my presentation a lottery will be evaluated independently

of the level of a decision tree in which it shows up, as long as the assigned degree of

subjectivity coincides. Three more aspects of the paper distinguish it from most of its

relatives in the decision theoretic literature on ambiguity. All of these aspects aim at a

broad reception and applicability of the model. First, the paper develops an as simple

as possible representation whose application only uses tools from standard risk theory.

Second, the paper presents the axioms in a framework as close as possible to those

by von Neumann & Morgenstern (1944), the arguably best known axiomatic frame-

work on decision making under uncertainty among economists. Third, in addition to

describing observed behavior under uncertainty, the paper aims at a representation

that also serves as a decision support model. For this purpose, I base the repre-

sentation on normatively attractive axioms including time consistency and the von

Neumann-Morgenstern axioms. The paper delivers more than an extended treatment

of explaining Ellsberg (1961) type behavior. The model incorporates a dimension into

decision processes that has been identified as missing also in the policy arena. For

example, the latest report of the International Panel on Climate Change takes a first

step to distinguishing between confidence and likelihood (IPCC 2001, Box TS.1, p

22). While both are connected in the end to probabilistic beliefs, the report clearly

expresses the need to distinguish between probabilities that are well known, or widely

believed in, as opposed to those probabilities that are only based on very recent and

scattered explorations or little facts. However, currently these distinctions end in the

science part of the report and are not integrated into the economic evaluation. The

paper outlines a possible framework for doing so.

The closest relative to my model is the mentioned paper by Klibanoff et al. (2009)

together with its predecessors and variants including Segal (1990), Klibanoff, Mari-

nacci & Mukerji (2005), Seo (2009), and Ergin & Gul (2009). I already pointed

out the major differences to Klibanoff et al.’s (2009) paper and will discuss them in

detail in section 5.1. These differences apply to all of the above papers. Following

this introduction, section 2 introduces the technical setting of the paper. Section 3

summarizes the axioms underlying the representation. Section 4 states the represen-

tation. In section 5, I discuss the representation, relate it to the literature, and use it

to render more precise and extend the notion of smooth ambiguity aversion. Section
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6 gives a brief sketch how the model can be used in the context of climate change

evaluation. Section 7 concludes. All proofs are gathered in the appendix.

2 The Setting

Time is discrete with a planning horizon T ∈ IN. In the usual abuse of notation T

will at the same time denote the set {0, . . . , T} . Current outcomes in period t ∈ T
are described as elements x of a connected compact metric space X∗. These elements

represent consumption levels or more general descriptions of welfare relevant charac-

teristics. To avoid repetition, I introduce several definitions using a generic compact

metric space X instead of X∗. The Borel σ-algebra on X is denoted B(X). Let S be

a finite index set. The decision maker employs the index s ∈ S to distinguish between

lotteries (denoting general uncertain situations) that differ in terms of subjectivity

of or confidence into the probabilistic belief. For every s ∈ S, I denote by ∆s(X)

a space of Borel probability measures on X that describe a lottery with degree of

subjectivity s. Formally, these different lottery spaces are a family
{(

∆(X), s
)}

s∈S.

Each space ∆s(X) is equipped with the Prohorov metric giving rise to the topology

of weak convergence. For notational convenience, I introduce an element s0 6∈ S and

define S̄ = S ∪ s0 and, under slight abuse of notation, ∆s0(X) = X. I introduce

higher order lotteries inductively over the parameter n ∈ N = {0, 1, . . . , N} defining

the maximal depth of the decision tree.1 Let Z0(X) = Y 0(X) = X. In the first in-

duction step I define for n > 0 the lottery spaces Y n
s (X) = ∆s(Z

n−1(X)) for all s ∈ S̄.

It describes a decision tree of maximal depth n with a root2 lottery of subjectivity s.

In the second induction step, I define the general choice space Zn(X) = ∪s∈S̄Y n
s (X),

which collects decision trees with different degrees of subjectivity in the root. Note

that inclusion of s0 when forming the (disjoint) union allows the decision tree to have

branches of differing length. The spaces Zn(X) are equipped with the (disjoint) union

topology and, thus, compact. In a static setting the decision maker’s choice objects

1I refer by the name decision tree also to an “uncertainty tree”, which simply represents un-
certainty. Here, the actual choice is that for a particular decision or “uncertainty” tree. Decision
nodes could be introduced at any point in the “uncertainty” trees the same way as done in Kreps
& Porteus (1978). However, no additional insights would be gained from doing so and the more
complicated notation would rather be obstructive.

2The root of a decision tree is its first element. By root lottery I therefore denote the “outermost”
lottery or the lottery corresponding to the root of the decision tree that describes the composed
lottery.
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Figure 1: Example of two decision trees, pt ∈ Z3(X∗ × Pt+1) and prt ∈ Z2(X∗ × Pt+1), depicting
uncertainty resolving in period t. Each uncertainty node is labeled with the degree of subjectivity of
the corresponding lottery. The leaves of the trees are omitted and would consist of differing elements
(xt, pt+1) ∈ X∗ ×Pt+1. Lottery prt differs from lottery pt only and that the root lottery is collapsed
with the subsequent layer of uncertainty sharing the same degree of subjectivity. A decision maker
satisfying axiom A1 is indifferent between the two depicted decision trees.

would be described as the elements z ∈ ZN(X∗). These elements represent arbitrary

concatenations of lotteries with differing degrees of subjectivity with a maximal con-

catenation length (decision tree depth) of N . An example for N = 3 with simple

probabilities is depicted in Figure 1.

I construct the general choice space in the intertemporal setting recursively. In

the last period, choices are pT ∈ PT = ZN(X∗). Preceding choice spaces are defined

by Pt−1 = ZN(X∗ × Pt) for all t ∈ {1, . . . , T}. Thus, at the beginning of every

period uncertainty is described as a composition of lotteries with differing degrees

of subjectivity over current outcomes and over the uncertainty that describes the

decision maker’s future starting in the next period. I call the choice object pt ∈ Pt
in period t a generalized temporal lottery. They extend Kreps & Porteus’s (1978)

concept of a temporal lottery. I define the rank n of a lottery pt ∈ Pt by the function

n̂ : ∪t∈TPt → N with n̂(pt) = n if pt ∈ Y n
s (X∗ × Pt+1) for some s ∈ S, t ∈ T , and

n ≥ 1, and n̂(pt) = 0 otherwise. The rank captures the level of compoundedness

or concatenation of a lottery, which corresponds to the depth of its representing

decision tree (within a given period). I define the function ŝ : ∪t∈TPt → S̄ by

ŝ(pt) = s if pt ∈ Y n
s (X∗ × Pt+1) for some s ∈ S, t ∈ T , and n ≥ 1, and by ŝ(pt) = s0

otherwise. It maps every uncertain choice object into the degree of subjectivity of

its root lottery and assigns s0 to a degenerate root lottery. For a degenerate lottery
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pt = (xt, pt+1) ∈ Z0(X∗ × Pt+1) I introduce the notation

pt(B) = (xt, pt+1)(B) = δ(xt,pt+1)(B) =

{
1 if (xt, pt+1) ∈ B

0 if (xt, pt+1) 6∈ B

for all B ∈ B(X∗ × Pt+1).3 The space P s
t = {pt ∈ Pt |ŝ(pt) ∈ {s, s0}} denotes the

space of all compound period t lotteries in which the root lottery has a degree of

subjectivity s (as in Figure 1) and includes the certain outcomes. I define the following

composition of two lotteries with coinciding degree of subjectivity. For any s ∈ S,

pt, p
′
t ∈ P s

t and α ∈ [0, 1] I define a probability α mixture by the operation ⊕αs :

P s
t × P s

t → P s
t that maps (pt, p

′
t) 7→ pt ⊕αs p′t ∈ Y

max{n̂(pt),n̂(p′t),1}
s defined by

pt ⊕αs p′t(B) = α pt
(
B ∩ Zmax{n̂(pt)−1,0}(X∗ × Pt+1)

)
+

(1− α) p′t
(
B ∩ Zmax{n̂(p′t)−1,0}(X∗ × Pt+1)

)
for all B ∈ B

(
Zmax{n̂(pt),n̂(p′t),1}−1(X∗ × Pt+1)

)
. Note that the lottery resulting from

this mixture lives in the same space as the lottery of pt and p′t with the higher rank.

