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1 Introduction

1.1 Overview

This is a course on estimation in high frequency data. It is intended for an audience that includes
people interested in finance, econometrics, statistics, probability and financial engineering.

There has in recent years been a vast increase in the amount of high frequency data available.
There has also been an explosion in the literature on the subject. In this course, we start from
scratch, introducing the probabilistic model for such data, and then turn to the estimation ques-
tion in this model. We shall be focused on the (for this area) emblematic problem of estimating
volatility. Similar techniques to those we present can be applied to estimating leverage effects, re-
alized regressions, semivariances, doing analyses of variance, detecting jumps, measuring liquidity
by measuring the size of the microstructure noise, and many other objects of interest.

The applications are mainly in finance, ranging from risk management to options hedging
(see Section 2.6 below), execution of transactions, portfolio optimization (Fleming, Kirby, and
Ostdiek (2001, 2003)), and forecasting. The latter literature has been particularly active, with
contributions including Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold, and Labys
(2001, 2003), Andersen, Bollerslev, and Meddahi (2005), Dacorogna, Gençay, Müller, Olsen, and
Pictet (2001), Meddahi (2001). Methodologies based on high frequency data can also be found
in neural science (see, for example, Valdés-Sosa, Bornot-Sánchez, Melie-Garćıa, Lage-Castellanos,
and Canales-Rodriguez (2007)) and climatology (see Ditlevsen, Ditlevsen, and Andersen (2002)
and Ditlevsen and Sørensen (2004) on Greenlandic ice cores).

The purpose of this article, however, is not so much to focus on the applications as on the
probabilistic setting and the estimation methods. The theory was started, on the probabilistic side,
by Jacod (1994) and Jacod and Protter (1998), and on the econometric side by Foster and Nelson
(1996) and Comte and Renault (1998). The econometrics of integrated volatility was pioneered
in Andersen, Bollerslev, Diebold, and Labys (2001, 2003), Barndorff-Nielsen and Shephard (2002,
2004b) and Dacorogna, Gençay, Müller, Olsen, and Pictet (2001). The authors of this article
started to work in the area through Zhang (2001), Zhang, Mykland, and Aı̈t-Sahalia (2005), and
Mykland and Zhang (2006). For further references, see Section 5.5.

Parametric estimation for discrete observations in a fixed time interval is also an active field.
This problem has been studied by Genon-Catalot and Jacod (1994), Genon-Catalot, Jeantheau, and
Larédo (1999, 2000), Gloter (2000), Gloter and Jacod (2001a,b), Barndorff-Nielsen and Shephard
(2001), Bibby, Jacobsen, and Sørensen (2002), Elerian, Siddhartha, and Shephard (2001), Jacobsen
(2001), Sørensen (2001), Hoffman (2002). This is, of course, only a small sample of the literature
available. Also, these references only concern the type of asymptotics considered in this paper,
where the sampling interval [0, T ]. There is also a substantial literature on the case where T →∞
(see Section 1.2 of Mykland (2009b) for some of the main references in this area).
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This article is meant to be a moderately self-contained course on the basics of this material.
The introduction assumes some degree of statistics/econometric literacy, but at a lower level than
the standard probability text. Some of the material is research front and not published elsewhere.
This is not meant as a full review of the area. Readers with a good probabilistic background can
skip most of Section 2, and occasional other sections.

The text also mostly overlooks (except Sections 3.5.3 and 6.3) the questions that arise in con-
nection with multidimensional processes. For further literature in this area, one should consult
Barndorff-Nielsen and Shephard (2004a), Hayashi and Yoshida (2005) and Zhang (2009).

1.2 High Frequency Data

Recent years have seen an explosion in the amount of financial high frequency data. These are
the records of transactions and quotes for stocks, bonds, currencies, options, and other financial
instruments.

A main source of such data is the Trades and Quotes (TAQ) database, which covers the stocks
traded on the New York Stock Exchange (NYSE). For example, here is an excerpt of the transactions
for Monday, April 4, 2005, for the pharmaceutical company Merck (MRK):

symbol date time price size

MRK 20050405 9:41:37 32.69 100

MRK 20050405 9:41:42 32.68 100

MRK 20050405 9:41:43 32.69 300

MRK 20050405 9:41:44 32.68 1000

MRK 20050405 9:41:48 32.69 2900

MRK 20050405 9:41:48 32.68 200

MRK 20050405 9:41:48 32.68 200

MRK 20050405 9:41:51 32.68 4200

MRK 20050405 9:41:52 32.69 1000

MRK 20050405 9:41:53 32.68 300

MRK 20050405 9:41:57 32.69 200

MRK 20050405 9:42:03 32.67 2500

MRK 20050405 9:42:04 32.69 100

MRK 20050405 9:42:05 32.69 300

MRK 20050405 9:42:15 32.68 3500

MRK 20050405 9:42:17 32.69 800

MRK 20050405 9:42:17 32.68 500

MRK 20050405 9:42:17 32.68 300

MRK 20050405 9:42:17 32.68 100

MRK 20050405 9:42:20 32.69 6400
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MRK 20050405 9:42:21 32.69 200

MRK 20050405 9:42:23 32.69 3000

MRK 20050405 9:42:27 32.70 8300

MRK 20050405 9:42:29 32.70 5000

MRK 20050405 9:42:29 32.70 1000

MRK 20050405 9:42:30 32.70 1100

“Size” here refers to the number of stocks that changed hands in the given transaction. This is
often also called “volume”.

There are 6302 transactions recorded for Merck for this day. On the same day, Microsoft (MSFT)
had 80982 transactions. These are massive amounts of data, and they keep growing. Four years
later, on April 3, 2009, there were 74637 Merck transactions, and 211577 Microsoft transactions.
What can we do with such data? This course is about how to approach this question.

1.3 A First Model for Financial Data: The GBM

Finance theory suggests the following description of prices, that they must be so-called semimartin-
gales. We defer a discussion of the general concept until later (see also Delbaen and Schachermayer
(1995)), and go instead to the most commonly used such semimartingale: the Geometric Brownian
Motion (GBM). This is a model where the stock price movement is additive on the log scale, as
follows.

Set
Xt = logSt = the logarithm of the stock price St at time t. (1)

The GBM model is now that
Xt = X0 + µt+ σWt, (2)

where µ and σ are constants, and Wt is a Brownian Motion (BM), a concept we now define. The
“time zero” is an arbitrary reference time.

Definition 1. The process (Wt)0≤t≤T is a Brownian motion provided
(1) W0 = 0;
(2) t→Wt is a continuous function of t;
(3) W has independent increments: if t > s > u > v, then Wt −Ws is independent of Wu −Wv;
(4) for t > s, Wt −Ws is normal with mean zero and variance t− s (N(0,t-s)).

1.4 Estimation in the GBM model

It is instructive to consider estimation in this model. We take time t = 0 to be the beginning of
the trading day, and time t = T to be the end of the day.
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Let’s assume that there are n observations of the process (transactions). We suppose for right
now that the transactions are spaced equally in time, so that an observation is had every ∆tn = T/n

units of time. This assumption is quite unrealistic, but it helps a straightforward development which
can then be modified later.

The observations (log transaction prices) are therefore Xtn,i , where tn,i = i∆tn. If we take
differences, we get observations

∆Xtn,i+1 = Xtn,i+1 −Xtn,i , i = 0, ..., n− 1. (3)

The ∆Xtn,i+1 are independent and identically distributed (iid) with law N(µ∆tn, σ
2∆tn). The

natural estimators are:

µ̂n =
1

n∆tn

n−1∑
i=0

∆Xtn,i+1 = (XT −X0)/T both MLE and UMVU; and

σ̂2
n,MLE =

1
n∆tn

n−1∑
i=0

(∆Xtn,i+1 −∆Xtn)2 MLE; or (4)

σ̂2
n,UMV U =

1
(n− 1)∆tn

n−1∑
i=0

(∆Xtn,i+1 −∆Xtn)2 UMVU.

Here, MLE is the maximum likelihood estimator, and UMVU is the uniformly minimum variance
unbiased estimator (see Lehmann (1983) or Rice (2006)). Also, ∆Xtn = 1

n

∑n−1
i=0 ∆Xtn,i+1 = µ̂n∆tn.

The estimators (4) clarify some basics. First of all, µ cannot be consistently estimated for
fixed length T of time interval. In fact, the µ̂n does not depend on n, but only on T and the
value of the process at the beginning and end of the time period. This is reassuring from a
common sense perspective. If we could estimate µ for actual stock prices, we would know much
more about the stock market than we really do, and be quite rich. – Of course, if T → ∞,
then µ can be estimated consistently. Specifically, (XT − X0)/T

p→µ as T → ∞. This is because
Var((XT −X0)/T ) = σ2/T → 0.

It is perhaps more surprising that σ2 can be estimated consistently for fixed T , as n → ∞.
In other words, σ̂2

n
p→σ2 as n → ∞. Set Un,i = ∆Xtn,i/(σ∆t1/2n ). Then the Un,i are iid with

distribution N((µ/σ)∆t1/2
n , 1). Set Ūn,· = n−1

∑n−1
i=0 Un,i. It follows from considerations for normal

random variables (Cochran (1934)) that

n−1∑
i=0

(Un,i − Ūn,·)2

is χ2 distributed with n − 1 degrees of freedom (and independent of Ūn,·). Hence, for the UMVU
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estimator,

σ̂2
n = σ2∆tn

1
(n− 1)∆tn

n−1∑
i=0

(Un,i − Ūn,·)2

L= σ2 χ
2
n−1

n− 1
.

It follows that

E(σ̂2
n) = σ2 and Var(σ̂2

n) =
2σ4

n− 1
, (5)

since Eχ2
m = m and Var(χ2

m) = 2m. Hence σ̂2
n is consistent for σ2: σ̂2

n → σ2 in probability as
n→∞.

Similarly, since χ2
n−1 is the sum of n− 1 iid χ2

1 random variables, by the central limit theorem
we have the following convergence in law:

χ2
n−1 − Eχ2

n−1√
Var(χ2

n−1)
=

χ2
n−1 − (n− 1)√

2(n− 1)
L→ N(0, 1), (6)

and so

n1/2(σ̂2
n − σ2) ∼ (n− 1)1/2(σ̂2

n − σ2)

L=
√

2σ2χ
2
n−1 − (n− 1)√

2(n− 1)
L→ σ2N(0, 2) = N(0, 2σ4). (7)

This provides an asymptotic distribution which permits the setting of intervals. For example,
σ2 = σ̂2

n ± 1.96×
√

2σ̂2
n would be an asymptotic 95 % confidence interval for σ2.

Since σ̂2
n,MLE = n−1

n σ̂2
n,UMV U , the same asymptotics apply to the MLE.

1.5 Behavior of Non-Centered Estimators

The above discussion of σ̂2
n,UMV U and σ̂2

n,MLE is exactly the same as in the classical case of es-
timating variance on the basis of iid observations. More unusually, for high frequency data, the
mean is often not removed in estimation. The reason is as follows. Set

σ̂2
n,nocenter =

1
n∆tn

n−1∑
i=0

(∆Xtn,i+1)2. (8)
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Now note that for the MLE version of σ̂n,

σ̂2
n,MLE =

1
n∆tn

n−1∑
i=0

(∆Xtn,i+1 −∆Xtn)2

=
1

n∆tn

(
n−1∑
i=0

(∆Xtn,i+1)2 − n(∆Xtn)2

)
= σ̂2

n,nocenter −∆tnµ̂2
n

= σ̂2
n,nocenter −

T

n
µ̂2
n.

Since µ̂2
n does not depend on n, it follows that

n1/2
(
σ̂2
n,MLE − σ̂2

n,nocenter

) p→ 0.

Hence, σ̂2
n,nocenter is consistent and has the same asymptotic distribution as σ̂2

n,UMV U and σ̂2
n,MLE .

It can therefore also be used to estimate variance. This is quite common for high frequency data.

1.6 GBM and the Black-Scholes-Merton formula

The GBM model is closely tied in to other parts of finance. In particular, following the work of
Black and Scholes (1973), Merton (1973), Harrison and Kreps (1979), and Harrison and Pliska
(1981), precise option prices can be calculated in this model. See also Duffie (1996), Neftci (2000),
Øksendal (2003), or Shreve (2004) for book sized introductions to the theory.

In the case of the call option, the price is as follows. A European call option on stock St with
maturity (expiration) time T and strike price K is the option to buy one unit of stock at price K
at time T . It is easy to see that the value of this option at time T is (ST −K)+, where x+ = x if
x ≥ 0, and x+ = 0 otherwise.

If we make the assumption that St is a GBM, which is to say that it follows (1)-(2), and also
the assumption that the short term interest rate r is constant (in time), then the price at time t,
0 ≤ t ≤ T of this option must be

price = C(St, σ2(T − t), r(T − t)), (9)

where

C(S,Ξ, R) = SΦ(d1(S,Ξ, R))−K exp(−R)Φ(d2(S,Ξ, R)), where

d1,2(S,Ξ, R) = (log(S/K) +R± Ξ/2) /
√

Ξ (+ in d1 and − in d2) and (10)

Φ(x) = P (N(0, 1) ≤ x), the standard normal cdf.

This is the Black-Scholes-Merton formula.
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We shall see later on how high frequency estimates can be used in this formula. For the moment,
note that the price only depends on quantities that are either observed (the interest rate r) or
(perhaps) nearly so (the volatility σ2). It does not depend on µ. Unfortunately, the assumption of
constant r and σ2 is unrealistic, as we shall discuss in the following.

The GBM model is also heavily used in portfolio optimization

1.7 Our Problem to be Solved: Inadequacies in the GBM Model

We here give a laundry list of questions that arise and have to be dealt with.

1.7.1 The Volatility Depends on t

It is empirically the case that σ2 depends on t. We shall talk about the instantaneous volatility σ2
t .

This concept will be defined carefully in Section 2.

1.7.2 Non-Normal Returns

Returns are usually assumed to be non-normal. This behavior can be explained through random
volatility and/or jumps.

• The Volatility is Random; Leverage Effect. Non-normality can be achieved in a continuous
model by letting σ2

t have random evolution. It is also usually assumed that σ2
t can be corre-

lated with the (log) stock price. This is often referred to as Leverage Effect. More about this
in Section 2.

• Jumps. The GBM model assumes that the log stock price Xt is continuous as a function of t.
The evolution of the stock price, however, is often thought to have a jump component. The
treatment of jumps is largely not covered in this article, though there is some discussion in
Section 6.4.1, which also gives some references.

Jumps and random volatility are often confounded, since any martingale can be embedded in a
Brownian motion (Dambis (1965), Dubins and Schwartz (1965), see also Mykland (1995) for a
review and further discussion). The difficulty in distinguishing these two sources of non-normality
is also studied by Bibby, Skovgaard, and Sørensen (2005).
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1.7.3 Microstructure Noise

An important feature of actual transaction prices is the existence of microstructure noise. Transac-
tion prices, as actually observed, are typically best modeled on the form Yt = logSt = the logarithm
of the stock price St at time t, where for transaction at time ti,

Yti = Xti + noise, (11)

and Xt is a semimartingale. This is often called the hidden semimartingale model. This issue is an
important part of our narrative, and is further discussed in Section 5, see also Section 6.4.2.

1.7.4 Unequally Spaced Observations

In the above, we assumed that the transaction times ti are equally spaced. A quick glance at the
data snippet in Section 1.2 reveal that this is typically not the case. This leads to questions that
will be addressed as we go along.

1.8 A Note on Probability Theory, and other Supporting Material

We will extensively use probability theory in these notes. To avoid making a long introduction on
stochastic processes, we will define concepts as we need them, but not always in the greatest depth.
We will also omit other concepts and many basic proofs. As a compromise between the rigorous
and the intuitive, we follow the following convention: the notes will (except when the opposite is
clearly stated) use mathematical terms as they are defined in Jacod and Shiryaev (2003). Thus, in
case of doubt, this work can be consulted.

Other recommended reference books on stochastic process theory are Karatzas and Shreve
(1991), Øksendal (2003), Protter (2004), and Shreve (2004). For introduction to measure theoretic
probability, one can consult Billingsley (1995). Mardia, Kent, and Bibby (1979) provides a handy
reference on normal distribution theory.

2 A More General Model: Time varying Drift and Volatility

2.1 Stochastic Integrals, Itô-Processes

We here make some basic definitions. We consider a process Xt, where the time variable t ∈ [0, T ].
We mainly develop the univariate case here.
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2.1.1 Information Sets, σ-fields, Filtrations

Information is usually described with so-called σ-fields. The setup is as follows. Our basic space
is (Ω,F), where Ω is the set of all possible outcomes ω, and F is the collection of subsets A ⊆ Ω
that will eventually be decidable (it will be observed whether they occured or not). All random
variables are thought to be a function of the basic outcome ω ∈ Ω.

We assume that F is a so-called σ-field. In general,

Definition 2. A collection A of subsets of Ω is a σ-field if

(i) ∅, Ω ∈ A;
(ii) if A ∈ A, then Ac = Ω−A ∈ A; and
(iii) if An, n = 1, 2, ... are all in A, then ∪∞n=1An ∈ A.

If one thinks of A as a collection of decidable sets, then the interpretation of this definition is
as follows:

(i) ∅, Ω are decidable (∅ didn’t occur, Ω did);
(ii) if A is decidable, so is the complement Ac (if A occurs, then Ac does not occur, and vice versa);
(iii) if all the An are decidable, then so is the event ∪∞n=1An (the union occurs if and only if at least
one of the Ai occurs).

A random variable X is called A-measurable if the value of X can be decided on the basis of the
information in A. Formally, the requirement is that for all x, the set {X ≤ x} = {ω ∈ Ω : X(ω) ≤
x} be decidable (∈ A).

The evolution of knowledge in our system is described by the filtration (or sequence of σ-fields)
Ft, 0 ≤ t ≤ T . Here Ft is the knowledge available at time t. Since increasing time makes more sets
decidable, the family (Ft) is taken to satisfy that if s ≤ t, then Fs ⊆ Ft.

