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1 Introduction

A sizable literature exists on the merits of combining forecasts obtained from different

models, reviewed by Clemen (1989), Stock and Watson (2004), and, more recently, by

Timmermann (2006). Bayesian and equal weighted forecast combinations are being used

increasingly in macroeconomics and finance to good effects. In this literature, the different

forecasts are typically obtained by estimating a number of alternative models over the

same sample period. Pesaran and Timmermann (2007) argue that the forecast averaging

procedure can be extended to deal with other types of model uncertainty, such as the

uncertainty over the size of the estimation window, and propose the idea of averaging

forecasts from the same model but computed over different estimation windows. Using

Monte Carlo experiments these authors show that this type of forecast averaging reduces

the mean square forecast error (MSFE) in many cases when the underlying economic

relations are subject to structural breaks.

The idea of forecast averaging over estimation windows has been fruitfully applied in

macroeconomic forecasting. Assenmacher-Wesche and Pesaran (2008) use average fore-

casts based on different vector autoregressive models with weakly exogenous regressors

(VARX*) of the Swiss economy estimated over different estimation windows and observe

that averaging forecasts across windows result in improvements over averaging of forecasts

across models. Similar results are obtained by Pesaran, Schuermann and Smith (2009)

who apply the forecast averaging ideas to global VARs composed of 26 individual coun-

try/region VARX* models. Schrimpf and Wang (2009) apply averaging over estimation

windows to forecasts of GDP growth based on the yield curve. It is, therefore, of interest

to see if some theoretical insights can be gained in support of these empirical findings.

In this paper, we derive theoretical results for the average windows (AveW) forecasting

procedure. First, we consider a random walk model. The most interesting case is when

the break occurs in the drift term but we also allow for simultaneous breaks in the drift

and volatility of the random walk. We consider single and multiple breaks. We then

extend the analysis to a linear regression model where the slope coefficient is subject to

a break and show that the results from the random walk model carry over to the linear

regression model.

We compare the AveW forecasting procedure with an alternative method sometimes

employed in the literature where the past observations are down-weighted exponentially

such that the most recent observations carry the largest weight in the estimation. Gardner
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(2006) provides a recent review. We refer to this as the exponential smoothing (ExpS)

forecast. In practice, the performance of this approach crucially depends on the choice of

the parameter to down-weight the past observations.

Initially focussing on a random walk model, we show that in the presence of breaks

the AveW and ExpS forecasting methods always have a lower bias than forecasts from a

single estimation window. While the mean square forecast error (MSFE) depends on the

time and the size of the breaks, the MSFE of the AveW and ExpS forecasts are smaller

than those of the single window forecasts for all but the smallest of break sizes.

An attractive feature of these methods is that no exact information about the struc-

tural break is necessary. This contrasts with the conventional approach of estimating the

break points, using methods such as those of Bai and Perron (1998, 2003), and then basing

the forecasts on the post-breaks observations. However, as pointed out by Pesaran and

Timmermann (2007), it is not always optimal to base forecasts only on the post-break

data. Using pre-break data biases the forecast, but at the same time it reduces the fore-

cast error variance. The overall effect of using pre-break data on the MSFE is ambiguous

and depends on the size and the point of the break. To optimally exploit information

concerning parameter breaks in forecasting one needs to know the point and the size of

the latest break. Even if the point of the last break can be estimated with some degree

of confidence, it is unlikely that the size of the break can be estimated accurately, since

it involves estimating the model over the pre- and the post-break periods. If the distance

to break (measured from the date at which forecasts are made) is short the post-break

parameters are likely to be poorly estimated relative to the ones obtained using pre-break

data. In contrast, if the pre- and post-break samples are both relatively large, it might

be possible to estimate the size of the break reasonably accurately, but in such cases the

break information might not be that important. Results from Monte Carlo experiments

and from the application to financial time series confirm this intuition.

Closely related to our approach is the suggestion by Clark and McCracken (2009) that

averaging expanding and rolling windows can be useful for forecasting in the presence of

structural breaks. This can be seen as a limited version of AveW forecasts where forecasts

from only two different windows are combined.

A further reason for considering the random walk model with drift and volatility

instability is that it is generally thought to describe the stochastic properties of many

macroeconomic and financial time series. In this paper, we apply the AveW procedure

to forecasting weekly returns on futures contracts for twenty world equity markets. Com-
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pared to a range of competing approaches, such as forecasts from rolling windows, ex-

panding windows, ExpS forecasts, and forecasts based on post-break observations with

breaks estimated by the sequential procedure of Bai and Perron (1998, 2003), the AveW

forecast has the lowest RMSFE on average. However, in many cases the differences were

not statistically significant, largely reflecting the highly volatile nature of weakly returns.

The rest of the paper is organized as follows: Section 2 sets out the model and Section 3

develops the AveW forecasting procedure and establish its properties. Section 4 considers

the ExpS forecast procedure. Section 5 reports the results of the applications to weakly

returns on equity futures. Section 6 concludes. Mathematical details are in Appendix A.

2 Basic Model and Notations

Consider the following time-varying regression model

(yt − µy) = βt(xt − µx) + σtεt, εt ∼ iid(0, 1), (1)

which is defined over the sample period t = 1, 2, . . . , T + 1 and where the exogenous

variable, xt, is assumed to follow a covariance stationary process with mean µx and auto-

covariances, γx(s) that are absolute summable,
∑∞

s=0 |γx(s)| < K < ∞. Assume further

that the slope parameter, βt, and the standard deviation, σt, are subject to a break at

time t = Tb (1 < Tb < T ),

βt =





β(1), ∀ t ≤ Tb,

β(2), ∀ t > Tb,
σt =





σ(1), ∀ t ≤ Tb,

σ(2), ∀ t > Tb.

The aim is to forecast yT+1 based on the observations (y1, y2, . . . , yT ) and (x1, x2, . . . , xT , xT+1).

When it is known with certainty that the parameters have not been subject to breaks,

the forecast based on the ordinary least squares (OLS) estimates using all the available

observations is most efficient in the mean squared error sense. However, when the pa-

rameters are subject to breaks more efficient forecasts can be obtained. As pointed out

earlier, Pesaran and Timmermann (2007) show that there is typically a trade off between

bias and variance of forecast errors. For example, when there is a break in the slope

parameter the use of the full sample will yield a biased forecast but will continue to have

the least variance. On the other hand, a forecast using parameter estimates based on the

post-break sample, {yt, xt}T
t=Tb+1 , is unbiased but for recent breaks could be inefficient
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due to a higher variance compared to the full sample estimate. A third option is to use the

optimal window length as suggested by Pesaran and Timmermann (2007). Calculating

the optimal window relies, however, on the time and the size of the last break. If the

break is close to the point of forecast reliable estimates of the size of the break cannot be

obtained even if the time of the break can be determined with accurately. The estimated

length of the window is therefore likely to be suboptimal.

In the absence of reliable information on the point and the size of the break(s) in βt

and σt, a forecasting procedure that is reasonably robust to such breaks will be of interest.

In similar fashion to model averaging, which improves forecasts when the optimal model

is uncertain, Pesaran and Timmermann (2007) consider the use of different sub-windows

to forecast and then to average the outcomes, either by means of cross-validated weights

or by simply using equal weights.