Whenever the root lottery pt ∈ Pt shares the same degree of subjectivity with

the subsequent layer of uncertainty (as on the left hand side in Figure 1) I define

a reduced lottery that collapses the same degree of subjectivity uncertainty into a

single layer. Hereto I define for any lottery pt ∈ ∆s (Y n
s (X∗ × Pt+1)) of rank n + 1

the reduced lottery prt ∈ Y n
s (X∗ × Pt+1) of rank n by

prt (B) =
∫

Y ns (X∗×Pt+1)

p̃t(B) dpt(p̃t) (1)

for all B ∈ B (Zn−1(X∗ × Pt+1)). An example is given in Figure 1 where the lottery

prt collapses the root lottery and the subsequent layer of uncertainty sharing the same

degree of subjectivity in lottery pt into a single layer of uncertainty.

The space X = X∗ T+1 ⊂ P0 characterizes the set of all certain consumption paths

faced in the present. A consumption paths x ∈ X is written x = (x0, ..., xT ). Given

x ∈ X, I define (x−i, x) = (x0, ..., xi−1, x, xi+1, ..., xT ) ∈ X as the consumption path

that coincides with x in all but the ith period, in which it yields outcome x. I denote

3I have not assigned a degree of subjectivity to (xt, pt+1)(·) = δ(xt,pt+1)(·). It is by itself not
a lottery that is part of the choice space Pt, but only a notational object used in defining choice
objects – it only describes a possible first entry of the choice objects of type (·, s) ∈

{(
∆(X), s

)}
s∈S .
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the set of certain consumption paths faced in period t by Xt = XT−t+1 ⊂ Pt. In every

period t ∈ T the decision maker’s preferences �t are a binary relation on Pt.

Further Remarks: The operator ⊕αs mixes same degree of subjectivity lotteries

within a given level of compoundedness (which is given by the lottery with the higher

rank). Instead, I can as well define a composition where the mixture of two such

lotteries elevates compoundedness by one level. Herto, for any n ∈ N , s ∈ S, and

pt ∈ Zi<n(X∗ × Pt+1), I define the lottery δn,spt ∈ Y
n
s by

δn,spt (B) =

{
1 if pt ∈ B

0 if pt 6∈ B

for all B ⊂ Zn−1(X∗ × Pt+1). For any s ∈ S, α ∈ [0, 1], and pt, p
′
t ∈ P s

t with

n∗ = max{n̂(pt), n̂(p′t)} + 1 ≤ N , I define an elevating probability α mixture by the

operation �αs : Pt × Pt → P s
t that maps (pt, p

′
t) 7→ pt �αs p′t ∈ Y n∗

s defined by

pt �αs p′t(B) = αδn∗,spt (B) + (1− α)δn
∗,s

p′t
(B) (2)

for all B ∈ B
(
Zn∗−1(X∗ × Pt+1)

)
.

Moreover, if both mixtures share the same degree of subjectivity, it lies at hand

to assume that a decision maker does not care whether probabilities are manipulated

at the same lottery level or whether the manipulation takes place at an elevated level.

Such an assumption corresponds to the statement

pt �αs p′t ∼t pt ⊕αs p′t for all pt, p
′
t ∈ P s

t with n̂(pt), n̂(p′t) < N . (3)

Indifference in equation (3) is a special case of an axiom requiring indifference to the

reduction of same degree of subjectivity lotteries introduced in the next section.

3 Axioms

The first axiom makes the decision maker indifferent to the reduction of same degree of

subjectivity lotteries. Using the notation of a reduced lottery introduced in equation

(1) such an assumption writes as

A1 (indifference to reduction of lotteries with same degree of subjectivity)

For all t ∈ T , s ∈ S, n < N , pt ∈ ∆s (Y n
s (X∗ × Pt+1)): pt ∼t prt .

6
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A decision maker who satisfies axiom A1 is indifferent between the two lotteries

depicted in Figure 1. The literature discussed in the introduction lives of the fact

that axiom A1 is not satisfied. These papers need to distinguish evaluation of lotteries

on different levels because the level at which the mixture takes place is the only way

they can distinguish between e.g. objective and subjective lotteries. I favor tying

difference in uncertainty attitude directly to subjectivity and confidence as opposed

to the level or order in which uncertainty strikes the agent. That step makes it possible

to impose axiom A1 (and satisfy equation 3) without collapsing the representation

to the standard von Neumann-Morgenstern representation one losing the additional

dimension of decision making.

The following three axioms mostly replicate the standard von Neumann & Mor-

genstern (1944) axioms for the compact metric space setting (e.g. Grandmont 1972).

A2 (weak order) For all t ∈ T preferences �t are transitive and complete, i.e.:

− transitive: For all pt, p
′
t, p
′′
t ∈ Pt : pt � p′t and p′t � p′′t ⇒ pt � p′′t

− complete: For all pt, p
′
t ∈ Pt : pt � p′t or p′t � pt .

A3 (independence) For all s ∈ S, α ∈ [0, 1], and t ∈ T :

For all pt, p
′
t, p
′′
t ∈ P s

t : pt �t p′t ⇒ pt ⊕αs p′′t �t p′t ⊕αs p′′t .

A4 (continuity) For all t ∈ T , for all pt∈Pt :

{p′t∈Pt : p′t � pt} and {p′t∈Pt : pt � p′t} are closed in Pt .

The independence axiom is the only axiom that is slightly modified and I might call

it “independence with respect to same degree of subjectivity mixing”. Requiring the

same degree of subjectivity for the lotteries pt, p
′
t, p
′′
t ∈ P s

t and the ⊕αs operator is a

technical assumption to permit a meaningful mixing at the same lottery level. The

fact that mixing is required to take place at the same lottery level will be further

discussed in a remark at the end of this section. There, I also discuss an alternative

independence axiom that mixes lotteries differing degrees of subjectivity at a higher

level.

In order to match the predominant time-additive framework for certain intertem-

poral choice, I add additive separability on certain consumption paths. I employ the
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axiomatization of Wakker (1988).4

A5 (certainty separability)

i) For all x, x′ ∈ X, x, x′ ∈ X∗ and t ∈ T :

(x−t, x) �1 (x′−t, x) ⇔ (x−t, x
′) �1 (x′−t, x

′)

ii) If T = 1 additionally: For all xt, x
′
t, x
′′
t ∈ X∗, t ∈ {0, 1}

(x0, x1) ∼1 (x′0, x
′′
1) ∧ (x′0, x

′
1) ∼1 (x′′0, x1) ⇒ (x0, x

′
1) ∼1 (x′′0, x

′′
1) .

Wakker (1988) calls part i) of the axiom coordinate independence. It requires that

the choice between two consumption paths does not depend on period t consumption,

whenever the latter coincides for both paths. Part ii) is known as the Thomsen

condition. It is required only if the model is limited to T = 2 periods.5 Preferences

in different periods are related by the following consistency assumption adapted from

Kreps & Porteus (1978).