Most processes will be taken to be adapted to (Ft): (Xt) is adapted to (Ft) if for all t ∈ [0, T ],
Xt is Ft-measurable. A vector process is adapted if each component is adapted.

We define the filtration (FXt ) generated by the process (Xt) as the smallest filtration to which
Xt is adapted. By this we mean that for any filtration F ′t to which (Xt) is adapted, FXt ⊆ F ′t for
all t. (Proving the existence of such a filtration is left as an exercise for the reader).

2.1.2 Wiener Processes

A Wiener process is Brownian motion relative to a filtration. Specifically,

Definition 3. The process (Wt)0≤t≤T is an (Ft)-Wiener process if it is adpted to (Ft) and
(1) W0 = 0;
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(2) t→Wt is a continuous function of t;
(3) W has independent increments relative to the filtration (Ft): if t > s, then Wt −Ws is inde-
pendent of Fs;
(4) for t > s, Wt −Ws is normal with mean zero and variance t− s (N(0,t-s)).

Note that a Brownian motion (Wt) is an (FWt )-Wiener process.

2.1.3 Predictable Processes

For defining stochastic integrals, we need the concept of predictable process. “Predictable” here
means that one can forecast the value over infinitesimal time intervals. The most basic example
would be a “simple process”. This is given by considering break points 0 = s0 = t0 ≤ s1 < t1 ≤
s2 < t2 < ... ≤ sn < tn ≤ T , and random variables H(i), observable (measurable) with respect to
Fsi .

Ht =

{
H(0) if t = 0
H(i) if si < t ≤ ti

(12)

In this case, at any time t (the beginning time t = 0 is treated separately), the value of Ht is known
before time t.

Definition 4. More generally, a process Ht is predictable if it can be written as a limit of simple
functions H(n)

t . This means that H(n)
t (ω)→ Ht(ω) as n→∞, for all (t, ω) ∈ [0, T ]× Ω.

All adapted continuous processes are predictable. More generally, this is also true for adapted
processes that are left continuous (càg, for continue à gauche). (Proposition I.2.6 (p. 17) in Jacod
and Shiryaev (2003)).

2.1.4 Stochastic Integrals

We here consider the meaning of the expression∫ T

0
HtdXt. (13)

The ingredients are the integrand Ht, which is assumed to be predictable, and the integrator Xt,
which will generally be a semi-martingale (to be defined below in Section 2.3.5).

The expression (13) is defined for simple process integrands as∑
i

H(i)(Xti −Xsi) (14)
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For predictable integrands Ht that are bounded and limits of simple processes H(n)
t , the integral

(13) is the limit in probability of
∫ T

0 H
(n)
t dXt. This limit is well defined, i.e., independent of the

sequence H(n)
t .

If Xt is a Wiener process, the integral can be defined for any predictable process Ht satisfying∫ T

0
H2
t dt < ∞. (15)

It will always be the case that the integrator Xt is right continuous with left limits (càdlàg, for
continue à droite, limites à gauche).

The integral process ∫ t

0
HsdXs =

∫ T

0
HsI{s ≤ t}dXs (16)

can also be taken to be càdlàg. If (Xt) is continuous, the integral is then automatically continuous.

2.1.5 Itô Processes

We now come to our main model, the Itô process. Xt is an Itô process relative to filtration (Ft)
provided (Xt) is (Ft) adapted; and if there is an (Ft)-Wiener process (Wt), and (Ft)-adapted
processes (µt) and (σt), with ∫ T

0
|µt|dt <∞, and (17)∫ T

0
σ2
t dt <∞ (18)

so that

Xt = X0 +
∫ t

0
µsds+

∫ t

0
σsdWs. (19)

The process is often written on differential form:

dXt = µtdt+ σtdWt. (20)

We note that the Itô process property is preserved under stochastic integration. If Ht is bounded
and predictable, then ∫ t

0
HsdXs =

∫ t

0
Hsµsdt+

∫ t

0
HsσsdWs. (21)
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It is clear from this formula that predictable processes Ht can be used for integration w.r.t. Xt

provided ∫ T

0
|Htµt|dt <∞ and (22)∫ T

0
(Htσt)2dt <∞. (23)

2.2 Two Interpretations of the Stochastic Integral

One can use the stochastic integral in two different ways: as model, or as a description of trading
profit and loss (P/L).

2.2.1 Stochastic Integral as Trading Profit or Loss (P/L)

Suppose that Xt is the value of a security. Let Ht be the number of this stock that is held at
time t. In the case of a simple process (12), this means that we hold H(i) units of X from time
si to time ti. The trading profit and loss (P/L) is then given by the stochastic integral (14). In
this description, it is quite clear that H(i) must be known at time si, otherwise we would base the
portfolio on future information. More generally, for predictable Ht, we similarly avoid using future
information.

2.2.2 Stochastic Integral as Model

This is a different genesis of the stochastic integral model. One simply uses (19) as a model, in
the hope that this is a sufficiently general framework to capture most relevant processes. The
advantage of using predictable integrands come from the simplicity of connecting the model with
trading gains.

For simple µt and σ2
t , the integral∑

i

µ(i)(ti − si) +
∑
i

σ(i)(Wti −Wsi) (24)

is simply a sum of contitionally normal random variables, with mean µ(i)(ti − si) and variance
(σ(i))2(ti − si). The sum need not be normal, since µ and σ2 can be random.

It is worth noting that in this model,
∫ T

0 µtdt is the sum of instantaneous means (drift), and∫ T
0 σ2

t dt is the sum of intstantaneous variances. To make the latter statement precise, note that
in the model (19), one can show the following: Let Var(·|Ft) be the conditional variance given the



The Econometrics of High Frequency Data 13

information at time t. If Xt is an Itô process, and if 0 = tn,0 < tn,i < ... < tn,n = T , then

∑
i

Var(Xtn,i+1 −Xtn,i |Ftn,i)
p→
∫ T

0
σ2
t dt (25)

when
max
i
|tn,i+1 − tn,i| → 0. (26)

If the µt and σ2
t processes are nonrandom, then Xt is a Gaussian process, and XT is normal

with mean X0 +
∫ T

0 µtdt and variance
∫ T

0 σ2
t dt.

2.2.3 The Heston model

A popular model for volatility is due to Heston (1993). In this model, the process Xt is given by

dXt = µdt+ σtdWt

dσ2
t = κ(α− σ2

t )dt+ γσtdZt , with (27)

Zt = ρWt + (1− ρ2)1/2Bt (28)

where (Wt) and (Bt) are two independent Wiener processes, κ > 0, and |ρ| ≤ 1. To assure that σ2
t

does not hit zero, one must also require (Feller (1951)) that 2κα ≥ γ2.

2.3 Semimartingales

2.3.1 Conditional Expectations

Denote by E(·|Ft) the conditional expectation given the information available at time t. Formally,
this concept is defined as follows:

Theorem 1. Let A be a σ-field, and let X be a random variable so that E|X| < ∞. There is a
A-measurable random variable Z so that for all A ∈ A,

EZIA = EXIA, (29)

where IA is the indicator function of A. Z is unique “almost surely”, which is that if Z1 and Z2

satisfy the two criteria above, then P (Z1 = Z2) = 1.

We thus define
E(X|A) = Z (30)

where Z is given in the theorem. The conditional expectation is well defined “almost surely”.
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For further details and proof of theorem, see Section 34 (p. 445-455) of Billingsley (1995).

This way of defining conditional expectation is a little counterintuitive if unfamiliar. In partic-
ular, the conditional expectation is a random variable. The heuristic is as follows. Suppose that
Y is a random variable, and that A carries the information in Y . Introductory textbooks often
introduce conditional expectation as a non-random quantity E(X|Y = y). To make the connection,
set

f(y) = E(X|Y = y). (31)

The conditional expectation we have just defined then satisfies

E(X|A) = f(Y ). (32)

The expression in (32) is often written E(X|Y ).

2.3.2 Properties of Conditional Expectations

• Linearity: for constant c1, c2:

E(c1X1 + c2X2 | A) = c1E(X1 | A) + c2E(X2 | A)

• Conditional constants: if Z is A-measurable, then

E(ZX|A) = ZE(X|A)

• Law of iterated expectations (iterated conditioning, tower property): if A′ ⊆ A, then

E[E(X|A)|A′] = E(X|A′)

• Independence: if X is independent of A:

E(X|A) = E(X)

• Jensen’s inequality: if g : x→ g(x) is convex:

E(g(X)|A) ≥ g(E(X|A))

Note: g is convex if g(ax+ (1− a)y) ≤ ag(x) + (1− a)g(y) for 0 ≤ a ≤ 1. For example: g(x) = ex,

g(x) = (x−K)+. Or g′′ exists and is continuous, and g′′(x) ≥ 0.
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2.3.3 Martingales

An (Ft) adapted process Mt is called a martingale if E|Mt| <∞, and if, for all s < t,

E(Mt|Fs) = Ms. (33)

This is a central concept in our narrative. A martingale is also known as a fair game, for the
following reason. In a gambling situation, if Ms is the amount of money the gambler has at time
s, then the gambler’s expected wealth at time t > s is also Ms. (The concept of martingale applies
equally to discrete and continuous time axis).

Example 1. A Wiener process is a martingale. To see this, for t > s, since Wt −Ws is N(0,t-s)
given Fs, we get that

E(Wt|Fs) = E(Wt −Ws|Fs) +Ws

= E(Wt −Ws) +Ws by independence

= Ws. (34)

A useful fact about martingales is the representation by final value: Mt is a martingale for
0 ≤ t ≤ T if and only if one can write

Mt = E(X|Ft) for all t ∈ [0, T ] (35)

(only if by definition (X = MT ), if by Tower property). Note that for T = ∞ (which we do not
consider here), this property may not hold. (For a full discussion, see Chapter 1.3.B (p. 17-19) of
Karatzas and Shreve (1991)).

Example 2. If Ht is a bounded predictable process, and for any martingale Xt,

Mt =
∫ t

0
HsdXs (36)

is a martingale. To see this, consider first a simple process (12), for which Hs = H(i) when
si < s ≤ ti. For given t, if si > t, by the properties of conditional expectations,

E
(
H(i)(Xti −Xsi)|Ft

)
= E

(
E(H(i)(Xti −Xsi)|Fsi)|Ft

)
= E

(
H(i)E(Xti −Xsi |Fsi)|Ft

)
= 0, (37)

and similarly, if si ≤ t ≤ ti, then

E
(
H(i)(Xti −Xsi)|Ft

)
= H(i)(Xt −Xsi) (38)
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so that

E(MT |Ft) = E

(∑
i

H(i)(Xti −Xsi)|Ft

)
=
∑
i:ti<t

H(i)(Xti −Xsi) + I{ti ≤ t ≤ si}H(i)(Xt −Xsi)

= Mt. (39)

The result follows for general bounded predicable integrands by taking limits and using uniform
integrability. (For definition and results on uniform integrability, see Billingsley (1995).)

Thus, any bounded trading strategy H in an asset M which is a martingale results in a martin-
gale P/L.

2.3.4 Stopping Times and Local Martingales

The concept of local martingale is perhaps best understood by considering the following integral
with respect to a Wiener process (see also Duffie (1996)):

Xt =
∫ t

0

1√
T − s

dWs (40)

Note that for 0 ≤ t < T , Xt is a zero mean Gaussian process with independent increments. We
shall show below (in Section 2.4.3) that the integral has variance

Var(Xt) =
∫ t

0

1
T − s

ds

=
∫ T

T−t

1
u
du

= log
T

T − t
. (41)

Since the dispersion of Xt goes to infinity as we approach T , Xt is not defined at T . However, one
can stop the process at a convenient time, as follows: Set, for A > 0,

τ = inf{t ≥ 0 : Xt = A}. (42)

One can show that P (τ < T ) = 1. Define the modified integral by

Yt =
∫ t

0

1√
T − s

I{s ≤ τ}dWs

= Xτ∧t, (43)

where
s ∧ t = min(s, t). (44)
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The process (43) has the following trading interpretation. Suppose that Wt is the value of a
security at time t (the value can be negative, but that is possible for many securities, such as
futures contracts). We also take the short term interest rate to be zero. The process Xt comes
about as the value of a portfolio which holds 1/

√
T − t units of this security at time t. The process

Yt is obtained by holding this portfolio until such time that Xt = A, and then liquidating the
portfolio.

In other words, we have displayed a trading strategy which starts with wealth Y0 = 0 at time
t = 0, and end with wealth YT = A > 0 at time t = T . In trading terms, this is an arbitrage. In
mathematical terms, this is a stochastic integral w.r.t. a martingale which is no longer a martingale.

We note that from (41), the conditions for the existence of the integral (43) are satisfied.

For trading, the lesson we can learn from this is that some condition has to be imposed to make
sure that a trading strategy in a martingale cannot result in arbitrage profit. The most popular
approach to this is to require that the traders wealth at any time cannot go below some fixed
amount −K. This is the so-called credit constraint. (So strategies are required to satisfy that the
integral never goes below −K). This does not quite guarantee that the integral w.r.t. a martingale
is a martingale, but it does prevent arbitrage profit. The technical result is that the integral is a
super-martingale (see the next section).

For the purpose of characterizing the stochastic integral, we need the concept of a local martin-
gale. For this, we first need to define:

Definition 5. A stopping time is a random variable τ satisfying {τ ≤ t} ∈ Ft, for all t.

The requirement in this definition is that we must be able to know at time t wether τ occurred
or not. The time (42) given above is a stopping time. On the other hand, the variable τ =
inf{t : Wt = max0≤s≤T Ws} is not a stopping time. Otherwise, we would have a nice investment
strategy.

Definition 6. A process Mt is a local martingale for 0 ≤ t ≤ T provided there is a sequence of
stopping times τn so that
(i) Mτn∧t is a martingale for each n
(ii) P (τn = T )→ 1 as n→∞.

The basic result for stochastic integrals is now that the integral with respect to a local martingale
is a local martingale, cf. result I.4.34(b) (p. 47) in Jacod and Shiryaev (2003).

2.3.5 Semimartingales

Xt is a semimaringtale if it can be written

Xt = X0 +Mt +At, 0 ≤ t ≤ T, (45)
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where X0 is F0-measurable, Mt is a local martingale, and At is a process of finite variation, i.e.,

sup
∑
i

|Xti+1 −Xti | <∞, (46)

where the supremum is over all grids 0 = t0 < t1 < ... < tn = T , and all n.

In particular, an Itô process is a semimartingale, with

Mt =
∫ t

0
σtdWt and

At =
∫ t

0
µtdt. (47)

A supermartingale is semimartingale for which At is nonincreasing. A submartingale is a semi-
martingale for which At is nondecreasing.

2.4 Quadratic Variation of a Semimartingale

2.4.1 Definitions

We start with some notation. A grid of observation times is given by

G = {t0, t1, ..., tn}, (48)

where we suppose that
0 = t0 < t1 < ... < tn = T. (49)

Set
∆(G) = max

1≤i≤n
(ti − ti−1). (50)

For any process X, we define its quadratic variation relative to grid G by

[X,X]Gt =
∑
ti+1≤t

(Xti+1 −Xti)
2. (51)

We note that the quadratic variation is path-dependent. One can more generally define the
quadratic covariation

[X,Y ]Gt =
∑
ti+1≤t

(Xti+1 −Xti)(Yti+1 − Yti). (52)

An important theorem of stochastic calculus now says that

Theorem 2. For any semimartingale, there is a process [X,Y ]t so that

[X,Y ]Gt
p→[X,Y ]t for all t ∈ [0, T ], as ∆(G)→ 0. (53)

The limit is independent of the sequence of grids G.
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The result follows from Theorem I.4.47 (p. 52) in Jacod and Shiryaev (2003). The ti can even
be stopping times.

For an Itô process,

[X,X]t =
∫ t

0
σ2
sds. (54)

(Cf Thm I.4.52 (p. 55) and I.4.40(d) (p. 48) of Jacod and Shiryaev (2003)). In particular, for a
Wiener process W , [X,X]t =

∫ t
0 1ds = t .

The process [X,X]t is usually referred to as the quadratic variation of the semimartingale (Xt).
This is an important concept, as seen in Section 2.2.2. The theorem asserts that this quantity can
be estimated consistently from data.

2.4.2 Properties

Important properties are as follows:

(1) Bilinearity: [X,Y ]t is linear in each of X and Y : so for example, [aX+ bZ, Y ]t = a[X,Y ]t +
b[Z, Y ]t.

(2) If (Wt) and (Bt) are two independent Wiener processes, then

[W,B]t = 0. (55)

Example 3. For the Heston model in Section 2.2.3, one gets from first principles that

[W,Z]t = ρ[W,W ]t + (1− ρ2)1/2[W,B]t
= ρt, (56)

since [W,W ]t = t and [W,B]t = 0.

(3) For stochastic integrals over Itô processes Xt and Yt,

Ut =
∫ t

0
HsdXs and Vt =

∫ t

0
KsdYs, (57)

then

[U, V ]t =
∫ t

0
HsKsd[X,Y ]s. (58)

This is often written on “differential form” as

d[U, V ]t = HtKtd[X,Y ]t. (59)

by invoking the same results that led to (54). For a rigorous statement, see Property I.4.54 (p.55)
of Jacod and Shiryaev (2003).

(4) For any Itô process X, [X, t] = 0.
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Example 4. (Leverage Effect in the Heston model).

d[X,σ2] = γσ2
t d[W,Z]t

= γσ2ρdt. (60)

(5) Invariance under discounting by the short term interest rate. Discounting is important in
finance theory. The typical discount rate is the risk free short term interest rate rt. Recall that
St = exp{Xt}. The discounted stock price is then given by

S∗t = exp{−
∫ t

0
rsds}St. (61)

The corresponding process on the log scale is X∗t = Xt−
∫ t

0 rsds, so that if Xt is given by (20), then

dX∗t = (µt − rt)dt+ σtdWt. (62)

The quadratic variation of X∗t is therefore the same as for Xt.

