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Abstract

We consider statistical inference on a single component of a parameter vector that sat-

isfies a finite number of moment inequalities. The null hypothesis for this single component

is given a dual characterization as a composite hypothesis regarding point identified pa-

rameters. We also are careful in the specification of the alternative hypothesis that also

has a dual characterization as a composite hypothesis regarding point identified param-

eters. This setup substantially simplifies the conceptual basis of the inference problem.

For an interval identified parameter we obtain closed form expressions for the confidence

interval obtained by inverting the test statistic of the composite null against the composite

alternative.
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1 Introduction

There is a rapidly growing literature on inference on partially identified parameters. Manski

(2003) surveys this literature. Early on Horowitz and Manski (2000) developed confidence

regions that asymptotically cover the identified set with a fixed probability. Chernozhukov,

Hong, and Tamer (2003) extended this to vector-valued parameters defined through mini-

mization problems. Imbens and Manski (2004) developed confidence regions that cover the

population parameter (as opposed to the set that contains it) with fixed probability. These

pioneering ideas were subsequently followed by numerous technical innovations. A partial list

includes Andrews, Berry, and Jia (2004), Moon and Schorfheide (2004), Pakes, Porter, Ho, and

Ishii (2004), Romano, and Shaikh (2005), Andrews, and Soares (2007), Bugni (2007), Canay

(2007), Fan and Park (2007), Galichon and Henry (2008), Beresteanu and Molinari (2008),

Rosen (2008), and Chiburis (2009).

In this paper, we address issues that seem to have been ignored in the literature. The first

issue is that we consider one component (or a subset) of the parameter vector that satisfies a

finite number of moment inequalities. Unless we are mistaken, all the papers in the literature

address the question of making inferences on the entire parameter vector. In many empirical

applications, we focus on just one component of the parameter vector, and the remaining com-

ponents can be treated as nuisance parameters. For example, applied researchers are typically

interested in inference on just one slope coefficient in a linear regression model. One may ar-

gue that a confidence interval for one component of the parameter vector can be obtained by

projecting the confidence region for the full parameter vector, but such a procedure in general

produces a rather wide interval, especially when the dimension of the parameter vector is large.

Our approach differs from the recent literature in two other ways. First, we propose to

consider an equivalent characterization of the null hypothesis on the parameter of interest in

terms of point identified parameters. This “dual” characterization enables us to understand

the inference in partially identified models in the standard framework of a multi-dimensional

composite null hypothesis, which avoids some of the conceptual and technical problems in the

recent literature. Second, we explicitly specify the alternative hypothesis that in general is a

proper subset of the parameter space. As with the null we consider an equivalent characteri-

zation in terms of point identified parameters. By exploiting the structure of the alternative

hypothesis, we can potentially increase the power of the test and reduce the length of the

confidence interval. These two elements are further discussed in Section 2.

Our main contribution is the insight that inference for partially identified parameters can
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be conducted in terms of point identified parameters. No new conceptual framework is needed

to understand the fundamentals of statistical inference with partially identified parameters,

because we are dealing with a test of a composite null against a composite alternative hypothesis

and the theory for such tests is well-known (see e.g. Lehmann (1986)). Although our insight

is trivial ex post, we do not believe it was ex ante obvious. A byproduct of our setup is that

the asymptotic analysis is deceptively simple, in particular much simpler than in most of the

literature that develops special tools for this problem. Tests of a composite null against a

composite alternative hypothesis are computationally challenging, depending on the nature of

specific application. On the other hand, many tools proposed in the recent literature involve

resampling methods such as subsampling. These techniques are computationally intensive as

well, and therefore, we hope that the profession is willing to consider our conceptually simple

but computationally challenging approach.

As discussed later, our setup is in many ways parallel to the weak instrument literature.

Given the nonstandard nature of the weak instrument problem, such similarity should not

be surprising. Because our objective is inference on a component of a parameter vector, our

approach can be compared to Kleibergen and Mavroeidis (2008) in its scope. Our paper is not

as ambitious as Andrews, Moreira and Stock (2006) in that we do not address optimality.

2 Dual Characterization and Alternative Hypothesis: An

Example

We consider a simple toy model involving moment inequalities to illustrate our proposal. As

was discussed in the introduction, our proposal consists of two elements. First, the null hypoth-

esis is “marginalized” so that it is given a “dual” characterization in terms of point identified

parameters. Second, the alternative hypothesis is explicitly spelled out. The alternative hy-

pothesis maintains that the specification is correct, i.e., there exists some value of the parameter

vector that satisfies the moment inequalities. We then marginalize the alternative hypothesis

such that it is also given a dual characterization in terms of point identified parameters. The

rationale behind these two steps is discussed later in Sections 2.3 and 2.4.

Our toy model has two parameters that satisfy the moment inequalities

E [X1 − θ1] ≤ 0, E [X2 − θ2] ≤ 0, and E [X3 − (θ1 + θ2)] ≥ 0. (1)

We are interested in testing θ1 = 0.
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2.1 Characterization of the null and alternative hypothesis in terms

of point identified parameters

We begin by discussing the first element of our proposal, i.e., the marginalization of the null

hypothesis. The marginalization step starts with a reformulation of the test as a test of a com-

posite null against a composite alternative hypothesis. In our toy example, the null hypothesis

θ1 = 0 is equivalent to the statement “The moment inequality (1) is satisfied with θ1 = 0.”

Therefore, the null is satisfied if and only if there exists some θ2 such that µ1 ≤ 0, µ2 ≤ θ2, and

µ3 ≥ θ2, where µj = E [Xj]. The test of θ1 = 0 can then be interpreted as a specification test,

i.e., a test of a null hypothesis that restricts the model parameters θ1, θ2 to a subset of the set

of parameters that satisfy (1).

Having translated the null into an equivalent specification test format, we next provide a

dual characterization in terms of point identified parameters. Recall that our specification test

was about the existence of some θ2 such that µ1 ≤ 0, µ2 ≤ θ2, and µ3 ≥ θ2. It is trivial to

recognize that such a θ2 exists if and only if µ2 ≤ µ3. In other words, our null hypothesis can

be written as

H0 : µ1 ≤ 0, µ2 ≤ µ3. (2)

Note that this dual characterization only involves the point identified parameters µ1, µ2, and

µ3.1

We now discuss the second element of our proposal, i.e., the explicit characterization of the

alternative hypothesis. The alternative hypothesis that we consider is that the model is correctly

specified, i.e., there exists a parameter vector (θ1, θ2) such that the moment inequalities (1) are

satisfied. It is easy to see that there exists such a vector (θ1, θ2) if and only if µ1 + µ2 ≤ µ3.

Therefore, our alternative hypothesis can be written

H1 : µ1 + µ2 ≤ µ3 but H0 is not satisfied. (3)

Note that the alternative hypothesis is expressed only in terms of point identified parameters

as well.

