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Abstract

When estimating integrated volatilities based on high-frequency data, sim-

plifying assumptions are usually imposed on the relationship between the obser-

vation times and the price process. In this paper, we establish a central limit

theorem for the Realized Volatility in a general endogenous time setting. We

also document that this endogeneity is present in financial data.

Keywords: bias-correction, continuous semimartingale, discrete observa-

tion, efficiency, endogeneity, Itô process, realized volatility, stable convergence.
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1 Introduction

An important development in financial econometrics has been an asymptotic approach

for inference on integrated (squared) volatility as estimated by realized variance. Sub-

stantial progress has been made on infill asymptotic theory to take advantage of the

increasing availability of high frequency data. The earlier results in this direction

were in probability theory (Jacod (1994), Jacod and Protter (1998)) while Barndorff-

Nielsen and Shephard (2001, 2002) have been path-breaking for introducing this theory

in econometrics. To be specific, the relevant asymptotic theory is based on two conver-

gence results for an Ito process dXt = µtdt+σtdWt (with Wt Wiener process) observed

at times tn,i, i = 0, 1, . . . .n. The process Xt must be understood as a log-price so

that Xtn,i
−Xtn,i−1

is the continuously compounded rate of return over the correspond-

ing time interval. The state of knowledge regarding asymptotic behavior of realized

variance of high-frequency returns is then twofold.

First, if the observation times tn,i are stopping times such that the mesh of the

partition max
i
|tn,i − tn,i−1| goes to zero in probability, the realized variance [X,X]T =

∑

tn,i≤T (Xtn,i
−Xtn,i−1

)2 is a consistent estimator of the quadratic variation 〈X,X〉T =
∫ T

0
σ2sds.

Second, under some assumptions on the generating process of the times tn,i (see

Mykland and Zhang (2006)), namely, if the so-called “quadratic variation of time”

processes converges,

lim
n→∞

n
∑

tn,i≤t

(tn,i − tn,i−1)
2 = Ht, (1)

where Ht is an adapted process, and the times tn,i’s are independent of the X process,

then n1/2([X,X]T − 〈X,X〉T ) is asymptotically a mixture of normals whose mixture

component is the variance coefficient equal to 2
∫ T

0
σ4s dHs, and is consistently estimated

by 2n
3
[X,X,X,X]T where n

3
[X,X,X,X]T = n

3

∑

tn,i≤T (Xtn,i
−Xtn,i−1

)4 is the so-called
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quarticity (Barndorff-Nielsen and Shephard (2002)). In the equidistant case, i.e., when

tn,i = i/n, (1) holds with Ht = t.

The equidistant case can also be generalized by using “time change” (Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2008)). This induces some degree of endo-

geneity in the times, but not enough to induce the kind of bias we shall discuss here.

Further generalizations of random times are given by Hayashi, Jacod, and Yoshida

(2008) and Phillips and Yu (2007), but also when there is no asymptotic bias.

A striking feature of these results is that [X,X,X]T =
∑

tn,i≤T (Xtn,i
−Xtn,i−1

)3 never

comes into the picture. The key reason for that is that, even when conveniently scaled

by n1/2, this quantity generally vanishes asymptotically. To see this, first note that

with constant volatility σt = σ, µt = 0, and regular deterministic sampling tn,i =
i
n
,

we have:

n1/2[X,X,X]T = n1/2σ3
∑

tn,i≤T

(Wtn,i
−Wtn,i−1

)3 =L σ
3T

3/2

n

n∑

i=1

U3i ,

where the Ui are i.i.d. standard normal. Thus, by the law of large numbers:

lim
n→∞

n1/2[X,X,X]T = 0 (2)

By a standard predictability argument, the property (2) remains clearly true when

considering a stochastic volatility process σt in the context of regular deterministic

sampling. It is in particular worth stressing that the well-documented skewness in stock

returns as introduced by leverage effect (non-zero instantaneous correlation between σt

and Wt) does not bring a non-zero limit for n1/2[X,X,X]T . Since stochastic volatility

can be subsumed into a random time change, this remark also implies that even random
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sampling times drawn according to a fixed random time change (see e.g. Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2008)) will not destroy the result (2). The

same applies to the result of Hayashi, Jacod, and Yoshida (2008) and Phillips and Yu

(2007).

The focus of interest of this paper is a situation in which endogeneity of times does

matter because it implies a non-zero limit for n1/2[X,X,X]T . The main theoretical

result is that, in such circumstances, for the normalized error n1/2([X,X]T −〈X,X〉T ),

the asymptotic Mean-Squared-Error (MSE) is still equal to limn
2n
3
[X,X,X,X]T (which

coincides with the asymptotic variances reported by the earlier papers), but must be

decomposed differently. We will have instead a bias term which is non-zero if and only

if the limit in (2) is no longer zero. The remaining term is the variance of a normal

distribution.