A6 (time consistency) For all t ∈ {0, ..., T − 1}:

(xt, pt+1) �t (xt, p
′
t+1) ⇔ pt+1 �t+1 p

′
t+1 ∀ xt ∈ X∗, pt+1, p

′
t+1 ∈ Pt+1 .

The axiom is a requirement for choosing between two consumption plans in period t,

both of which are degenerate and yield a coinciding outcome in the respective period.

For these choice situations, axiom A6 demands that in period t, the decision maker

prefers the plan that gives rise to the lottery that is preferred in period t+ 1.

Further Remarks: I pointed out that the operator ⊕αs and, thus, the independence

axiom A3, mixes same degree of subjectivity lotteries within at a given lottery level.

In the remark of the preceding section I defined an alternative mixture composition

�αs where the mixture of two lotteries elevates the level of compoundedness by one.

An alternative to axiom A3 is the following axiom

4Other axiomatizations of additive separability include Koopmans (1960), Krantz, Luce, Suppes
& Tversky (1971), Jaffray (1974a), Jaffray (1974b), Radner (1982), and Fishburn (1992).

5In the case of two periods parts i) and ii) can also be replaced by the single requirement of
triple cancellation (see Wakker 1988, 427).
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A3’ (elevating independence) For all s ∈ S, α ∈ [0, 1], t ∈ T , and pt, p
′
t, p
′′
t ∈ Pt

with n̂(pt), n̂(p′t), n̂(p′′t ) < N : pt �t p′t ⇒ pt �αs p′′t �t p′t �αs p′′t
It differs from axiom A3 in two respects. First, it no longer requires the lotteries

pt, p
′
t, and p′′t to share a common degree of subjectivity. Second, it creates the lottery

mixture on a higher level than either of the individual lotteries. The first change

makes it stronger, however, the second change disconnects the levels of the primitive

lotteries and the mixed lottery. Under the assumption of indifference to the reduction

of same degree of subjectivity lotteries (axiom A1) it is easily verified that indifference

between the ⊕αs and the �αs operations holds in the sense of equation (3).6 Therefore,

under assumption A1, axiom A3’ implies axiom A3,7 and axiom A3 implies axiom

A3’ restricted to same degree of subjectivity lotteries.

It might be less obvious that axiom A3 together with axiom A2 is already enough

to imply axiom axiom A3’ for same degree of subjectivity lotteries. The reason is

that axiom A3 already contains an assumption of indifference to the reduction of

degenerate lotteries. In axiom A3 choose lotteries p, p′, p′′ ∈ P s
t satisfying n̂(pt) =

n < N and n̂(p′t) = n̂(p′′t ) = n+ 1. Then, a α = 1 mixture of the lotteries delivers

pt �t p′t ⇒ pt ⊕αs p′′t �t p′t ⊕αs p′′t ⇒ δpt �t p′t

where δpt ∈ ∆s(·). By completeness of preferences (axiom A2) and repeated applica-

tion I obtain

δn
∗,s

pt ∼t pt (4)

for s ∈ S and n∗ > n. Thus, for arbitrary lotteries pt, p
′
t, p
′′
t ∈ P s

t and n∗ =

max{n̂(pt), n̂(p′t), n̂(p′′t )}+ 1 ≤ N , I find

pt �t p′t ⇒ δn
∗,s

pt �t δn
∗,s

p′t
⇒ δn

∗

pt ⊕
α
s δ

n∗,s
p′′t
�t δn

∗,s
p′t
⊕αs δ

n∗,s
p′′t

⇒ pt �αs p′′t �t p′t �αs p′′t

using first equation (4) and then axiom A3. Note, however, that axioms A3’ and A3

together do not imply equation (3). For indifference in equation (3) I need to impose

axiom A1.

6Use the definition of �αs along with equation (2) and equation (1).
7For lotteries satisfying n̂(pt), n̂(p′t), n̂(p′′t ) < N . Otherwise the elevating independence axiom

creates a mixture outside of the preference domain.
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4 The Representation

The representation recursively constructs a welfare function ût : X∗×Pt+1 → Ut ⊂ IR

evaluating degenerate outcomes in every period. Within a period, the representa-

tion recursively evaluates the different layers of uncertainty (branches of the decision

tree in Figure 1). All uncertainty nodes are labeled by their degree of subjectiv-

ity. The risk aversion when evaluating a lottery at a particular node is tied to its

degree of subjectivity. This risk aversion can be captured by a set of continuous

functions f̂t = (f st )s∈S, f st : IR → IR. I call these functions uncertainty aggregation

weights. Given a continuous bounded function ût : X∗ × Pt+1 → U ⊂ IR evaluating

degenerate outcomes and a set of uncertainty aggregation weights f̂t = (f st )s∈S, I

define the generalized uncertainty aggregator Mf̂t
ût

: Pt → IR recursively by setting

Mf̂t
ût

(xt, pt+1) = ût(xt, pt+1) for degenerate lotteries pt = (xt, pt+1) ∈ Pt and then

inductively increasing its domain to lotteries of rank n̂(pt) = 1, 2, ..., N by defining8

Mf̂t
ût
pt =

(
f
ŝ(pt)
t

)−1
∫

Zn̂(pt)−1(X∗×Pt+1)

f
ŝ(pt)
t ◦Mf̂t

ût
p′t dpt(p

′
t) . (5)

Graphically, the expressionMf̂t
ût
p′t captures the evaluation of all the subtrees that lead

into the node making up lottery pt. Each of these possible outcomes is weighted with

the uncertainty weighting function f
ŝ(pt)
t corresponding to the degree of subjectivity

of the lottery pt. The integral sums over these weighted subtree evaluation and,

finally, the function
(
f
ŝ(pt)
t

)−1
is applied to renormalize the expression making the

generalized uncertainty aggregator a generalized mean.

Theorem 1: The sequence of preference relations (�t)t∈T satisfies axioms A1-A6 if,

and only if, for all t ∈ T there exist a set of strictly increasing and continuous

functions f̂t = (f st )s∈S, f st : IR → IR, and a continuous and bounded function

ut : X∗ → U ⊂ IR such that by defining recursively the functions ûT = uT and

ût−1 : X∗ × Pt → IR by

ût−1(xt−1, pt) = ut−1(xt−1) + Mf̂t
ût
pt (6)

it holds for all t ∈ T and all pt, p
′
t ∈ Pt

pt �t p′t ⇔ Mf̂t
ût
pt ≥ Mf̂t

ût
p′t . (7)

8The sign ◦ emphasizes the functional composition of f
ŝ(pt)
t ◦Mf̂t

ût
p′t = f

ŝ(pt)
t

[Mf̂t
ût
p′t
]
.
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Preferences (�t)t∈T over the space of generalized temporal lotteries can be represented

by the sequence (f̂t, ut)t∈T . The functions f̂t inform the generalized uncertainty eval-

uation where risk aversion depends on the degree of subjectivity of a lottery (equation

5). The functions ut represent per period utility and inform the recursive construc-

tion of the intertemporal utility or value function ût (equation 6). Note that the

representation in Theorem 1 is linear in every time step. In a setting where lotteries

would not be distinguished by their degree of subjectivity, the setting of this paper

would relate closely to Kreps & Porteus (1978). In their representation, Kreps &

Porteus (1978) use a linear uncertainty aggregation at the expense of a non-linear

time aggregation. I show in Traeger (2007) how to shift the non-linearity between

the time and the risk dimension in such a setting. In the current setting, however,

lotteries vary in their degree of subjectivity. Here, giving up linearity in the time step

in equation (6) would only facilitate the linearization of f st for one s ∈ S and would

not permit a linear aggregation over uncertainty in general. Thus, I consider the em-

ployed linearization over time to be the more reasonable representation. Finally, note

that affine transformation of the functions f̂ st are allowed in the representation. Affine

transformation of the functions ut are restricted to a common multiplicative constant

in different periods and have to be accompanied with a coinciding transformation of

the functions
(
f̂ st
)−1

.9

Further Remarks: The representation building on axioms A1 to A6 satisfies as

well elevating independence mixing lotteries of differing degrees of subjectivity A3’,

which might be a desirable property for a normative application of the representation.