Let ω and Ω denote subsets of the parameter space of the point-identified parameter vector

(µ1, µ2, µ3), which without further restrictions is R3, such that ω is the collection of the param-

eter values that satisfy the null and Ω is the collection of the parameter values that satisfy the

null or the alternative. We can then write H0 : (µ1, µ2, µ3) ∈ ω and H1 : (µ1, µ2, µ3) ∈ Ω\ω
1In more complicated settings, Guggenberger, Hahn, and Kim (2008) provide a mathematical algorithm that

converts the specification statement into a dual characterization.
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with

ω = {(µ1, µ2, µ3) : µ1 ≤ 0, µ2 ≤ µ3}

Ω = {(µ1, µ2, µ3) : µ1 + µ2 ≤ µ3}

Standard tests, including the likelihood ratio (LR) test or Bayesian posterior odds, can be

employed to distinguish the two hypotheses. We do not take a particular stand on which test

should be adopted in practice. We anticipate that the LR test would probably be used more

often due to its familiarity to the profession. On the other hand, we note that the LR test may

not be admissible and optimality would require some version of a Bayesian procedure.

2.2 LR test

If the LR procedure is to be adopted, then the test statistic S takes the form

S = T 2
1 − T 2

2

where

T 2
1 = inf

t∈ω

[
n (µ̂− t)′ Σ̂−1 (µ̂− t)

]
, and T 2

2 = inf
t∈Ω

[
n (µ̂− t)′ Σ̂−1 (µ̂− t)

]
denote the squared distances of µ̂ to ω and Ω, respectively, where µ̂ = (µ̂1, µ̂2, µ̂3)′ denotes a
√
n-consistent estimator of µ = (µ1, µ2, µ3)′ and the distances are defined using a consistent

estimator Σ̂ of the asymptotic variance matrix Σ of µ̂. The critical value s for a given size α is

obtained by setting

sup
t∗∈ω

Pr

[
inf
t∈ω

(Z + t∗ − t)′Σ−1 (Z + t∗ − t)− inf
t∈Ω

(Z + t∗ − t)′Σ−1 (Z + t∗ − t) ≥ s

]
= α

where Z ∼ N (0,Σ). The maximization problem can be computationally intensive, and some

approximation seems unavoidable in practice. In Sections 3.1 and 3.2 we will see that the

maximization problem is relatively simple in the case of an interval identified parameter, because

the maximum can only occur in three points. The asymptotic justification of this procedure,

that will be discussed later, is deceptively simple.

2.3 Why a dual characterization of the null?

Why do we reformulate the null as a null hypothesis associated with a specification test, i.e., the

hypothesis that the parameter vector (θ1, θ2) is in a (strict) subset of the parameter space of the

model? It is because we would like to avoid forming a confidence interval on the component θ1
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by projecting the confidence region for (θ1, θ2). This is in principle possible, but it is expected

to produce a wide confidence interval. This problem is well-known. For example, in the linear

regression model yi = xi1β1 + · · · + xiKβK + εi with normal and homoscedastic error εi with

known variance, the confidence ellipsoid for or (β1, . . . , βK) is based on the χ2
K distribution,

and projection of this ellipsoid on the β1-axis does not produce the usual confidence interval

β̂1 ± 1.96 · se(β̂1). For instance if the covariates are orthogonal, then the projected confidence

interval is β̂1 ±
√
χ2(K).95 · se(β̂1) which is in general much wider than the usual one. On the

other hand, we obtain the usual confidence interval if we invert the specification test of the

hypothesis that both β1 = β10 and that there exists a parameter vector (β2, . . . , βK) such that

E



xi1
...

xiK

 (yi − (xi1β10 + xi2β2 + · · ·+ xiKβK))

 = 0.

In this case the nuisance parameters (β2, . . . , βK) are point identified and it is easily seen that if

we substitute the OLS estimators for these nuisance parameters, then the corresponding sample

moment condition is proportional to β̂1 − β10, so that we indeed obtain the usual confidence

interval if we invert the test statistic. The reformulation of the null θ1 = 0 as the specification

test null hypothesis “There exists some θ2 such that µ1 ≤ 0, µ2 ≤ θ2, and µ3 ≥ θ2” plays an

analogous role in the moment inequality setting.

2.4 Why an explicit characterization of the alternative?

Why do we provide an explicit characterization of the alternative hypothesis? It is again related

to the power of the test and, because the confidence interval is obtained by inverting the test,

the length of the confidence interval. This is probably best understood by an analogy to the

weak instrument literature. In the early days of the weak IV literature, it was suggested that the

confidence region for the structural parameters could be obtained by inverting the Anderson-

Rubin statistic (Staiger and Stock (1997)). It was quickly recognized that the Anderson-Rubin

statistic also has power against a violation of the overidentifying restrictions. This decreases the

power of the test that the structural parameters have some pre-specified value. Moreira (2003)

and Kleibergen (2005) suggested test statistics that did not suffer from this loss of power. This

improvement was based on a careful consideration of the alternative hypothesis. To be specific,

Moreira and Kleibergen considered the null hypothesis that the parameter vector is equal to

some pre-specified value, and the alternative that the data satisfy overidentifying restrictions.

By explicitly characterizing the alternative hypothesis, we expect to make analogous progress
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in the partial identification setting. The intuition is that if we do not explicitly characterize the

alternative, then the power function of the test statistic of the hypothesis that the structural

parameter has some pre-specified value is flatter than if we do specify the alternative properly.

Hence the test has lower power and will upon inversion give a wider confidence interval.

In the IV setting some alternative hypothesis has in fact been implicit even in the conven-

tional, i.e. without weak-instrument complications, case. Consider the linear regression model

with one endogenous covariate yi = xiβ+εi with εi independent of the instruments zi1, . . . , ziK .

Inversion of the usual test of H0 : β = β0 gives a confidence interval of the form β̂±1.96 · se(β̂1)

with 1.96 the square root of the upper 95% percentile of the χ2
1 distribution. The test of the

moment condition

E




zi1
...

ziK

 (yi − xiβ0)

 = 0

has asymptotically a χ2
K distribution under the null, but in practice, we use the χ2

1 distribution

because we subtract the test of the overidentifying restrictions from this test statistic. The use

of the χ2
1 (as opposed to χ2

K) distribution can be easily understood if we realize that we test

H0 :“β = β0 and the overidentifying restrictions are satisfied for some β ” against H1 :“β 6= β0

and the overidentifying restrictions are satisfied for some β”. Maintaining the hypothesis that

the overidentifying restrictions are satisfied yields a steeper power function and hence a more

powerful test of the hypothesis that the structural parameters have some pre-specified value

and for this reason this test is preferred in current econometric practice.