Consistently estimating the aforementioned bias and variance should allow taking

advantage of the informational content of endogenous sampling times to improve upon

the common accuracy of volatility estimators. While a similar issue had already been

addressed by Duffie and Glynn (2004) and Aı̈t-Sahalia and Mykland (2003) (resp.

Renault and Werker (2009)) in a parametric (resp. semi-parametric) context, this paper

is the first to propose a model free approach. A related result has just been arrived at,

independently and concurrently, by Fukasawa (2009), but with a substantially more

opaque theoretical development.

On the empirical side, the paper shows that this endogeneity of time is actually

present in the financial data. We use a large set of days for providing compelling evi-

dence that the daily quantity limn→∞ n1/2[X,X,X]T is not zero. limn→∞ n1/2[X,X,X]T

can actually be interpreted in terms of a measure of correlation between volatility and

time. We also provide empirical evidence that the quarticity does not have the previ-

ously reported forms.
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As extensively discussed by Renault and Werker (2009), a model-free measurement

of the significant correlation between volatility and duration (between transactions or

quote changes) is important both for economic theory of financial markets and for

further developments on the estimation of continuous time processes in finance. Statis-

tical evidence that this correlation is actually negative confirms the common wisdom

that more news coming into the markets will simultaneously bring more volatility and

more frequent transactions or quote changes. The mere fact that this correlation is

not zero implies that a diffusion model observed with such random times ought not be

estimated by simply plugging the random dates into the diffusion transition density

function. Even a discrete time GARCH model with random time stamps should take

this correlation into account by contrast with the currently available models (Gram-

mig and Wellner (2002), Meddahi, Renault, and Werker (2006)). The continuous time

framework should actually help to provide structural underpinnings to the GARCH

approach to high frequency data proposed by Engle (2000).

The main theorem on the resulting new decomposition of the asymptotic mean

squared error for quadratic variation estimation is developed in Section 2. This is

done in the simplest case without microstructure noise. Theoretical illustrations are

provided in Section 3, and tests for non-nullity of the endogeneity of times are devised

in Section 4, with empirical results in Section 5. A simulation study is carried out in

Section 6. The proof of the main theorem is in the Appendix.

2 Main Result

We use the usual Itô process model

dXt = µtdt+ σtdWt, (3)
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where Wt is a Wiener process. The target of inference is

〈X,X〉t =
∫ t

0

σ2sds. (4)

Definition 1. (Stable Convergence.) Suppose that Xt, µt, and σt are adapted to

filtration (Ft). Let Zn be a sequence of FT -measurable random variables, We say that

Zn converges stably in law to Z as n → ∞ if Z is measurable with respect to an

extension of FT so that for all A ∈ FT and for all bounded continuous g, EIAg(Zn)→

EIAg(Z) as n→∞.

For further discussion of stable convergence, see Rényi (1963), Aldous and Eagleson

(1978), Chapter 3 (p. 56) of Hall and Heyde (1980), Rootzén (1980) and Section 2 (p.

169-170) of Jacod and Protter (1998).

Theorem 1. Let µt and σ2t be adapted to a filtration (Ft), integrable, and locally

bounded, and that σ2t ≥ c > 0, where c is nonrandom. Also assume that for some

ε > 0,

max |tn,i+1 − tn,i| = op(n
−( 2

3
+ε)). (5)

Further assume that (for all t)

n[X,X,X,X]t
p→
∫ t

0

us ds and (6)

n1/2[X,X,X]t
p→
∫ t

0

vs ds, (7)

where ut and |vt| are integrable. Finally, assume that the filtration (Ft) is generated by
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finitely many continuous martingales. Then, stably in law:

n1/2([X,X]t − 〈X,X〉t)

→ 2

3

∫ t

0

vs
σ2s

dXs

︸ ︷︷ ︸

asymptotic bias

+

∫ t

0

√

2

3
us −

4

9

v2s
σ2s

dBs,

where Bt is a Brownian-motion independent of the underlying σ-field.