Axiom A1 is responsible for connecting the uncertainty weights on the different layers

permitting a unique set f̂t evaluating lotteries independently of their level in the

decision tree.

5 Discussion of the Representation

The discussion of the representation in Theorem 1 proceeds in two steps. First, I

analyze a restricted version of the model limiting the space S to only two degrees of

9Which implies composing the function f̂st with the inverse of the affine transformation from the

right to obtain the new representing sequence f̂ ′st .

11



Subjective Risk, Confidence, and Ambiguity

subjectivity. This restricted version of the model is a straight forward generalization

of Klibanoff et al.’s (2009) smooth ambiguity setting. I show that Klibanoff et al.’s

(2009) definition of smooth ambiguity aversion is somewhat “ambiguous” and render

the definition more precise. Moreover, I disentangle intertemporal substitutability

from risk aversion and ambiguity aversion. Then, I proceed to discuss the general

setting with an arbitrary number of degrees of subjectivity in the lottery space. In

particular, I generalize the definition of smooth ambiguity aversion in this setting to

characterize aversion against the degree of subjectivity of a lottery.

5.1 A binary classification of subjectivity or confidence

I start with interpreting a special case of the representation that is obtained by

restricting the degree of subjectivity to #S = 2. I associate the two elements s ∈ S =

{subj, obj} with subjective and objective beliefs. Two further restrictions transform

it into the smooth ambiguity model of Klibanoff et al. (2009) – translated into the

von Neumann-Morgenstern setting. First, the evaluation of objective lotteries in

Klibanoff et al.’s (2009) setting is (intertemporally) risk neutral in the sense that

f objt = id is linear in (or rather absent from) their representation. This latter point

will be discussed in detail further below. Second, Klibanoff et al. (2009) restrict

the level of compoundedness of the lotteries to N = 2 and impose a hierarchy of

beliefs implying that decision makers can only face subjective lotteries over objective

lotteries, but not vice versa. For example, a situation where a decision maker flips a

coin to decide whether he takes a riskless action or enters a subjective lottery cannot

be captured in such a setting.10 In contrast, the representation in Theorem 1 permits

an arbitrary sequence of subjective and objective lotteries (within every period).

Maintaining all of these restrictions, the first interesting insight to be gained is

that representation Theorem 1 only requires a minimal deviation from the standard

von Neumann-Morgenstern setting and preserves even the independence axiom, only

labeling lotteries by their degree of subjectivity. Thus, explicitly introducing the di-

mensions that Ellsberg (1961) already found missing in the Savage framework, i.e. a

degree of confidence or subjectivity of belief, leads straight forwardly from von Neu-

10A similar lottery could be captured, though, under the assumption that the subjective lottery
follows the objective lottery with one period of delay. As I will explain below, however, a period of
delay will also introduce aversion to intertemporal substitution.
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mann & Morgenstern (1944) to a model of smooth ambiguity aversion. The next

insight concerns the the interpretation of Klibanoff et al.’s (2009) smooth ambiguity

aversion. Hereto, I briefly relate the representation in Theorem 1 to the general-

ized isoelastic model of Epstein & Zin (1989) and Weil (1990). A priori, a decision

maker’s propensity to smooth consumption over time is a different preference charac-

teristic than his risk aversion. However, the intertemporally additive expected utility

standard model implicitly assumes that these quite different dimensions of preference

coincide. Epstein & Zin (1989) and Weil (1990) observed that in a one commod-

ity version of Kreps & Porteus’s (1978) recursive utility model of temporal lotteries

these two dimensions of preference can be disentangled. In Traeger (2007) I show, in

a setting corresponding to an #S = 1 version of the current model, that the func-

tion ft measures the difference between Arrow Pratt risk aversion and aversion to

intertemporal substitution.11 I name ft a measure of intertemporal risk aversion. It

measures the part of risk aversion that is not simply a cause of a decision maker’s

propensity to smooth over time, but due an intrinsic aversion to risk. The concept

of intertemporal risk aversion is not limited to the one-commodity setting of the

Epstein & Zin (1989) framework, but generalizes to arbitrary dimensions and to set-

tings without a naturally given measure scale of the good under observation. The

following axiomatic characterization is put forth in Traeger (2007). For two given

consumption paths x, x′ ∈ Xt, I define the ‘best of combination’ path xhigh(x, x′) by

(xhigh(x, x′))τ = argmaxx∈{xτ ,x′τ}uτ (x) and the ‘worst off combination’ path xlow(x, x′)

by (xlow(x, x′))τ = argminx∈{xτ ,x′τ}uτ (x) for all τ ∈ {t, ..., T}.12 In every period the

consumption path xhigh(x, x′) picks out the better outcome of x and x′, while xlow(x, x′)

collects the inferior outcomes. A decision maker is called (weakly)13 intertemporal risk

averse in period t if and only if for all consumption paths x, x′ ∈ Xt

x ∼ x′ ⇒ x �t 1
2
xhigh(x, x′) + 1

2
xlow(x, x′), (8)

where 1
2
xhigh(x, x′) + 1

2
xlow(x, x′) denotes a lottery with equal chance between the

paths xhigh(x, x′) and xlow(x, x′). The premise states that a decision maker is indif-

11As there is only one type of risk, there also is only one function ft in every period used for
uncertainty aggregation.

12In Traeger (2007) I show how these paths can be defined purely in terms of preferences.
13Analogously, a strict intertemporal risk averse decision maker can be defined by assuming in

addition that there exists some period t∗ such that u(xt∗) 6= u(x′t∗) and requiring a strict preference
� rather than the weak preference � in equation (8).
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ferent between the certain consumption paths x and x′. Then, an intertemporal risk

averse decision maker prefers the consumption path x (or equivalently x′) with cer-

tainty over a lottery that yields with equal probability either a path combining all the

best outcomes or a path combining all the worst outcomes. The cited paper shows

that the function ft in the representation is concave if and only if equation (8) holds.

In the certainty additive representation employed here, intertemporal risk aversion

can as well be understood as risk aversion with respect to utility gains and losses.

The definition of intertemporal risk aversion extends straight forwardly to a setting

with differing degrees of risk aversion to objective and subjective lotteries. I charac-

terize intertemporal risk aversion to objective lotteries by requiring for all x, x′ ∈ Xt

x ∼ x′ ⇒ x �t xhigh(x, x′) ⊕
1
2
obj xlow(x, x′) (9)

implying concavity of f objt , and similarly intertemporal risk aversion to subjective

lotteries by requiring for all x, x′ ∈ Xt

x ∼ x′ ⇒ x �t xhigh(x, x′) ⊕
1
2
subj xlow(x, x′) . (10)

implying concavity of f subjt . Klibanoff et al. (2009) implicitly assume that f obj = id

corresponding to indifference in equation (9). This assumption implies that uncer-

tainty evaluation with respect to objective (or first order) lotteries is intertemporal

risk neutral. Only when it comes to subjective lotteries, Klibanoff et al. (2009) in-

troduce a non-trivial function f subj and, thus, allow for intertemporal risk aversion.

Now Klibanoff et al. (2009) define ambiguity aversion by the concavity of f subjt , in a

setting assuming f objt = id. This concept earned the name smooth ambiguity aver-

sion in the decision theoretic literature. Releasing the restriction f objt = id sheds

more light onto this definition. In principle, there are two sensible ways of extending

Klibanoff et al.’s (2009) representation to incorporate the missing non-linearity f objt .