3 Application to an interval identified parameter

Although our approach can be applied in general moment inequality problems we will (re)consider

a special case, the interval identified parameter problem that was studied by Imbens and Man-

ski (2004). We show that the confidence interval obtained by inverting the LR test is similar

(but not identical) to the one proposed by Imbens and Manski, except that our confidence

interval overcomes the uniformity issue quite naturally. The uniformity problem in Imbens and

Manski (2004) arises when the left and right end points of the estimated and/or identified sets

are close to each other. Because of marginalization, our test is in terms of the point identified

parameters, i.e., the left and right end points. By controlling the “size” of the test, where the

size is defined as in Lehmann (1986), our approach deals with the uniformity problem directly.

In this particular problem we obtain a closed-form expression for the confidence interval.
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We consider the case that the parameter of interest θ satisfies the moment inequalities

E [X] ≤ θ ≤ E [Y ]

and we are interested in testing H0 : θ = θ0. Without loss of generality, we can set θ0 = 0.

Initially we assume that we have a single observation X, Y from a normal population with[
X

Y

]
∼ N

([
µX

µY

]
,

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

])
.

Our strategy is first to derive the LR test and the corresponding confidence interval for this

normal population. The final step is to show that in large samples we obtain the same test

and confidence intervals even if the population is not normal. By considering the finite sam-

ple inference problem and the asymptotic analysis separately, we can better understand the

fundamental issues of the hypothesis test of a composite null against a composite alternative.

3.1 Finite Sample Problem: ρ = 0, σ2
1 = σ2

2 = 1

We first consider the finite sample problem if ρ = 0 and σ2
1 = σ2

2 = 1. In that case the

expressions are simpler so that the conceptual issues are easier to understand.

3.1.1 Test Statistic and Rejection Probability

The point identified parameters are µX = E [X] and µY = E [Y ]. Implementation of our test

requires that we characterize ω and Ω, where ω is the collection of (µX , µY ) satisfying the null

and Ω is the collection of (µX , µY ) satisfying the null or the alternative. Obviously the null is

satisfied if and only if µX ≤ 0 ≤ µY , and therefore,

ω = {(µX , µY ) : µX ≤ 0 ≤ µY } .

The model is correctly specified if and only if there exists some θ such that µX ≤ θ ≤ µY , which

is equivalent to µX ≤ µY . In other words,

Ω = {(µX , µY ) : µX ≤ µY } .

In order to test H0 : (µX , µY ) ∈ ω against H1 : (µX , µY ) ∈ Ω\ω, we consider the LR statistic

S = T 2
1 − T 2

2 (4)
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Figure 1: Rejection regions S > s2 and T 2
1 > s2

where T1 denotes the (Euclidean) distance from (X, Y ) to ω, and T2 denotes the distance (X, Y )

to Ω. In other words,

T 2
1 =


0 if X ≤ 0 ≤ Y

X2 if X > 0 and Y > 0

X2 + Y 2 if X > 0 and Y < 0

Y 2 if X ≤ 0 and Y < 0

and

T 2
2 =

{
0 if X ≤ Y

(X−Y )2

2
if X > Y

The LR test rejects H0 in favor of H1 if S exceeds a critical value s2. The rejection region is

drawn in Figure 1. Note the difference between the rejection regions S > s2 and T 2
1 > s2 where

the latter test also rejects if the model is misspecified.

Because the null is a composite hypothesis, the critical value s2 is such that the supremum

of the probability Pr (S > s2) of the Type I error over ω is equal to a prespecified value, i.e.,
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the size (Lehmann (1986)). The probability Pr (S > s2) depends on (µX , µY ) and is equal to

Pr(S > s2) = Φ(−s− µX)Φ(−s− µY ) +

∫ 0

−s
Φ(−x−

√
2
√
x2 + s2 − µY )φ(x− µX)dx+ (5)∫ ∞

0

Φ(−
√

2s− x− µY )φ(x− µX)dx+ Φ(−s+ µX)Φ(−s+ µY )+∫ s

0

Φ(y −
√

2
√
y2 + s2 + µX)φ(y − µY )dx+

∫ 0

−∞
Φ(−
√

2s+ y + µX)φ(y − µY )dx

Note that the rejection region is symmetric with respect to Y = −X and therefore if µY = −µX
the first three terms are equal to the corresponding second three terms.

3.1.2 Least Favorable Parameter Values and Critical Value

The rejection probability as a function of (µX , µY ) can be computed either by simulation or

by computing the integral in (5) numerically.2 We plot these rejection probabilities both as a

function of (µX , µY ) on µX < 0 < µY and as a function of µY > 0 for µX = 0. In Appendix A

we show that the probability of rejection cannot be maximal in a point of the interior of ω for

any s2, so that the maximal rejection probability is always attained on this section (or on the

identical section with µY = 0 and µX < 0). Therefore the latter graph shows what the value of

the maximal rejection probability is and where it is attained.

The most unfavorable (µX , µY ) switches depending on the critical value s2. For values

s2 ≤ 1.1284, the most unfavorable combination is at (0, 0) but for s2 > 1.1284, the most

unfavorable pair is at µX = −∞ or µY = ∞ and the other mean equal to 0. Because the

type I error is equal to .1441 if s2 = 1.1284 the latter is the relevant maximum at conventional

significance levels. The maximal rejection probability is .05 if s2 = 1.6452 = 2.7060.

The intuition behind this critical value derives from the limit of the test statistic if µX = 0

and µY → ∞. Write (X, Y ) = (µX + U, µY + V ), where (U, V )′ ∼ N (0, I2). Combining the

representation

S = U21 (U > 0) + (µY + V )2 1 (µY + V < 0)− (U − V − µY )2

2
1 (U − V − µY > 0)

with the fact that

Pr
(
(µY + V )2 1 (µY + V < 0) 6= 0

)
≤ Pr (µY + V < 0) = Pr (V < −µY )→ 0

Pr

(
(U − V − µY )2

2
1 (U − V − µY > 0) 6= 0

)
≤ Pr (U − V − µY > 0) = Pr (U − V > µY )→ 0

2The simulation results (available from the authors) agree with the results of the numerical integration which

is reassuring since in more complicated cases simulation may be the only viable method to compute the rejection

probabilities.
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we conclude that S converges in probability to U21 (U > 0) ∼ 1
2
χ2

0 + 1
2
χ2

1. This confirms that

1.6452 is indeed the critical value for 5% size. Note that this approximation is relevant for all

sizes up to 14.41%. By symmetry the same result obtains if µY = 0 and µX → −∞.