It is worth interpreting this result in relation with the control variable approach

in Monte Carlo estimation. When one wants to estimate the variance σ2 of a random

variable Z from an i.i.d. sample Z1, ....Zn, the naive estimator can in general be

improved if one has the extra information that the expectation E(Z) is zero. In this

case, we know from the control variable principle that the unbiased estimator σ∗2 of

σ2 with minimum (asymptotic) variance is the residual of the regression of the naive

estimator on the sample mean of the Zs :

σ∗2 =
1

n

n∑

i=1

Z2i − b∗
1

n

n∑

i=1

Zi

where b∗ is the sample counterpart of the population regression coefficient:

b =
Cov(Z2, Z)

V ar(Z)
=

E(Z3)

V ar(Z)

In other words, as soon as the variable Z has a non-zero skewness, the knowledge

that it has a zero expectation allows us to improve the estimator in the sense of lowering

its variance. This can be summarized by a limit result which is actually a particular

case of theorem 1 above:

n1/2[
1

n

n∑

i=1

Z2i − σ2] −→ V +W
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where the convergence is in distribution and V and W are two independent normal

variables defining the joint limit distribution of b
n1/2

n∑

i=1

Zi and n1/2[σ∗2 − σ2]. Com-

ing from the naive estimator to σ∗2, the gain in asymptotic variance is equal to the

variance of the normal variable V. Similarly, we can decompose the estimation error

n1/2([X,X]t − 〈X,X〉t) in the following way. First, we note that it is asymptotically

equivalent to n1/2Mt where Mt is the local martingale:

Mt =
∑

tn,i≤t

(Xtn,i
−Xtn,i−1

)2 + (Xt −Xt∗)
2 −

∫ t

0

σ2s ds

and t∗ = max{tn,i; tn,i ≤ t}. By Ito’s lemma, this local martingale can be rewritten as:

Mt = 2
∑

tn,i≤t

∫ ti+1

ti

(Xs −Xti)dXs + 2

∫ t

t∗
(Xs −Xt∗) dXs

Following Mykland and Zhang (2006), we have a continuous time analog of the

regression above by decomposing this local martingale as:

n1/2Mt =

∫ t

0

gsdXs +M
∗(n)
t , with P lim[M ∗(n), X]t = 0

The process (gt) solution of this equation is actually characterized by:

∫ t

0

gsσ
2
sds = P lim 〈n1/2M,X〉t =

2

3

∫ t

0

vs ds

where the last equality, still a consequence of Ito’s lemma, is explicitly derived in the

Appendix. Hence:

gs =
2

3

vs
σ2s

and the so-called bias term in the theorem 1 above is nothing but the continuous-time

regression
∫ t

0
gsdXs of the naive estimation error on the process X itself. The control
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variable principle still allows us an efficiency gain with respect to the naive estima-

tor when the endogeneity of time produces a non-zero “continuous-time skewness” as

manifested by a non-zero tricity. Note that this control variable works because the

Girsanov theorem gives us the continuous time analog of the zero-expectation infor-

mation above. More precisely, the continuous time regression of the estimation error

on the process X itself does not produce any perverse bias because for the purpose of

estimating volatility, a non-zero drift is immaterial.

Finally, it is worth noting why this control variables principle is irrelevant in the par-

ticular setting of irregular sampling recently considered by Hayashi, Jacod and Yoshida

(2009). As it is manifest in the proof of their proposition 5.1., their assumption (C)

allows them to compute higher order conditional moments of the ratio
Wtn,i−Wtn,i−1

tn,i−tn,i−1
as

if the random time intervals (tn,i− tn,i−1) were independent from the Brownian motion

W . In other words, their assumption (C) precludes the kind of skewness we are tak-

ing advantage of. This assumption (C) is indeed exactly what it takes to be able to

write down the likelihood function of a diffusion process irregularly sampled in time by

simply plugging the random times into the diffusion transition density function. A con-

trario, we can make explicit by negation of their assumption (C) what we actually call

endogeneity of time. Time is said endogenous because even given Ftn,i−1
, the variable

tn,i is not independent of the Brownian motion W . This will be for instance the case

when there is both leverage effect (instantaneous correlation between σ and W ) and

instantaneous causality between random times and volatility as considered by Renault

and Werker (2009). We provide in the next section a list of possible models of random

times, showing that some of them feature this kind of endogeneity and some others do

not.