To this end, consider the sample {yt, xt}T
t=Ti+1 , with 0 ≤ Ti < T , which yields an

observation window of size Wi = T − Ti. It proves convenient to denote the fraction of

observations in the single window (from the time when the forecast is formed) by wi =

(T −Ti)/T . The estimation process could start with a minimum window {yt, xt}T
t=Tmin+1,

of size wmin = (T − Tmin)/T . From wmin other larger windows can be considered with

Ti = Tmin, Tmin−j, . . . , Tmin−j(m−1), thus yielding m separate estimation windows with

j observations apart. More specifically, we have

wi = wmin +
(

i− 1
m− 1

)
(1− wmin) , for i = 1, 2, . . . , m, (2)

so that wi ∈ [wmin, 1]. Clearly, wm = 1 corresponds to using the full sample. The number

of estimation windows, m, can be kept fixed as T changes or can be allowed to increase

with T . In both cases we must have m ≤ T (1 − wmin) + 1. The maximum number of

possible windows is set by m = T (1− wmin) + 1. For this choice of m we have

wi = wmin +
i− 1

T
, i = 1, 2, . . . , T (1− wmin) + 1. (3)

Similar to the window size, define the distance to the break by b = (T − Tb)/T , with

b ∈ (0, 1). The forecast outcomes depend on whether b is a fixed fraction or changes with

T . In the former case, Wb = T − Tb → ∞ as T → ∞, that is, the number of post-break

observations is large when T is large. In this case, the point and size of the break can

be estimated consistently as shown by Bai (1997). Under the latter, we consider the case

where b → 0 as T →∞, such that Wb = T −Tb is small even when T is large. In this case,
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which is the focus of this paper, the small number of post-break data is likely to lead to

imprecise estimates of the point and the size of the break.

Given that we consider one-step ahead forecasts, we assume that no structural breaks

occur in the forecast period. For forecasting with structural breaks over the forecast period

see Pesaran, Pettenuzzo and Timmermann (2006) and Maheu and Gordon (2008).

3 Average Window Forecast

The AveW forecast is defined by the simple forecast combination rule

ŷm,T+1 =
1
m

m∑

i=1

ŷT+1(wi), (4)

where ŷT+1(wi) is the forecast from a given estimation window wi, and forecasts from all

windows are given equal weights.

The first object of interest in this paper is to compare the single-window forecast,

ŷT+1(w), and the AveW forecasts, ŷm,T+1, in the mean squared error sense. In the case

of the single window forecast we focus on the most frequently encountered case where all

observations in a given sample are used. In recursive estimation the single window can

be an expanding or a rolling window, and AveW forecasts can be obtained by averaging

over sub-windows within the given expanding or rolling window. Therefore, the AveW

procedure is not an alternative to rolling forecasts and can be used irrespective of whether

rolling or expanding windows are used in recursive forecasting.

3.1 Random Walk with Drift

Initially, we will focus on a simple version of (1), where µy = µx = 0, xt = 1, ∀t, and

βt = µt is subject to a single break at time Tb, that is,

yt = µt + σtεt, εt ∼ iid(0, 1) (5)

where

µt =





µ(1), ∀ t ≤ Tb,

µ(2), ∀ t > Tb,
and σt =





σ(1), ∀ t ≤ Tb,

σ(2), ∀ t > Tb.

The simplicity of this model allows us to obtain exact finite sample results for a single

break in mean, multiple breaks in mean, and joint breaks in mean and error variance.

However, the model is also a forecasting tool for a random walk with drift instability,
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zt = zt−1 + µt + εt, so that yt = ∆zt, and ẑT+1 = zT + ŷT+1(w), where

ŷT+1(w) =
1

Tw

T∑

t=T (1−w)+1

yt. (6)

3.1.1 Single Break in Drift and Volatility

In the first instance assume that a single break occurs at date, Tb, 1 < Tb < T , and

suppose that only the mean of the process is subject to the break, namely µ(1) 6= µ(2),

and σ(1) = σ(2) = σ. In this simple case the one-step ahead forecast of yT+1 based on a

given window of size wT (from t = T ) is given by

ŷT+1(w) = µ(2) [1− I (w − b)] + I (w − b)

[
bµ(2) + (w − b) µ(1)

w

]
+

1
Tw

T∑

t=T (1−w)+1

σεt,

where I (c) is an indicator function which is unity if c > 0 and zero otherwise. It is clear

that if w ≤ b the forecast will have mean µ(2) and will be unbiased. There is, however, a

bias when w > b > 0. The associated forecast error, ξT+1(w) = yT+1 − ŷT+1(w), is

ξT+1(w) = (µ(2) − µ(1))
(

w − b

w

)
I (w − b) + σεT+1 − 1

Tw

T∑

t=T (1−w)+1

σεt. (7)

Hence, the forecast bias is E [ξT+1(w)] = (µ(2)−µ(1))[(w−b)/w]I (w − d) . Since (w − b) I (w − b) >

0, the direction of the bias depends on the sign of (µ(2) − µ(1)). Scaling the forecast error

by σ, we have the decomposition

σ−1ξT+1(w) = εT+1 + BT+1(w)− 1
Tw

T∑

t=T (1−w)+1

εt, (8)

where BT+1(w) = λ [(w − b)/w] I (w − b) and λ = (µ(2) − µ(1))/σ. The first term, εT+1,

represents the future uncertainty which is given and unavoidable, the second term is the

‘bias’ that depends on the size of the break, λ, and the distance to break, b, and the

last term represents the estimation uncertainty that depends on Tw. The (scaled) mean

squared forecast error (MSFE) for a window of size w is given

MSFE(w) = 1 + B2
T+1(w) +

1
Tw

. (9)

Consider now the forecast from averaging over estimation windows based on m succes-

sive windows of sizes from the smallest window fraction wmin to the largest possible one,
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wm, where each forecast is of the form given in (6). The (scaled) one step ahead forecast

error associated with the average forecast is

σ−1ξm,T+1 = εT+1 +
λ

m

m∑

i=1

(
wi − b

wi

)
I (wi − b)− 1

m

m∑

i=1

1
Twi

T∑

t=T (1−wi)+1

εt.

Hence, the bias of the AveW forecast is given by

Bm,T+1 =
λ

m

m∑

i=1

(
wi − b

wi

)
I (wi − b) , (10)

and as before the sign of the bias depends on the sign of (µ(2) − µ(1)). In this case

the computation of the variance of the forecast error is complicated due to the cross-

correlation of forecasts from different windows. Let νT (wi) = (1/Twi)
∑T

t=T (1−wi)+1 εt,

then Cov [νT (wi), νT (wj)] = min(wi, wj)/(Twiwj), for all i, j = 1, 2, . . . ,m, and therefore

σ−2Var (ŷm,T+1) =
1

Tm2

[
m∑

i=1

1
wi

+ 2
m∑

i=1

i− 1
wi

]
. (11)

The scaled MSFE in this case is therefore given by

MSFE (m,wmin; λ, b) = 1 + B2
m,T+1 + σ−2Var(ŷm,T+1), (12)

with Bm,T+1 and Var(ŷm,T+1) as defined above.

The difference between the scaled MSFE of the single window forecast (9) and that of

the AveW forecast (12) is

MSFE(wa; λ, b)−MSFE(m, wmin; λ, b) = λ2

(
wa − b

wa

)2

I(wa − b) +
1

Twa

−
[

λ

m

m∑

i=1

wi − b

wi
I (wi − b)

]2

− 1
m2

m∑

i=1

1 + 2(i− 1)
Twi

. (13)

It depends on a number of parameters, including the size of the single window, wa. Con-

sider two cases: wa = b and wa > b. When wa = b the forecast from the single window is

unbiased, whereas the AveW forecast with wm > b is biased. The variance of the single

window forecast, σ2/(Tb), will be very large when Tb is small and forecasting from a

post-beak sample may not be desirable.