It should be emphasized that while this result remains true for certain other types of discounting
(such as those incorporating cost-of-carry), it is not true for many other relevant types of discount-
ing. For example, if one discounts by the zero coupon bond Λt maturing at time T , the discounted
log price becomes X∗t = Xt − log Λt. Since the zero coupon bond will itself have volatility, we get

[X∗, X∗]t = [X,X]t + [log Λ, log Λ]t − 2[X, log Λ]t. (63)

2.4.3 Variance and Quadratic Variation

Quadratic variation has a representation in terms of variance. The main result concerns martingales.
For E(X2) <∞, define the conditional variance by

Var(X|A) = E((X − E(X|A))2|A) = E(X2|A)− E(X|A)2. (64)

and similarly Cov(X,Y |A) = E((X − E(X|A))(Y − E(Y |A)|A).

Theorem 3. Let Mt be a martingale, and assume that E[M,M ]T <∞. Then, for all s < t,

Var(Mt|Fs) = E((Mt −Ms)2|Fs) = E([M,M ]t − [M,M ]s|Fs). (65)

This theorem is the beginning of something important: the left hand side of (65) relates to the
central limit theorem, while the right hand side only concerns the law of large numbers. We shall
see this effect in more detail in the sequel.
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A quick argument for (65) is as follows. Let G = {t0, t1, ..., tn}, and let t∗ = max{u ∈ G : u ≤ t},
and similarly for s∗. suppose for simplicity that s, t ∈ G. Then, for s∗ ≤ ti < tj ,

E((Mti+1 −Mti)(Mtj+1 −Mtj )|Ftj ) = (Mti+1 −Mti)E((Mtj+1 −Mtj )|Ftj )

= 0, (66)

so that by the Tower rule (since Fs∗ ⊆ Ftj )

Cov(Mti+1 −Mti ,Mtj+1 −Mtj |Fs∗) = E((Mti+1 −Mti)(Mtj+1 −Mtj )|Fs∗) = 0. (67)

If follows that

Var(Mt∗ −Ms∗ |Fs∗) =
∑

s∗≤ti<t∗

Var(Mti+1 −Mti |Fs∗)

=
∑

s∗≤ti<t∗

E((Mti+1 −Mti)
2|Fs∗)

= E(
∑

s∗≤ti<t∗

(Mti+1 −Mti)
2|Fs∗)

= E([M,M ]Gt∗ − [M,M ]Gs∗ |Fs∗). (68)

The result as ∆(G)→ 0 then follows by uniform integrability (Theorem 25.12 (p. 338) in Billingsley
(1995)).

On the basis of this, one can now show for an Itô process that

lim
h↓0

1
h

Cov(Xt+h −Xt,Yt+h −Yt|Ft) =
d
dt

[X,Y]t. (69)

A similar result holds in the integrated sense, cf. formula (25). The reason this works is that the
dt terms are of smaller order than the martingale terms.

Sometimes instantaneous correlation is important. We define

cor(X,Y)t = lim
h↓0

cor(Xt+h −Xt,Yt+h −Yt|Ft), (70)

and note that
cor(X,Y)t =

d[X,Y]t/dt√
(d[X,X]t/dt)(d[Y,Y]t/dt)

. (71)

We emphasize that these results only hold for Itô processes. For general semimartingales, one needs
to involve the concept of predictable quadratic variation, cf. Section 2.4.5.

To see the importance of the instantaneous correlation, note that in the Heston model,

cor(X, σ2)t = ρ. (72)

In general, if dXt = σtdWt +dt-term, and dYt = γtdBt +dt-term, where Wt and Bt are two Wiener
processes, then

cor(X,Y)t = sgn(σtγt)cor(W,B)t. (73)
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2.4.4 Lévy’s Theorem

A important result is now the following:

Theorem 4. Suppose that Mt is a continuous (Ft)-local martingale, M0 = 0, so that [M,M ]t = t.
Then Mt is an (Ft)-Wiener process.

(Cf. Thm II.4.4 (p. 102) in Jacod and Shiryaev (2003)). More generally, from properties of
normal random variables, the same result follows in the vector case: If Mt = (M (1)

t , ...,M
(p)
t ) is

a continuous (Ft)-martingale, M0 = 0, so that [M (i),M (j)]t = δijt, then Mt is a vector Wiener
process. (δij is the Kronecker delta: δij = 1 for i = j, and = 0 otherwise.)

2.4.5 Predictable Quadratic Variation

One can often see the symbol 〈X,Y 〉t.This can be called the predictable quadratic vartiation. Under
regularity conditions, it is defined as the limit of

∑
ti≤t Cov(Xti+1−Xti ,Yti+1−Yti |Fti) as ∆(G)→ 0.

For Itô processes, 〈X,Y 〉t = [X,Y ]t. For general semimartingales this equality does not hold.
Also, except for Itô processes, 〈X,Y 〉t cannot generally be estimated consistently from data without
further assumptions. For example, If Nt is a Poisson process with intensity λ, then Mt = Nt − λt
is a martingale. In this case, [M,M ]t = Nt (observable), while 〈M,M〉t = λt (cannot be estimated
in finite time). For further discussion of such discontinuous processes, see the references mentioned
in Section 1.8, and also, in the context of survival analysis, Andersen, Borgan, Gill, and Keiding
(1992).

For continuous semimartingales, The symbol 〈X,Y 〉t is commonly used in the literature in lieu
of [X,Y ]t (including in our papers).

2.5 Itô’s Formula for Itô processes

2.5.1 Main Theorem

Theorem 5. Suppose that f is a twice continuously differentiable function, and that Xt is an Itô
process. Then

df(Xt) = f ′(Xt)dXt +
1
2
f ′′(Xt)d[X,X]t. (74)

Similarly, in the multivariate case, for Xt = (X(1)
t , ..., X

(p)
t ),

df(Xt) =
p∑
i=1

∂f

∂x(i)
(Xt)dX

(i)
t +

1
2

p∑
i,j=1

∂2f

∂x(i)∂x(j)
(Xt)d[X(i), X(j)]t. (75)
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(Reference: Theorem I.4.57 in Jacod and Shiryaev (2003).)

We emphasize that (74) is the same as saying that

f(Xt) = f(X0) +
∫ t

0
f ′(Xs)dXs +

1
2

∫ t

0
f ′′(Xs)d[X,X]s. (76)

If we write out dXt = µtdt+ σtdWt and d[X,X]t = σ2
t dt, then equation (74) becomes

df(Xt) = f ′(Xt)(µtdt+ σtdWt) +
1
2
f ′′(Xt)σ2

t dt

= (f ′(Xt)µt +
1
2
f ′′(Xt)σ2

t )dt+ f ′(Xt)σtdWt. (77)

We note, in particular, that if Xt is an Itô process, then so is f(Xt).

2.5.2 Example of Itô’s Formula: Stochastic Equation for a Stock Price

We have so far discussed the model for a stock on the log scale, as dXt = µtdt+ σtdWt. The price
is given as St = exp(Xt). Using Itô’s formula, with f(x) = exp(x), we get

dSt = St(µt +
1
2
σ2
t )dt+ StσtdWt. (78)

2.5.3 Example of Itô’s Formula: Proof of Lévy’s Theorem (Section 2.4.4)

Take f(x) = eihx, and go on from there. Left to the reader.

2.5.4 Example of Itô’s Formula: Genesis of the Leverage Effect

We here see a case where quadratic covariation between a process and it’s volatility can arise from
basic economic principles. The following is the origin of the use of the word “leverage effect”
to describe such covariation. We emphasize that this kind of covaration can arise from many
consideration, and will later use the term leverage effect to describe the phenomenon broadly.

Suppose that the log value of a firm is Zt, given as a GBM,

dZt = νdt+ γdWt. (79)

For simplicity, suppose that the interest rate is zero, and that the firm has borrowed C dollars (or
euros, yuan, ...). If there are M shares in the company, the value of one share is therefore

St = (exp(Zt)− C)/M. (80)
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On the log scale, therefore, by Itô’s Formula,

dXt = d log(St)

=
1
St
dSt −

1
2

1
S2
t

d[S, S]t

=
M

exp(Zt)− C
dSt −

1
2

(
M

exp(Zt)− C

)2

d[S, S]t

Since, in the same way as for (78)

dSt =
1
M
d exp(Zt)

=
1
M

exp(Zt)[(ν +
1
2
γ2)dt+ γdWt]. (81)

Hence, if we set

Ut =
exp(Zt)

exp(Zt)− C
, (82)

dXt = Ut[(ν +
1
2
γ2)dt+ γdWt]−

1
2
U2
t γ

2dt

= (νUt +
1
2
γ2(Ut − U2

t ))dt+ UtγdWt. (83)

In other words,
dXt = µtdt+ σtdWt (84)

where

µt = νUt +
1
2
γ2(Ut − U2

t ) and

σt = Utγ. (85)

In this case, the log stock price and the volatility are, indeed, correlated. When the stock price goes
down, the volatility goes up (and the volatility will go to infinity if the value of the firm approaches
the borrowed amount C, since in this case Ut → ∞. In terms of quadratic variation, the leverage
effect is given as

d[X,σ2]t = Utγ
3d[W,U2]t

= 2U2
t γ

3d[W,U ]t since dU2
t = 2UtdUt + d[U,U ]t

= −2U4
t γ

4C exp(−Zt)dt (86)

The last transition follows since, by taking f(x) = (1− C exp(−x))−1

dUt = df(Zt)

= f ′(Zt)dZt + dt-terms (87)
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so that

d[W,U ]t = f ′(Zt)d[W,Z]t
= f ′(Zt)γdt

= −U2
t C exp(−Zt)γdt, (88)

since f ′(x) = −f(x)2C exp(−x).

A perhaps more intuitive result is obtained from (73), by observing that sgn(d[X, σ2]t/dt) = −1:
on the correlation scale, the leverage effect is

cor(X, σ2)t = −1. (89)

2.6 Nonparametric Hedging of Options

Suppose we can set the following prediction intervals at time t = 0:

R+ ≥
∫ T

0
rudu ≥ R− and Ξ+ ≥

∫ T

0
σ2
udu ≥ Ξ− (90)

Is there any sense that we can hedge an option based on this interval?

We shall see that for a European call there is a strategy, beginning with wealth C(S0,Ξ+, R+),
which will be solvent for the option payoff so long as the intervals in (90) are realized.

First note that by direct differentiation in (10), one obtains the two (!!!) Black-Scholes-Merton
differential equations

1
2
CSSS

2 = CΞ and − CR = C − CSS (91)

(recall that C(S,Ξ, R) = SΦ(d1)−K exp(−R)Φ(d2) and d1,2 = (log(S/K) +R± Ξ/2) /
√

Ξ).

In analogy with Section 1.6, consider the financial instrument with price at time t:

Vt = C(St,Ξt, Rt, ), (92)

where

Rt = R+ −
∫ t

0
rudu and Ξt = Ξ+ −

∫ t

0
σ2
udu (93)

We shall see that the instrument Vt can be self financed by holding, at each time t,

CS(St,Ξt, Rt) units of stock, in other words StCS(St,Ξt, Rt) $ of stock, and

Vt − StCS(St,Ξt, Rt) = −CR(St,Ξt, Rt) $ in bonds . (94)
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where the equality follows from the first equation in (91). Note first that, from Itô’s formula,

dVt = dC(St,Ξt, Rt)

= CSdSt + CRdRt + CΞdΞt +
1
2
CSSd[S, S]t

= CSdSt − CRrtdt−CΞσ
2
t dt+

1
2
CSSS

2
t σ

2
t dt

= CSdSt − CRrtdt (95)

because of the second equation in (91).

From equation (95), we see that holding CS units of stock, and −CR $ of bonds at all times t
does indeed produce a P/L Vt − V0, so that starting with V0 $ yields Vt $ at time t.

From the second equation in (94), we also see that Vt $ is exactly the amount needed to maintain
these positions in stock and bond. Thus, Vt has a self financing strategy.

Estimated volatility can come into this problem in two ways:

(1) In real time, to set the hedging coefficients: under discrete observation, use

Ξ̂t = Ξ+ − estimate of integrated volatility from 0 to t. (96)

(2) As an element of a forecasting procedure, to set intervals of the form (90).

For further literature on this approach, consult Mykland (2000, 2003a,b, 2005, 2009b). The
latter paper discusses, among other things, the use of this method for setting reserve requirements
based on an exit strategy in the event of model failure.

For other ways of using realized volatility and similar estimators in options trading, we refer to
Zhang (2001), Hayashi and Mykland (2005), and Mykland and Zhang (2008).

3 Behavior of Estimators: Variance

3.1 The Emblematic Problem: Estimation of Volatility

In this section, we develop the tools to show convergence in high frequency data. As example
throughout, we consider the problem of estimation of volatility. (In the absence of microstructure.)
This classical problem is that of estimating

∫ t
0 σ

2
sds. The standard estimator, Realized Volatility

(RV), is simply [X,X]Gt in (51). The estimator is consistent as ∆(G)→ 0, from the very definition
of quadratic variation.

This raises the question of what other properties one can associate with this estimator. For
example, does the asymptotic normality continue to hold. This is a rather complex matter, as we
shall see.
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There is also the question of what to do in the presence of microstructure, to which we return
in Section 5.

3.2 A Temporary Martingale Assumption

For now consider the case where

Xt = X0 +
∫ t

0
σsdWs, (97)

i.e., Xt is a local martingale. We shall see in Section 4.4.5 that drift terms can easily be incorporated
into the analysis.

We shall also, for now, assume that σt is bounded, i.e., there is a nonrandom σ+ so that

σ2
t ≤ σ2

+ for all t. (98)

This makes Xt a martingale. We shall see in Section 4.5 how to remove this assumption.

3.3 The Error Process

On a grid G = {t0, t1, ..., tn}, we get from Itô’s formula that

(Xti+1 −Xti)
2 = 2

∫ ti+1

ti

(Xs −Xti)dXs +
∫ ti+1

ti

σ2
sds. (99)

If we set
t∗ = max{ti ∈ G : ti ≤ t}, (100)

the same equation will hold with (t∗, t) replacing (ti, ti+1). Hence

Mt =
∑
ti+1≤t

(Xti+1 −Xti)
2 + (Xt −Xt∗)

2 −
∫ t

0
σ2
sds (101)

is a local martingale on the form

Mt = 2
∑
ti+1≤t

∫ ti+1

ti

(Xs −Xti)dXs + 2
∫ t

t∗

(Xs −Xt∗)dXs. (102)

On differential form dMt = 2(Xt − Xt∗)dXt. We shall study the behavior of martingales such as
Mt.

Of course, we only observe [X,X]Gt =
∑

ti+1≤t(Xti+1 − Xti)
2, but we shall see next that the

same results apply to this quantity. ((Xt −Xt∗)2 is negligible.)
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3.4 Stochastic Order Symbols

We also make use of the following notation:

Definition 7. (stochastic order symbols) Let Zn be a sequence of random variables. We say that
Zn = op(1) if Zn → 0 in probability, and that Zn = op(un) if Zn/un = op(1). Similarly, we say
that Zn = Op(1) – “bounded in probability” – if for all ε > 0, there is an M so that supn P (|Zn| >
M) ≤ ε. There is a theorem to the effect that this is the same as saying that for every subsequence
nk, there is a further subsequence nkl

so that Znkl
converges in law. (See Theorem 29.3 (p. 380)

in Billingsley (1995)). Finally, Zn = Op(un) if Zn/un = Op(1).

For further discusion of this notation, see the Appendix A in Pollard (1984). (This book is out
of print, but can at the time of writing be downloaded from http://www.stat.yale.edu/∼pollard/).

To see an illustration of the usage: under (98), we have that

E(Xt −Xt∗)
2 = E([X,X]t − [X,X]t∗)

= E

∫ t

t∗

σ2
sds

≤ E(t− t∗)σ2
+

≤ E∆(G)σ2
+ (103)

so that (Xt −Xt∗)2 = Op(E∆(G)), by Chebychev’s inequality.

3.5 Quadratic Variation of the Error Process: Approximation by Quarticity

3.5.1 An Important Result

To find the variance of our estimate, we start by computing the quadratic variation

[M,M ]t = 4
∑
ti+1≤t

∫ ti+1

ti

(Xs −Xti)
2d[X,X]s + 4

∫ t

t∗

(Xs −Xt∗)
2d[X,X]s. (104)

It is important here that we mean [M,M ]t, and not [M,M ]Gt .

A nice result, originally due to Barndorff-Nielsen and Shephard (2002), concerns the estimation
of this variation. Define the quarticity by

[X,X,X,X]Gt =
∑
ti+1≤t

(Xti+1 −Xti)
4 + (Xt −Xt∗)

4 (105)
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Use Itô’s formula to see that (where Mt is the error process from Section 3.3)

d(Xt −Xti)
4 = 4(Xt −Xti)

3dXt + 6(Xt −Xti)
2d[X,X]t

= 4(Xt −Xti)
3dXt +

6
4
d[M,M ]t, (106)

since d[M,M ]t = 4(Xt −Xti)
2d[X,X]t. It follows that if we set

M
(2)
t =

∑
ti+1≤t

∫ ti+1

ti

(Xs −Xti)
3dXs +

∫ t

t∗

(Xs −Xt∗)
3dXs (107)

we obtain
[X,X,X,X]Gt =

3
2

[M,M ]t + 4M (2)
t . (108)

It turns out that the M (2)
t term is of order op(n−1), so that (2/3)n[X,X,X,X]Gt is a consistent

estimate of the quadratic variation (104):

Proposition 1. Assume (98). Consider a sequence of grids Gn = {0 = tn,0 < ... < tn,n = T}.
Suppose that, as n→ 0, ∆(Gn) = op(1), and

n−1∑
i=0

(tn,i+1 − tn,i)3 = Op(n−2). (109)

Then
sup

0≤t≤T
| [M,M ]t −

2
3

[X,X,X,X]Gn
t | = op(n−1) as n→∞. (110)

Note that in the following, we typically suppress the double subscript on the times:

ti means tn,i.