Realized Volatility When Sampling Times are Possibly Endogenous 9

3 Various Examples and Illustration

Example 1. (Times that are independent of the process). In the model of Mykland

and Zhang (2006), the times tn,i are independent of the process Xt, or equivalently,

nonrandom but irregularly spaced. By comparing their Proposition 1 (p. 1940) with

our Theorem 1 above, it follows that vt ≡ 0, and ut = 3σ4tH
′(t). Equidistant sampling

is special case (H(t) = t). 2

Example 2. (Times generated by a fixed distortion from equidistant sampling). In

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), times are allowed to be un-

equally spaced if they follow tn,i = F (i/n), where F is allowed to be a smooth random

process which does not depend on n (Section 5.3, p. 1505-1507). This induces some

measure of endogeneity, but not enough to avoid vt ≡ 0. 2

Example 3. (Times generated by flat price trading). In the model recently proposed

by Phillips and Yu (2008), the microstructure noise completely offsets the effect of price

movement over the subinterval in which flat price occurs. In other words, the efficient

price may be exactly observed from time to time but only at random dates defined as:

tn,i − tn,i−1 =
Di

n

where (Di) is a strictly stationary and ergodic sequence of nonnegative random vari-

ables with finite variance. These variables are allowed to depend only on past observed

prices. In other words, assumption (C) of Hayashi, Jacod and Yoshida (2009) is fulfilled

and thus endogeneity of time is still not enough to avoid vt = 0. By a slight extension

of Mykland and Zhang (2006), Phillips and Yu (2008) actually show directly that we

are back to the result of Example 1. 2

Example 4. (Times generated by hitting a barrier). For simplicity, take µt ≡ 0 and

σt ≡ 1. The times tn,i are defined recursively: tn,0 = 0, and tn,i+1 is the first time
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t ≥ tn,i so that Xt − Xtn,i
= either n−1/2a or −n−1/2b, where a, b > 0. Let N be the

number of tn,i < T , so that tn,N < T ≤ tn,N+1. Redefine tn,N+1 = T .

In other words,

Xtn,i+1
−Xtn,i

= n−1/2Zi+1 for tn,i+1 < T, (8)

where Z1, Z2, ... are i.i.d. with mean zero and point mass as a and −b (so P (Z = a) =

b/(a+ b)).

By standard renewal arguments N/n
p→T/(ab), and so the conditions of Theorem 1

are satisfied, with vt ≡ E(Z3)/(ab)3/2 and ut ≡ E(Z4)/(ab)2. We note that vt is

nonzero except when a = b. 2

Example 5. (General return distributions). From Appendix 1 of Hall and Heyde

(1980), the distribution of a general random variable (with mean zero) can be generated

by the same device as in the previous example, by letting the barrier itself be random.

(In mathematical terms, this is called embedding in Brownian motion.) In this more

general setting, equation (8) remains valid, and the Zi are i.i.d. with any mean zero

distribution. If we take E(Z4) <∞, the conditions for Theorem 1 remain satisfied, and

it is still the case that vt ≡ E(Z3)/(E(Z2))3/2 and ut ≡ E(Z4)/(E(Z2))2. 2

Example 6. (Connection to the structural autoregressive conditional duration model).

The paper by Renault, Van der Heijden, and Werker (2009) generalizes the hitting time

technique of Example 4 above to construct autoregressive conditional duration models.

It rests upon a dynamic version of Abbring (2007)’s mixed hitting time model. The

observation times are defined recursively as:

ti+1 = inf{t > ti : |Zt − Zti | > ϕti
Mi}

where Z is a Brownian motion with drift µZ and, for identification purpose, unit
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variance. The important difference with Example 4 is that hitting barriers are now

defined through a latent Brownian motion Z with drift µZ , which may be only partially

(or not) correlated with the Brownian motion W defining price dynamics. The double-

boundary setting is more convenient than a single-boundary one as it ensures that

durations have finite expectations. Note that the kind of asymmetry which matters for

us, namely the asymmetric barriers that yields vt 6= 0, is accommodated by the non-

zero correlation between the two Brownian motions Z and W , which precisely means

that random times are endogenous.

More precisely, a conditional mixture feature of observed prices is produced by the

mixing variables Mi, i = 1, 2, ..n, which are i.i.d. positive random variables with unit

expectation (for reasons of identification) and Mi is independent of Fti . By contrast,

the positive variable ϕti
is Fti-measurable and captures observed heterogeneity in the

thresholds and associated hitting times. Given both Fti and the unobserved hetero-

geneity Mi, the log-price process (Xti+h)0≤h≤∆ti+1
(with ∆ti+1 = ti+1 − ti) is specified

as a Brownian motion with drift µti
(Mi) and variance σ2ti(Mi). Moreover, the couple

(Xti+h, Zti+h)0≤h≤∆ti+1
follows a bivariate Brownian motion with instantaneous corre-

lation (still conditional on Fti and Mi) denoted by ρti(Mi). It can then be shown that

conditionally on Fti , Mi and ∆ti+1, the log-price change Xti+1
−Xti follows a mixture

of two normal distributions with the same variance and respective means:

[µti
(Mi)− ρti(Mi)σti(Mi)µZ ]∆ti+1 ± ρti(Mi)σti(Mi)ϕti

Mi

Since a mixture of two normal distributions can feature a non-zero skewness if and

only if the means in the two components are different, the announced skewness (and

associated time endogeneity effect) pops up if and only if the correlation coefficient

ρti(Mi) is not zero. 2
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Example 7. (Connection to uncertainty zones). Robert and Rosenbaum (2009b,a)

propose a model where endogenous transaction dates are produced by the fact that

the transaction prices are bound to lie on a tick grid defined by multiples kα, k ∈ N,

of a tick size α. For a current mid-tick grid value mk = (k + 1/2)α, they consider an

uncertainty zone Uk = [mk − ηα,mk + ηα] for some given number η, 0 < η < 1. The

zones Uk are called uncertainty zones since they represent bands inside of which the

efficient price cannot trigger a change of the transaction price. The observation times

are corresponding exit times tα,i where for the purpose of asymptotic theory the tick

size α is considered as converging to zero (analogous to tn,i in Example 4 with n→∞).

Interestingly enough, the control variable principle of variance reduction by regression

of the error on the price process works differently depending upon whether one considers

the quadratic variation estimation error or the hedging error due to uncertainty zone.

Since the uncertainty zones are symmetric around the mid tick values, the asymptotic

theory of estimation of quadratic variation is similar to Example 4 with a = b. Robert

and Rosenbaum (2009b) do show directly (see their Lemma 12) that there is no such

thing as the bias term of our Theorem 1 because the corresponding skewness term is

zero. By contrast, when it comes to hedging errors, there is some relevant asymmetry

if and only if η 6= 1/2. This is due to the fact that, except if η = 1/2, when starting

from one side of an uncertainty zone, the barriers to reach are asymmetric. Robert and

Rosenbaum (2009a) do show directly (see their Lemma 5.8 and their Theorem 4.2.)

that the (asymptotic) continuous time regression of the hedging error on the price

process is non-zero if and only if η 6= 1/2. In other words, the control variable principle

put forward in theorem 1 above can be fruitfully applied for variance reduction in many

different contexts.

2
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4 Testing for the Presence of Endogenous Times

We here present three tests for endogeneity of times. We shall see in the next section

that when applied to the financial data that we consider here, all the tests reject the

null hypothesis of non-endogeneity.

4.1 Test I

Under the null hypothesis (H0) that the times ti are independent of the process Xt, we

proceed as follows.

We assume that the data are divided into J blocks of size M . For block number j,

covering the time period (tM(j−1), tMj], the R
2 statistic is given by

R2j =

(
∑Mj−1

i=M(j−1) (∆Xti)
3
)2

(
∑Mj−1

i=M(j−1) (∆Xti)
2
)(
∑Mj−1

i=M(j−1) (∆Xti)
4
) , (9)

where ∆Xti = Xti+1
−Xti . The overall test statistic is

T1 =
J∑

j=1

R2j ·∆τ j, (10)

where ∆τ j = tMj − tM(j−1). Following Mykland and Zhang (2009b), the following

statistic provides an asymptotically valid null-distribution:

T1,0 =
J∑

j=1

R2j,0 ·∆τ j, (11)

where

R2j,0 =

(
∑Mj−1

i=M(j−1) V
3
i

)2

(
∑Mj−1

i=M(j−1) V
2
i

)(
∑Mj−1

i=M(j−1) V
4
i

) , (12)
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where Vi = (∆ti)
1/2 × ξi, where ∆ti = ti+1 − ti and ξ1, ..., ξn is i.i.d. standard normal.

Note that under the alternative, by (6), on each block (tM(j−1), tMj],

ut ≈
n
∑Mj−1

i=M(j−1) (∆Xti)
4

∆τ j
, νt ≈

√
n
∑Mj−1

i=M(j−1) (∆Xti)
3

∆τ j
,

and

σ2t ≈
∑Mj−1

i=M(j−1) (∆Xti)
2

∆τ j
,

hence, one expects, subject to regularity conditions, that, as n→∞.