3.1.3 Confidence Interval

With the conclusion that 1.6452 is the critical value for 5% test, we turn to the problem of

constructing a confidence interval by inverting the LR test. The confidence interval will contain

values of θ0 that are not rejected by the LR test of H0 : µX ≤ θ0 ≤ µY . Because the null can

be equivalently written as H0 : µX − θ0 ≤ 0 ≤ µY − θ0, the test can be expressed in terms of

X − θ0 and Y − θ0. Replacing (X, Y ) by (X − θ0, Y − θ0) in (4) we find the confidence interval

(see Appendix B for details):

1. If X < Y , then

θ0 ∈ (X − 1.645, Y + 1.645) (6)

2. If X > Y , and X − Y ≤ 1.645
√

2, then

θ0 ∈

X −
√

1.6452 +
(X − Y )2

2
, Y +

√
1.6452 +

(X − Y )2

2

 (7)

3. If X > Y , and X − Y > 1.645
√

2, then

θ0 ∈
(
X + Y

2
− 1.645√

2
,
X + Y

2
+

1.645√
2

)
(8)

Our confidence interval is given by the above three expressions. Examination of (6) reveals

that our confidence interval is identical to Imbens and Manski’s (2004) if X < Y , although it

differs when X > Y .

3.2 Finite Sample Problem: General Case

Imbens and Manski obtained the confidence interval for an interval identified parameter for the

case that the bounds (X, Y )′ have an unrestricted variance matrix

Σ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
(9)

The expressions for the confidence interval are more complicated in this case as is the calculation

of the least favorable alternative and the critical value. However the approach is the same as in
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Section 3.1 and for that reason we give the expressions in Appendix C and only discuss some

features of the results in Appendix C. The first difference with the results for the independent

standard normal case is that the test statistic, least favorable alternative, critical value and

confidence interval depend on the values of ρ, σ1, σ2. We distinguish between four cases:

(i) Positive correlation and variances of same order: ρ ≥ 0 and ρ ≤ σ1

σ2
< 1

ρ

(ii) Positive correlation and variance of X larger: ρ ≥ 0 and σ1

σ2
≥ 1

ρ

(iii) Positive correlation and variance of Y larger: ρ ≥ 0 and σ1

σ2
< ρ

(iv) Negative correlation: ρ < 0

The rejection regions for cases (ii) and (iii) are not convex. As in Section 3.1 we obtain

expressions for the rejection probabilities as a function of µX , µY and these expressions involve

a one dimensional integral that must be computed numerically. By numerical calculation we

find that the rejection probability is maximal if µX = −∞, µY = 0, if µX = 0, µY = ∞ or if

µX = 0, µY = 0. In the first case

S
p→ 1(V > 0)

V 2

σ2
2

with U ∼ N(0, σ2
1) and in the second case

S
p→ 1(U > 0)

U2

σ2
1

with V ∼ N(0, σ2
2). This implies that for these least favorable alternatives the 5% critical

value is 1.6452. In the independent standard normal case the least favorable alternative is

µX = 0, µY = 0 only for values of s2 that are so small that the type I error is much larger than the

conventional values. In case (i) defined above the least favorable alternative is µX = 0, µY = 0

for small s2, but also if ρ is close to σ1

σ2
or to σ2

σ1
. Because if ρ = σ1

σ2
or if ρ = σ2

σ1
, the maximum is

at µX = 0, µY = 0, we find that in cases (ii) and (iii) the maximum is always at µX = 0, µY = 0.

In case (iv) the maximum is always at either µX = 0, µY = ∞ or µX = −∞, µY = 0. If the

least favorable alternative is µX = 0, µY = 0 we find the critical value for a particular value

of the type I error numerically. If σ1 = σ2 and ρ ↑ 1, then if the type I error is 5% then

s2 ↑ 1.962. Note that in this limit X and Y are the same with probability 1 and therefore θ is

point identified with estimator X ≡ Y , so that 1.962 is relevant critical value. Hence if we are

close to the point identified case the critical value approaches that for the point identified case.

If the type I error is .05 or equivalently the coverage probability of the confidence interval

is .95, then for case (i) we compute first Pr(S > s2) for µX = 0, µY = 0. If this probability is

12



less than .05 then the critical value s2 = 1.6452. If it is larger than .05 then the least favorable

alternative is µX = 0, µY = 0 and we compute the critical value numerically. In cases (ii) and

(iii) we always use a critical value computed by numerical integration.

The expressions for the confidence interval are a direct generalization of the expressions for

the independent standard normal case. They have a closed form expression and can be easily

used in applications. The confidence interval is the same as that of Imbens and Manski (2004)

if the estimated lower bound is smaller than the estimated upper bound. In all other cases our

confidence interval differs from theirs. If the estimate of the lower bound is not much larger

than the estimate of the upper bound the usual confidence interval is adjusted with the size of

the adjustment dependent on Y −X. If the estimate of the lower bound is much larger than the

estimate of the upper bound, the endpoints of the confidence interval are a convex combination

of the lower and upper bounds with a constant subtracted and added, respectively.

4 Asymptotics

We have derived the confidence interval for the case that we have a single draw from a bivariate

normal distribution. Now suppose that our data are a random sample Zi ≡ (Xi, Yi) , i = 1, . . . , n

from a distribution with c.d.f. F . The means of X, Y are denoted by µX , µY and their variance

matrix by Σ. Let µ ≡ (µX , µY ). As before θ0 = 0 without loss of generality. Our LR test

statistic is now S = n (T 2
1 − T 2

2 ), where T1 denotes the (Euclidean) distance from the sample

means
(
X,Y

)
to ω, and T2 denotes the distance of

(
X,Y

)
to Ω. The critical region is denoted by

C and we reject the null hypothesis in favor of the alternative if and only if
(√

nX,
√
nY
)
∈ C.

We first consider the case that X, Y are uncorrelated and have variances equal to 1. In that

case the set C is convex as shown in Figure 1. We have to show that

lim
n→∞

sup
µ∈ω

Pr
((√

nX,
√
nY
)
∈ C

)
= sup

µ∈ω
Pr (Z ∈ C − µ) (10)

where Z ∼ N (0, I2) denotes the limiting standard normal random vector. First we observe

that because µ ∈ ω if and only if
√
nµ ∈ ω we have

sup
µ∈ω

Pr
((√

nX,
√
nY
)
∈ C

)
= sup√

nµ∈ω
Pr
((√

n(X − µX),
√
n(Y − µY )

)
∈ C −

√
nµ
)

=

sup
µ∈ω

Pr
((√

n(X − µX),
√
n(Y − µY )

)
∈ C − µ

)
In the uncorrelated and variance 1 case (Figure 1) the sets C − µ are convex for all µ ∈ ω. By

the triangle inequality

sup
µ∈ω

Pr (Z ∈ C − µ)− inf
µ∈ω
|Pr

((√
n(X − µX),

√
n(Y − µY )

)
∈ C − µ

)
− Pr (Z ∈ C − µ) | ≤

13



sup
µ∈ω

Pr
((√

nX,
√
nY
)
∈ C

)
≤

sup
µ∈ω

Pr (Z ∈ C − µ) + sup
µ∈ω
|Pr

((√
n(X − µX),

√
n(Y − µY )

)
∈ C − µ

)
− Pr (Z ∈ C − µ) |

The Berry-Esseen theorem in Götze (1991)3 implies that because the sets C − µ are convex for

all µ ∈ ω

sup
µ∈ω
|Pr

((√
n(X − µX),

√
n(Y − µY )

)
∈ C − µ

)
− Pr (Z ∈ C − µ) | ≤ Cn−1/2

so that (10) holds. The condition for this result is that

sup
µ∈ω

E(|Z|3) <∞

This is stronger than in Götze’s original result, because we consider a set of population proba-

bility distributions indexed by µ.