Now assume that wa > b. In this case, we can set wm = wa, that is the AveW forecast

is constructed from sub-windows within the expanding or rolling window.
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Proposition 1 For DGP (5) with given T and b, the single window forecast with wa > b

has a larger absolute bias than the AveW forecast with wi, i = 1, 2, . . . , T and wm = wa.

In particular, (
wa − b

wa

)
I(wa − b) >

1
m

m∑

i=1

(
wi − b

wi

)
I (wi − b) , (14)

if wi < wa for at least one i.

In contrast, the difference between the variance terms is ambiguous. Hence, there

may be a trade-off between bias reduction and an increase in the variance. Whether the

AveW forecast has a lower MSFE depends on the length of the single window forecast,

wa, and the minimum window, wmin, which are chosen by the forecaster, and the break

parameters, namely the size and the distance to break, λ and b.

Table 1 illustrates the trade-off numerically. It reports MSFE(wa; λ, b)−MSFE(m, wmin; λ, b)

computed for T = 100, wm = 1, and different values of wa, wmin, m, λ, and b. The top

two panels report the results when the single window uses all 100 observations, wa = 1.

In the lower two panels the single window equals the minimum window, wa = wmin. The

first and third panel give the results when the windows in the AveW forecast are one

observation apart, the AveW forecasts in the second and fourth panel use ten equally

spaced windows.

First, consider the top two panels. The first line in each panel shows the difference

between the MSFE of the single window and that of the AveW window for λ = 0, that

is, in the absence of a break. In this case, as expected, the single window outperforms

the AveW forecasts. However, as λ increases the bias reduction implied by averaging over

estimation windows leads to a decrease in the MSFE of the AveW forecast relative to

that of the single window forecast. The improvement is modest for small breaks but the

difference in MSFEs increases to about a third of the variance of the innovation when the

break is equal to the standard deviation of the innovation.

For the range of b considered, the benefit of averaging forecasts over estimation win-

dows for a given wmin increases with b since a larger number of sub-windows over the

post-break sample are used. For the same reason the difference in the MSFEs decrease

in wmin when λ > 0. When λ = 0, a smaller wmin increases the variance of the AveW

forecast due to the larger number of correlated forecasts included. The results reported

in the first line of the first panel for m = T (1−min) + 1 and those in the first line of the

second panel for m = 10 suggest that the variance term of the AveW forecast decreases in

m. When λ increases the reduction in the bias leads to a larger reduction in the MSFE for
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Table 1: MSFE(wa; λ, b)−MSFE(m,wmin; λ, b): Exact results for a single break in drift
b 0.05 0.1 0.2
wmin 0.02 0.05 0.02 0.05 0.1 0.02 0.05 0.1 0.15 0.2
λ wa = 1, m = T (1− wmin) + 1
0 −0.009 −0.008 −0.009 −0.008 −0.007 −0.009 −0.008 −0.007 −0.006 −0.005
0.1 −0.007 −0.006 −0.006 −0.005 −0.004 −0.005 −0.004 −0.003 −0.002 −0.002
0.2 0.001 0.000 0.005 0.005 0.004 0.007 0.008 0.008 0.007 0.007
0.4 0.030 0.024 0.047 0.043 0.035 0.056 0.054 0.051 0.047 0.041
0.75 0.127 0.105 0.186 0.170 0.140 0.218 0.210 0.196 0.178 0.156
1 0.233 0.192 0.337 0.309 0.255 0.394 0.380 0.353 0.320 0.281

wa = 1, m = 10
0 −0.013 −0.009 −0.013 −0.009 −0.007 −0.013 −0.009 −0.007 −0.006 −0.005
0.1 −0.010 −0.007 −0.010 −0.006 −0.004 −0.009 −0.005 −0.003 −0.003 −0.002
0.2 −0.001 0.002 0.002 0.005 0.005 0.003 0.007 0.008 0.008 0.007
0.4 0.034 0.035 0.048 0.046 0.043 0.053 0.054 0.053 0.049 0.045
0.75 0.154 0.148 0.201 0.187 0.167 0.219 0.214 0.204 0.188 0.172
1 0.285 0.269 0.368 0.339 0.303 0.400 0.388 0.369 0.338 0.310

wa = wmin, m = T (1− wmin) + 1
0 0.481 0.182 0.481 0.182 0.083 0.481 0.182 0.083 0.051 0.035
0.1 0.475 0.175 0.476 0.177 0.078 0.479 0.180 0.081 0.048 0.032
0.2 0.455 0.154 0.463 0.163 0.062 0.472 0.172 0.072 0.038 0.021
0.4 0.375 0.070 0.407 0.103 −0.004 0.443 0.142 0.039 0.001 −0.022
0.75 0.109 −0.213 0.220 −0.095 −0.225 0.348 0.040 −0.074 −0.126 −0.164
1 −0.180 −0.521 0.017 −0.311 −0.465 0.244 −0.070 −0.197 −0.263 −0.319

wa = wmin, m = 10
0 0.477 0.181 0.477 0.181 0.083 0.477 0.181 0.083 0.051 0.035
0.1 0.471 0.174 0.472 0.176 0.078 0.474 0.178 0.080 0.048 0.032
0.2 0.453 0.156 0.460 0.162 0.063 0.468 0.171 0.072 0.039 0.022
0.4 0.380 0.081 0.408 0.107 0.003 0.440 0.142 0.041 0.003 −0.017
0.75 0.137 −0.170 0.236 −0.079 −0.198 0.349 0.044 −0.066 −0.116 −0.148
1 −0.128 −0.443 0.048 −0.281 −0.417 0.250 −0.062 −0.181 −0.245 −0.290
The table reports the difference in the exact MSFE of the single window forecast for a given wa, and the AveW

forecast with wm = 1 given in (13), namely MSFE(wa; λ, b)−MSFE(m, wmin; λ, b), when T = 100 for different numbers

of estimation windows, m, break sizes as a proportion of the standard deviation of the disturbance term, λ, distance

to break, b, and different minimum window sizes, wmin.

a smaller m. However, the size of this effect depends on b and wmin. Overall the numerical

examples in the first two panels show that the effects of b, wmin and m are of second order

importance compared to the gains from averaging forecasts over estimation windows.

The bottom two panels, which compare the AveW forecast using all T = 100 obser-

vations and the single window of length wmin, show that for small breaks the forecast

from the short single window has a much larger MSFE than the AveW forecast due to

the large estimation uncertainty associated with the small single window. Even for larger

λ a single window that is too small leads to an inferior forecast due to the large estima-

tion uncertainty. However, when λ is large and the single window not too small using

only post-break data can improve the forecast. But this procedure still requires a priori

knowledge of the break point, or its estimation by means of statistical techniques.
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Table 2: MSFE(ŵa(BP);λ, b)−MSFE(m,wmin; λ, b): Monte Carlo results for a single break
in drift

λ\b 0.05 0.1 0.2
0.1 0.156 0.155 0.134
0.2 0.157 0.158 0.140
0.4 0.164 0.162 0.164
0.75 0.123 0.121 0.109
1 −0.040 −0.242 −0.014

The table reports the difference between the MSFE of the forecast based on post-break data, where
the break date is estimated using the sequential procedure proposed by Bai and Perron (1998, 2003),
MSFE(ŵa(BP); λ, b), and that of the AveW forecast, namely MSFE(m, wmin; λ, b). The MSFEs are com-
puted using Monte Carlo experiments with 10, 000 replications. Data were generated using DGP (5) with
σt = 1, ∀t, and T = 100. The Bai and Perron test procedure was conducted with up to three beaks,
trimming of 0.05, and a 5% significance level. Forecasts were then based on observations after the last
detected break. The AveW forecast used wmin = 0.02, windows separated by one observation, and wm = 1.