T1 →
∫ T

0

v2t
σ2tut

dt. (13)

4.2 Test II

We again assume that the data are divided into J blocks of sizeM . For block number j,

covering the time period (tM(j−1), tMj], define

Aj = ∆τ j ·

(√
n
∑Mj−1

i=M(j−1) (∆Xti)
3
)2

(
∑Mj−1

i=M(j−1) (∆Xti)
2
)3 , (14)

where ∆τ j = tMj − tM(j−1). The overall test statistic is

T2 =
J∑

j=1

Aj ·∆τ j. (15)
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The following statistic provides an asymptotically valid null-distribution:

T2,0 =
J∑

j=1

Aj,0 ·∆τ j, (16)

where

Aj,0 = ∆τ j ·

(√
n
∑Mj−1

i=M(j−1) V
3
i

)2

(
∑Mj−1

i=M(j−1) V
2
i

)3 , (17)

where Vi = (∆ti)
1/2 × ξi, where ξ1, ..., ξn are i.i.d. standard normal.

Under the alternative, subject to regularity conditions, as n→∞,

T2 →P

∫ T

0

v2t
σ6t

dt. (18)

The main difference between Test I and Test II is that in Test II the fourth powers

of returns are not used. This reduces potential effects due to outliers since higher order

powers exaggerate outlier effects.

4.3 Test III

The test statistic here is

T3 =

∑J
j=1

(

2
3
n
∑Mj−1

i=M(j−1) (∆Xti)
4 − 4

9

(√
n
∑Mj−1

i=M(j−1)
(∆Xti )

3
)2

(
∑Mj−1

i=M(j−1)
(∆X2

ti
)
)

)

2
∑J

j=1

(
∑Mj−1

i=M(j−1)
(∆Xti )

2
)2

(∆τ j)2
· n
∑Mj−1

i=M(j−1)(∆ti)
2

.

Note that the numerator is an estimator of the asymptotic variance given by Theo-

rem 1; and the denominator is estimating 2
∫ 1

0
σ4s dHs, which, under the non-endogenous

hypothesis, equals the asymptotic variance.
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Replacing ∆Xti with Vi = (∆ti)
1/2 × ξi where ξ1, ..., ξn are i.i.d. standard normal

provides an asymptotically valid null-distribution:

T3,0 =

∑J
j=1

(

2
3
n
∑Mj−1

i=M(j−1) V
4
i − 4

9

(√
n
∑Mj−1

i=M(j−1)
V 3

i

)2

(
∑Mj−1

i=M(j−1)
V 2

i

)

)

2
∑J

j=1

(
∑Mj−1

i=M(j−1)
V 2

i

)2

(∆τ j)2
· n∑Mj−1

i=M(j−1)(∆ti)
2

.

Under null with the conventional assumption (1),

T3 →
∫ t

0
2
3
· 3σ4s dHs

2
∫ t

0
σ4s dHs

= 1;

under alternative,

T3 →
∫ t

0

(
2
3
us − 4

9
v2

s

σ2
s

)

ds

2
∫ t

0
σ4s dHs

.

4.4 Combining Several Days

Each of the above tests can be used to test the presence of endogenous times. When

the p-values are independent over days (or have approximate martingale structure), we

can combine all the p-values and obtain a combined p-value using Fisher’s combined

test. More explicitly, if we let pi (i = 1, . . . , N) be the p-values from day 1 to day N ,

then under the null

−2
N∑

i=1

log(pi) ∼ χ22N .

We can then compare −2∑N
i=1 log(pi) with the χ22N distribution and get a combined

p-value

Pcombined = P

(

χ22N > −2
N∑

i=1

log(pi)

)

.
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5 Empirical Study

5.1 Data Description

We use trade data from the TAQ database. We consider several traded stocks at NYSE.

Our analysis is based on subsampled local-averaged log prices. More specifically, we

sample every K time stamps; for each time stamp in this sub-grid, we use the average

of its preceding P observations in the original complete price record and treat the

subsampled local-averaged log price as the log price at that time point, and we take

P < K so there is no overlapping. Note that the local-averaging is a modified version

of the “pre-averaging” (Jacod, Li, Mykland, Podolskij, and Vetter (2009)), which can

be considered as a way to reduce microstructure noise. We are using local-averaging

(P << K) instead of pre-averaging (P = K) in order to retain more precise information

of the observation times. We consider only the transactions within the 9 : 30 am to 4

pm window when the exchange is open. Note that we should choose K large enough

so that there is almost no multiple observations sharing the same timestamp (so that

the ∆ti’s are reasonably precise).

Mathematically, suppose the raw data is Xo
v`
, ` = 1, · · · , L. Our analysis will be

based on Xti with

ti = v(i−1)K+P , i = 1, · · ·n = b L
K
c,

and

Xti =
1

P

P∑

j=1

Xo
v(i−1)K+j

.