3.5.2 The Conditions on the Times – Why They are Reasonable

Example 5. We first provide a simple example to emphasize that Proposition 1 does the right
thing. Assume for simplicity that the observation times are equidistant: ti = tn,i = iT/n, and that
the volatility is constant: σt ≡ σ. It is then easy to see that the conditions, including (109), are
satisfied. On the other hand, [X,X,X,X]Gt has the distribution of (T/n)2σ4

∑n
i=1 U

4
i , where the

Ui are iid standard normal. Hence, n2
3 [X,X,X,X]Gt

p→2
3T

2σ4E(N(0, 1)4) = 2T 2σ4. It then follows
from Proposition 1 that n[M,M ]Gt

p→2T 2σ4.

Example 6. To see more generally why (109) is a natural condition, consider a couple of cases
for the spacings.
(i) The spacings are sufficiently regular to satisfy

∆(G) = max
i

(ti+1 − ti) = Op(n−1). (111)
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Then
n∑
i=0

(ti+1 − ti)3 ≤
n∑
i=0

(ti+1 − ti)
(

max
i

(ti+1 − ti)
)2

= T ×Op(n−2) (112)

(ii) On the other hand, suppose that the sampling times follow a Poisson process with parameter
λ (still with t0 = 0). Denote by N the number of sampling points in the interval [0, T ], i.e.,
N = inf{i : ti > T}. If one conditions on N , say, N = n, the conditional distribution of the points
ti, i = 1, ..., n − 1, behave like the order statistics of n − 1 uniformly distributed random variables
(see, for example, Chapter 2.3 in Ross (1996)). In other words, ti = TU(i) (for 0 < i < n), where
U(i) is the i’th order statistic of U1, ..., Un−1, which are iid U[0,1]. Without any asymptotic impact,
now also impose tn = T (to formally match the rest of our theory).

Now define U(0) = 0 and U(n) = 1. With these definitions, note that for i = 1, ..., n, U(i)−U(i−1)

are identically distributed with the same distribution as U(1), which has density (n− 1)(1− x)n−2.
(See, for example, Exercise 3.67 (p. 110) in Rice (2006).) The expression in (109) becomes

n−1∑
i=0

(ti+1 − ti)3 = T 3
n∑
i=1

(U(i) − U(i−1))
3

= T 3nEU3
(1)(1 + op(1)) (113)

by the law of large numbers. Since EU3
(1) = 6

(n+1)n(n−1) = O(n−3), (109) follows.

3.5.3 Application to Refresh Times

We here briefly consider the case of multidimensional processes of the form (X(1)
t , ..., X

(p)
t ). It will

often be the case that the observation occurs at asynchronous times. In other words, process (X(r)
t )

is observed at times G(r)
n = {0 ≤ t(r)n,0 < t

(r)
n,1 < ... < t

(r)
n,nr ≤ T}, and the grids G(r)

n are not the same.
Note that in this case, there is latitude in what meaning to assign to the symbol n. It is an index
that goes to infinity with each nr, for example n = n1 + ...+ np. One would normally require that
nr/n is bounded away from zero.

A popular way of dealing with this problem is to use refresh times, as follows. Set un,0 = 0,
and then define recursively for i > 0

un,i = max
r=1,...,p

min{t ∈ G(r)
n : t > un,i−1}

The un,i is called the i’th refresh time, and is the time when all the p processes have undergone an
update of observation. Successful uses of refresh times can be found in Barndorff-Nielsen, Hansen,
Lunde, and Shephard (2009) and Zhang (2009).
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Now note that if the conditions (on times) in Proposition 1 are satisfied for each grid G(r)
n ,

the conditions are also satisfied for the grid of refresh times. This is because each ∆un,i+1 must
be matched or dominated by a spacing in one of each grid G(r)

n . Specifically, for each i, define
jr,i = max{j : t

(r)
n,j ≤ un,i} and note that jr,i + 1 = min{j : t

(r)
n,j > un,i}. Hence, there is an ri so

that
un,i+1 = max

r
t
(r)
n,jr,i+1 = t

(ri)
n,jri,i+1

and so
un,i+1 − un,i ≤ t(ri)n,jri,i+1 − t

(ri)
n,jri,i

≤ max
r

(
t
(r)
n,jr,i+1 − t

(r)
n,jr,i

)
In particular, for (109),∑

i

(un,i+1 − un,i)3 ≤
∑
i

max
r

(
t
(r)
n,jr,i+1 − t

(r)
n,jr,i

)3

≤
∑
i

∑
r

(
t
(r)
n,jr,i+1 − t

(r)
n,jr,i

)3

≤
p∑
r=1

∑
i

(
t
(r)
n,i+1 − t

(r)
n,i

)3
,

and similarly for the condition ∆(Gn) = op(1).

The theory in this article is therefore amenable to developments involving refresh times. This
issue is not further pursued here, though we return to asynchronous times in Section 6.3.

3.6 Moment Inequalities, and Proof of Proposition 1

3.6.1 Lp Norms, Moment Inequalities, and the Burkholder-Davis-Gundy Inequality

For 1 ≤ p <∞, define the Lp-norm:

||X||p = (E|X|p)
1
p , (114)

The Minkowski and Hölder inequalities say that

||X + Y ||p ≤ ||X||p + ||Y ||p

||XY ||1 ≤ ||X||p||Y ||q for
1
p

+
1
q

= 1. (115)

Example 7. A special case of the Hölder inequalitiy is ||X||1 ≤ ||X||p (take Y = 1). In particular,
under (109), for for 1 ≤ v ≤ 3:(

1
n

n−1∑
i=0

(ti+1 − ti)v
) 1

v

≤

(
1
n

n−1∑
i=0

(ti+1 − ti)3

) 1
3

=
(

1
n
×Op(n−2)

) 1
3

=
(
Op(n−3)

) 1
3 = Op(n−1), (116)
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so that
n∑
i=0

(ti+1 − ti)v = Op(n1−v). (117)

To show Proposition 1, we need the Burkholder-Davis-Gundy inequality (see Section 3 of Ch.
VII of Dellacherie and Meyer (1982), or p. 193 and 222 in Protter (2004)), as follows. For 1 ≤ p <
∞, there are universal constants cp and Cp so that for all continuous martingales Nt,

cp||[N,N ]T ||1/2p/2 ≤ || sup
0≤t≤T

|Nt| ||p ≤ Cp||[N,N ]T ||1/2p/2. (118)

Note, in particular, that for 1 < p <∞,

C2
p = qp

(
p(p− 1)

2

)
(119)

where q is given by p−1 + q−1 = 1.

3.6.2 Proof of Proposition 1

From applying Itô’s Formula to (Xt −Xti)
8:

[M (2),M (2)]t =
∑
ti+1≤t

∫ ti+1

ti

(Xs −Xti)
6d[X,X]s +

∫ t

t∗

(Xs −Xt∗)
6d[X,X]s

=
1
28

[X; 8]Gt + martingale term (120)

where [X; 8]Gt =
∑

ti+1≤t(Xti+1 −Xti)
8 + (Xt −Xt∗)8 is the ochticity.

Note that for stopping time τ ≤ T , [X; 8]Gτ =
∑

i(Xti+1∧τ −Xti∧τ )8. Hence, by the Burkholder-
Davis-Gundy inequality (with p = 8)

E[M (2),M (2)]τ =
1
28
E[X; 8]Gτ

≤ 1
28
C8

8E
∑
i

([X,X]ti+1∧τ − [X,X]ti∧τ )4

≤ 1
28
C8

8σ
8
+E

∑
i

(ti+1 ∧ τ − ti ∧ τ)4. (121)

Let ε > 0, and set
τn = inf{ t ∈ [0, T ] : n2

∑
i

(ti+1 ∧ t− ti ∧ t)4 > ε }.

Then
E[M (2),M (2)]τn ≤ n−2 1

28
C8

8σ
8
+ε (122)
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By assumption, n2
∑

i(ti+1 ∧ t− ti ∧ t)4 ≤ ∆(G)n2
∑

i(ti+1 − ti)3 p→ 0, and hence

P (τn 6= T )→ 0 as n→∞. (123)

Hence, for any δ > 0,

P (n sup
0≤t≤T

|M (2)
t | > δ) ≤ P (n sup

0≤t≤τn
|M (2)

t | > δ) + P (τn 6= T )

≤ 1
δ2
E

(
n sup

0≤t≤τn
|M (2)

t |
)2

+ P (τn 6= T ) (Chebychev)

≤ 1
δ2
C2

2n
2E[M (2),M (2)]τn + P (τn 6= T ) (Burkholder-Davis-Gundy)

≤ 1
δ2
C2

2

1
28
C8

8σ
8
+ε+ P (τn 6= T ) (from (122))

→ 1
δ2
C2

2

1
28
C8

8σ
8
+ε as n→∞ (from (123)). (124)

Hence Proposition 1 has been shown.

3.7 Quadratic Variation of the Error Process: When Observation Times are

Independent of the Process

3.7.1 Main Approximation

We here assume that the observation times are independent of the process X. The basic insight
for the following computation is that over small intervals, (Xt−Xt∗)2 ≈ [X,X]t− [X,X]t∗ . To the
extent that this approximation is valid, it follows from (104) that

[M,M ]t ≈ 4
∑
ti+1≤t

∫ ti+1

ti

([X,X]s − [X,X]ti)d[X,X]s + 4
∫ t

t∗

([X,X]s − [X,X]t∗)d[X,X]s

= 2
∑
ti+1≤t

([X,X]ti+1 − [X,X]ti)
2 + 2([X,X]t − [X,X]t∗)

2. (125)

We shall use this device several times in the following, and will this first time do it rigorously.

Proposition 2. Assume (98), and that σ2
t is continuous in mean square:

sup
0≤t−s≤δ

E(σ2
t − σ2

s)
2 → 0 as δ → 0. (126)

Also suppose that the grids Gn are nonrandom, or independent of the process Xt. Also suppose that,
as n→ 0, ∆(G) = op(n−1/2), and assume (109). Then

[M,M ]t = 2
∑
ti+1≤t

([X,X]ti+1 − [X,X]ti)
2 + 2([X,X]t − [X,X]t∗)

2 + op(n−1). (127)
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If σt is continuous, it is continuous in mean square (because of (98)). More generally, σt can,
for example, also have Poisson jumps.

In the rest of this Section, we shall write all expectations implicitly as conditional on the times.

To show Proposition 2, we need some notation and a lemma, as follows:

Lemma 1. Let t∗ = max{ti ∈ G : ti ≤ t} (as in (100)). Let Nt be an Itô process martingale, for
which (for a, b > 0), for all t,

d

dt
E[N,N ]t ≤ a(t− t∗)b. (128)

Let Ht be a predictable process, satisfying |Ht| ≤ H+ for some constant H+. Set

Rv(G) =

(
n−1∑
i=0

(ti+1 − ti)v
)
. (129)

Then

||
∑
t≤ti+1

∫ ti+1

ti

(Ns −Nti)Hsds+
∫ t

t∗

(Ns −Nt∗)Hsds||1

≤
(
H2

+

a

b+ 3
Rb+3(G)

)1/2

+R(b+3)/2(G)
2

b+ 3

(
a

b+ 1

)1/2

sup
0≤t−s≤∆(G)

||Hs −Ht||2 (130)

Proof of Proposition 2 Set Nt = Mt and Ht = σ2
t . Then

d[M,M ]t = 4(Xt −Xti)
2d[X,X]t

= 4([X,X]t − [X,X]ti)d[X,X]t + 4((Xt −Xti)
2 − ([X,X]t − [X,X]ti))d[X,X]t

= 4([X,X]t − [X,X]ti)d[X,X]t + 2(Nt −Nti)σ
2
t dt. (131)

Thus, the approximation error in (127) is exactly of the form of the left hand side in (130). We
note that

Ed[N,N ]t = 4E(Xt −Xti)
2d[X,X]t

= 4E(Xt −Xti)
2σ2

+dt

= 4(t− ti)σ4
+dt (132)

hence the conditions of Lemma 1 are satisfied with a = 4σ4
+ and b = 1. The result follows from(117).

3.7.2 Proof of Lemma 1 (Technical Material, can be omitted)

Decompose the original problem as follows:∫ ti+1

ti

(Ns −Nti)Hsds =
∫ ti+1

ti

(Ns −Nti)Htids+
∫ ti+1

ti

(Ns −Nti)(Hs −Hti)ds. (133)
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For the first term, from Itô’s formula, d(ti+1 − s)(Ns −Nti) = −(Ns −Nti)ds + (ti+1 − s)dNs, so
that ∫ ti+1

ti

(Ns −Nti)Htids = Hti

∫ ti+1

ti

(ti+1 − s)dNs (134)

hence∑
ti+1≤t

∫ ti+1

ti

(Ns −Nti)Hsds =
∑
ti+1≤s

Hti

∫ ti+1

ti

(ti+1 − t)dNs +
∑
ti+1≤t

∫ ti+1

ti

(Ns −Nti)(Hs −Hti)ds.

(135)

The first term is the end point of a martingale. For each increment,

E

(∫ ti+1

ti

(Ns −Nti)Htids

)2

= E

(
Hti

∫ ti+1

ti

(ti+1 − s)dNs

)2

≤ H2
+E

(∫ ti+1

ti

(ti+1 − s)dNs

)2

= H2
+E

(∫ ti+1

ti

(ti+1 − s)2d[N,N ]s

)
= H2

+

∫ ti+1

ti

(ti+1 − s)2dE[N,N ]s

= H2
+

∫ ti+1

ti

(ti+1 − s)2 d

ds
E[N,N ]sds

= H2
+

∫ ti+1

ti

(ti+1 − s)2a(s− ti)bds

= H2
+

a

b+ 3
(ti+1 − ti)b+3 (136)

and so, by the uncorrelatedness of martingale increments,

E

 ∑
ti+1≤t

Hti

∫ ti+1

ti

(ti+1 − t)dNs

2

≤ H2
+

a

b+ 3

 ∑
ti+1≤t

(ti+1 − ti)3


≤ H2

+

a

b+ 3
Rb+3(G) (137)
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On the other hand, for the second term in (135),

||(Ns −Nti)(Hs −Hti)||1 ≤ ||Ns −Nti ||2||Hs −Hti ||2

≤
(
E(Ns −Nti)

2
)1/2 ||Hs −Hti ||2

= (E([N,N ]s − [N,N ]ti))
1/2 ||Hs −Hti ||q

=
(∫ s

ti

d

du
E[N,N ]udu

)1/2

||Hs −Hti ||2

≤
(∫ s

ti

a(u− ti)bdu
)1/2

||Hs −Hti ||2

=
(

a

b+ 1
(s− ti)b+1

)1/2

||Hs −Hti ||2

= (s− ti)(b+1)/2

(
a

b+ 1
(s− ti)b+1

)1/2

||Hs −Hti ||2, (138)

and from this

||
∫ ti+1

ti

(Ns −Nti)(Hs −Hti)ds||1 ≤
∫ ti+1

ti

||(Ns −Nti)(Hs −Hti)||1ds

≤
∫ ti+1

ti

(s− ti)(b+1)/2ds

(
a

b+ 1

)1/2

sup
ti≤s≤ti+1

||Hs −Hti ||2

= (ti+1 − ti)(b+3)/2 2
b+ 3

(
a

b+ 1

)1/2

sup
ti≤s≤ti+1

||Hs −Hti ||2

(139)

Hence, finally, for the second term in (135),

||
∑
t≤ti+1

∫ ti+1

ti

(Ns −Nti)(Hs −Hti)dt||s

≤

 ∑
t≤ti+1

(ti+1 − ti)(b+3)/2

 2
b+ 3

(
a

b+ 1

)1/2

sup
0≤t−s≤∆(G)

||Hs −Ht||2

= R(b+3)/2(G)
2

b+ 3

(
a

b+ 1

)1/2

sup
0≤t−s≤∆(G)

||Hs −Ht||2. (140)
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Hence, for the overall sum (135), from (137) and (140) and

||
∑
t≤ti+1

∫ ti+1

ti

(Ns −Nti)Hsds||1 ≤ ||
∑
ti+1≤s

Hti

∫ ti+1

ti

(ti+1 − t)dNs||1 + ||
∑
ti+1≤t

∫ ti+1

ti

(Ns −Nti)(Hs −Hti)ds||1

≤ ||
∑
ti+1≤s

Hti

∫ ti+1

ti

(ti+1 − t)dNs||2 + ||
∑
ti+1≤t

∫ ti+1

ti

(Ns −Nti)(Hs −Hti)ds||1

≤
(
H2

+

a

b+ 3
Rb+3(G)

)1/2

+R(b+3)/2(G)
2

b+ 3

(
a

b+ 1

)1/2

sup
0≤t−s≤∆(G)

||Hs −Ht||2.

(141)

The part from t∗ to t can be included similarly, showing the result.