To investigate the implications of estimating the break point for the relative perfor-

mance of the two forecast procedures, we carried out a Monte Carlo experiment that

compares the AveW forecast with wmin = 0.02 to forecasts obtained from using data after

the break date estimated by the sequential procedure proposed by Bai and Perron (1998,

2003). We search for up to three break points and use the observations after the last sta-

tistically significant break date to generate one-step ahead forecasts. We set the trimming

parameter to 0.05, the significance level to 5%, and allowed for heterogeneous covariance

matrices across segments—the results were robust to varying these settings. The data

were generated using model (5) with T = 100 and σt = 1, ∀t, for 10, 000 replications.

The results in Table 2 show that the MSFE of the AveW forecasts is smaller than that

of the forecasts based on post-break observations when λ < 1, but when λ = 1 the post-

break data forecasts have a lower MSFE. This contrasts with the results in the bottom

two panels of Table 1 where the post-break data forecast had a lower MSFE for λ = 0.75.

The uncertainty of the time of the break leads to a deterioration of the forecast precision

and favors the AveW forecast, which does not use estimates of the break dates.

Now consider additionally a break in the error variance. For simplicity of exposition

assume that drift and volatility break at the same time. The one-step ahead forecast error

for a window of size w is given by ξT+1(w) = σ(2)εT+1 +BT+1(w)− 1
Tw

∑T
t=T (1−w)+1 σtεt.

The scaled MSFE for the single window forecast is

MSFE(wa; λ, κ, b) = 1 + B2
T+1(w) + κ2

(
wa − b

Tw2
a

)
I (wa − b) +

min(wa, b)
Tw2

a

(15)

where λ = (µ(2) − µ(1))/σ(2) and κ = σ(1)/σ(2). Similarly, for the AveW forecasts over m
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Table 3: MSFE(wa;λ, κ, b)−MSFE(m,wmin; λ, κ, b): Exact results for a single break in
drift and volatility
λ κ = σ(1)/σ(2) = 0.1 κ = σ(1)/σ(2) = 10
b 0.1 0.2 0.1 0.2
wmin 0.05 0.1 0.05 0.1 0.2 0.05 0.1 0.05 0.1 0.2
0.1 −0.005 −0.003 −0.007 −0.006 −0.003 0.010 −0.088 0.312 0.260 0.122
0.2 0.005 0.005 0.005 0.005 0.005 0.020 −0.080 0.324 0.270 0.130
0.4 0.043 0.036 0.051 0.048 0.040 0.058 −0.049 0.371 0.314 0.165
0.75 0.170 0.141 0.207 0.193 0.155 0.185 0.056 0.527 0.458 0.280
1 0.309 0.255 0.377 0.350 0.280 0.324 0.170 0.696 0.615 0.405
The table reports the difference in the exact MSFE of the single window forecast with wa = 1 given in (15)

and the AveW forecast with wm = 1 given in (16), namely MSFE(wa; λ, κ, b) − MSFE(m, wmin; λ, κ, b), when

T = 100, and m = T (1 − wmin) + 1, for different break sizes, λ, in the drift term measured in terms of σ(2),

break sizes in the error variances, κ, the distance to break, b, and different minimum window sizes, wmin.

estimation windows the scaled MSFE is

MSFE(m,wmin;λ, κ, b) = 1 + B2
m,T+1 +

1
m2



κ2




m∑

i=1

wi − b

Twi
I(wi − b)


 1

wi
+ 2

m∑

j=i+1

1
wj







+
m∑

i=1

min(wi, b)
Twi


 1

wi
+ 2

m∑

j=i+1

1
wj






 . (16)

Table 3 gives numerical examples of the difference in MSFEs when the DGP contains a

break in the mean and in the error variance, that is, the difference of (15) and (16). Here,

we concentrate on forecasts with wa = 1 and m = T (1 − wmin) + 1. The results depend

on whether the error variance increases or decreases after the break. In the former case,

the MSFEs are not much affected by the break in volatility. The outcome is, however,

very different when the error variance decreases after the break. When distance to break,

b, is small, many of the estimation windows in the AveW procedure cover periods of high

variances, which results in large MSFEs. However, as b increases more of the estimation

windows in the AveW procedure fall in the low variance part of the sample, and AveW

offers large improvements over the single window forecast.

3.1.2 Multiple Breaks in Drift

Consider a random walk model where the drift term is subject to n different breaks.

Denote the break points by bi, i = 1, 2, . . . , n, such that b1 > b2 > . . . > bn, and let the

means of the process over these segments be µ(1), µ(2), . . . , µ(n+1). Specifically,

yt = µt + σεt, for t = 1, 2, . . . , T, (17)
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such that if the sample period is mapped to the unit interval the mean from t = 1 to

t = b1T is given by µ(1), and the mean from t = b1T + 1 to t = b2T is µ(2), and so forth.

To simplify the analysis initially assume that n = 2, and note that the one-step ahead

forecast of yT+1 based on the window of size wT (from t = T ) is given by

ŷT+1(w) =
1

wT

T∑

t=T−wT+1

σεt + I(w − b2)[1− I(w − b1)]

[
b2µ

(3) + (w − b2)µ(2)

w

]
+

[1− I(w − b2)]µ(3) + I(w − b1)

[
b2µ

(3) + (b1 − b2)µ(2) + (w − b1)µ(1)

w

]
.

The one-step ahead forecast error is ξT+1(w) = yT+1− ŷT+1(w) = µ(3) +σεT+1− ŷT+1(w),

which after some algebra, and noting that I(w−b1)I(w−b2) = I(w−b1), can be written as

ξT+1(w)/σ = BT+1(w) + εT+1 − 1
wT

T∑

t=T−wT+1

εt,

where BT+1(w) = λ(1)I(w − b1)
(

w−b1
w

)
+ λ(2)I(w − b2)

(
w−b2

w

)
, λ(1) =

(
µ(2) − µ(1)

)
/σ,

and λ(2) =
(
µ(3) − µ(2)

)
/σ.

From the above results, it is clear that for the case of n breaks we have

BT+1(w) =
n∑

i=1

λ(i)I(w − bi)
(

w − bi

w

)
,

where λ(i) =
(
µ(i+1) − µ(i)

)
/σ, and n−1

∑n
i=1 λ(i) =

(
µ(n+1) − µ(1)

)
/(nσ). For a single

window estimation with w = 1, the forecast bias per break will be

B̄T+1(1) =
BT+1(1)

n
=

1
n

n∑

i=1

λ(i)I(1− bi) (1− bi) =
1
n

n∑

i=1

λ(i) (1− bi) .

In contrast, the bias of the AveW forecast is

B̄m,T+1 =
1
m

m∑

i=1

1
n

n∑

j=1

λ(j)

(
wi − bj

wi

)
I(wi − bj). (18)

The variance term is unaffected by the possibility of multiple breaks in the mean.

In the case where λ(1), λ(2), . . . , λ(n) are distributed independently of the break points,

b1, b2, . . . , bn, with expectations E(λ(i)) = λ̄ and E(bi) = b̄, the expected bias terms are

E[B̄T+1(1)] = λ̄(1− b̄), and

12



E(B̄m,T+1) =
λ̄

m

m∑

j=1

E [I(wj − bi)]
wj − b̄

wj
.

If we further assume that the break points are uniformly distributed over the sample, that

is bi ∼ U(0, 1), then we have that E [I(wj − bi)] = Pr(bi < wj) = wj , and E(B̄m,T+1) =

(λ̄/m)
∑m

j=1(wj − b̄). Using (2) it is easy to show that 1
m

∑m
j=1 wj = (1 + wmin)/2, and

under uniform distribution of bi we also have b̄ = 1/2. The difference between the absolute

expected bias of the single window forecast and that of the AveW forecast is therefore

|E[B̄T+1(1)]|− |E(B̄m,T+1)| = |λ̄|(1−wmin)/2 ≥ 0, which increases in the absolute average

break size, |λ̄|, and decreases in the minimum window size, wmin. Equality only holds

when |λ̄| = 0.