We conduct the tests mentioned in Section 5.1-5.3. For Tests I and II, onesided
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p-values make sense, because asymptotically, the test statistics converge to zero under

null, but to positive numbers under alternative. For Test III, we know that the limit

under null is 1, so we use two-sided p-values. More explicitly, for either Test I or

Test II, for each day i, we simulate n null statistics Ti,j (j = 1, . . . , n) (n = 1000 in the

following study) and the estimated one-sided p-value is

p̂i = max

(∑

j 1{Ti,j>Ti}

n
,
1

n

)

;

for Test III,

p̂i = max

(∑

j 1{|1−Ti,j |>|1−Ti|}

n
,
1

n

)

.

We check the acf plots of the p-values for the independence, and then use Fisher’s

combined test (see Section 4.4) to find the combined p-values.

5.2 Test Results

We here study the behavior of our test statistics for four stocks: SKS, DDS, MAT and

IBM. We show the distribution of daily p-values for one year (SKS and DDS) or 3

months (MAT and IBM), along with a combined p-value (Section 5.4). It is clear from

the results that the null hypothesis of non-endogeneity is rejected for all the stocks

and all the statistics when aggregated over the total time period. The result may vary

over individual days, either due to statistical variability or to the varying dynamics.

Though not strictly needed, we also provide autocorrelation function (ACF) plot of

the p-values to show that they are uncorrelated across days.
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5.2.1 SKS

SKS 2005 one year data. Parameters used: local-averaging scheme P = 3, subsample

scheme K = 8 and number of blocks J = 3 (block size M ≈ 50).

Histograms of the p-values:
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Combined p-values (total time period, see Section 4.4):
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p-values 0 0 0

5.2.2 DDS

DDS 2005 one year data. Parameters used: local-averaging scheme P = 3, subsample

scheme K = 8 and number of blocks J = 3 (block size M ≈ 50).
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Histograms of the p-values:
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5.2.3 MAT

MAT 2005 Jan-Mar three months’ data. Parameters used: local-averaging scheme

P = 3, subsample scheme K = 8 and number of blocks J = 5 (block size M ≈ 50).

Histograms of the p-values:
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Combined P-values (total time period):
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p-values 0.124 4.35e-07 0

5.2.4 IBM

IBM 2005 Jan-Mar three months’ data. Parameters used: local-averaging scheme

P = 5, subsample scheme K = 20 and number of blocks J = 5 (block size M ≈ 65).

Histograms of the p-values:
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Combined p-values (total time period):

Test I II III

p-values 0.093 3.82e-05 1.15e-10

6 Simulation Study

We took the same setting as in Example 3 in Section 3 with µ = 0, σ = 0.02, a = 0.04,

b = 0.01 and n = 3600. If we think of the simulated process as a log price process, then

the stopping rule makes that there is a transaction each time when there is an increase

of 0.067% or a decrease of 0.017%. The actual number of daily trades is about 3000.

We examine three confidence intervals based on three different methods. Confidence

intervals of 22 days are plotted in the upper panel of the Figure 1. Confidence intervals

of 1000 days are plotted in the lower panel of Figure 1.
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• Confidence intervals CIH (green dashed lines). These are built out of the naive

method ignoring the dependency between the observation times and the process,

using the CLT based on the quadratic variation of times:

√
n

(

RVT −
∫ T

0

σ2tdt

)

→L−Stably

∫ T

0

√

2σ4tH
′(t) dBt,

where Bt ⊥⊥ Wt, and Ht is defined by (1) (it is usually assumed to be differen-

tiable).

• Confidence intervals CIX (blue dotted lines). These are built by still ignoring the

dependency between the observation time and the process, but using the CLT

based on the realized quarticity which is equivalent to the above CLT if there

were no endogeneity:

√
n

(

RVT −
∫ T

0

σ2tdt

)

→L−Stably

∫ T

0

√

2

3
us dBt,

where Bt ⊥⊥ Wt.

• Confidence intervals CIC (red solid lines). These are based on Theorem 1, by

first estimating the asymptotic bias, and then correcting for it from the Realized

Volatility. The variance is corrected accordingly.

In estimating the processes σs, Hs, us and vs, we use the block method as in

Section 4.1. The number of blocks is chosen to be J = 3, which corresponds to a block

size of M ≈ 1000.

Remark 1. The choice of J = 3 is not optimal. We are acting as if we did not know

how the data were generated; otherwise we would choose J = 1, because in this setting,

the processes σs, us and vs are all constant over the whole time period, hence putting

all data in one block gives the smallest errors. In practice, one can use this idea as a
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guidance to pick J in a bootstrap manner; we shall discuss this in a subsequent paper.
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Figure 1. Confidence intervals computed based on the three methods explained

above (Green dashed: CIH ; Blue dotted: CIX ; Red solid: CIC). Upper panel: for 22

days; lower panel: for 1000 days.