In the case that X, Y are correlated and have arbitrary variances, we transform X, Y to the

uncorrelated variables X∗, Y ∗ that have variance 1, i.e.(
X∗

Y ∗

)
= Σ−1/2

(
X

Y

) (
µX∗

µY ∗

)
= Σ−1/2

(
µX

µY

)

Note that the transformed ω∗ is such that µ∗ = (µX∗ , µY ∗) ∈ ω∗ if and only if
√
nµ∗ ∈ ω∗. If

X, Y have positive correlation and variances of same order, i.e. ρ ≥ 0 and ρ ≤ σ1

σ2
< 1

ρ
or if

they are correlated negatively, then the transformed critical set is convex (see Appendix D), so

that we can apply the same Berry-Esseen result from Götze (1991). In the two other cases the

critical region is the union of a convex set C∗1 and a disjoint set C∗2 that has a complement that

is convex. In those cases we compute the maximal rejection probability as

sup
µ∗∈ω∗

Pr
((√

nX∗,
√
nY ∗

)
∈ C∗1

)
+ sup

µ∗∈ω∗
Pr
((√

nX∗,
√
nY ∗

)
∈ C∗2

)
The first probability is approximated as before and for the second we have

sup
µ∗∈ω∗

Pr (Z ∈ C∗2 − µ)− inf
µ∗∈ω∗

|Pr
((√

n(X∗ − µX∗),
√
n(Y ∗ − µY ∗)

)
∈ C∗c2 − µ∗

)
−Pr (Z ∈ C∗c2 − µ∗) | ≤

sup
µ∗∈ω∗

Pr
((√

nX∗,
√
nY ∗

)
∈ C∗2

)
≤

sup
µ∗∈ω∗

Pr (Z ∈ C∗2 − µ∗)+ sup
µ∗∈ω∗

|Pr
((√

n(X∗ − µX∗),
√
n(Y ∗ − µY ∗)

)
∈ C∗c2 − µ

)
−Pr (Z ∈ C∗c2 − µ∗) |

3See expression (1.5) below his Theorem 1.3.
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Because C∗c2 − µ∗ is convex for all µ∗ ∈ ω∗ the result follows.

If Σ is estimated, the critical region shown in Figure 6 depends on estimated parameters.

If we denote the critical region for given Σ by C and with estimates substituted by Ĉ, then we

need to show that

lim
n→∞

sup
µ∈ω

∣∣∣Pr
((√

nX,
√
nY
)
∈ Ĉ

)
− Pr

((√
nX,
√
nY
)
∈ C

)∣∣∣ = 0

We have if we denote `n =
(√

n(X − µX),
√
n(Y − µY )

)
and `∗n =

(√
n(X∗ − µX∗),

√
n(Y ∗ − µY ∗)

)
sup
µ∈ω

∣∣∣Pr
((√

nX,
√
nY
)
∈ Ĉ

)
− Pr

((√
nX,
√
nY
)
∈ C

)∣∣∣ =

sup
µ∗∈ω∗

∣∣∣Pr
(
`∗n ∈ Σ−1/2Ĉ − µ∗

)
− Pr

(
`∗n ∈ Σ−1/2C − µ∗

)∣∣∣ ≤
sup
µ∗∈ω∗

∣∣∣Pr
(
`∗n ∈ Σ−1/2Ĉ − µ∗

)
− Pr

(
Z ∈ Σ−1/2Ĉ − µ∗

)∣∣∣+
sup
µ∗∈ω∗

∣∣Pr
(
`∗n ∈ Σ−1/2C − µ∗

)
− Pr

(
Z ∈ Σ−1/2C − µ∗

)∣∣+
sup
µ∗∈ω∗

∣∣∣Pr
(
Z ∈ Σ−1/2Ĉ − µ∗

)
− Pr

(
Z ∈ Σ−1/2C − µ∗

)∣∣∣
Because as is shown in Appendix D both Σ−1/2C − µ∗ and Σ−1/2Ĉ − µ∗ are convex sets for

all µ∗ ∈ ω∗ Götze (1991) implies that the first two terms in the upper bound converge to 0.4

Because Pr
(
Z ∈ Σ−1/2Ĉ − µ∗

)
is a continuous and bounded function of Σ̂ and µ∗, the final

term converges to 0 as well

5 Summary

In this paper, we propose a new method of inference for one component of a parameter vector

characterized by moment inequalities. We translate the null hypothesis into a specification

statement, which is in turn translated into a dual characterization involving only point identified

parameters. We also state the alternative hypothesis explicitly, which is likewise given a dual

characterization. Our innovation is to recognize the equivalent characterization involving only

point identified parameters, which obviates many conceptual hurdles in the existing literature.

We illustrate our procedure using the example in Imbens and Manski (2004), in which it is

revealed that our procedure has a built-in protection against possible violations of uniformity.

4Because Götze’s result is uniform the fact that the sets depend on estimated parameters does not matter.
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Figure 2: Rejection probability Pr(S > .5);σ1 = 1, σ2 = 1, ρ = 0
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Figure 3: Rejection probability Pr(S > 1.1284);σ1 = 1, σ2 = 1, ρ = 0
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Figure 4: Rejection probability Pr(S > 2.7060); σ1 = 1, σ2 = 1, ρ = 0

21



Figure 5: Rejection probability Pr(S > 3);σ1 = 1, σ2 = 1, ρ = 0

22



Figure 6: Critical region S > s2 for case (i)
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Figure 7: Rejection probability Pr(S > 2.7060); σ1 = 1, σ2 = 2, ρ = .25
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Appendix

A Characterization of the Most Unfavorable (µX , µY ) for

Independent Standard Normal X, Y

We show that Pr (S > s2), viewed as a function of (µX , µY ), cannot achieve its maximum in

the interior of the null set. Let

u1 =
z2 − z1√

σ2
1 + σ2

2 − 2ρσ1σ2

u2 =
σ2 − ρσ1√

1− ρ2
√
σ2

1 + σ2
2 − 2ρσ1σ2

(
z1

σ1

+
σ1 − ρσ2

σ2 − ρσ1

z2

σ2

)
and note that the critical region can be characterized in terms of (u1, u2) in the form