3.2 Break in the Slope Parameter

Now consider the more general model (1) and assume that a single break occurs in the

slope parameter of the process at date, Tb, 1 < Tb < T , whereas the error variance is

constant, namely β(1) 6= β(2), and σ(1) = σ(2) = σ. In this case, the conditional (on xT+1)

one-step ahead forecast of yT+1 based on a given window of size wT is

ŷT+1(w) = ȳ(w) + β̂(w) [xT+1 − x̄(w)] (19)

where ȳ(w) = 1
Tw

∑T
t=T (1−w)+1 yt, and x̄(w) = 1

Tw

∑T
t=T (1−w)+1 xt, and

β̂(w) =

∑T
t=T (1−w)+1[yt − ȳ(w)][xt − x̄(w)]

∑T
t=T (1−w)+1[xt − x̄(w)]2

.

Under the assumption that xt is a covariance stationary process with mean µx and

absolute summable autocovariances,
∑∞

s=0 |γx(s)| < K < ∞, we have

x̄(w)− µx = Op

(
1√
Tw

)
. (20)

Similarly,

ȳ(w)− µy = Op

(
1√
Tw

)
, (21)

see Appendix A. The estimate of the slope coefficient can be written as

β̂(w) =

∑T
t=T (1−w)+1 βt(xt − µx)2

∑T
t=T (1−w)+1(xt − µx)2

+

∑T
t=T (1−w)+1(xt − µx)εt∑T
t=T (1−w)+1(xt − µx)2

+ Op

(
1√
Tw

)
, (22)
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where the first term on the right hand side of (22) can be rewritten as

∑T
t=T (1−w)+1 βt(xt − µx)2

∑T
t=T (1−w)+1(xt − µx)2

= β(2) + (β(1) − β(2))
(

w − b

w

)
I(w − b)θ(x,w, b),

where

θ(x, w, b) =
[T (w − b)]−1 ∑T (1−b)

t=T (1−w)+1(xt − µx)2

(Tw)−1
∑T

t=T (1−w)+1(xt − µx)2
> 0, (23)

and x = (x1, x2, . . . , xT )′. Conditional on x and xT+1 the bias in estimating β(2) by β̂(w)

using the estimation window, w, is given by

BT+1(w) = (β(1) − β(2))
(

w − b

w

)
I(w − b)θ(x, w, b). (24)

In general, θ(x, w, b) varies with the particular set of the regressors realized over the

estimation window. To simplify the analysis, θ(x, w, b) can be replaced by its mean com-

puted with respect to the assumed distribution of the regressors. When xt ∼ iidN(0, σ2
x),

using the results of Pesaran and Timmermann (2007, Appendix C), we have that E [θ(x, w, b)] =

1. Simulations not reported here but available from the authors show that this is true for

a range of distributions for xt. In what follows we work with θ(x, w, b) ≈ 1. In this case it

can be seen from (24) that the bias is proportional to the size of the break, (β(1) − β(2)),

and the proportion of pre-break observations in the sample, (w − b)/w.

Lemma 1 Denote the forecast error based on a single fixed estimation window, w ∈
[wmin, 1], and a given break point b ∈ (0, 1), by ξT+1(w) = yT+1 − ŷT+1(w), where yT+1 is

defined by the DGP in model (1), and ŷT+1(w) is given by (19). Define λ = (β(2)−β(1))/σ.

Then, conditionally on xT+1, for fixed w and b the (scaled) forecast error is

σ−1ξT+1(w) = εT+1 +
(

w − b

w

)
I(w − b)λ2(xT+1 − µx) + Op

(
1√
Tw

)
. (25)

Using the above result we also note that σ−1ξT+1(b) = εT+1 +Op

(
1/
√

Tb
)

. Consider

now the forecast based on averaging the forecasts over the different windows, w1, w2, . . . , wm,

ŷm,T+1 =
1
m

m∑

i=1

ŷT+1(wi). (26)

It follows that the error of the AveW forecast is ξm,T+1 = 1
m

∑m
i=1 ξT+1(wi).

Lemma 2 Suppose that the DGP in (1) holds with βt subject to a single break. Consider
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the forecast error of the AveW forecasts based on m estimation windows, defined by (26)

and (19). Let ζ(wi) = [(wi − b)/wi]I(wi − b), and λ = (β(2) − β(1))/σ. Then conditional

on xT+1, for fixed m, wmin and given b as T →∞, the scaled AveW forecast error is

σ−1ξm,T+1 = εT+1 + Bm,T+1 + Op

(
1√
T

)
, (27)

where

Bm,T+1 = λ(xT+1 − µx)

[
1
m

m∑

i=1

ζ(wi)

]
. (28)

We are now in a position to compare the MSFE of the standard forecasts based on a

single window with the AveW forecasts. Consider first the case where b is fixed as T →∞.

Proposition 2 Consider the DGP given by (1) with a single break in βt. For large T but

a fixed b such that Wb → ∞, the MSFE of the forecast from a single window of length b

will be unbiased and will have the lowest MSFE.

This follows directly from the arguments in Bai (1997). Clearly, under such circum-

stances averaging over estimation windows will not improve the forecast accuracy.

However, our focus is on the case where Wb remains small as T →∞. In this case, the

forecast using only post-break data will still be unbiased but the terms of order Op

(
1√
Wb

)

will be large when Wb is small, and the the variance of the forecast error might be quite

high. As shown by Pesaran and Timmermann (2007), in such circumstances a larger

estimation window might be more appropriate. Accordingly, in what follows we compare

a single window forecast with the window size of wa > b, to the AveW forecast based on

m windows starting with w1 and ending with wm = wa. In this set up we have

σ−1 (ξT+1(1)− ξm,T+1) = λ(xT+1 − µx)

[
ζ(wa)− 1

m

m∑

i=1

ζ(wi)

]
+ Op

(
1√
T

)
. (29)

Proposition 3 Suppose that the DGP in (1) holds and is subject to a single break in βt

at b. For large T but a small Wb the MSFE of the forecast from a single window of length

wa > b will be larger than that of the AveW forecast with wm = wa, and a fixed number

of windows, m > 1.

This follows since the difference in square brackets in (29) is positive, which follows

from Proposition 1.
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4 Forecasts from Time-varying Parameter Models

As an alternative to averaging forecasts over estimation windows we consider time varying

parameter models. Recently, Branch and Evans (2006) consider a number of variations

on this class of models and show that a particularly simple form, known as the ‘constant

gain least squares’, works reasonably well in forecasting US inflation and GDP growth.

Constant gain least squares is equivalent to discounting past observations at a geomet-

ric rate, γ (Branch and Evans 2006, p.160). In order to analyze this forecasting method

we return to the simple model (5) with a break in mean. We denote the constant gain

least square or exponential smoothing (ExpS) forecast by

ŷT+1(γ) =
(

1− γ

1− γT

) T∑

j=1

γT−jyj . (30)

Consider now the case where the mean of yt is subject to a single break at date, Tb,

1 < Tb < T , with µ(1) 6= µ(2) and σ(1) = σ(2) = σ. The bias of the one-step ahead

forecast error is Bias [ŷT+1(γ)] =
(
µ(2) − µ(1)

) (
γT−Tb+1−γT

1−γT

)
(Pesaran and Pick 2008).