The representation I have chosen in Theorem 1 introduces the function f objt in such

a way that it measures intertemporal risk aversion with respect to objective lotteries

without changing the interpretation that f subjt measures intertemporal risk aversion

with respect to subjective lotteries. Given the hierarchical order of subjective over

objective lotteries in Klibanoff et al.’s (2009) setting, I could as well introduce a func-

tion fambt ≡ f subjt ◦ (f objt )−1 to eliminate f subjt from the representation. Observe the

following transformation of the representing equation (7) where pt and p′t are different

14
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subjective lotteries over the set of objective lotteries whose representatives are p̃t

pt �t p′t ⇔ Mf̂t
ût
pt ≥ Mf̂t

ût
p′t

⇔
(
f subjt

)−1 ∫
Z1(X∗×Pt+1)

dpt(p̃t) f
subj
t ◦

(
f objt

)−1 ∫
X∗×Pt+1

dp̃t(xt, pt+1) f objt ◦ ût(xt, pt+1)

≥
(
f subjt

)−1 ∫
Z1(X∗×Pt+1)

dp′t(p̃t) f
subj
t ◦

(
f objt

)−1 ∫
X∗×Pt+1

dp̃t(xt, pt+1) f objt ◦ ût(xt, pt+1)

⇔
(
fambt

)−1 ∫
Z1(X∗×Pt+1)

dpt(p̃t) f
amb
t

∫
X∗×Pt+1

dp̃t(xt, pt+1) f objt ◦ ût(xt, pt+1)

≥
(
fambt

)−1 ∫
Z1(X∗×Pt+1)

dp′t(p̃t) f
amb
t

∫
X∗×Pt+1

dp̃t(xt, pt+1) f objt ◦ ût(xt, pt+1)

This new function fambt = f subjt ◦ (f objt )−1 then measures the additional aversion

to subjective risk as opposed to objective risk. For this interpretation, note that

f subjt ◦ (f objt )−1 concave is a definition of f subjt being more concave than f objt (Hardy,

Littlewood & Polya 1964).14 Because in Klibanoff et al.’s (2009) setting it is f objt = id,

their definition of ambiguity aversion does not pin down whether smooth ambiguity

aversion should be captured by intertemporal aversion to subjective risk captured in

f subjt and characterized by the lottery choice (10) or whether it should be characterized

by the functions fambt measuring the additional risk aversion to subjective risk as

opposed to objective risk. I suggest to call the latter a measure of smooth ambiguity

aversion.

Definition 1: A decision maker exhibits (strict) smooth ambiguity aversion in pe-

riod t if the function

fambt = f subjt ◦ (f objt )−1

in the preference representation of Theorem 1 is (strictly) concave.

I follow Klibanoff et al. (2009) in defining the term by means of characteristics of the

representation. However, (strict) concavity of the function fambt is purely a charac-

teristic of preferences and does not depend on a particular version of the represen-

tation (even though choices of ût and f̂t are generally not unique). An axiomatic

characterizations of smooth ambiguity aversion in terms of preferences and choices

14Hereto observe that fambt concave and fsubjt = fambt ◦ (fobjt ) implies that fsubjt is a concave

transformation of fobjt .
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follows. Employing equations (9) and (10) the condition fambt = f subjt ◦ (f objt )−1 con-

cave translates smooth ambiguity aversion in period t into the requirement that for

all x, x′, x′′ ∈ Xt

x ∼ x′ �t xhigh(x, x′)⊕
1
2
obj x

low(x, x′) ⇒ x �t xhigh(x, x′)⊕
1
2
subj x

low(x, x′) .

However, ambiguity aversion can be characterized simpler by recognizing that the

intertemporal aspect of the risk comparison can as well be dropped.

Proposition 1: A decision maker exhibits (strict) smooth ambiguity aversion in the

sense of Definition 1 if, and only if, for all x, x′ ∈ Xt

x⊕
1
2
obj x

′ �t ( �t ) x⊕
1
2
subj x

′

For the one-commodity setting15 the model gives rise to a three-fold disentanglement

that can be expressed in terms of 6 diffing related concepts (sharing three degrees of

freedom):

• the functions ut characterize aversion to intertemporal substitution,

• the functions f subjt characterize intertemporal risk aversion to objective risk,

• the functions f objt characterize intertemporal risk aversion to subjective risk,

• the functions fambt = f subjt ◦ (f objt )−1 characterize smooth ambiguity aversion,

• the functions gobjt ≡ f objt ◦ u−1
t measure Arrow Pratt risk aversion with respect

to objective lotteries, and

• the functions gsubjt ≡ f subjt ◦u−1
t measure Arrow Pratt risk aversion with respect

to subjective risk.

If follows immediately that in the one-commodity setting smooth ambiguity aversion

can as well be expressed as the difference in Arrow Pratt risk aversion with respect

to subjective risk and Arrow Pratt risk aversion with respect to objective risk:

fambt = gsubjt ◦ (gobjt )−1 .

15Only in the one-commodity setting the inverse of u and the Arrow Pratt measure of risk aversion
as well as the measure of intertemporal substitution are unidimensional and well defined.
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5.2 The general representation and aversion to the subjec-

tivity of belief

A unique measure of ambiguity aversion is tied to the setting with #S = 2. In

general, a decision maker will not always be able to make a binary classification of

subjective versus objective lotteries or of only two classes of confidence in beliefs.

While objective probabilities are generally classified as those derived from symmetry

reasonings or long-run, high frequency observations, subjective risk is basically any

probabilistic belief not obtained in that way, leaving a wide field of beliefs for a single

category. For example the odds based on a somewhat shorter time series or a slightly

irregular coin, a horse race lottery, the odds of a 2◦C global warming by 2050 due to

climate change, or weather characteristics in Tomboctou on November 22nd 2010. In

general, different decision makers are likely to classify different lotteries in different

categories. A useful characterization of a decision maker’s preferences for the general

setting with #S > 2 is as follows. Assume that the decision maker has a complete

order over the elements in S in terms of subjectivity. Let s . s′ denote that a lottery

labeled s is more subjective than a lottery labeled s′.

Definition 2: A decision maker is (strictly) averse to subjectivity of belief if

s . s′ ⇔ f st ◦ (f s
′

t )−1 (strictly) concave ∀s, s′ ∈ S .

Alternatively, the situation s . s′ can be interpreted as a decision maker being less

confident in lotteries of category s than in lotteries of categories s′. Then, aversion to

subjectivity of belief is equivalent to aversion to a lack of confidence in beliefs. Defini-

tion 1 of smooth ambiguity aversion is the special case of aversion to the subjectivity

of belief (or to the lack of confidence) in the case #S = 2. The characterization in

terms of preferences carries over straight forwardly to the generalization.

Proposition 2: A decision maker exhibits (strict) aversion to the subjectivity of

belief in the sense of Definition 2 if, and only if, for all x, x′ ∈ Xt and s, s′ ∈ S
with s . s′

x⊕
1
2

s′ x
′ �t ( �t ) x⊕

1
2
s x′ .