3.7.3 Quadratic Variation of the Error Process, and Quadratic Variation of Time

To give the final form to this quadratic variation, define the “Asymptotic Quadratic Variation of
Time” (AQVT), given by

Ht = lim
n→∞

n

T

∑
tn,j+1≤t

(tn,j+1 − tn,j)2, (142)

provided that the limit exists. From Example 6, we know that dividing by n is the right order. We
now get

Proposition 3. Assume the conditions of Proposition 2, and that the AQVT exists. Then

n[M,M ]t
p→ 2T

∫ t

0
σ4
sdHs. (143)

The proof is a straight exercise in analysis. The heuristic for the result is as follows. From
(127),

[M,M ]t = 2
∑
ti+1≤t

([X,X]ti+1 − [X,X]ti)
2 + 2([X,X]t − [X,X]t∗)

2 + op(n−1)

= 2
∑
ti+1≤t

(
∫ ti+1

ti

σ2
sds)

2 + 2(
∫ t

t∗

σ2
sds)

2 + op(n−1)

= 2
∑
ti+1≤t

((ti+1 − ti)σ2
ti)

2 + 2((t− t∗)σ2
t∗)

2 + op(n−1)

= 2
T

n

∫ t

0
σ4
sdHs + op(n−1). (144)
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Example 8. We here give a couple of examples of the AQVT:
(i) When the times are equidistant: ti+1 − ti = T/n, then

Ht ≈
n

T

∑
tn,j+1≤t

(
T

n

)2

=
T

n
#{ti+1 ≤ t}

= T × fraction of ti+1 in [0, t]

≈ T × t

T
= t. (145)

(ii) When the times follow a Poisson process with parameter λ, we proceed as in case (ii) in Example
6. We condition on the number of sampling points n, and get ti = TU(i) (for 0 < i < n), where
U(i) is the i’th order statistic of U1, ..., Un, which are iid U[0,1]. Hence (again taking U(0) = 0 and
U(n) = 1)

Ht ≈
n

T

∑
tn,j+1≤t

(ti+1 − ti)2

= T 2 n

T

∑
tn,j+1≤t

(U(i) − U(i−1))
2

= T 2 n

T

∑
tn,j+1≤t

EU2
(1)(1 + op(1))

= T 2 n

T
#{ti+1 ≤ t}EU2

(1)(1 + op(1))

= Tn2 t

T
EU2

(1)(1 + op(1))

= 2t(1 + op(1)) (146)

by the law of large numbers, since the spacings have identical distribution, and since EU2
(1) =

2/n(n+ 1). Hence Ht = 2t.

3.7.4 The Quadratic Variation of Time in the General Case

We now go back to considering the times as possibly dependent with the process X. Note that by
using the Burkholder-Davis-Gundy Inequality conditionally, we obtain that

c4
4E((Xti+1 −Xti)

4 | Fti) ≤ E(([X,X]ti+1 − [X,X]ti)
2 | Fti) ≤ C4

4E((Xti+1 −Xti)
4 | Fti), (147)

where c4 and C4 are as in Section 3.6.1. In the typical law of large numbers setting, [X,X,X,X]t−∑
iE((Xti+1 −Xti)

4 | Fti) is a martingale which is of lower order than [X,X,X,X]t itself, and the
same goes for

∑
i

[
([X,X]ti+1 − [X,X]ti)

2 − E(([X,X]ti+1 − [X,X]ti)
2 | Fti)

]
. In view of Propo-

sition 3, therefore, it follows that under suitable regularity conditions, if n[X,X,X,X]t
p→ Ut as
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n → ∞, and if the AQVT Ht is absolutely continuous in t, then Ut is also absolutely continuous,
and

c4
42Tσ4

tH
′
t ≤ U ′t ≤ C4

42Tσ4
tH
′
t. (148)

This is of some theoretic interest in that it establishes the magnitude of the limit of n[X,X,X,X]t.
However, it should be noted that C4

4 = 218/36 ≈ 359.6, so the bounds are of little practical interest.

3.8 Quadratic Variation, Variance, and Asymptotic Normality

We shall later see that n1/2([X,X]Gt − [X,X]t) is approximately normal. In the simplest case,
where the times are independent of the process, the normal distribution has mean zero and variance
n[M,M ]t ≈ 2T

∫ t
0 σ

4
sdHs. From standard central limit considerations, this is unsurprising when

the σt process is nonrandom, or more generally independent of the Wt process. (In the latter case,
one simply conditions on the σt process).

What is surprising, and requires more concepts, is that the normality result also holds when σt
process has dependence with the Wt process. For this we shall need new concepts, to be introduced
in Section 4.

4 Asymptotic Normality

4.1 Stable Convergence

In order to define convergence in law, we need to deal with the following issue. Suppose θ̂n is an
estimator of θ, say, θ̂n = [X,X]Gn

T and θ = [X,X]T =
∫ T

0 σ2
t dt. As suggested in Section 3.7.3, the

variance of Zn = n1/2(θ̂n − θ) converges to 2T
∫ t

0 σ
4
sdHs. We shall now go on to show the following

convergence in law:

n1/2(θ̂n − θ)
L→ U ×

(
2T
∫ T

0
σ4
sdHs

)1/2

. (149)

where U is a standard normal random variable, independent of the σ2
t process. In order to show

this, we need to be able to bring along prelimiting information into the limit: U only exists in
the limit, while as argued in Section 3.5.1, the asymptotic variance 2T

∫ T
0 σ4

sdHs can be estimated
consistently, and so is a limit in probability of a prelimiting quantity.

To operationalize the concept in our setting, we need the filtration (Ft) to which all relevant
processes (Xt, σt, etc) are adapted. We shall assume that Zn (the quantity that is converging in
law) to be measurable with respect to a σ-field χ, FT ⊆ χ. The reason for this is that it is often
convenient to exclude microstructure noise from the filtration Ft. Hence, for example, the TSRV
(in Section 5 below) is not FT -measurable.
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Definition 8. Let Zn be a sequence of χ-measurable random variables, FT ⊆ χ. We say that Zn
converges FT -stably in law to Z as n→∞ if Z is measurable with respect to an extension of χ so
that for all A ∈ FT and for all bounded continuous g, EIAg(Zn)→ EIAg(Z) as n→∞.

The definition means, up to regularity conditions, that Zn converges jointly in law with all
FT measurable random variables. This intuition will be imprortant in the following. For further
discussion of stable convergence, see Rényi (1963), Aldous and Eagleson (1978), Chapter 3 (p. 56)
of Hall and Heyde (1980), Rootzén (1980) and Section 2 (p. 169-170) of Jacod and Protter (1998).
We now move to the main result.

4.2 Asymptotic Normality

We shall be concerned with a sequence of martingales Mn
t , 0 ≤ t ≤ T , n = 1, 2, ..., and how it

converges to a limit Mt. We consider here only continuous martingales, which are thought of as
random variables taking values in the set C of continuous functions [0, T ]→ R.

To define weak, and stable, convergence, we need a concept of continuity. We say that g is a
continuous function C→ R if:

sup
0≤t≤T

|xn(t)− x(t)| → 0 implies g(xn)→ g(x). (150)

We note that if (Mn
t ) L→ (Mt) in this process sense, then, for example, Mn

T
L→MT as a random

variable. This is because the function x → g(x) = x(T ) is continuous. The reason for going via
process convergence is (1) sometimes this is really the result one needs, and (2) since our theory
is about continuous processes converging to a continuous process, one does not need asymptotic
negligibility conditions à la Lindeberg (these kinds of conditions are in place in the usual CLT
precisely to avoid jumps is the asymptotic process). For a related development based on discrete
time predictable quadratic variations, and Lindeberg conditions, see Theorem IX.7.28 (p. 590-591)
of Jacod and Shiryaev (2003).

In order to show results about continuous martingales, we shall use the following assumption

Condition 1. There are Brownian motions W (1)
t , ...,W

(p)
t (for some p) that generate (Ft).

It is also possible to proceed with assumptions under which there are jumps in some processes,
but for simplicity, we omit any discussion of this here.

Under Condition 1, it follows from Lemma 2.1 (p. 270) in Jacod and Protter (1998) that stable
convergence in law of a local martingale Mn to a process M is equivalent to (straight) convergence
in law of the process (W (1), ...,W (p),Mn) to the process (W (1), ...,W (p),M). This result does not
extend to all processes and spaces, cf. the discussion in the cited paper.
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Another main fact about stable convergence is that limits and quadratic variation can be inter-
changed:

Proposition 4. (Interchangeability of limits and quadratic variation). Assume that Mn is a se-
quence of continuous local martingales which converges stably to a process M . Then: (Mn, [Mn,Mn])
converges stably to (M, [M,M ]).

For proof, we refer to Corollary VI.6.30 (p. 385) in Jacod and Shiryaev (2003), which also
covers the case of bounded jumps. More generally, consult ibid., Chapter VI.6.

We now state the main central limit theorem (CLT).

Theorem 6. Assume Condition 1. Let (Mn
t ) be a sequence of continuous local martingales on

[0, T ], each adapted to (Ft), with Mn
0 = 0. Suppose that there is an (Ft) adapted process ft so that

[Mn,Mn]t
p→
∫ t

0
f2
s ds for each t ∈ [0, T ]. (151)

Also suppose that, for each i = 1, .., p,

[Mn,W (i)]t
p→ 0 for each t ∈ [0, T ] (152)

There is then an extension (F ′t) of (Ft), and an (F ′t)-martingale Mt so that (Mn
t ) converges stably

to (Mt). Furthermore, there is a Brownian motion (W ′t) so that (W (1)
t , ...,W

(p)
t ,W ′t) is an (F ′t)-

Wiener process, and so that

Mt =
∫ t

0
fsdW

′
s. (153)

It is worth while to understand the proof of this result, and hence we give it here. The proof
follows more or less verbatim that of Theorem B.4 in Zhang (2001) (p. 65-67). The latter is slightly
more general.

Proof of Theorem 6. Since [Mn,Mn]t is a non-decreasing process and has non-decreasing con-
tinuous limit, the convergence (151) is also in law in D(R) by Theorem VI.3.37 (p. 354) in Jacod
and Shiryaev (2003). Thus, in their terminology (ibid., Definition VI.3.25, p. 351), [Mn,Mn]t is
C-tight. From this fact, ibid., Theorem VI.4.13 (p. 358) yields that the sequence Mn is tight.

From this tightness, it follows that for any subsequence Mnk , we can find a further subsequence
Mnkl which converges in law (as a process) to a limit M , jointly with W (1), ...,W (p); in other
words, (W (1), ...,W (p),Mnkl ) converges in law to (W (1), ...,W (p),M). This M is a local martingale
by ibid., Proposition IX.1.17 (p. 526), using the continuity of Mn

t . Using Proposition 4 above,
(Mnkl , [Mnkl ,Mnkl ]) converge jointly in law (and jointly with the W (i)’s) to (M, [M,M ]). From
(151) this means that [M,M ]t =

∫ t
0 f

2
s ds. The continuity of [M,M ]t assures that Mt is continuous.

By the same reasoning, from (152), [M,W (i)] ≡ 0 for each i = 1, .., p. Now let W ′t =
∫ t

0 f
−1/2
s dMs

(if ft is zero on a set of Lebesgue measure greater than zero, follow the alternative construction in
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Volume III of Gikhman and Skorohod (1969)). By Property (3) in Section 2.4.2 (or refer directly to
Property I.4.54 (p.55) of Jacod and Shiryaev (2003)), [W ′,W ′]t = t, while [W ′,W (i)] ≡ 0. By the
multivariate version of Lévy’s Theorem (Section 2.4.4, or refer directly to Theorem II.4.4 (p. 102)
of Jacod and Shiryaev (2003)), it therefore follows that (W (1)

t , ...,W
(p)
t ,W ′t) is a Wiener process.

The equality (153) follows by construction of W ′t . Hence the Theorem is shown for subsequence
Mnkl . Since the subsequence Mnk was arbitrary, Theorem 6 follows (cf. the Corollary on p. 337
of Billingsley (1995)).

4.3 Application to Realized Volatility

4.3.1 Independent Times

We now turn our attention to the simplest application: the estimator from Section 3. Consider the
normalized (by

√
n) error process

Mn
t = 2n1/2

∑
ti+1≤t

∫ ti+1

ti

(Xs −Xti)dXs + 2n1/2

∫ t

t∗

(Xs −Xt∗)dXs. (154)

From Section 3.7.3, we have that Condition (151) of Theorem 6 is satisfied, with

f2
t = 2Tσ4

tH
′
t. (155)

It now remains to check Condition (152). Note that

d[Mn,W (i)]t = 2n1/2(Xt −Xt∗)d[X,W (i)]t (156)

We can now apply Lemma 1 with Nt = Xt and Ht = (d/dt)[X,W (i)]t. From the Cauchy-Schwarz
inequality (in this case known as the Kunita-Watanabe inequality)

|[X,W (i)]t+h − [X,W (i)]t| ≤
√

[X,X]t+h − [X,X]t
√

[W (i),W (i)]t+h − [W (i),W (i)]t

≤
√
σ2

+h
√
h = σ+h (157)

(recall that the quadratic variation is a limit of sums of squares), so we can take H+ = σ+. On the
other hand, (d/dt)E[N,N ]t ≤ σ2

+ = a(t− t∗)b with a = σ2
+ and b = 0.

Thus, from Lemma 1,
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||[Mn,W (i)]t||1 = 2n1/2||
∑
t≤ti+1

∫ ti+1

ti

(Ns −Nti)Hsds+
∫ t

t∗

(Ns −Nt∗)Hsds||1

≤ 2n1/2

(
H2

+

a

b+ 3
Rb+3(G)

)1/2

+R(b+3)/2(G)
2

b+ 3

(
a

b+ 1

)1/2

sup
0≤t−s≤∆(G)

||Hs −Ht||2

= Op(n1/2R3(G)1/2) +Op(n1/2R3/2(G) sup
0≤t−s≤∆(G)

||Hs −Ht||)

= op(1) (158)

under the conditions of Proposition 2, sinceRv(G) = Op(n1−v) from (117), and since sup0≤t−s≤∆(G) ||Hs−
Ht|| = op(1) (The latter fact is somewhat complex. One shows that one can take W (1) = W by a
use of Lévy’s theorem, and the result follows).

We have therefore shown:

Theorem 7. Assume Condition 1, as well as the conditions of Proposition 2, and also that the
AQVT H(t) exists and is absolutely continuous. Let Mn

t be given by (154). Then (Mn
t ) converges

stably in law to Mt, given by

Mt = 2T
∫ t

0
σ2
s

√
H ′sdW

′
s. (159)

As a special case:

Corollary 1. Under the conditions of the above theorem, for fixed t,

√
n
(

[X,X]Gn
t − [X,X]t

)
L→ U ×

(
2T
∫ t

0
σ4
sdHs

)1/2

. (160)

where U is a standard normal random variable independent of FT .

Similar techniques can now be used on other common estimators, such as the TSRV. We refer
to Section 5.

In the context of equidistant times, this result goes back to Jacod (1994), Jacod and Protter
(1998), and Barndorff-Nielsen and Shephard (2002). We emphasize that the method of proof in
Jacod and Protter (1998) quite different from the one used here, and gives rise to weaker conditions.
The reason for our different treatment is that we have found the current framework more conducive
to generalization to other observation time structures and other estimators. In the long run, it is
an open question which general framework is the most useful.

4.3.2 Endogenous Times

The assumption of independent sampling times is not necessary for a limit result, though a weak-
ening of conditions will change the result. It see what happens, we follow the development
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in Li, Mykland, Renault, Zhang, and Zheng (2009), and define the tricicity by [X,X,X]Gt =∑
ti+1≤t(Xti+1 −Xti)

3 + (Xt −Xt∗)3, and assume that

n[X,X,X,X]Gt
p→ Ut and n1/2[X,X,X]Gt

p→ Vt, (161)

By the reasoning in Section 3.7.4, n and n1/2 are the right rates for [X,X,X,X]G and [X,X,X]G ,
respectively. Hence Ut and Vt will exist under reasonable regularity conditions. Also, from Section
3.7.4, if the AQVT exists and is absolutely continuous, then so are Ut and Vt. We shall use

Ut =
∫ t

0
usds and Vt =

∫ t

0
vsds. (162)

Triticity is handled in much the same way as quarticity. In analogy to the development in
Section 3.5.1, observe that

d(Xt −Xti)
3 = 3(Xt −Xti)

2dXt + 3(Xt −Xti)d[X,X]t

= 3(Xt −Xti)
2dXt +

3
2
d[M,X]t,

since d[M,M ]t = 4(Xt −Xti)
2d[X,X]t. It follows that if we set

M
(3/2)
t =

∑
ti+1≤t

∫ ti+1

ti

(Xs −Xti)
3dXs +

∫ t

t∗

(Xs −Xt∗)
3dXs

we get

[X,X,X]Gt =
3
2

[M,X]t + 3M (3/2)
t .

In analogy with Proposition 1, we hence obtain:

Proposition 5. Assume the conditions of Proposition 1. Then

sup
0≤t≤T

| [M,X]t −
2
3

[X,X,X]Gt | = op(n−1/2) as n→∞. (163)

It follows that unless Vt ≡ 0, the condition (152) is Theorem 6 will not hold. To solve this
problem, define an auxiliary martingale

M̃n
t = Mn

t −
∫ t

0
gsdXs, (164)

where g is to be determined. We now see that

[M̃n, X]t = [Mn, X]t −
∫ t

0
gsd[X,X]s

p→
∫ t

0
(
2
3
vs − gsσ2

s)ds and

[M̃n, M̃n] = [Mn,Mn] +
∫ t

0
g2
sd[X,X]s − 2

∫ t

0
gsd[Mn, X]

p→
∫ t

0
(
2
3
us + g2

sσ
2
s − 2

2
3
gsvs)ds.
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Hence, if we chose gt = 2vt/3σ2
t , we obtain that [M̃n, X]t

p→ 0 and [M̃n, M̃n]
p→
∫ t

0 (us − vsσ−2
s )ds.

By going through the same type of arguments as above, we obtain:

Theorem 8. Assume Condition 1, as well as the conditions of Proposition 2. Also assume that
(161) holds for each t ∈ [0, T ], and that the absolute continuity (162) holds. Then (Mn

t ) converges
stably in law to Mt, given by

Mt =
2
3

∫ t

0

vt
σ2
t

dXt +
∫ t

0

(
2
3
us −

4
9
v2
s

σ2
s

)1/2

dW ′s,

where W ′ is independent of W (1), ...,W (p).

It is clear from this that the assumption of independent sampling times implies that vt ≡ 0.