Since, 0 < γ < 1, the sign of the forecast bias is the same as the sign of
(
µ(2) − µ(1)

)
.

The forecast error variance is given by Var [ξT+1(γ)] = σ2

[
1 +

(
1−γ

1−γT

)2 (
1−γ2T

1−γ2

)]
. It is

interesting to note that for all values of γ ∈ (0, 1) the sampling variance of the forecast

error, the second part in square brackets, does not vanish even for T sufficiently large.

Therefore, the exponential down-weighting of the past observations can work only through

bias reduction.

The scaled one-step ahead MSFE in then given by

MSFE(γ;λ, b) = 1 + λ2

(
γ1+Tb − γT

1− γT

)2

+
(

1− γ

1− γT

)2 (
1− γ2T

1− γ2

)
(31)

where λ =
∣∣µ(2) − µ(1)

∣∣ /σ. It can be shown that for a sufficiently large T there is a unique

γ that minimizes the MSFE. However, choosing the optimal down-weighting parameter γ

will depend on λ and b, which are typically unknown.

Table 4 gives a numerical illustration of the difference in the MSFE of the ExpS forecast

and that of the AveW forecast, where the AveW forecast uses estimation windows one

observation apart. The ExpS forecast are based on two different choices of the down-

weighting parameter, namely γ = 0.95 and 0.99. The results suggest that, while b and

wmin have some influence on the final outcomes, it is the choice of the down-weighting

parameter which dominates the results. When γ = 0.95 the AveW forecast has a lower
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Table 4: MSFE(γ;λ, b)−MSFE(m, wmin; λ, b): Exact results for a single break in drift
λ γ = 0.95 γ = 0.99
b 0.1 0.2 0.1 0.2
wmin 0.05 0.1 0.05 0.1 0.2 0.05 0.1 0.05 0.1 0.2
0.1 0.006 0.007 0.007 0.008 0.009 −0.005 −0.004 −0.005 −0.004 −0.003
0.2 0.001 0.000 0.003 0.003 0.001 0.001 0.000 0.003 0.003 0.001
0.4 −0.020 −0.027 −0.014 −0.017 −0.028 0.026 0.018 0.031 0.028 0.018
0.75 −0.089 −0.119 −0.070 −0.085 −0.125 0.108 0.078 0.127 0.112 0.072
1 −0.164 −0.219 −0.131 −0.158 −0.230 0.197 0.143 0.231 0.203 0.132
The table reports the difference in the exact MSFE of the ExpS forecast given in (31) and the AveW forecast with

wm = 1 given in (12), namely MSFE(γ; λ, b)−MSFE(m, wmin; λ, b), when T = 100, m = T (1− wmin) + 1, for different

break sizes, λ, defined as a proportion of the standard deviation of the disturbance term, the proportion of post-break

data, b, the minimum window sizes, wmin, and the down-weighting parameter, γ.

MSFE for small breaks whereas the ExpS forecast has a lower MSFE for larger breaks.

This comparison is reversed when γ = 0.99.

To understand these numerical results we can express the AveW model as a ‘forgetting

factor’ model. Forgetting factor models weigh observations {yt}T
t=1 by factors {kT−t}T

t=1

(Hannan and Deistler 1988, Brailsford, Penm and Terrell 2002). The ExpS model fits

naturally into this framework. Using (3) and (4) the AveW forecast can be expressed as

ŷm,T+1 =
1

T (1− wmin) + 1

T (1−wmin)+1∑

i=1

1
Twmin + i− 1

T∑

t=T (1−wmin)−i+2

yt,

where we use the AveW forecast with windows increasing by one observation. Hence, each

observation yt, t = 1, 2, . . . , T receives the weight

k(T, t, wmin) =
1

T (1− wmin) + 1

t∑

i=1

1
T + 1− i

I[T (1− wmin) + 1− i]. (32)

Figure 1 plots the weights attached to each observation in AveW and ExpS forecasts

using the minimum windows and down-weighting parameters used in the numerical exam-

ple above. We consider two different choices of the minimum windows, namely wmin = 0.1

and 0.2, in the construction of the weights for the AveW forecast. The weights implied

by the AveW forecasts vary much less than the weights implied by the ExpS forecasts.

When γ = 0.99 the observations are weighted more evenly than the weights of AveW for

both minimum windows but when γ = 0.95 past observations are discounted much more

heavily. This largely explains the results in Table 4.
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Figure 1: Weights attached to observations in AveW and ExpS forecasts for T = 100
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The figure plots the weights attached to each observation in a sample of T = 100. The number in brackets
are the minimum window, wmin, in the case of the AveW weights and the down-weighting parameter, γ,
in the case of the ExpS weights.

5 Applications to Financial Time Series

We will now consider the application of the AveW forecasting procedure to weekly returns

on futures contracts for twenty equity indices. Our sample ends on November 24, 2008

and thus covers the highly volatile episodes associated with the credit crunch. Details of

the data are given in Appendix B.

We recursively compute one-week ahead forecasts using various forecasting methods

for the mean model (5). The baseline forecast uses the observations after the last break

identified by the sequential procedure of Bai and Perron (1998, 2003), denoted BP, where

we search for up to eight breaks, set the trimming parameter to 0.1 and the significance

level to 5%. While Pesaran and Timmermann (2007) show that forecast accuracy can

be improved by using some pre-break observations, we use only post-break observations

as this is the more common procedure followed in practice because exploiting the bias-

variance trade-off requires knowledge of the break size, which also would introduce further

complications into the comparative forecasting exercise.

We compare the BP post-break forecasts with two versions of the AveW forecasts. The

first averages forecasts from sub-windows within a rolling window of 156 weeks (equal to

three years) using wmin = 0.1. This yields Wmin = 15. The second AveW forecast averages

forecasts from sub-windows in an expanding window using the same number of minimum

observations, Wmin = 15. We use m = 10 windows. The results are qualitatively similar if

a larger number of estimation windows is used. We also included forecasts from expanding
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and rolling windows in our comparisons. For the rolling windows we considered a rolling

window of size Wa = 156 and a minimum rolling window of size Wmin = 15. Also, since it

could be argued that the AveW forecasts are performing better as they are effectively based

on a smaller average window (when compared to Wa), we also considered a third rolling

window forecasts based on an (average) effective window size of W = 85, computed as the

integer part of Wa(1/10 + 2/10 + . . . + 10/10)/10. Finally, we computed ExpS forecasts

using two down-weighting parameters, γ = 0.95 and 0.99.

For each of the series we calculate the absolute bias, the root mean square forecast

error (RMSFE), and tests for predictive performance of Diebold and Mariano (1995).

More precisely, RMSFE =
(

1
n

∑n
t=1 ξ2

t

)1/2
, where ξt = yt+1 − ŷt+1|t, the one-week ahead

forecast, ŷt+1|t, is based on the observations up to t, and n is the number of forecasts.

We also report the RMSFE and the relative RMSFE, that is for, say, the AveW(Wmin)

forecast we report RMSFE[AveW(Wmin)]/RMSFE(BP), where BP denotes the forecast

from the baseline forecast using the observations after the break date estimated by the

Bai and Perron procedure. Values smaller than one indicate that the baseline forecast

has a larger RMSFE than the AveW forecast. The Diebold-Mariano test statistics for

predictive ability are calculated for the loss differential lt(A,B) = ξ2
tA − ξ2

tB, where ξtA

and ξtB are the forecast errors for two forecast methods, A and B.