With respect to the broader literature on ambiguity it is interesting to analyze how the

description of the Ellsberg (1961) paradox would differ for a decision maker employing
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the representation of Theorem 1 as opposed to the multiple prior approach or the

Choquet expected utility approach. In the setting of the Ellsberg paradox a decision

maker has to bet on the color of a ball that is drawn from an urn. The crucial feature

of the various variants of the setting can be reflected by the following simplified choice

situation. In one urn, the decision maker knows that half of the balls are red. In

another urn, the decision maker only knows that it contains nothing but red and blue

balls. In the first case, the earn draw gives him what I would consider an objective

probability of 1
2

that a red ball is randomly drawn. For the second urn, the principle

of insufficient reason would render him a probability of 1
2

as well. However, a good

fraction of the individuals in comparable settings tend to prefer betting on the first

urn where they know the number of red balls.16 The Choquet approach to explaining

the paradoxical preference for the urn with the known amount of red balls abandons

the concept of a probability and replaces it with a non-additivity set function. The

latter captures the decision maker’s ambiguity about the red balls in the second

urn. Choquet integrating over the capacities induces aversion to ambiguity. The

multiple prior approach instead attaches a range of different probability distributions

to drawing a red ball from the second ball and, e.g. in the simplest such approach

formulated by Gilboa & Schmeidler (1989), evaluates the bet by the worst expected

outcome possible within the range of priors. The Klibanoff et al. (2009) approach

assigns a second order probability distribution to the urn with the unknown number

of balls. The way to think about this latter approach is that each possible number

of balls corresponds to an objective or first order lottery. Not knowing the number

of balls then translates into a second order or subjective lottery over the first order

lotteries. Obviously, the Ellsberg paradox can be handled the same way by means of

the representation in Theorem 1. However, there is an alternative way to describe

the behavior by means of representation theorem 1. The decision maker attaches

a probability of a half to the event drawing a red ball for both urns. However, he

labels the urn where he knows the number of balls to be an objective lottery and he

labels the lottery where the probability of a half is only obtained from the principle

of insufficient reason to be a subjective lottery. If the decision maker is averse to

the subjectivity of probabilistic beliefs, he prefers to bet on the “objective” urn.

16Note that the real versions of the Ellsberg (1961) paradox are set up slightly more elaborate in
order to assure that no possible probability assigned to the distributions in the urn can explain the
described choice within the standard risk setting.
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Note that in the current setting not only those decision makers who are ambiguity

neutral, but also those who consider all of the involved urn lotteries to be objective

would not exhibit the “paradoxic behavior” predicted by Ellsberg (1961), a behavior

that is generally only observed for some fraction of the participants of an according

experiment.

6 A Sketch of Possible Applications

I briefly sketch out two possible applications of the model. One is quasi-static in that

it uses the representation only for an evaluation of a given future. The other appli-

cation is dynamic and relates the model to a particular possibility of tying the model

to Bayesian updating. Both examples are drawn from the context of climate change

economics. In the first example, a decision tree for a given period in the future starts

with the root lottery capturing uncertainty about the stock of greenhouse gases in the

atmosphere. For every given pollution stock there is a subtree describing uncertainty

about the temperature in the same period. For a given (average) temperature there

is uncertainty about precipitation. Given precipitation, there is uncertainty about

agricultural yield. Given agricultural yield there is uncertainty about market prices

and so on. Now, given this decision tree, the decision maker has to assign his de-

gree of confidence or of subjectivity to each of these lotteries. For example, for the

subtrees that correspond to low emission stocks, he might be more confident into the

probability distributions over temperatures and precipitation. In the subtrees corre-

sponding to a very high realization of the greenhouse gas stock, the decision maker

is likely to consider his probabilistic estimates of the temperature change or the pre-

cipitation distribution as less reliable, labeling it more subjective. Assume that the

decision make is averse to subjectivity of belief as formalized in definition 2. Then,

he attaches a relatively lower value to the more subjective subtrees stemming from

a higher perturbation of the climate system than would a decision maker who does

not distinguish lotteries by their confidence of subjectivity. Thus, a first conjecture

in such a context would be that a decision maker with aversion to the subjectivity of

belief would be willing to invest more into measures keeping him in a climate region

that he can predict more confidently.

In the second example, I connect the representation in the simplest possible way
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with a Bayesian setting where a decision maker learns about fundamental parameters

of his environment. The setting of this paper permits the decision maker to attach

a different degree of subjectivity to his priors capturing different uncertainties. For

example, let p characterize the average temperature distribution in the central valley

in California in 2050, the heart of Californian agricultural production. I model a

decision maker who is aware that he can adapt to new information as uncertainty

resolves over time. The decision maker employs a regional climate model for California

that is coupled to a global climate model. Given his model is correct he obtains a

probability distribution for the temperature T . However, there are unknowns θ1 in the

characterization or quality of the regional climate model. Also there are unknowns

θ2 with respect to the quality of the global model to which the regional model is

coupled. Given both, θ1 and θ2, the probability distribution for the temperature

is given by the likelihood function l(T |θ1, θ2). Given θ1 and θ2 he trusts his model

enough to label the lottery l(T |θ1, θ2) objective. However, he is aware that there

are severe issues with regional modeling so he labels the prior µ1(θ1|θ2) over the

unknowns θ1 of the regional model, which might depend on unknowns in the global

climate model, to be subjective of degree s. The unknowns of the global model are

captured by a prior µ2(θ2) with a degree of subjectivity s′ / s somewhere in between

the other two distributions. The decision maker can obviously calculate the expected

probability distribution over the temperature in 2050 by integrating out the priors

to p(x) =
∫ ∫

l(x|θ1, θ2)dµ1(θ1|θ2)dµ2(θ2). However, from an evaluative perspective

there is no use in doing so, because the different layers of uncertainty correspond to

different degrees of confidence or subjectivity. Therefore, they have to be evaluated

recursively, each with the corresponding degree of aversion. Both priors µ1(θ1|θ2) and

µ2(θ2) can be updated as in any standard Bayesian model of learning. With sufficient

information, in the long run, the priors would shrink to a singleton and the decision

maker would be left with the objective uncertainty or volatility of the temperature

predicted by the model. The described procedure is not the only way to connect the

representation of this paper with Bayesian learning. Of course, another interesting

reasoning about learning in the present context will be to explicitly model changes

in the degree of confidence instead of just shrinking priors. This question opens up a

wide alley of future research.
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7 Conclusions

The paper presents a model for evaluating scenarios that involve probabilistic beliefs

that differ in their degree of subjectivity (or confidence). The evaluation of scenarios

only employs simple tools from risk analysis. The representation facilitates a unified

framework for representing aversion to intertemporal substitution, aversion to objec-

tive risk, aversion to subjective risk, and smooth ambiguity aversion. It respects the

normatively desirable axioms of von Neumann & Morgenstern (1944) and of time

consistency. Moreover, the representation facilitates a better understanding and a

more precise definition of smooth ambiguity aversion as the additional intertemporal

risk aversion to subjective as opposed to objective lotteries. The concept of smooth

ambiguity aversion is put forth in the literature in a hierarchical and binary context

of purely subjective second order beliefs over purely objective first order beliefs. The

representation of this paper frees the degree of subjectivity form this straitjacket by

incorporating the degree of subjectivity straight into the notion of a lottery. I briefly

sketched out two possible applications of the model. The more elaborate application

to learning opens up a wide alley for future research.

Appendix

Proof of Theorem 1:

Part I develops the representation for a single layer of uncertainty in a given period.

Part II builds the recursive evaluation of a general decision tree within a given period.

Part III constructs the intertemporal aggregation. Part IV shows that the axioms are

satisfied by the representation.

Part I 1) I denote the underlying choice space in a given period t by Xt = X∗×Pt+1

(for the last period is XT = X∗). By axioms A2 and A4 there exists an ordinal

representation ũt : Xt → IR of preferences �t |Xt , i.e. preferences over degenerate

period t choices only. I denote the evaluation function for these degenerate lotteries

pt ∈ Pt with n̂(pt) = 0 also by

V 0(pt) = ũt(pt)

2) For a given parameter s, axioms A2-A4 on ∆s(Xt) are the standard von Neumann-

Morgenstern axioms for a compact metric setting that permit an expected utility
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presentation on ∆s(Xt). The only distinction to the standard presentation is that I

formally distinguish an element pt ∈ Xt from the degenerate lottery δ1,s
pt ∈ ∆s(Xt).