A similar result was shown in Li, Mykland, Renault, Zhang, and Zheng (2009), where implica-
tions of this result are discussed further.

4.4 Statistical Risk Neutral Measures

We have so far ignored the drift µt. We shall here provide a trick to reinstate the drift in any analysis,
without too much additional work. It will turn out that stable convergence is a key element in the
discussion. Before we go there, we need to introduce the concept of absolute continuity.

We refer to a probability where there is no drift as a “statistical” risk neurtal measure. This
is in analogy to the use of equivalent measures in asset pricing. See, in particular, Ross (1976),
Harrison and Kreps (1979), Harrison and Pliska (1981), Delbaen and Schachermayer (1995), and
Duffie (1996).

4.4.1 Absolute Continuity

We shall in the following think about having two different probabilities on the same observables.
For example, P can correspond to the system

dXt = σtdWt, X0 = x0, (165)

while Q can correspond to the system

dXt = µtdt+ σtdW
Q
t , X0 = x0. (166)

In this case, Wt is a Wiener process under P , and WQ
t is a Wiener process under Q. Note that

since we are modeling the process Xt, this process is the observable quantity whose distribution



The Econometrics of High Frequency Data 46

we seek. Hence, the process Xt does not change from P to Q, but its distribution changes. If we
equate (165) and (166), we get

µtdt+ σtdW
Q
t = σtdWt, (167)

or
µt
σt
dt+ dWQ

t = dWt. (168)

As we discussed in the constant µ and σ case, when carrying out inference for observations in a
fixed time interval [0, T ], the process µt cannot be consistently estimated. A precise statement to
this effect (Girsanov’s Theorem) is given below.

The fact that µ cannot be observed means that one cannot fully distinguish between P and Q,
even with infinite data. This concept is captured in the following definition:

Definition 9. For a given σ-field A, two probabilities P and Q are mutually absolutely continuous
(or equivalent) if, for all A ∈ A, P (A) = 0 <=> Q(A) = 0. More generally, Q is absolutely
continuous with respect to P if , for all A ∈ A, P (A) = 0 => Q(A) = 0.

We shall see that P and Q from (165) and (166) are, indeed, mutually absolutely continuous.

4.4.2 The Radon-Nikodym Theorem, and the Likelihood Ratio

Theorem 9. (Radon-Nikodym) Suppose that Q is absolutely continuous under P on σ-field A.
Then there is a random variable (A measurable) dQ/dP so that for all A ∈ A,

Q(A) = EP

(
dQ

dP
IA

)
. (169)

For proof and a more general theorem, see Theorem 32.2 (p. 422) in Billingsley (1995).

The quantity dQ/dP is usually called either the Radon-Nikodym derivative or the likelihood
ratio, It is easy to see that dQ/dP is unique “almost surely” (in the same way as the conditional
expectation).

Example 9. The simplest case of a Radon-Nikodym derivative is where X1, X2, ..., Xn are iid,
with two possible distributions P and Q. Suppose that Xi has density fP and fQ under P and Q,
respectively. Then

dQ

dP
=

fQ(X1)fQ(Xn)...fQ(Xn)
fP (X1)fP (Xn)...fP (Xn)

(170)

Likelihood ratios are of great importance in statistical inference generally.
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4.4.3 Properties of Likelihood Ratios

• P (dQdP ≥ 0) = 1

• If Q is equivalent to P : P (dQdP > 0) = 1

• EP
(
dQ
dP

)
= 1

• For all A-measurable Y : EQ (Y ) = EP

(
Y dQ
dP

)
• If Q is equivalent to P : dP

dQ =
(
dQ
dP

)−1

4.4.4 Girsanov’s Theorem

We now get to the relationship between P and Q in systems (165) and (166). To give the generality,
we consider the vector process case (where µ is a vector, and σ is a matrix). The superscript “T”
here stands for “transpose”.

Theorem 10. (Girsanov). Subject to regularity conditions, P and Q are mutually absolutely
continuous, and

dP

dQ
= exp

{
−
∫ T

0
σ−1
t µtdW

Q
t −

1
2

∫ T

0
µTt (σtσTt )−1µtdt

}
, (171)

The regularity conditons are satisfied if σ− ≤ σt ≤ σ+, and |µt| ≤ µ+, but they also cover much
more general situations. For a more general statement, see, for example, Chapter 5.5 of Karatzas
and Shreve (1991)).

4.4.5 How to get rid of µ: Interface with Stable Convergence

The idea is borrowed from asset pricing theory. We think that the true distribution is Q, but we
prefer to work with P since then calculations are much simpler.

Our plan is the following: carry out the analysis under P , and adjust results back to Q using
the likelihood ratio (Radon-Nikodym derivative) dP/dQ. Specifically suppose that θ is a quantity
to be estimated (such as

∫ T
0 σ2

t dt,
∫ T

0 σ4
t dt, or the leverage effect). An estimator θ̂n is then found

with the help of P , and an asymptotic result is established whereby, say,

n1/2(θ̂n − θ)
L→N(b, a2) stably (172)
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under P . It then follows directly from the measure theoretic equivalence that n1/2(θ̂n − θ) also
converges in law under Q. In particular, consistency and rate of convergence is unaffected by the
change of measure. We emphasize that this is due to the finite (fixed) time horizon T .

The asymptotic law may be different under P and Q. While the normal distribution remains,
the distributions of b and a2 (if random) may change.

The technical result is as follows.

Proposition 6. Suppose that Zn is a sequence of random variables which converges stably to
N(b, a2) under P . By this we mean that N(b, a2) = b + aN(0, 1), where N(0, 1) is a standard
normal variable independent of FT , also a and b are FT measurable. Then Zn converges stably in
law to b+ aN(0, 1) under P , where N(0, 1) remains independent of FT under Q.

Proof of Proposition. EQIAg(Zn) = EP
dQ
dP IAg(Zn) → EP

dQ
dP IAg(Z) = EQIAg(Z) by uniform

integrability of dQ
dP IAg(Zn).

Proposition 6 substantially simplifies calculations and results. In fact, the same strategy will be
helpful for the localization results that come next in the paper. It will turn out that the relationship
between the localized and continuous process can also be characterized by absolute continuity and
likelihood ratios.

Remark 1. It should be noted that after adjusting back from P to Q, the process µt may show
up in expressions for asymptotic distributions. For instances of this, see Sections 2.5 and 4.3 of
Mykland and Zhang (2009). One should always keep in mind that drift most likely is present, and
may affect inference. 2

Remark 2. As noted, our device is comparable to the use of equivalent martingale measures in
options pricing theory (Ross (1976), Harrison and Kreps (1979), Harrison and Pliska (1981), see
also Duffie (1996)) in that it affords a convenient probability distribution with which to make
computations. In our econometric case, one can always take the drift to be zero, while in the
options pricing case, this can only be done for discounted securities prices. In both cases, however,
the computational purpose is to get rid of a nuisance “dt term”.

The idea of combining stable convergence with measure change appears to go back to Rootzén
(1980). 2

4.5 Unbounded σt

We have so far assumed that σ2
t ≤ σ2

+. With the help of stable convergence, it is also easy to
weaken this assumption. One can similarly handle restrictions µt, and on σ2

t being bounded away
from zero.
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The much weaker requirement is that σt be locally bounded. This is to say that there is a
sequence of stopping times τm and of constants σm,+ so that

P (τm ≤ T )→ 0 as m→∞ and

σ2
t ≤ σ2

m,+ for 0 ≤ t ≤ τm. (173)

For example, this is automatically satisfied if σt is a continuous process.

As an illustration of how to incorporate such local boundedness in existing results, take Corollary
1. If we replace the condition σ2

t ≤ σ2
+ by local boundedness, the corollary continues to hold (for

fixed m) with στn∧t replacing σt. On the other hand we note that [X,X]Gn is the same for στn∧t
and σt on the set {τn = T}. Thus, the corollary tells us that for any set A ∈ FT , and for any
bounded continuous function g,

EIA∩{τm=T}g
(√

n
(

[X,X]Gn
t − [X,X]t

))
→ EIA∩{τm=T}g

(
U ×

(
2T
∫ t

0
σ4
sdHs

)1/2
)

(174)

as n→∞ (and for fixed m), where U has the same meaning as in the corollary. Hence,

|EIAg
(√

n
(

[X,X]Gn
t − [X,X]t

))
− EIAg

(
U ×

(
2T
∫ t

0
σ4
sdHs

)1/2
)
|

≤ |EIA∩{τm=T}g
(√

n
(

[X,X]Gn
t − [X,X]t

))
− EIA∩{τm=T}g

(
U ×

(
2T
∫ t

0
σ4
sdHs

)1/2
)
|

+ 2 max |g(x)|P (τm 6= T )

→ 2 max |g(x)|P (τm 6= T ) (175)

as n→∞. By choosing m large, the right hand sice of this expression can be made as small as we
wish. Hence, the left hand side actually converges to zero. We have shown:

Corollary 2. Theorem 7, Corollary 1, and Theorem 8 all remain true if the condition σ2
t ≤ σ2

+ is
replaced by a requirement that σ2

t be locally bounded.

5 Microstructure

5.1 The Problem

The basic problem is that the semimartingale Xt is actually contaminated by noise. One observes

Yti = Xti + εi. (176)

We do not right now take a position on the structure of the εis.
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The reason for going to this structure is that the convergence (consistency) predicted by The-
orem 2 manifestly does not hold. To see this, in addition to G, we also use subgrids of the form
Hk = {0, tk, tK+k, t2K+k, ...}. This gives rise to the Average Realized Voltatility (ARV)

ARV (Y,G,K) =
1
K

K∑
k=1

[Y, Y ]Hk . (177)

Note that ARV (Y,G, 1) = [Y, Y ]G in obvious notation. If one believes Theorem 2, then the
ARV (Y,G,K) should be close for small K. In fact, the convergence in the theorem should be
visible as K decreases to 1. Figure 1 looks at the ARV (Y,G,K) for Alcoa Aluminun (AA) for
january 4, 2001. As can be seen in the figure, the actual data behaves quite differently from what
the theory predicts. It follows that the semimartingale assumption does not hold, and we have to
move to a model like (176).
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Figure 1. RV as One Samples More Frequently. The plot gives ARV (Y,G,K) for

K = 1, ..., 20 for Alcoa Aluminum for the transcations on January 4, 2001. It is clear

that consistency does not hold for the quadratic variation. The semimartingale

model, therefore, does not hold.
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Figure 2. RV as One Samples More Frequently. This is the same figure as Fig 1,

but the x axis is the average number of observations between each transaction for

each ARV (Y,G,K). There is one transaction about each 50 seconds in this particular

data.

5.2 An Initial Approach: Sparse Sampling

Plots of the type given in Figure 1 and 2 were first considered by Andersen, Bollerslev, Diebold, and
Labys (2000) and called signature plots. The authors concluded that the most correct values for
the volatility were the lower ones on the left and side of the plot, based mainly on the stabilization
of the curve in this region. On the basis of this, the authors recommended to estimate volatility
using [Y, Y ]H, where H is a sparsely sampled subgrid of G. In this early literature, the standard
approach was so subsample about every five minutes.

The philosophy behind this approach is that the size of the noise ε is very small, and if there
are not too many sampling points, the effect of noise will be limited. While true, this uses the data
inefficiently, and we shall see that better methods can be found. The basic subsampling scheme
does, however, provide some guidance on how to proceed to more complex schemes. For this reason,
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we shall analyze its properties.

The model used for most analysis is that εi is independent of X, and iid. One can still, however,
proceed under weaker conditions. For example, if the εi have serial dependence, a similar analysis
will go through.

The basic decomposition is

[Y, Y ]H = [X,X]H + [ε, ε]H + 2[X, ε]H, (178)

where the cross term is usually (but not always) ignorable. Thus, if the ε’s are independent of X,
and E(ε) = 0, we get

E([Y, Y ]H|X process) = [X,X]H + E[ε, ε]H. (179)

If the ε are identically distributed, then

E[ε, ε]H = nsparseE(εK − ε0)2, (180)

where nsparse = (number of points in H)−1. Smaller nsparse gives smaller bias, but bigger variance.

At this point, if you would like to follow this line of development, please consult the discussion in
Section 2 in Zhang, Mykland, and Aı̈t-Sahalia (2005). This shows that there is an optimal subsam-
pling frequency, given by equation (31) (p 1399) in the paper. A similar analysis for ARV (Y,G,K)
is carried out in Section 3.1-3.3 of the paper.

5.3 Two Scales Realized Volatility (TSRV)

To get a consistent estimator, we go to the two scales realized volatility (TSRV). The TRSV is
defined as follows.

[̂X,X]
(tsrv)

T = anARV (Y,G,K)− bnARV (Y,G, J) (181)

where we shall shortly fix an and bn. It will turn out to be meaningful to use

bn = an ×
n̄K
n̄J

, (182)

where n̄K = (n−K + 1)/K. For asymptotic purposes, we can take an = 1, but more generally will
assume that an → 1 as n → ∞. Choices with good small sample properties are given in Section
4.2 in Zhang, Mykland, and Aı̈t-Sahalia (2005), and equation (4.22) in Aı̈t-Sahalia, Mykland, and
Zhang (2009).

This estimator is discussed in Section 4 in Zhang, Mykland, and Aı̈t-Sahalia (2005), though
only in the case where J = 1. In the more general case, J is not necessarily 1, but J << K.
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One can prove under weak assumptions, that

n−J∑
i=0

(Xti+j −Xti)(εti+j − εti) = Op(J1/2).

This important because it gives rise to the sum of squares decomposition

ARV (Y,G, J) = ARV (X,G, J) +ARV (ε,G, J) +Op(J−1/2),

Thus, if we look at linear combinations of the form (181), one obtains, for an = 1,

[̂X,X]
(tsrv)

T = ARV (X,G,K)− n̄K
n̄J

ARV (X,G, J)︸ ︷︷ ︸
signal term

+ ARV (ε,G,K)− n̄K
n̄J

ARV (ε,G, J)︸ ︷︷ ︸
noise term

+ Op(K−1/2),

(183)
so long as

1 ≤ J ≤ K and K = o(n). (184)

The noise term behaves as follows:

[ε, ε](J)
T =

1
J

n∑
i=0

c
(J)
i ε2ti −

2
J

n−J∑
i=0

εtiεti+J , (185)

where c(J)
i = 2 for J ≤ i ≤ n− J , and = 1 for other i. By construction∑

i

c
(J)
i = 2Jn̄J , (186)

So that

noise term ≈ − 2
K

n−K∑
i=0

εtiεti+K +
n̄K
n̄J

2
J

n−J∑
i=0

εtiεti+J (187)

so that (1) the ε2 terms have been removed, and (2) the estimator is unbiased if J is chosen to be
bigger than the range of dependence of the ε’s.
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Figure 3. ARV (Y,G,K) and the two scales estimator for Alcoa Aluminum for the

first 100 trading days of 2001. Square root, annualized scale. Also estimated size

of the microstructure noise. One can see from the plot that the microstructure

has a substantially bigger impact on the ARV than on the TSRV.
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Figure 4. Data as in Fig. 3. Here size of microstructure noise plotted vs. TSRV.

The figure suggests that the size of the microstructure is largely unaffected by

the volatility.

5.4 Asymptotics for the TSRV

If the noise is assumed to be independent of the X process, one can deal separately with the signal
and noise terms in (183). The signal term is analyzed with the kind of technique developed Sections
3-4 above. The precise derivation is given in Section 3.4 (p. 1400-1401) and Appendix A.3 (p. 1410-
1411) of Zhang, Mykland, and Aı̈t-Sahalia (2005). Meanwhile, the noise term (187) is a U-statistic
which can be handled with methods from discrete process limit theory, based either on martingales
or mixing, using the limit theory in Hall and Heyde (1980) (see, in particular, ibid., Theorem 3.2
(p. 58-59)). For concrete implementation, see Zhang, Mykland, and Aı̈t-Sahalia (2005) for the case
of iid noise. By combining the two sources of error in (183), a rate of convergence of the TSRV to
the true integrated volatility is Op(n−1/6), and the limit is, again, of mixed normal type.
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5.5 The emerging literature on estimation of volatility under microstructure

This estimation problem has by now become somewhat of an industry. The following approaches
are now in the process of becoming available:

• Extensions of the two scales approach. Zhang (2006) studies a multi scale realized volatility
(MSRV), and obtains that the estimator of integrated volatility converges at the rate of
Op(n−1/4). This rate is optimal, as it also comes up in the case where σt is constant and the
noise is normal, which is a parametric problem. Also, the conditions on the noise structure
in the TSRV has been weakened. Aı̈t-Sahalia, Mykland, and Zhang (2009) studies noise that
is internally dependent but independent of the signal, and Li and Mykland (2007) discusses
a formulation where where the noise can depend on the process X.

• An approach based on autocovariances. Often called the “kernel” approach. This work has
been pioneered by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008). We refer to this
paper for further discussion.

• Preaveraging. The idea here is to try to reduce the noise by averaging observations before
computing volatilities. The two main papers for the moment are Jacod, Li, Mykland, Podol-
skij, and Vetter (2009) and Podolskij and Vetter (2009).

• Likelihood based methods. There are here two approaches under development. On the one
hand, Xiu (2009) uses the likelihood function for constant σ and normal noise as a quasi-
likelihood to estimate [X,X]. On the other hand, Mykland and Zhang (2009) show that in
sufficiently small neighboorhoods of observations, one can act as if σt really is constant. We
return to a discussion of this in Section 6.

To first order, all of these estimators do similar things. The main difference between them seems
to be the handling of end effects. This topic will, no doubt, be the subject of future research.

5.6 A wider look at subsampling and averaging

We have seen above that subsampling and averaging can help with several problems.