The results are reported in Tables 5. The first line reports the (absolute) average

bias (×100) across the 20 time series. The results for the average RMSFE (×100) are in

the second line and the RMSFE as a ratio of the RMSFE from the forecasts based on

the post-break observations are in the third line. The lower panel of Table 5 shows the

fraction of series where the test of Diebold and Mariano (1995) rejects equal predictive

accuracy and the forecast method in the respective column has the lower RMSFE.

The results show that the forecasts based on the post-break sample have a smaller

average bias than the AveW forecasts but that the average RMSFE is larger than that

of the AveW forecasts. Using DM tests we find that the AveW forecasts are statistically

significantly more accurate in 40% of the series when the AveW forecasts are computed

within rolling windows, and 45% of the series if the AveW forecasts are based on expanding

windows.

Comparing the AveW forecasts to the forecasts based on the corresponding single

windows, we find that, as predicted by our theory, the AveW forecasts have a lower bias

and RMSFE. The forecasts from the single rolling window of length Wmin, in contrast,

have a lower bias than the AveW forecasts as they are less likely to include breaks in
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Table 5: Predictive accuracy for alternative forecasts of returns of 20 equity index futures
BP AveW(Wmin) Expanding Rolling windows ExpS(γ)

post- Rolling Expand- windows Wmin W Wa γ = 0.95 0.99
break ing =15 =85 =156

Averages
Bias 1.668 1.874 1.896 2.108 1.065 2.103 2.054 1.460 1.887
RMSFE 63.546 61.483 61.531 61.602 62.661 61.512 61.707 61.765 61.530
rel.RMSFE 1 0.968 0.969 0.970 0.987 0.968 0.971 0.972 0.969
Diebold-Mariano tests
Post-break – 0.40 0.45 0.35 0.00 0.30 0.25 0.15 0.50
AveW: rolling 0.00 – 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AveW: expand. 0.00 0.00 – 0.00 0.00 0.00 0.00 0.00 0.00
Expanding 0.00 0.00 0.00 – 0.00 0.00 0.00 0.00 0.00
Rolling Wmin 0.00 0.50 0.40 0.20 – 0.45 0.20 0.70 0.40
Rolling W̄ 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00 0.15
Rolling Wa 0.00 0.00 0.10 0.05 0.00 0.05 – 0.00 0.00
ExpS(γ = 0.95) 0.00 0.10 0.05 0.00 0.00 0.05 0.05 – 0.05
ExpS(γ = 0.99) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 –
The forecast methods are: (i) Using the observations after the last break point estimated by the Bai and Perron

(1998, 2003) procedure; AveW forecasts with the minimum number of observations Wmin = 15 weeks and m = 10

sub-windows within (ii) a rolling window of length Wa = 156 weeks and (iii) an expanding window; (iv) an expanding

window; single rolling windows of size (v) Wmin = 15, (vi) W = 85, (vii) Wa = 156 weeks; ExpS forecasts with (viii)

γ = 0.95 and (ix) γ = 0.99. The results in the top panel are the absolute average of the bias across the 20 time series,

the second row the average of the RMSFE, the third row the average of the RMSFE as a ratio of the average RMSFE

of the post-break window forecast. Results are multiplied by 100. The lower panel reports the proportion of rejection

of predictive accuracy using the test of Diebold and Mariano (1995) across the 20 series. We report the fraction of the

series where equal forecast accuracy was rejected and the forecasting method in the respective column had the lower

RMSFE than the forecasting method in the respective row. Details of the data are in Appendix B.

the estimation window. However, due to the small number of observations used in the

estimation, the RMSFE is larger that that of the AveW forecasts. The AveW forecasts

are significantly more accurate in about half of the series, whereas the short single rolling

window is never significantly more accurate than the AveW forecasts. Comparing the

AveW forecasts with the forecasts based on rolling windows of size, W , shows that av-

eraging over the different sub-windows leads to a reduction in bias beyond the implied

reduction in sample size. The average RMSFE is reduced even if this difference is not

statistically significant.

The ExpS forecast with γ = 0.95, which discounts past observations at a faster rate

compared to the ExpS forecasts with γ = 0.99, has a lower average bias than the AveW

forecasts and—with the exception of the shortest rolling window—all other forecast pro-

cedures. However, the fast discounting leads to a larger RMSFE than the AveW forecasts

and all other forecast procedures with the exception of the shortest rolling window and

the post-break window forecast. The ExpS forecast with γ = 0.99 has a smaller average

bias than the AveW forecast within the expanding window and most of the other forecast

methods but a larger bias than the AveW forecast within the rolling window. While the
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RMSFE is larger than that of the AveW forecasts within the rolling window, it is smaller

than that of most other forecast methods.

Overall it appears that the large variances of the series relative to the size of possible

breaks implies that break points are difficult to estimate and forecast based on such esti-

mates are less precise. Equally, using only short rolling windows increases the estimation

uncertainty, which eliminates the benefits from the reduction in forecast bias. The same

is true of down-weighting observations when the weights decay too rapidly. Using slower

decaying weights tends to improve forecast accuracy in the MSFE sense. Overall, for the

data considered here the best results are obtained from averaging forecasts over estimation

windows within a rolling window.

6 Conclusion

We have shown that averaging forecasts over estimation windows reduces the forecast

bias and, despite a potential increase in the variance, overall it will reduce the MSFE

for all but the smallest breaks. We have also compared it to the forecast obtained from

exponential down-weighting of past observations. Both can be cast in the framework of

forgetting factor models. However, the exponential smoothing forecast is more sensitive to

the down-weighting parameter than the averaged forecast is to the choice of the minimum

estimation window. Monte Carlo results and the application to time series of returns

on equity futures show that averaging forecasts over estimation windows can improve

forecast accuracy compared to forecasts from post-break samples when the variance of

the process is relatively large compared to the break size. Averaging of forecasts over

different estimation windows offers a simple approach to generating forecasts that are

reasonably robust to structural breaks of unknown break dates and sizes. It is likely to

be particularly effective when the last break date is relatively close to the point of the

forecast and the break is of moderate magnitude. Whilst our theoretical analysis has been

confined to point forecasts for the random walk and the linear regression model, averaging

forecasts over estimation windows will likely improve forecast accuracy in many settings,

such as richer models or density forecasts, but we leave these topics for future research.

A Mathematical Appendix

Proof of Proposition 1 Denote ζ(wi) = [(wi − b)/wi]I(wi − b), and note that ζ(wi) ≥ 0, ∀wi.

Furthermore, since ζ(wi) is increasing in wi, then ζ(wa) ≥ ζ(wi), ∀wi ≤ wa. Therefore ζ(wa) =
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1
m

∑m
i=1 ζ(wa) ≥ 1

m

∑m
i=1 ζ(wi). Strict equality holds if one element of the last term contains at

least one window for which wi < wa.

Asymptotic Equivalence of x̄(w) and µx. Under the assumptions regarding xt in Section 3.2,

lim
T→∞

{Tw[x̄(w)− µx]2} =
∑∞

s=−∞ γx(s), and for a given w ∈ (wmin, 1), wmin > 0, lim
T→∞

{T [x̄(w)−
µx]2} = [

∑∞
s=−∞ γx(s)]/w = [2πfx(0)]/w, where fx(0) is the spectral density of {xt} evaluated at

zero frequency. Using the results of Propositions 7.5 and 7.11 of Hamilton (1994), then
√

T [x̄(w)−
µx] L→ N

(
0, 2πfx(0)

w

)
, where L→ denotes convergence in distribution. Hence, x̄−µx = Op(1/

√
Tw).