Summary statistics (based on simulation of 1000 days):

Average

width
RMSE

Coverage

Frequency

% Reduced width

compared with CIH

% Reduced RMSE

compared with CIH

CIH 6.161e-05 1.005e-05 99.6% – –

CIX 4.020e-05 1.005e-05 95.8% 34.7% 0

CIC 3.013e-05 7.460e-06 95.5% 51.1% 25.8%

The RMSE in the table above stands for the root mean of the squared distance

between the centers of the confidence intervals and the true σ2.
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From the plots and the summary statistics we have the following observations.

1. Width of the confidence intervals: We see that CIX is much narrower than

CIH . This reflects the fact that in the endogenous case the asymptotic variance

limn
2
3
n[X,X,X,X]t may be substantially different from

∫ t

0
2σ4sdHs which is the

asymptotic variance one would get if the endogeneity is overlooked. Furthermore,

the correct confidence interval CIC is even narrower than CIX .

2. Bias correction: When the blue confidence intervals tend to be too extreme and

not covering the true value, our bias correction may correct it back especially

when the extremeness of the blue confidence interval was due to the dependency

of the time and process rather than pure randomness.

3. Coverage frequency: We see from the summary statistics that the confidence

intervals CIC have coverage frequency of 95.5%, and in the mean while being

narrower than the confidence intervals based on the other two methods. This

coverage frequency is close to what is being expected (95%), and is similar to

that achieved by the CIX , which are wider. Despite the bias, the CIH have

bigger coverage frequency which is mainly due to the (wrongly estimated) bigger

width.

7 Conclusion

We have established a central limit theorem for general dependent times. We also show

that the endogeneity can exist in financial data, using tests based on our theory. It

remains an open question how to estimate the size of the effect, and this is deferred to

later work.
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A Appendix: Proof of Theorem 1

Because we shall prove stable convergence, and because of the local boundedness, we

can without loss of generality assume that σt and µt are bounded by a nonrandom

constant. One can further suppress µ as in Section 2.2 (p. 1407-1409) of Mykland and

Zhang (2009b), and act as if X is a local martingale.

Define the interpolated and rescaled error process by

dMt = 2n1/2(Xt −Xt∗)dXt , M0 = 0.

where t∗ is the largest time ti smaller than or equal to t. From (6), it follows as in the

proof of Proposition 2 (p. 1952) of Mykland and Zhang (2006) that 〈M,M〉t
p→ 2
3

∫ t

0
usds

for all t (the proof does not depend on times being nonrandom). The remainder term in

equation (6.3) of that paper vanishes at the relevant order because of our condition (5).

Specifically, this works as follows. With the same interpolation of [X,X,X,X]t,

and using the first part of equation (6.3) in Mykland and Zhang (2006), we obtain

nd[X,X,X,X]t =
3

2
d〈M,M〉t + 4n(Xt −Xt∗)

3dXt. (A.1)

Without loss of generality, we can assume that σt is bounded by, say, σ+ (see Sec-

tion 4.5 of Mykland and Zhang (2009a)). By the Burkholder-Davis-Gundy inequality

(see Section 3 of Ch. VII of Dellacherie and Meyer (1982), or p. 193 and 222 in Protter
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(2004)), the expected quadratic variation of the second term satisfies

E〈
∫ ·

0

4n(Xt −Xt∗)
3dXt,

∫ ·

0

4n(Xt −Xt∗)
3dXt〉T = 16n2E

∫ T

0

(Xt −Xt∗)
6d〈X,X〉t

≤ c16n2σ8+E

∫ T

0

(t− t∗)
3dt

≤ c16Tn−3εσ8+

p→ 0 ,

where c is a universal constant, and where the second-to-last transition is by assump-

tion (5). Having eliminated the second term in (A.1), it follows that 〈M,M〉t
p→ 2
3

∫ t

0
usds

for all t.

Similarly, (7) yields that 〈X,M〉t
p→ 2
3

∫ t

0
vsds, again for all t. The analogous equa-

tion to (A.1) follows from Itô’s formula since

d(Xt −Xt∗)(Mt −Mt∗) = d〈X,M〉t + martingale term

= 2n1/2(Xt −Xt∗)d〈X,X〉t + martingale term

=
2

3
n1/2d(Xt −Xt∗)

3 + martingale term.

The martingale term is negligible again by (5).

The overall result now follows from the limit results in either Theorem B.4 (p.

65-67) of Zhang (2001), or Theorem 6 of Mykland and Zhang (2009a).