1. It is a first order remedy for microstructure.

2. If an estimator [̂X,X] is based on the noise being an independent series, one can ameliorate
the effects of actual dependence by subsampling every J ’th observation, and then average
across the J resulting estimators. We have explicitly described this for the TSRV, but the
same rationale can be used to subsample and then average any of the estimators mentioned
in Section 5.5.
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3. It should be noted that subsampling and averaging can is robust to noise that depends on
the latent process X, cf. Delattre and Jacod (1997) and Li and Mykland (2007).

4. A further use of subsampling is that it seems in some instances to regularize time. This is
further discussed in Section 7.2.

6 Methods based on Contiguity

We have seen in Section 4.4 that measure changes can be a powerful tool in high frequency data
problems. We here pursue this matter further, by considering measure changes that are asymptot-
ically absolutely continuous. This is closely related to the concept of contiguity, which is discussed
further in Section 6.1. This first section mainly abstracts the results in Mykland and Zhang (2009),
which should be consulted for details and proofs. The later sections is new material.

6.1 Block Discretization

In addition to the grid Gn = {0 = tn,0 < tn,1 < ... < tn,n = T}, which we again take to be
independent of the underlying process to be observed, we consider a subgrid

Hn = {0 = τn,0 < τn,1 < ... < τn,Kn = T} ⊆ Gn. (188)

We shall now define a new measure, on the observations Xtn,j only, for which the volatility is
constant on each of the Kn blocks (τn,i−1, τn,i]. Specifically, consider the approximate measure,
called Qn, satisfying X0 = x0 and

for each i = 1, ...,Kn : ∆Xtj+1 = στn,i−1∆WQ
tj+1

for tn,j+1 ∈ (τn,i−1, τn,i]. (189)

Formally, we define the approximation Qn recursively (with ∆tn,j = tn,j − tn,j−1)

Definition 10. (Block approximation). Define the probability Qn recursively by:
(i) U0 has same distribution under Qn as under P ;
(ii) The conditional Qn-distribution of U (1)

tn,j+1
given U0, ..., Utn,j is given by (189), where ∆WQ

tj+1

is conditionally normal N(0,∆tn,j+1), and
(iii) The conditional P ∗n-distribution of U (2)

tn,j+1
given U0, ..., Utn,j , U

(1)
tn,j+1

is the same as under P .

Note that we often drop the subscript “n” on ∆tn,j , and write ∆tj .

Denote by Mn,i = #{tn,j ∈ (τn,i−1, τn,i]} We shall require that that maxiMn,i = O(1) as n →
∞, from which it follows that Kn is of exact order O(n). To measure the extent to which we hold
the volatility constant, we define the following “Asymptotic Decoupling Delay” (ADD) by

K(t) = lim
n→∞

∑
i

∑
tn,j∈(τn,i−1,τn,i]∩[0,t]

(tn,j − τn,i−1), (190)
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provided the limit exists. In the case of equidistant observations and equally sized blocks of M
observations, the ADD takes the form K(t) = 1

2(M − 1)t.

In is shown in (Theorems 1 and 3 in) Mykland and Zhang (2009) that, subject to regularity
conditions, P and Pn are mutually absolutely continuous on the σ-field Xn,n generated by Utn,j ,
j = 0, ..., n. Furthermore, let (dP ∗/dP ∗n)(Ut0 , ..., Utn,j , ..., Utn,n) be the likelihood ratio (Radon-
Nikodym derivative) on Xn,n. Then,

dP

dQn
(Ut0 , ..., Utn,j , ..., Utn,n) L→ exp{Γ1/2N(0, 1)− 1

2
Γ} (191)

stably in law, under Qn, as n→∞. The asymptotic variance is given by Γ = Γ0 + Γ1, where

Γ0 =
3
8

∫ T

0

(
1
σ2
t

d

dt
[σ2,W ]t

)2

dt =
3
2

∫ T

0

(
1
σt

d

dt
[σ,W ]t

)2

dt, and

Γ1 =
1
2

∫ T

0

1
σ4
t

(
d

dt
[σ2, σ2]t

)
dK(t) = 2

∫ T

0

1
σ2
t

(
d

dt
[σ, σ]t

)
dK(t) (192)

Hence, Γ0 is related to the leverage effect, while Γ1 is related to the volatility of volatility.

The important consequence of this result is that that P and the approximationQn are contiguous
in the sense of Hájek and Sidak (1967) (Chapter VI), LeCam (1986), LeCam and Yang (2000), and
Jacod and Shiryaev (2003) (Chapter IV). This is to say that for a sequence An of sets, P (An)→ 0
if and only if Qn(An) → 0. This follows from (191) since dP/dQn is uniformly integrable under
Qn (since the sequence dP/dQn is nonnegative, also the limit integrates to one under Qn). In it
follows that consistency and orders of convergence are maintained from one measure to the other.
In particular, a martingale Zn is Op(1) under P if and only if it has the same order of convergence
under Qn. Hence consistency and order of convergence are maintained from one measure to the
other. The result in the cited paper also covers the multivariate case. Also consult ibid., Section
3.3, for connections to Hermite polynomials. Finally note that contiguity also holds if the sequence
dP
dQn

is tight, which requires even weaker conditions. (For example, K need only exist through
subsequences, which is assured by under weak conditions by Helly’s Theorem, (see, for example, p.
336 in Billingsley (1995)).

The good news: This means that one can construct estimators as if σ2
t is locally constant. If

the resulting estimator θ̂n is such that nα(θ̂n − θ) = Op(1) under Qn (where local constancy is
satisfied), then nα(θ̂n − θ) = Op(1) also under P . In other words, the change from P to Qn has
much the same simplifying function as the measure change in Section 4.4.

Remark 3. The (potentially) bad news: This change of measure is not completely innocuous. A
sequence Zn of martingales may not have exactly the same limit distribution under P and Qn.
The reason is that the Qn martingale part of log dP/dQn may have nonzero asymptotic covariation
with Zn. This is the same phenomenon which occurs (in a different context) in Section 4.3.2. An
adjustment then has to be carried out along the lines of “LeCam’s Third Lemma” (Hájek and Sidak
(1967), Chapter VI.1.4., p. 208). We refer to Section 2.4 and 3.4 of Mykland and Zhang (2009)
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for the methodology for adjusting the limit distribution. Ibid., Section 4.3, provides an example
where such an adjustment actually has to be made. Other parts of Section 4 of the paper provides
examples of how the methodology can be used, and where adjustment is not necessary. 2

The approximation above depends on the following Itô process structure on σ:

dσt = σ̃tdt+ ftdWt + gtdBt. (193)

where B a Brownian motion independent of W . (It is an open question what happens in, say,
the long range dependent case). We also require inf0≤t≤T σ

2 > 0. Note that in the representation
(193), (192) becomes

Γ0 =
3
2

∫ T

0

(
ft
σt

)2

dt and Γ1 = 2
∫ T

0

(
f2
t + g2

t

σ2
t

)
dt (194)

Example 10. In the case of a Heston model (Section 2.2.3), we obtain that

Γ0 =
3
8

(ργ)2

∫ T

0
σ−2
t dt and Γ1 =

1
4
γ2(M − 1)

∫ T

0
σ−2
t dt. (195)

Remark 4. (One step discretization). Let P ∗n be the measure Qn which arises when the block
length is M = 1. Observe that even with this one-step discretization, dP/dP ∗n does not necessarily
converge to unity. In this case, Γ1 = 0, but Γ0 does not vanish when there is leverage effect.
2

6.2 Moving windows

The paper so far has considered chopping n data up into non-overlapping windows of size M each.
We here show by example that the methodology can be adapted to the moving window case. We
consider the estimation of θ =

∫ T
0 |σt|

pdt, as in Section 4.1 of Mykland and Zhang (2009). It should
be noted that the moving window is close to the concept of a moving kernel, and this may be a
promising avenue of further investigation. See, in particular, Linton (2007).

We use block length M , and equidistant times with spacing ∆tn = T/n. Also, we use for
simplicity

σ̃2
τn,i

=
1

∆tnMn

∑
tn,j∈(τn,i,τn,i+1]

(∆Xtn,j+1)2, (196)

as estimator of σ2
τn,i

. The moving window estimate of θ is now

θ̃MW
n = (∆t)

n−M∑
i=0

|̃σtn,i |r.
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It is easy to see that

θ̃MW
n =

1
M

M∑
m=1

θ̃n,m +Op(n−1),

where θ̃n,m is the non-overlapping block estimator, with block number one starting at tn,m. In
view of this representation, it is once again clear from sufficiency considerations that the moving
window estimator will have an asymptotic variance which is smaller (or, at least, no larger) than
the estimator based on non-overlapping blocks. We now carry out the precise asymptotic analysis.

To analyze this estimator, let M > M , and let An = {i = 0, ..., n − M : [tn,i, tn,i+M ] ⊆
[kM, (k + 1)M] for some k}, with Bn = {0, ..., n−M} −An. Write

n1/2(θ̃MW
n − θ) = n1/2∆t

∑
k

∑
i:[tn,i,tn,i+M ]⊆[kM/n,(k+1)M/n]

(|̃σtn,i |r − |σtkM |
r)

+ n1/2∆t
∑
i∈Bn

(|̃σtn,i |r − |σtn,i |r) +Op(n−1/2). (197)

Now apply our methodology from Section 6.1, with block size M, to the first term in (197). Under
this block approximation, the inner sum in the first term is based on conditionally i.i.d. observations,
in fact, for [tn,i, tn,i+M ] ⊆ [kM/n, (k + 1)M/n], σ̃2

tn,i
= σ2

kM/nSi, in law, where

Si = M−1
i+M−1∑
j=i

U2
j , U0, U1, U2, ... iid standard normal. (198)

As in Section 4.1 of Mykland and Zhang (2009), there is no adjustment (à la Remark 3) due
to covariation with the asymptotic likelihood ratios, and so the first term in (197) converges stably
to a mixed normal with random variance as the limit of n∆t2n

∑
k |σ|rkM/nVar

(
c−1

M,r

∑M−M
i=0 Sr/2

i

)
,

which is

Tc−2
M,r

1
M

Var

(M−M∑
i=0

Sr/2
i

)∫ T

0
|σ|rtdt. (199)

Similarly, one can apply the same technique to the second term in (197), but now with the k’th
block (k ≥ 2) starting at kM−M . This analysis yields that the second term is also asymptotically
mixed normal, but with a variance what is of order op(1) asM→∞. (In other words, once again,
first send n to infinity, and then, afterwards, do the same to M). This yields that, overall, and in
the sense of stable convergence,

n1/2(θ̃MW
n − θ) L→ N (0, 1)×

(
c−2
M,rαM,rT

∫ T

0
|σ|rtdt

)1/2

, (200)

where, from (199), αM,r = limM→∞Var
(∑M−M

i=0 Sr/2
i

)
/M, i.e.,

αM,r = Var(Sr/2
0 ) + 2

M−1∑
i=1

Cov(Sr/2
0 ,Sr/2

i ),

where the Si are given in (198).
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6.3 Multivariate and Asynchronous data

The results discussed in Section 6.1 also apply to vector processes (see Mykland and Zhang (2009)
for details). Also, for purposes of analysis, asynchronous data does not pose any conceptual diffi-
culty when applying the results. One includes all observation times when computing the likelihood
ratios in the contiguity theorems. It does not matter that some components of the vector are not
observed at all these times. In a sense, they are just treated as missing data. Just as in the case
of irregular times for scalar processes, this does not necessarily mean that it is straightforward to
write down sensible estimators.

For example, consider a bivariate process (X(1)
t , X

(2)
t ). If process (X(r)

t ) is observed at times :

G(r)
n = {0 ≤ t(r)n,0 < t

(r)
n,1 < ... < t(r)n,nr

≤ T}, (201)

one would normally use the grid Gn = G(1)
n ∪G(2)

n ∪ {0, T} to compute the likelihood ratio dP/dQn.

To focus the mind with an example, consider the estimation of covariation under asynchronous
data. It is shown in Mykland (2009a) that the Hayashi-Yoshida estimator (Hayashi and Yoshida
(2005)) can be seen as a nonparametric maximum likelihood estimator (MLE). We shall here see
that blocking induces an additional class of local likelihood based MLEs. The difference between
the former and the latter depends on the continuity assumptions made on the volatility process,
and is a little like the difference between the Kaplan-Meier (Kaplan and Meier (1958)) and Nelson-
Aalen (Nelson (1969), Aalen (1976, 1978)) estimators in survival analysis. (Note that the variance
estimate for the Haysahi-Yoshida estimator from Section 5.3 of Mykland (2009a) obviously also
remains valid in the setting of this paper).

For simplicity, work with a bivariate process, and let the grid Gn be given by (201). For now,
let the block dividers τ be any subset of Gn. Under the approximate measure Qn, note that for

τn,i−1 ≤ t(1)
n,j−1 < t

(1)
n,j ≤ τn,i and τn,i−1 ≤ t(2)

k−1 < t
(2)
k ≤ τn,i (202)

the set of returns X(1)

t
(1)
n,j

− X(1)

t
(1)
n,j−1

and X
(2)

t
(2)
n,k

− X(2)

t
(2)
n,k−1

are conditionally jointly normal with mean

zero and covariances

CovQn(X(r)

t
(r)
n,j

−X(r)

t
(r)
n,j−1

,X(s)

t
(s)
n,k

−X(s)

t
(s)
n,k−1

) | Fτn,i−1) = (ζτn,i−1)r,sd{(t(r)
n,j−1, t

(r)
n,j) ∩ (t(s)

n,k−1, t
(s)
n,k)} (203)

where d is length (Lebesgue measure). Set κr,s,j,k = ζd{(t(r)n,j−1, t
(r)
n,j) ∩ (t(s)n,k−1, t

(s)
n,k)}. The Qn log

likelihood ratio based on observations fully in block (τn,i−1, τn,i] is therefore given as

`(ζ) = −1
2

ln det(κ)− 1
2

∑
r,s,j,k

κr,s;j,k(X(r)

t
(r)
n,j

−X(r)

t
(r)
n,j−1

)(X(s)

t
(s)
n,k

−X(s)

t
(s)
n,k−1

)− Ni

2
ln(2π), (204)

where κr,s;j,k are the elements of the matrix inverse of (κr,s;j,k), and Ni is a measure of block
sample size. The sum in (j, k) is over all intersections (t(r)n,j−1, t

(r)
n,j) ∩ (t(s)n,k−1, t

(s)
n,k) with positive
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length satisfying (202). Call the number of such terms

m
(r,s)
n,i = # nonempty intersections (t(r)n,j−1, t

(r)
n,j) ∩ (t(s)n,k−1, t

(s)
n,k) satisfying (202) . (205)

The “parameter” ζ corresponds to ζτn,i−1 . The block MLE is thus given as

ζ̂(r,s)
τn,i−1

=
1

m
(r,s)
n,i

∑
j,k

(X(r)

t
(r)
n,j

−X(r)

t
(r)
n,j−1

)(X(s)

t
(s)
n,k

−X(s)

t
(s)
n,k−1

)

d{(t(r)n,j−1, t
(r)
n,j) ∩ (t(s)n,k−1, t

(s)
n,k)}

(206)

where the sum is over j, k satisfying (202) for which the denominator in the summand is nonzero.
The overall estimate of covariation is thus

̂〈X(r), X(s)〉T =
∑
i

ζ̂(r,s)
τn,i−1

(τn,i − τn,i−1). (207)

We suppose, of course, that each block is large enough for m(r,s)
n,i to be always greater than zero.

Under Qn, EQn(ζ̂τn,i−1 |Fτn,i−1) = ζτn,i−1 , and

VarQn(ζ̂(r,s)
τn,i−1

|Fτn,i−1) =

(
1

m
(r,s)
n,i

)2
ζ(r,r)

τn,i−1
ζ(s,s)
τn,i−1

∑
j,k

(t(r)n,j − t
(r)
n,j−1)(t(s)n,k − t

(s)
n,k−1)

d{(t(r)n,j−1, t
(r)
n,j) ∩ (t(s)n,k−1, t

(s)
n,k)}2

+ (ζ(r,s)
τn,i−1

)2
∑

j1,j2,k1,k2

d{(t(r)n,j1−1, t
(r)
n,j1

) ∩ (t(s)n,k2−1, t
(s)
n,k2

)}d{(t(r)n,j2−1, t
(r)
n,j2

) ∩ (t(s)n,k1−1, t
(s)
n,k1

)}

d{(t(r)n,j1−1, t
(r)
n,j1

) ∩ (t(s)n,k1−1, t
(s)
n,k1

)}d{(t(r)n,j2−1, t
(r)
n,j2

) ∩ (t(s)n,k2−1, t
(s)
n,k2

)}

 ,

(208)

The first sum is over the same (j, k) as in (206), and the second sum is over all j1, j2, k1, k2 satisfying
(202), again for which the denominator in the summand is nonzero.

It is therefore easy to see that subject to conditions on the observation times t(r)n,i and t
(s)
n,i,

n1/2( ̂〈X(r), X(s)〉T − 〈X(r), X(s)〉T ) converges stably (under Qn), to a mixed normal distribution
with variance as the limit of

n
∑
i

VarQn(ζ̂(r,s)
τn,i−1

|Fτn,i−1)(τn,i − τn,i−1)2. (209)

It is straightforward to see that there is no adjustment from Qn to P . A formal asymptotic analysis
would be tedious, and has therefore been omitted. In any case, to estimate the asymptotic variance,
one would use (208)-(209), with ζ̂τn,i−1 replacing ζτn,i−1 in (208).

Remark 5. An important difference from the Hayashi-Yoshida estimator is that (206) depends
on the observation times. This is in many instances undesirable, and the choice of estimator will
depend on the degree to which these times are trusted. The Hayashi-Yoshida estimator is also
aesthetically more pleasing. We note, however, that from likelihood considerations, the estimator
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(206) will have an asymptotic variance which, as the block size tends to infinity, converges to a
limit which corresponds to the efficient minimum for constant volatility matrix.