Asymptotic Equivalence of ȳ(w) and µy. Using (1) with σ(1) = σ(2) = σ we have

ȳ(w) = µy +
1

Tw

T∑

t=T (1−w)+1

βt(xt − µx) +
1

Tw

T∑

t=T (1−w)+1

σεt

= µy +
1

Tw
I(w − b)

T (1−b)∑

t=T (1−w)+1

β(1)(xt − µx) +
1

Tw

T∑

t=T (1−b)+1

β(2)(xt − µx) +
1

Tw

T∑

t=T (1−w)+1

σεt

= µy + β(1)I(w − b)
(

w − b

w

)
ū(w − b) + β(2) b

w
ū(b) + σε̄(w),

where ū(w − b) = [T (w − b)]−1
∑T (1−b)

t=T (1−w)+1 ut, ū(b) = (Tb)−1
∑T

t=T (1−b)+1 ut, ut = xt − µx,

and ε̄(w) = (Tw)−1
∑T

t=T (1−w)+1 εt. Therefore, using the results for xt above, we have that

[(w − b)/w]ū(w − b) = Op(1/
√

Tw), and (b/w)ū(b) = Op(1/
√

Tw), and similarly (since εt is

serially uncorrelated with a finite variance) ε̄(w) = Op(1/
√

Tw), which yields the result in (21).

Derivation of β̂(w) in (22) Consider first the denominator of β̂(w),

1
Tw

T∑

T (1−w)+1

[xt − x̄(w)]2 =
1

Tw

T∑

T (1−w)+1

(xt − µx)2 − [µx − x̄(w)]2

=
1

Tw

T∑

T (1−w)+1

(xt − µx)2 + Op

(
1

Tw

)
,

where the last equality follows from the arguments above. Therefore, by Slutsky’s Theorem,

{ 1
Tw

∑T
T (1−w)+1[xt− x̄(w)]2}−1 = [ 1

Tw

∑T
T (1−w)+1 (xt − µx)2]−1 +Op(1/Tw). For the numerator:

T∑

T (1−w)+1

yt[xt − x̄(w)] =
T∑

T (1−w)+1

[µy + β(xt − µx) + σεt]{(xt − µx) + [µx − x̄(w)]}

=
T∑

T (1−w)+1

βt(xt − µx)2 + [µx − x̄(w)]
T∑

T (1−w)+1

βt(xt + µx)

+[µx − x̄(w)]
T∑

T (1−w)+1

σεt +
T∑

T (1−w)+1

σεt(xt − µx).
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Let ut = xt − µx, and note that xt is assumed to be exogenous with respect to εt′ for all t and t′,

and the break point of βt is also exogenously given, and therefore given independently of εt and xt.

Then Var[1/(Tw)
∑T

T (1−w)+1(σεt + βtut)] = σ2/(Tw) + 1/(Tw)Var(
∑T

T (1−w)+1 βtut). Given that

ut is stationary and since |βt| < K < ∞, we have (Tw)−1
∑T

T (1−w)+1(σεt + βtut) = Op(1/
√

Tw),

and the result in (22) follows.

Proof of Lemma 1 Rewrite (19) as ŷT+1(w) = ȳ(w)+ β̂(w)(xT+1−µx)+ β̂(w)[µx− x̄(w)] then,

using the results in (20), (21), (22), and (24), the forecast error can be written as

ξT+1(w) = σεT+1 + [β(2) − β̂(w)](xT+1 − µx) + Op

(
1√
Tw

)
(33)

= σεT+1 +
w − b

w
I(w − b)σλ(xT+1 − µx) + σ

∑T
t=T (1−w)+1 utεt∑T
t=T (1−w)+1 u2

t

(xT+1 − µx) + Op

(
1√
Tw

)
.

With xt being exogeneous, ut and εt are uncorrelated and (25) follows noting that
∑T

t=T (1−w)+1 utεt/
∑T

t=T (1−w)+1 u2
t = Op(1/

√
Tw). Using (33) the squared forecast error is ξ2

T+1(w) =

[σεT+1 + w−b
w I(w − b)σλ(xT+1 − µx)]2 + Op(1/

√
Tw).

Proof of Lemma 2

ξm,T+1 =
1
m

m∑

i=1

{
µy + ȳ(wi) + [β(2) − β̂(wi)](xT+1 − µx) + β̂(wi)[µx − x̄(wi)] + σεT+1

}

= σεT+1 + σλ
xT+1 − µx

m

m∑

i=1

I(wi − b)
wi − b

wi
+

1
m

m∑

i=1

{
µy − ȳ(wi) + β̂(wi)[µx − x̄(wi)]

}

The first term does not vary with m. The second term relates to the forecast bias and is bounded

in m. Consider now the last term as T →∞, for either a fixed m or as m →∞. Using (20), (21)

and (22), and after some algebra (noting that w1 = wmin < b) we have

∣∣∣∣∣
1
m

m∑

i=1

{
µy − ȳ(wi) + β̂(wi)[µx − x̄(wi)]

}∣∣∣∣∣ <
K1

m
√

T

m∑

i=1

1√
wi

+
K2

m
√

T

m∑

i=1

1√
wi

(
wi − b

wi

)
I(wi−b),

where K1 and K2 are positive constants. Also m−1
∑m

i=1 w
−1/2
i < w

−1/2
min , and, noting that

w−3/2(w − b) is maximized at w∗ = 3b, m−1
∑m

i=1 w
−1/2
i ((wi − b)/wi) I(wi − b) < 2/(3

√
3b).

Therefore, for wmin > 0, ξm,T+1 is bounded in m, irrespective of whether m is fixed as T →∞, or

if m →∞ as T →∞.

B Equity Index Futures and Sample Periods

The equity series refer to futures contracts taken from Datastream and cover the different periods

as set out below. The start of the samples generally coincide with the start dates of the futures
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markets in question. The last number in the brackets is the number of forecasts.

AEX, Amsterdam Exchange Index, Netherlands (01-Jun-1989 to 24-Nov-2008, 864); ASX,

Australian Securities Exchange Index (06-Dec-2000 to 19-Nov-2008; 279); BEL, BEL 20 Index,

Belgium (07-Jun-1994 to 24-Nov-2008; 603); CAC, CAC40 index, France (24-Mar-1989 to 24-Nov-

2008; 868); DAX, DAX 30 index, Germany (02-Jul-1991 to 24-Nov-2008; 753); DJE, DJ EURO

STOXX 50, DJ euro index (27-Jan-1999 to 25-Nov-2008; 375); FTSE, FTSE 100, U.K. (09-Aug-

1985 to 19-Nov-2008; 1054); FOX, FOX Index, Finland (02-May-2000 to 19-Nov-2008; 283); IBE,

IBEX 35, Spain (25-Nov-1992 to 24-Nov-2008; 672); KFX, KFX Index, Denmark (14-Aug-2001

to 25-Nov-2008; 233); MIB, Milan index, Italy (04-Jul-1995 to 20-Nov-2008; 551); ND, NASDAQ

100 index, U.S.A. (14-Nov-1996 to 21-Nov-2008; 480); NK, NIKKEI 225, Japan (30-Apr-1987

to 20-Nov-2008; 938); OBX, OBX index, Norway (26-Aug-1999 to 24-Nov-2008; 326); OMX,

OMX Index, Sweden (17-Sep-1990 to 19-Nov-2008; 783); PSI, PSI 20 Index, Portugal (27-Jan-

1997 to 24-Nov-2008; 463); SP, S&P COMP index, U.S.A. (09-Aug-1985 to 19-Nov-2008; 1050);

SMI, SWISS MI index, Switzerland (18-Jun-1991 to 20-Nov-2008; 766); TPX, Topix Stock Price

Index, Japan (06-Sep-1988 to 19-Nov-2008; 846); TSX, Toronto Stock Exchange Index, Canada

(12-Apr-2000 to 20-Nov-2008; 308).
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