{u1 ≤ ψ (u2) , |u2| ≥ s}

for some function ψ (u2), which implicitly depends on s. For example, when Σ = I,

ψ (u2) =


|u2| −

√
2s if |u2| ≥

√
2s

− |u2|+
√

2
√
u2

2 − s2 if s ≤ |u2| ≤
√

2s

−∞ if |u2| < s

Now, we evaluate the probability of rejection in terms of

U1 =
Y −X√

σ2
1 + σ2

2 − 2ρσ1σ2

U2 =
σ2 − ρσ1√

1− ρ2
√
σ2

1 + σ2
2 − 2ρσ1σ2

(
X

σ1

+
σ1 − ρσ2

σ2 − ρσ1

Y

σ2

)
We note that [

U1

U2

]
∼ N


 µY −µX√

σ2
1+σ2

2−2ρσ1σ2

(σ2−ρσ1)
µX
σ1

+(σ1−ρσ2)
µY
σ2√

1−ρ2
√
σ2
1+σ2

2−2ρσ1σ2

 ,[ 1 0

0 1

]
We may therefore write that

Pr
(
S > s2

)
= Pr [u1 ≤ ψ (u2) , |u2| ≥ s]

=

∫
Φ

(
ψ (u2)− µY − µX√

σ2
1 + σ2

2 − 2ρσ1σ2

)
φ

(
u2 −

(σ2 − ρσ1) µX
σ1

+ (σ1 − ρσ2) µY
σ2√

1− ρ2
√
σ2

1 + σ2
2 − 2ρσ1σ2

)
du2,

where Φ and φ are CDF and PDF of N (0, 1).
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We now consider the maximization problem

max
µX ,µY

Pr
(
S > s2

)
subject to

(σ2 − ρσ1) µX
σ1

+ (σ1 − ρσ2) µY
σ2√

1− ρ2
√
σ2

1 + σ2
2 − 2ρσ1σ2

= c, µX ≤ 0, µY ≥ 0.

For any given c, the maximization is equivalent to minimization of µY − µX , and the solution

always exists on the boundary of the null set ω. Therefore, Pr (S > s2), viewed as a function

of (µX , µY ), cannot achieve its maximum in the interior of the null set.

B Details of Confidence Interval

The confidence interval can be obtained by inverting the test statistic. Because the critical

value is 1.6452, we can see that the test does not reject for the following cases:

1. X ≤ θ0 ≤ Y

2. (X − θ0)2 ≤ 1.6452 if Y > X > θ0

3. (Y − θ0)2 ≤ 1.6452 if X < Y ≤ θ0

4. (X − θ0)2 − (X−Y )2

2
≤ 1.6452 if X > Y > θ0

5. (X − θ0)2 + (Y − θ0)2 − (X−Y )2

2
≤ 1.6452 if X > θ0 and Y < θ0

6. (Y − θ0)2 − (X−Y )2

2
≤ 1.6452 if Y < X ≤ θ0

Combining Cases 1-3, we note that, if X < Y , the test does not reject for

θ0 ∈ (X − 1.645, Y + 1.645) .

From Cases 4 and 6 , we can see that, if X > Y , and X − Y ≤ 1.645
√

2, the test does not

reject for

θ0 ∈

X −
√

1.6452 +
(X − Y )2

2
, Y +

√
1.6452 +

(X − Y )2

2

 .

From Case 6, we can see that, if X > Y , and X − Y > 1.645
√

2, the test does not reject for

θ0 ∈
(
X + Y

2
− 1.645√

2
,
X + Y

2
+

1.645√
2

)
.
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C The General Case with an Unrestricted Variance Ma-

trix

C.0.1 Test statistic and rejection probability

The test statistic depends on the values of ρ, σ1, σ2. Here we only consider the case of a positive

correlation and variances of the same order5 : ρ ≥ 0 and ρ ≤ σ1

σ2
< 1

ρ

S = 0 X ≤ 0, Y ≥ 0

= 1
σ2
1
X2 X > 0, Y > X

= 1
σ2
1
X2 − 1

σ2
2

(
1+

σ2
1
σ2
2
−2ρ

σ1
σ2

) (Y −X)2 X > 0, ρσ2

σ1
X < Y ≤ X

=

((
σ2
σ1
−ρ
)
X+

(
σ1
σ2
−ρ
)
Y
)2

(1−ρ2)(σ2
1+σ2

2−2ρσ1σ2)
X ≥ 0, Y ≤ ρσ2

σ1
X or X < 0, Y < 1

ρ
σ2

σ1
X

= 1
σ2
2
Y 2 − 1

σ2
2

(
1+

σ2
1
σ2
2
−2ρ

σ1
σ2

)(Y −X)2 X < 0, 1
ρ
σ2

σ1
X ≤ Y < X

= 1
σ2
2
Y 2 X ≤ Y < 0

The rejection region S > s2 is drawn in Figure 6. The rejection probability as a function of

µX , µY is

Pr(S > s2) =

∫ √√√√1+
σ2
1
σ2
2

−2ρ
σ1
σ2

√
1−ρ2

σ1s

σ1s

1− Φ

x−
√

1 +
σ2
2

σ2
1
− 2ρσ2

σ1

√
x2 − σ2

1s
2 − µY − ρσ2

σ1
(x− µX)

σ2

√
1− ρ2

φ(x− µX
σ1

)
dx+

∫ ∞√√√√1+
σ2
1
σ2
2

−2ρ
σ1
σ2

√
1−ρ2

σ1s

1− Φ

−
σ2
σ1
−ρ

σ1
σ2
−ρx+

√
σ2
1+σ2

2−2ρσ1σ2

√
1−ρ2

σ1
σ2
−ρ s− µY − ρσ2

σ1
(x− µX)

σ2

√
1− ρ2


φ(x− µXσ1

)
dx+

∫ −σ2s

−

√√√√1+
σ2
2
σ2
1

−2ρ
σ2
σ1

√
1−ρ2

σ2s

Φ

y +
√

1 +
σ2
1

σ2
2
− 2ρσ1

σ2

√
y2 − σ2

2s
2 − µX − ρσ1

σ2
(y − µY )

σ1

√
1− ρ2

φ

(
y − µY
σ2

)
dy+

∫ −
√√√√1+

σ2
2
σ2
1

−2ρ
σ2
σ1

√
1−ρ2

σ2s

−∞
Φ

−
σ1
σ2
−ρ

σ2
σ1
−ρy −

√
σ2
1+σ2

2−2ρσ1σ2

√
1−ρ2

σ2
σ1
−ρ s− µX − ρσ1

σ2
(y − µY )

σ1

√
1− ρ2

φ

(
y − µY
σ2

)
dy

5The results for the other cases can be obtained from the authors.
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C.0.2 Least favorable parameter values and critical value

The rejection probability is maximal if either µX = 0, µY = ∞, µX = −∞, µY = 0 or µX =

0, µY = 0. In the first two cases, because for U = X − µX , V = Y − µY and all c

lim
µX→−∞

Pr(X ≥ cV ) = lim
µX→−∞

Pr(U ≥ cV − µX) = 0

lim
µY→∞

Pr(Y ≤ cU) = lim
µY→∞

Pr(V ≤ cU − µY ) = 0

we have that in all four cases S converges in probability to 1(U > 0)U
2

σ2
1

or to 1(V > 0)V
2

σ2
2
.