However, as I pointed out in the context of equation (4) axioms A2 and A3 imply pt ∼
δ1,s
pt for pt ∈ Xt, so for employing the standard mixture space arguments the two can

be identified. The standard von Neumann-Morgenstern reasoning shows that there

exists a particular version of ũt that makes it possible to represent preferences over

lotteries in the expected utility form. Instead of using the standard representation,

I follow Traeger (2007) and build the representation on an arbitrary function ũt :

Xt → IR representing degenerate choices �t |Xt . At the current point ũt could be the

function singled out by von Neumann-Morgenstern as well as any strictly increasing

and continuous transformation of it. For a given parameter s, Theorem 1 in Traeger

(2007) translates into the following preference representation:

Given is ũt : Xt → IR with range(ũt) = U representing preferences �t |Xt . Then

�t |∆sXt satisfies axioms A2-A4 if, and only if, there exists a strictly increasing

and continuous function f st : U → IR such that

V 1
s (p) = (f st )−1

∫
Xt

f st ◦ ũt dp

represents �t |∆s(Xt) for all p ∈ ∆s(Xt). Moreover, f and f ′ both represent � in

the above sense if, and only if, there exist a, b ∈ IR, a > 0 such that f ′ = af+b .

3) Undertaking step 2) for all s ∈ S results in a sequence of increasing and continuous

functions f̂t = (f st )s∈S, f st : IR → IR, as stated in the theorem, and a representation

of �t |Z1
t (Xt) by

V̄ 1(pt) =

{
V 0(pt) = ũt(pt) if n̂(pt) = 0

V 1(pt) =
(
f
ŝ(pt)
t

)−1 ∫
Xt
f
ŝ(pt)
t ◦ ũt dpt if n̂(pt) = 1

Part II constructs inductively a representation of �t |Znt (Xt) for n ∈ N .

4) Let V̄ n : Zn
t (Xt) → IR represent �t |Znt (Xt). By equation (4) I can evaluate

degenerate lotteries in ∆s(Z
n
t (Xt)) just as the corresponding elements in Zn

t (Xt).

That identification makes V̄ n a representation for degenerate lotteries in Zn+1
t (Xt).

Thus, for given s, by axioms A2-A4 and Theorem 1 in Traeger (2007), cited in step
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2, the lotteries in ∆s(Z
n
t (Xt)) can be represented by

V n+1
s (pt) = (f̃ st )−1

∫
Zn(Xt)

f̃ st ◦ V n̂(p̃t)(p̃t) dpt(p̃t)

for some strictly increasing and continuous function f̃ st : range(V n)→ IR. Employing

the representation theorem for each s ∈ S delivers a representation over the union

Zn+1(Xt) = ∪s∈S̄Y n+1
s (Xt) including Y n+1

s0
(Xt) = Zn(Xt) that evaluates lotteries

p ∈ Zn+1(Xt) by

V̄ n+1(pt) =



V 0(pt) = ũt(pt) if n̂(pt) = 0

V 1(pt) =
(
f
ŝ(pt)
t

)−1∫
Xt

f
ŝ(pt)
t ◦ ũt dpt if n̂(pt) = 1

...
...

...

V n+1(p) =
(
f̃
ŝ(p)
t

)−1 ∫
Zn(Xt)

f̃
ŝ(p)
t ◦V n̂(p̃t)(p̃t) dpt(p̃t) if n̂(pt) = n+ 1 .

5) I show that the f̃ st in V n+1 can be chosen to coincide with the f st in V n (and, thus,

in all the V i≤n). Let p, p′, p′′ ∈ P n
s ⊂ Zn

t (Xt). Reduction of the following lottery gives[
δpt ⊕αs δp′t

]r
(B) =

∫
Y ns (Xt)

p̃t(B) d
(
δpt ⊕αs δp′t

)
(p̃t)

= α
∫

Y ns (Xt)

p̃t(B) d (δpt) (p̃t) + (1− α)
∫

Y ns (Xt)

p̃t(B) d
(
δp′t
)

(p̃t)

= αpt(B) + (1− α)p′t(B)

for all B ∈ B (Zn−1(Xt)) and, thus,
[
δpt ⊕αs δp′t

]r
= pt ⊕αs p′t. Then, by axiom A1

δpt ⊕αs δp′t ∼t
[
δpt ⊕αs δp′t

]r
= pt ⊕αs p′t

Translated into the representation I find that

V n+1
s (δpt ⊕αs δp′t) = (f̃ st )−1

[
α

∫
Zn(Xt)

f̃ st ◦ V n(p̃t) dδpt(p̃t)

+(1− α)
∫

Zn(Xt)

f̃ st ◦ V n(p̃t) dδp′t(p̃t)
]

= (f̃ st )−1
[
αf̃ st ◦ (f st )−1

∫
Zn−1(Xt)

f st ◦ V n−1(p̃t) dpt(p̃t)

+(1− α)f̃ st ◦ (f st )−1
∫

Zn−1(Xt)

f st ◦ V n−1(p̃t) dp
′
t(p̃t)

]
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has to equal

V n
s (pt ⊕αs p′t) = (f st )−1

[
α

∫
Zn−1(Xt)

f st ◦ V n−1(p̃t) dpt(p̃t)

+(1− α)
∫

Zn−1(Xt)

f st ◦ V n−1(p̃t) dp
′
t(p̃t)

]
.

Abbreviating K(p) =
∫
Zn−1(Xt)

f st ◦V n−1 dp, equivalence of the two expression results

in

V n+1
s (δpt ⊕αs δp′t) = V n

s (pt ⊕αs p′t)

⇔ (f̃ st )−1
[
αf̃ st ◦ (f st )−1K(pt) + (1− α)f̃ st ◦ (f st )−1K(p′t)

]
= (f st )−1 [αK(pt) + (1− α)K(p′t)]

⇔ αf̃ st ◦ (f st )−1K(pt) + (1− α)f̃ st ◦ (f st )−1K(p′t)

= f̃ st ◦ (f st )−1 [αK(pt) + (1− α)K(p′t)] .

Because preferences are non-degenerate, K(p) can be varied on a continuum and by

Hardy et al. (1964, ) the continuous function f̃ st ◦(f st )−1 has to be linear implying f̃ st =

af st + b for some a ∈ IR++ and b ∈ IR (on the domain relevant to the representation).

As affine transformations of the uncertainty aggregation weights do not change the

representation (see step 2), I can choose f̃ st = f st .

6) Steps 4) and 5) can be applied inductively for n ∈ {1, . . . , N − 1}, yielding a

representation for �t |ZNt (Xt) =�t. Once the uncertainty aggregation weights f st

have been shown to coincide at the different levels, the functions V̄ n can as well be

constructed inductively by defining V̄ 0 = ũt and

V̄ n(pt) = (f
ŝ(pt)
t )−1

∫
Zn̂(pt)−1(Xt)

f
ŝ(pt)
t ◦ V n̂(p̃t)(p̃t) dpt(p̃t)

for n ∈ N (noting that n̂(p̃t) < n). Then, for a given sequence of uncertainty weights

f̂t and a given function ũt it is Mf̂t
ũt
pt = V̄ N(pt). I have established the existence

of the sequences f̂ st as in the theorem and the existence of some ũt such that the

representation equation (7) in the theorem holds.