This phenomenon can be best illustrated for a scalar process (so there is no asynchronicity). In
this case, our estimator (206) of 〈X,X〉T becomes (for block size M fixed)

〈̂X,X〉T =
∑
i

(τn,i − τn,i−1)
1
M

∑
j: τn,i−1<tn,j≤τn,i

∆X2
tn,j

∆tn,j
. (210)

It is easy to see, by the methods in this paper, or directly, that for this estimator, the asymptotic
variance is 2T

∫ T
0 σ4

t dt, while for the standard realized volatility, the corresponding expression is
2T
∫ T

0 σ4
tH
′(t)dt, where H(t) is the asymptotic quadratic variation of time (142). It is always the

case that H ′(t) ≥ 1, and when observations are sufficiently irregular (under, say, Poisson sampling,
the inequality is strict, cf. Section 7.2 below. Thus, (210) is more efficient than regular realized
volatility, but since the times can in many cases not be trusted, the realized volatility remains a
main tool for estimating volatility. 2

6.4 More complicated data generating mechanisms

6.4.1 Jumps

We only consider the case of finitely many jumps (compound Poisson processes, and similar). The
conceptually simplest approach is to remove these jumps using the kind of procedure described in
Mancini (2001) and Lee and Mykland (2006). The procedure will detect all intervals (tn,j−1, tn,j ],
with probability tending to one (exponentially fast) as n→∞. If one simply removes the detected
intervals from the analysis, it is easy to see that our asymptotic results go through unchanged.

The case of infinitely many jumps is more complicated, and beyond the scope of this paper.

Note that there is a range of approaches for estimating the continuous part of volatility in
such data. Methods include bi- and multi-power (Barndorff-Nielsen and Shephard (2004b). Other
devices are considered by Aı̈t-Sahalia (2004), and Aı̈t-Sahalia and Jacod (2007). One can use our
method of analysis for all of these approaches.

6.4.2 Microstructure noise

The presence of noise does not alter the analysis in any major way. Suppose one observes

Ytn,j = Xtn,j + εn,j (211)

where the εn,j ’s are independent of the (Xt) process. The latter still follows (97). We take the
σ-field Xn,n to be generated by {Xtn,j , εn,j , 0 ≤ j ≤ n}. Suppose that P1 and P2 are two measures
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on Xn,n for which: (1) the variables {εn,j , 0 ≤ j ≤ n} are independent of {Xn,j , 0 ≤ j ≤ n},
and (2) the variables {εn,j , 0 ≤ j ≤ n} have the same distribution under P1 and P2. Then, from
standard results in measure theory,

dP2

dP1
((Xn,j , εn,j), 0 ≤ j ≤ n) =

dP2

dP1
(Xn,j , 0 ≤ j ≤ n) (212)

The results in our theorems are therefore unchanged in the case of microstructure noise (unless one
also wants to change the probability distribution of the noise). We note that this remains the case
irrespective of the internal dependence structure of the noise.

The key observation which leads to this easy extension is that it is not required for our results
to work that the observables Ytn,j generate the σ-field Xn,n. It is only required that the observables
be measurable with respect to this σ-field. The same principle was invoked in Section 6.3.

The extension does not, obviously, solve all problems relating to microstructure noise, since this
type of data generating mechanism is best treated with an asymptotics where M →∞ as n→∞.
This is currently under investigation.

7 Irregularly spaced data

7.1 A second block approximation.

The approximation in Section 6.1 reduces the problem (in each block) to a case of independent (but
not identically distributed) increments. Can we do better than this, and go to iid observations?
We here give a criterion for this to be the case.

Consider yet another approximate probability measure Rn, under which X0 = x0, and

for each i = 1, ...,Kn : ∆Xtj+1 = στn,i−1(
∆τi

∆tj+1Mi
)1/2∆W ∗tj+1

for tn,j+1 ∈ (τn,i−1, τn,i] (213)

Formally, we define the approximation as follows.

Definition 11. Rn is defined as Qn in Definition 10, but with (213) replacing (189).

The crucial fact will be that underRn, the observables ∆Xtj+1 are conditionally iidN(0, ζτn,i−1∆τi/Mi)
for tn,j+1 ∈ (τn,i−1, τn,i].

So that the following can be used together with the results in Mykland and Zhang (2009), we
will in the following let the process X be multivariate, and we make the following assumption

Condition 2. (Structure of the instantaneous volatility). We assume that the matrix process σt is
itself an Itô processes, and that if λ(p)

t is the smallest eigenvalue of σt, then inft λ
(p)
t > 0 a.s.
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The contiguity question is then addressed as follows. Let P ∗n be the measure from Remark 4
(corresponding to block length M = 1). Recall that

log
dRn
dP

= log
dRn
dQn

+ log
dQn
dP ∗n

+ log
dP ∗n
dP

(214)

Define

Bn,j =

(
∆tn,j+1

(
∆τn,i
Mi

)−1

− 1

)
(215)

Theorem 11. (Asymptotic relationship between P ∗n , Qn and Rn). Assume the conditions of The-
orem 4 in Mykland and Zhang (2009), and let Z(1)

n and M (1)
n be as in that theorem (see (231) and

(234) in Section 7.3). Assume that the following limits exist:

Γ2 =
p

2
lim
n→∞

∑
j

B2
n,j and Γ3 =

p

2
lim
n→∞

∑
j

log(1 +Bn,j). (216)

Set

Z(2)
n =

1
2

∑
i

∑
tn,j∈(τn,i−1,τn,i]

∆XT
tn,j

((σσT )
−1

τn,i−1
)∆Xtn,j

(
∆t−1

n,j+1 −
(

∆τn,i
Mi

)−1
)
, (217)

and let M (2)
n be the end point of the martingale part of Z(2)

n (see (232) and (234) in Section 7.3 for
the explicit formula). Then, as n→∞, (M (1)

n ,M
(2)
n ) converges stably in law under P ∗ to a normal

distribution with mean zero and diagonal variance matrix with diagonal elements Γ1 and Γ2. Also,
under P ∗,

log
dRn
dQn

= M (2)
n + Γ3 + op(1). (218)

The theorem can be viewed from the angle of contiguity:

Corollary 3. Under regularity conditions, the following statements are equivalent, as n→∞:
(i) Rn is contiguous to P .
(ii) Rn is contiguous to Qn.
(iii) The following relationship holds:

Γ3 = −1
2

Γ2. (219)

As we shall see, the requirement (219) is a substantial restriction. Corollary 3 says that unlike
the case of Qn, inference under Rn may not give rise to desired results. Part of the probability
mass under Qn (and hence P ∗) is not preserved under Rn.

To understand the requirement (219), note that

p

2

∑
j

log(1 +Bn,j) = −p
4

∑
j

B2
n,j +

p

6

∑
j

B3
n,j − ... (220)
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since
∑

j Bn,j = 0. Hence, (219) will, for example, be satisfied if maxj |Bn,j | → 0 as n → ∞. One
such example is

tn,j = f(j/n) and f is continuously differentiable. (221)

However, (221) will not hold in more general settings, as we shall see from the following examples.

Example 11. (Poisson sampling.) Suppose that the sampling time points follow a Poisson
process with parameter λ. If one conditions on the number of sampling points n, these points behave
like the order statistics of n uniformly distributed random variables (see, for example, Chapter 2.3
in Ross (1996)). Consider the case where Mi = M for all but (possibly) the last interval in
Hn. In this case, Kn is the smallest integer larger than or equal to n/M . Let Yi be the M -tuple
(Bj , τi−1 ≤ tj < τi).

We now obtain, by passing between the conditional and unconditional, that Y1, ..., YKn−1 are iid,
and the distribution can be described by

Y1 = M(U(1), U(2) − U(1), ..., U(M−1) − U(M−2), 1− U(M−1))− 1, (222)

where U(1), ..., U(M−1) is the order statistic of M − 1 independent uniform random variables on
(0, 1). It follows that ∑

j

B2
n,j =

n

M
(M2EU2

(1) − 1) + op(n)

∑
j

log(1 +Bn,j) =
n

M
E log(MU(1)) + op(n) (223)

since EU2
(1) = 2/(M + 1)(M + 2). Hence, both Γ2 and Γ3 are infinite. The contiguity between Rn

and the other probabilities fails. On the other hand all our assumptions up to Section 6 are satisfied,
and so P , P ∗n and Qn are all contiguous. The AQVT (equation (142)) is given by H(t) = 2t . Also,
if the block size is constant (size M), the ADD is K(t) = (M − 1)t .

Example 12. (Systematic irregularity.) Let ε be a small positive number, and let ∆tn,j =
(1 + ε)T/n for odd j and ∆tn,j = (1 − ε)T/n for even j (with ∆tn,j = T/n for odd n). Again,
all our assumptions up to Section 6 are satisfied. The AQVT is given by H(t) = t(1 + ε2). If we
suppose that all Mi = 2, the ADD becomes K(t) = t. On the other hand, Bn,j = ±ε, so that, again,
both Γ2 and Γ3 are infinite. The contiguity between Rn and the other probabilities thus fails in the
same radical fashion as in the case of Poisson sampling.

7.2 Irregular Spacing and Subsampling

We here return to a more direct study of the effect of irregular spacings. We put ourselves in the
situation from Section 4.3.1, where observation times are independent of the process. As stated
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in equation (160), the limit law for the realized volatility (for
√
n
(

[X,X]Gn
t − [X,X]t

)
) is mixed

normal with (random) variance

2T
∫ t

0
σ4
sdHs, (224)

where H is the asymptotic quadratic variation of time (AQVT). When observations are equidistant,
H ′(t) ≡ 1. From the preceeding section, we also know that if times are on the form (221), the
asymptotic variance is unaffected. It is worth elaborating on this in direct computation. Set

F (t) = lim
n→∞

1
n

#{tn,i+1 ≤ t} (225)

this quantity exists, if necessary by going through subsequences (Helly’s Theorem, see, for example,
p. 336 in Billingsley (1995)). Set

un,i = F (tn,i). (226)

Asymptotically, the un,i are equispaced:

1
n

#{un,i+1 ≤ t} =
1
n

#{tn,i+1 ≤ F (−1)(t)} → F (F (−1)(t)) = t (227)

Inference is invariant to this transformation: Observing the process Xt at times tn,i is the same
as observing the process Yt = XF (−1)(t) at times un,i. If we set U = {un,j , j = 0, ..., n}, then
[X,X]GT = [Y, Y ]UT . Also, in the limit, [X,X]T = [Y, Y ]T . Finally, the asymptotic distribution the
same in these two cases

If the un,i have AQVT U(t), the mixed normal variance transforms

2T
∫ T

0
H ′(u)(〈X,X〉′t)2dt = 2

∫ 1

0
U ′(u)(〈Y, Y 〉′t)2dt. (228)

The transformation (226) regularizes spacing. It means that without loss of generality, one can
take T = 1, F ′ = 1 and and U = H. Also, the transformation (226) regularizes spacing defined by
(221), and in this case, U ′(t) ≡ 1.

Example 13. On the other hand, it is clear from Example 11 that it is possible for U ′(t) to take
other values than 1. The example shows that for Poisson distributed observation times, H ′ = U ′ ≡ 2,
while, indeed F ′(t) ≡ 1/T .

The general situation can be expressed as follows:

Proposition 7. Assume that F exists and is monotonely increasing. Also assume that H exists.
Then U exists. For all s ≤ t, U(t) − U(s) ≥ t − s. In particular, if U ′(t) exists, then U ′(t) ≥ 1.
The following statements are equivalent:
(i) U(1) = 1
(ii) U ′ ≡ 1
(iii)

∑n
j=0

(
un,j+1 − un,j − 1

n

)2 = op(n−1)
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Proof of Proposition 7. The first statement uses a standard property of the variance: if ∆tn,j+1 =
tn,j+1 − tn,j , and ∆n = T/n, then

n

T

∑
tn,j+1≤t

(∆tn,j+1)2 =
n

T

∑
tn,j+1≤t

(∆tn,j+1 −∆n)2 +
n

T
#{tn,i+1 ≤ t}(∆n)2

≥ n

T
#{tn,i+1 ≤ t}(∆n)2

By taking limits as n→∞ under F ′(t) ≡ 1/T , we get that H(t)−H(s) ≥ t− s. In particular, the
same will be true for U .

The equivalence between (i) and (iii) follows from the proof of Lemma 2 (p. 1029) in Zhang
(2006). (The original lemma uses slightly different assumptions).

The implication of the proposition is that under the scenario U(1) = 1, observation times are
“almost” equidistant. In particular, subsampling does not change the structure of the spacings.
On the other hand, when U(1) > 1, there is scope for subsampling to regularize the times.

Example 14. Suppose that the times are Poisson distributed. Instead of picking every observation,
we now pick every M ’th observation. By the same methods as in Example 11, we obtain that

U(t) =
M + 1
M

t. (229)

Hence the sparser the subsampling, the more regular the times will be. This is an additional feature
of subsampling that remains to be exploited.

7.3 Proof of Theorem 11

We begin by describing the relationship between Rn and P ∗n . In analogy with Proposition 2 of
Mykland and Zhang (2009), we obtain that

Lemma 2.

log
dRn
dP ∗n

(Ut0 , ..., Utn,j , ..., Utn,n)

=
∑
i

∑
τi−1≤tj<τi

{
`(∆Xtj+1 ; ζτn,i−1∆τi/Mi)− `(∆Xtj+1 ; ζtn,j ∆tj+1)

}
(230)

Now set ζt = σtσ
T
t (superscript “T” meaning transpose).

Proof of Theorem 11. Let Z(1)
n and Z

(2)
n be as in the statement of the theorem. Set

∆Z(1)
n,tn,j+1

=
1
2

∆XT
tn,j+1

(ζ−1
tn,j
− ζ−1

τn,i−1
)∆Xtn,j+1∆t−1

n,j+1

∆Z(2)
n,tn,j+1

=
1
2

∆XT
tn,j+1

(ζ−1
τn,i−1

)∆Xtn,j+1

(
∆t−1

n,j+1 −
(

∆τn,i
Mi

)−1
)

(231)
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and note that Z
(v)
n =

∑
j ∆Z(v)

n,tn,j+1
for v = 1, 2. Set Aj = ζ

1/2
tn,j

ζ−1
τn,i−1

ζ
1/2
tn,j
− I and Bj =(

∆tn,j+1

(
∆τn,i

Mi

)−1
− 1
)

(the latter is a scalar). Set Cj = ζ
1/2
tn,j

ζ−1
τn,i−1

ζ
1/2
tn,j

(
∆tn,j+1

(
∆τn,i

Mi

)−1
− 1
)

=

(I +Aj)Bj .

Since ∆Xtn,j is conditionally Gaussian, we obtain (under P ∗n)

EP ∗n (∆Z(1)
n,tn,j+1

|Xn,tn,j ) = −1
2

tr(Aj)

EP ∗n (∆Z(2)
n,tn,j+1

|Xn,tn,j ) = −1
2

tr(Cj) = −1
2

(p+ tr(Aj))Bj (232)

and
conditional covariance of
∆Z(1)

n,tn,j+1
and ∆Z(2)

n,tn,j+1

=
1
2

(
tr(A2

j ) tr(AjCj)
tr(AjCj) tr(C2

j )

)
(233)

Finally, let M (v)
n be the (end point of the) martingale part (under P ∗) of Z(v)

n (v = 1, 2), so that

M (1)
n = Z(1) + (1/2)

∑
j

tr(Aj) and M (2)
n = Z(2) + (1/2)

∑
j

tr(Cj). (234)

If 〈·, ·〉G represents discrete time predictable quadratic variation on the grid G, then equation
(233) yields (

〈M (1)
n ,M

(1)
n 〉G 〈M (1)

n ,M
(2)
n 〉G

〈M (1)
n ,M

(2)
n 〉G 〈M (2)

n ,M
(2)
n 〉G

)
=

1
2

∑
j

(
tr(A2

j ) tr(AjCj)
tr(AjCj) tr(C2

j )

)
. (235)

The following is shown in ibid., Appendix B:

〈M (1)
n ,M (1)

n 〉G = Γ1 + op(1), (236)

where K is the ADD given by equation (190),

sup
j

tr(A2
j )→ 0 as n→∞, (237)

for r > 2, |tr(Arj)| ≤ tr(A2
j )
r/2, (238)

and

log
dQn
dP ∗n

= M (1)
n −

1
2
〈M (1)

n ,M (1)
n 〉G + op(1). (239)

Now observe that by (236)-(238),∑
j

tr(C2
j ) =

∑
j

tr(Ip)B2
j +

∑
j

tr(Aj)B2
j +

∑
j

tr(A2
j )B

2
j

= p
∑
j

B2
j + op(1)

= 2Γ2 + op(1), (240)
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and ∑
j

tr(AjCj) =
∑
j

tr(Aj)Bj +
∑
j

tr(A2
j )Bj

=
∑
j

tr(Aj)Bj + op(1)

= op(1) (241)

where the last transition follows by Condition 2. Meanwhile, since

log
dRn
dP ∗n

= log
dRn
dQn

+ log
dQn
dP ∗n

, (242)

we obtain similarly that

log
dRn
dQn

= Z(2)
n +

p

2

∑
j

log(1 +Bj)

= M (2)
n + Γ3 + op(1), (243)

At this point, let 〈Mn,Mn〉 be the quadratic variation of the continuous martingale that coincides
at points tn,j with the discrete time martingale leading up to the end point M (1)

n . By a standard
quarticity argument (as in the proof of Remark 2 in Mykland and Zhang (2006)), (235)- (236)-(238)
and the conditional normality of (∆Z(1)

n,tn,j+1
,∆Z(2)

n,tn,j+1
yield that 〈Mn,Mn〉 = 〈Mn,Mn〉G + op(1).

The stable convergence to a normal distribution with covariance matrix(
Γ1 0
0 Γ2

)

then follows by the same methods as in Zhang, Mykland, and Aı̈t-Sahalia (2005). The result is
thus proved.
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