These two random variables have identical distributions so that the rejection probability is the

same if either µX = 0, µY =∞ or µX = −∞, µY = 0. As in Section 3.1.2 the 5% critical value

is 1.6452 if the maximal rejection probability is at these values. In case (i) the maximum is at

µX = 0, µY = 0 if either s2 is sufficiently small or ρ is close to either σ1

σ2
or to σ2

σ1
. If σ1 ≈ σ2 this

occurs only if ρ is close to 1. Because if ρ = σ1

σ2
or if ρ = σ2

σ1
, the maximum is at µX = 0, µY = 0,

we find that in cases (ii) and (iii) the maximum is always at µX = 0, µY = 0. In case (iv) the

maximum is always at either µX = 0, µY = ∞ or µX = −∞, µY = 0. The figures 10-14 show

the rejection probability for selected values of ρ, σ1, σ2 and s2 = 1.6452.

Therefore the computation of the 5% critical value if ρ ≥ 0 and ρ ≤ σ1

σ2
< 1

ρ
is as follows

(the procedure is the same for all conventional significance levels). Compute the value of s2

that satisfies

Pr(S > s2) =

∫ √√√√1+
σ2
1
σ2
2

−2ρ
σ1
σ2

√
1−ρ2

σ1s

σ1s

1− Φ

x−
√

1 +
σ2
2

σ2
1
− 2ρσ2

σ1

√
x2 − σ2

1s
2 − ρσ2

σ1
x

σ2

√
1− ρ2

φ( x

σ1

)
dx+

∫ ∞√√√√1+
σ2
1
σ2
2

−2ρ
σ1
σ2

√
1−ρ2

σ1s

1− Φ

−
σ2
σ1
−ρ

σ1
σ2
−ρx+

√
σ2
1+σ2

2−2ρσ1σ2

√
1−ρ2

σ1
σ2
−ρ s− ρσ2

σ1
x

σ2

√
1− ρ2


φ( x

σ1

)
dx+

∫ −σ2s

−

√√√√1+
σ2
2
σ2
1

−2ρ
σ2
σ1

√
1−ρ2

σ2s

Φ

y +
√

1 +
σ2
1

σ2
2
− 2ρσ1

σ2

√
y2 − σ2

2s
2 − ρσ1

σ2
(y)

σ1

√
1− ρ2

φ

(
y

σ2

)
dy+

∫ −
√√√√1+

σ2
2
σ2
1

−2ρ
σ2
σ1

√
1−ρ2

σ2s

−∞
Φ

−
σ1
σ2
−ρ

σ2
σ1
−ρy −

√
σ2
1+σ2

2−2ρσ1σ2

√
1−ρ2

σ2
σ1
−ρ s− µX − ρσ1

σ2
y

σ1

√
1− ρ2

φ

(
y

σ2

)
dy = .05

The critical value is min{s2, 1.6452}.
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C.0.3 Confidence interval

If we take s2 as in Section 3.2.2 the 95% confidence interval if ρ ≥ 0, ρ ≤ σ1

σ2
< 1

ρ
or ρ < 0 is

given by:

If σ1

σ2
≥ σ2

σ1

X − σ1s ≤ θ ≤ Y + σ2s if Y −X ≥ 0

X − σ1

√
s2 +

(Y −X)2

σ2
1 − 2ρσ1σ2 + σ2

2

≤ θ ≤ Y + σ2

√
s2 +

(Y −X)2

σ2
1 + σ2

2 − 2ρσ1σ2

if −s
σ2

σ1
− ρ√

1− ρ2

√
σ2

1 − 2ρσ1σ2 + σ2
2 ≤ Y −X < 0

X − σ1

√
s2 +

(Y −X)2

σ2
1 − 2ρσ1σ2 + σ2

2

≤ θ

≤ σ2
2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

X +
σ2

1 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

Y + sσ1σ2

√
1− ρ2√

σ2
1 − 2ρσ1σ2 + σ2

2

if −s
σ1

σ2
− ρ√

1− ρ2

√
σ2

1 − 2ρσ1σ2 + σ2
2 ≤ t < −s

σ2

σ1
− ρ√

1− ρ2

√
σ2

1 − 2ρσ1σ2 + σ2
2

σ2
2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

X +
σ2

1 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

Y − sσ1σ2

√
1− ρ2√

σ2
1 − 2ρσ1σ2 + σ2

2

≤ θ

≤ σ2
2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

X +
σ2

1 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

Y + sσ1σ2

√
1− ρ2√

σ2
1 − 2ρσ1σ2 + σ2

2

if Y −X < −s
σ1

σ2
− ρ√

1− ρ2

√
σ2

1 − 2ρσ1σ2 + σ2
2

If σ1

σ2
< σ2

σ1

X − σ1s ≤ θ ≤ Y + σ2s if Y −X ≥ 0

X − σ1

√
s2 +

(Y −X)2

σ2
1 − 2ρσ1σ2 + σ2

2

≤ θ ≤ Y + σ2

√
s2 +

(Y −X)2

σ2
1 + σ2

2 − 2ρσ1σ2

if −s
σ2

σ1
− ρ√

1− ρ2

√
σ2

1 − 2ρσ1σ2 + σ2
2 ≤ Y −X < 0
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σ2
2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