Part III shows that the sequence ût, t ∈ T constructed as stated in equation (6)

indeed gives rise to a feasible set of Bernoulli utility functions ũt.
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7) Recall that the only requirement on the functions ũt is that they have to be an

ordinal representation of preferences on the space of degenerate outcomes in period t,

i.e. for �t |Xt . Axioms A2, A4, and A5 imply a certainty additive representation for

preferences restricted to the subspace of certain consumption paths (Wakker 1988,

theorem III.4.1).17 I denote the corresponding continuous per period utility functions

by ut : X∗ → IR. They are unique up to affine transformations with a coinciding

multiplicative constant (and heterogeneous additive constants).

8) For the last period I can choose ũt = ûT = uT . I show recursively that ût−1(xt−1, pt) =

ut−1(xt−1) +Mf̂t
ût
pt is an (ordinal) representation of �t−1 |Xt−1 given that ût is an

(ordinal) representation of �t |Xt . Note that by construction of the uncertainty ag-

gregatorMf̂t
ût

, a certain consumption path xt = (xt, xt+1, . . . , xT ) is indeed evaluated

to ût(x
t) =

∑T
τ=t uτ (xτ ). I define a certainty equivalent of a lottery pt ∈ Pt to be

a lottery (xptt , p
pt
t+1) ∈ Pt that satisfies (xptt , p

pt
t+1) ∼t pt. For any lottery there exists

such a certainty equivalent and it does not matter which one is chosen.18 By the

representation already constructed, I know thatMf̂t
ût
pt = ût(x

pt
t , p

pt
t+1). Moreover, by

inductively replacing pptt+1 with a certainty equivalent, I obtain a certainty equivalent

to the lottery pt that is a certain consumption path, which I denote by xptt .

9) Observe that by time consistency

pt ∼t xptt

⇔ (xt−1, pt) ∼t−1 (xt−1, x
pt
t )

17A note on the details of the theorem’s applicability. If the sets {p′0 ∈ P0 : p′0 �0 x} and
{p′0 ∈ P0 : x �0 p′0} are closed in P0 for all x ∈ XT+1 ⊂ P0, then the sets {p′0 ∈ P0 : p′0 �0

x} ∩ XT+1 = {x′ ∈XT+1 : x′ �0 x} and {p′0 ∈ P0 : x �0 p
′
0} ∩ XT+1 = {x′ ∈XT+1 : x �0 x′}

are closed in XT+1 endowed with the relative topology for all x ∈ XT+1. Moreover the relative
topology on XT+1 is the product topology on XT+1.

18The existence is most easily observed from the representation already constructed. The uncer-
tainty aggregator is a generalized mean and, thus, the value of any lottery lies between the value of
the worst and the best outcome. For more details see induction hypothesis H2 in proof of theorem
2 in Traeger (2007).

25



Subjective Risk, Confidence, and Ambiguity

and therefore

(xt−1, pt) �t−1 (x′t−1, p
′
t)

⇔ (xt−1, x
pt) �t−1 (x′t−1, x

p′t)

⇔ ut−1(pt) +
∑T

τ=t uτ (x
pt
τ ) ≥ ut−1(p′t) +

∑T
τ=t uτ (x

p′t
τ )

⇔ ut−1(pt) +Mf̂t
pt ût ≥ ut−1(p′t) +Mf̂t

ût
pt

Hence ût−1 : X∗ × Pt → IR with ût−1(xt−1, pt) = ut−1(xt−1) + Mf̂t
ût
pt is an (ordinal)

representation of �t−1 |X∗×Pt . Thus, indeed there exist continuous functions ut as

stated in the theorem so that feasible Bernoulli utility functions ũt used in the rep-

resentation in part II are given by the functions ût constructed in equation (6).

Part IV proofs necessity of the axioms. Axiom A2 is obviously satisfied. With

respect to axiom A3 observe that for all t ∈ T , pt, p
′
t, p
′′
t ∈ Pt, and α ∈ [0, 1]:

pt �t p′t ⇒M
f̂t
ũt
pt ≥Mf̂t

ũt
p′t

⇒
(
f
ŝ(pt)
t

)−1 ∫
Zn̂(pt)−1(X∗×Pt+1)

f
ŝ(pt)
t ◦Mf̂t

ût
p̃t dpt(p̃t)

≥
(
f
ŝ(p′t)
t

)−1 ∫
Zn̂(p

′
t)−1(X∗×Pt+1)

f
ŝ(p′t)
t ◦Mf̂t

ût
p̃t dp

′
t(p̃t)

⇒
(
f
ŝ(pt)
t

)−1
[ ∫
Zn̂(pt)−1(X∗×Pt+1)

α f
ŝ(pt)
t ◦Mf̂t

ût
p̃t dpt(p̃t) +K

]

≥
(
f
ŝ(p′t)
t

)−1

 ∫
Zn̂(p

′
t)−1(X∗×Pt+1)

α f
ŝ(p′t)
t ◦Mf̂t

ût
p̃t dp

′
t(p̃t) +K


where

K =
∫

Zn̂(p
′′
t )−1(X∗×Pt+1)

(1− α) f
ŝ(p′t)
t ◦Mf̂t

ût
p̃t dp

′′
t (p̃t) .

If follows(
f
ŝ(pt)
t

)−1 ∫
Zn∗−1(X∗×Pt+1)

f
ŝ(pt)
t ◦Mf̂t

ût
p̃t d(pt ⊕αs p′′t )(p̃t)

≥
(
f
ŝ(p′t)
t

)−1 ∫
Zn∗−1(X∗×Pt+1)

f
ŝ(p′t)
t ◦Mf̂t

ût
p̃t d(p′t ⊕αs p′′t )(p̃t)
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with n∗ = max{n̂(pt), n̂(p′t), n̂(p′′t )} and, thus,

pt ⊕αs p′′t �t p′t ⊕αs p′′t .

To see that axiom A4 is satisfied note that in the union topology a set is closed if

each preimage of the set under the injection maps19 is closed. Thus, given that the

composition f st ◦ û are continuous (and the topology of weak convergence) the sets

in axiom A4 are closed. Axiom A5 is easily observed to be satisfied by recognizing

that the evaluation on certain consumption paths reduces to the formula ût(x
t) =∑T

τ=t uτ (xτ ). Finally, axiom A6 is seen to be satisfied by inspecting equation (6). �

Proof of Proposition 1:

For all x, x′ ∈ Xt I have

x⊕
1
2
obj x

′ �t x⊕
1
2
subj x

′

⇒
(
f objt

)−1
[

1

2
f objt ◦M

f̂t
ût

x +
1

2
f objt ◦M

f̂t
ût

x′
]

≥
(
f subjt

)−1
[

1

2
f subjt ◦Mf̂t

ût
x +

1

2
f subjt ◦Mf̂t

ût
x′
]
.

Defining K(x) = f obj ◦Mf̂t
ût

x = f obj ◦
∑T

τ=t uτ (xτ ) I find

⇒ f subjt ◦
(
f objt

)−1
[

1

2

[
K(x)

]
+

1

2

[
K(x)

]]
≥ 1

2
f subjt ◦

(
f objt

)−1 [
K(x)

]
+

1

2
f subjt ◦

(
f objt

)−1

[K(x′)]

and, thus, fambt = f subjt ◦
(
f objt

)−1

concave by Hardy et al. (1964, 75) on the range

relevant for the representation. Analogously I find strict concavity to hold by replac-

ing �t by �t and ≥ by >. �

Proof of Proposition 2:

For every pair s, s′ ∈ S with s . s′ the proof is a copy of the proof of proposition 1.

�
19The s-th injection map injs assigns an element of ∆(·) to the corresponding element in ∆(·), s) =

∆s(·) (e.g. Cech 1966, 85).
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