X +
σ2

1 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

Y − sσ1σ2

√
1− ρ2√

σ2
1 − 2ρσ1σ2 + σ2

2

≤ θ

≤ Y + σ2

√
s2 +

(Y −X)2

σ2
1 + σ2

2 − 2ρσ1σ2

if −s
σ2

σ1
− ρ√

1− ρ2

√
σ2

1 − 2ρσ1σ2 + σ2
2 ≤ t < −s

σ1

σ2
− ρ√

1− ρ2

√
σ2

1 − 2ρσ1σ2 + σ2
2

σ2
2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

X +
σ2

1 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

Y − sσ1σ2

√
1− ρ2√

σ2
1 − 2ρσ1σ2 + σ2

2

≤ θ

≤ σ2
2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

X +
σ2

1 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

Y + sσ1σ2

√
1− ρ2√

σ2
1 − 2ρσ1σ2 + σ2

2

if Y −X < −s
σ1

σ2
− ρ√

1− ρ2

√
σ2

1 − 2ρσ1σ2 + σ2
2

D Asymptotics

D.1 Critical Region for X∗, Y ∗ for known Σ

We only give the region for case (i): ρ ≥ 0 and ρ ≤ σ1

σ2
< 1

ρ
. The region is the union of two

disjoint sets Σ−1/2C1 and Σ−1/2C2. The set Σ−1/2C1 is

Y ∗ >
σ1
σ2
−ρ√

1−ρ2
X∗ −

√
σ2
1+σ2

2−2ρσ1σ2

σ2

√
1−ρ2

√
X∗2 − s2 s < X∗ ≤

√
σ2
1+σ2

2−2ρσ1σ2

σ2

√
1−ρ2

s

Y ∗ > −
√

1−ρ2
σ1
σ2
−ρ X

∗ +

√
1+

σ2
1
σ2
2
−2ρ

σ1
σ2

σ1
σ2
−ρ s X∗ >

√
σ2
1+σ2

2−2ρσ1σ2

σ2

√
1−ρ2

s

and the set Σ−1/2C2

X∗ <
σ2
σ1
−ρ√

1−ρ2
Y ∗ +

√
σ2
1+σ2

2−2ρσ1σ2

σ1

√
1−ρ2

√
Y ∗2 − s2 −

√
σ2
1+σ2

2−2ρσ1σ2

σ1

√
1−ρ2

s < Y ∗ ≤ −s

X∗ < −
σ1
σ2
−ρ√

1−ρ2
Y ∗ −

√
1+

σ2
1
σ2
2
−2ρ

σ1
σ2√

1−ρ2
s Y ∗ < −

√
σ2
1+σ2

2−2ρσ1σ2

σ1

√
1−ρ2

s

Because for s < X∗ ≤
√
σ2
1+σ2

2−2ρσ1σ2

σ2

√
1−ρ2

s the function

g(X∗) =
σ1

σ2
− ρ√

1− ρ2
X∗ −

√
σ2

1 + σ2
2 − 2ρσ1σ2

σ2

√
1− ρ2

√
X∗2 − s2
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has g′(X∗) < 0 and g′′(X∗) > 0, the set Σ−1/2C1 is convex. Because for −
√
σ2
1+σ2

2−2ρσ1σ2

σ1

√
1−ρ2

s <

Y ∗ ≤ −s the function

h(Y ∗) =
σ2

σ1
− ρ√

1− ρ2
Y ∗ +

√
σ2

1 + σ2
2 − 2ρσ1σ2

σ1

√
1− ρ2

√
Y ∗2 − s2

has h′(Y ∗) < 0 and h′′(Y ∗) < 0, the set Σ−1/2C2 is also convex.

D.2 Critical Region for X∗, Y ∗ for estimated Σ

We only give the region for case (i): ρ̂ ≥ 0 and ρ̂ ≤ σ̂1

σ̂2
< 1

ρ̂
. The region is the union of two

disjoint sets Σ−1/2Ĉ1 and Σ−1/2Ĉ2. The set Σ−1/2Ĉ1 is

Y ∗ >
σ1
σ2
−ρ√

1−ρ2
X∗ − σ1

σ̂1
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1+σ̂2

2−2ρ̂σ̂1σ̂2

σ2
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√
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1

σ2
1
s2 σ̂1

σ1
s < X∗ ≤

√
σ̂2
1+σ̂2

2−2ρ̂σ̂1σ̂2

σ̂2

√
1−ρ̂2

σ̂1

σ1
s

Y ∗ > −
(
σ̂2
σ̂1
−ρ̂
)
σ1+

(
σ̂1
σ̂2
−ρ̂
)
ρσ2(

σ̂1
σ̂2
−ρ̂
)
σ2

√
1−ρ2

X∗ +

√
σ̂2
1+σ̂2

2−2ρ̂σ̂1σ̂2

σ2

√
1−ρ2

(
σ̂1
σ̂2
−ρ
)s X∗ >

√
σ̂2
1+σ̂2

2−2ρ̂σ̂1σ̂2

σ̂2

√
1−ρ̂2

σ̂1

σ1
s

and the set Σ−1/2Ĉ2

X∗ <
σ2
σ1
−ρ√

1−ρ2
Y ∗ + σ2

σ̂2

√
σ̂2
1+σ̂2

2−2ρ̂σ̂1σ̂2

σ1

√
1−ρ2

√
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2

σ2
2
s2 −

√
σ̂2
1+σ̂2

2−2ρ̂σ̂1σ̂2

σ̂1

√
1−ρ̂2

σ̂2

σ2
s < Y ∗ ≤ − σ̂2

σ2
s
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(
σ̂1
σ̂2
−ρ̂
)
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(
σ̂2
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−ρ̂
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σ̂1

√
1−ρ̂2

σ̂2

σ2
s

Because for σ̂1

σ1
s < X∗ ≤

√
σ̂2
1+σ̂2

2−2ρ̂σ̂1σ̂2

σ̂2

√
1−ρ̂2

σ̂1

σ1
s the function

g(X∗) =
σ1

σ2
− ρ√

1− ρ2
X∗ − σ1

σ̂1

√
σ̂2

1 + σ̂2
2 − 2ρ̂σ̂1σ̂2

σ2

√
1− ρ2

√
X∗2 − σ̂2

1

σ2
1

s2

has g′′(X∗) > 0 (the function can actually be increasing) , the set Σ−1/2Ĉ1 is convex, because

it is bounded by a vertical line at σ̂1

σ1
s, a convex function for σ̂1

σ1
s < X∗ ≤

√
σ̂2
1+σ̂2

2−2ρ̂σ̂1σ̂2

σ̂2

√
1−ρ̂2

σ̂1

σ1
s and

a straight line for X∗ >

√
σ̂2
1+σ̂2

2−2ρ̂σ̂1σ̂2

σ̂2

√
1−ρ̂2

σ̂1

σ1
s. Because for −

√
σ̂2
1+σ̂2

2−2ρ̂σ̂1σ̂2

σ̂1

√
1−ρ̂2

σ̂2

σ2
s < Y ∗ ≤ − σ̂2

σ2
s

h(Y ∗) =
σ2

σ1
− ρ√

1− ρ2
Y ∗ +

σ2

σ̂2

√
σ̂2

1 + σ̂2
2 − 2ρ̂σ̂1σ̂2

σ1

√
1− ρ2

√
Y ∗2 − σ̂2

2

σ2
2

s2

has h′′(Y ∗) < 0 (the function can be increasing) , the set Σ−1/2Ĉ2 is also convex using an

analogous argument as for Σ−1/2Ĉ1.
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