
http://www.econometricsociety.org/

Econometrica, Vol. 77, No. 5 (September, 2009), 1403–1445

INFERENCE FOR CONTINUOUS SEMIMARTINGALES OBSERVED
AT HIGH FREQUENCY

PER A. MYKLAND
The University of Chicago, Chicago, IL 60637, U.S.A.

LAN ZHANG
The University Illinois at Chicago, Chicago, IL 60607, U.S.A.

The copyright to this Article is held by the Econometric Society. It may be downloaded,
printed and reproduced only for educational or research purposes, including use in course
packs. No downloading or copying may be done for any commercial purpose without the
explicit permission of the Econometric Society. For such commercial purposes contact
the Office of the Econometric Society (contact information may be found at the website
http://www.econometricsociety.org or in the back cover of Econometrica). This statement must
the included on all copies of this Article that are made available electronically or in any other
format.

http://www.econometricsociety.org/


Econometrica, Vol. 77, No. 5 (September, 2009), 1403–1445

INFERENCE FOR CONTINUOUS SEMIMARTINGALES OBSERVED
AT HIGH FREQUENCY

BY PER A. MYKLAND AND LAN ZHANG1

The econometric literature of high frequency data often relies on moment estimators
which are derived from assuming local constancy of volatility and related quantities. We
here study this local-constancy approximation as a general approach to estimation in
such data. We show that the technique yields asymptotic properties (consistency, nor-
mality) that are correct subject to an ex post adjustment involving asymptotic likelihood
ratios. These adjustments are derived and documented. Several examples of estimation
are provided: powers of volatility, leverage effect, and integrated betas. The first order
approximations based on local constancy can be over the period of one observation or
over blocks of successive observations. It has the advantage of gaining in transparency
in defining and analyzing estimators. The theory relies heavily on the interplay between
stable convergence and measure change, and on asymptotic expansions for martingales.

KEYWORDS: Consistency, cumulants, contiguity, continuity, discrete observation, ef-
ficiency, equivalent martingale measure, Itô process, leverage effect, likelihood infer-
ence, realized beta, realized volatility, stable convergence.

1. INTRODUCTION

AN IMPORTANT DEVELOPMENT in econometrics and statistics is the inven-
tion of estimation of financial volatility on the basis of high frequency data.
The econometric literature first focused on instantaneous volatility (Foster
and Nelson (1996), Comte and Renault (1998)). The econometrics of inte-
grated volatility was pioneered by Andersen, Bollerslev, Diebold, and Labys
(2001, 2003), Barndorff-Nielsen and Shephard (2001, 2002), and Dacorogna,
Gençay, Müller, Olsen, and Pictet (2001). Earlier results in probability the-
ory go back to Jacod (1994) and Jacod and Protter (1998). Our own work in
this area goes back to Zhang (2001) and Mykland and Zhang (2006). Further
references are given throughout in the Introduction and in Section 2.5.

The quantities that can be estimated from high frequency data are not con-
fined to volatility. Problems that are attached to the estimation of covaria-
tions between two processes are discussed, for example, by Barndorff-Nielsen
and Shephard (2004a), Hayashi and Yoshida (2005), and Zhang (2009). There
is a literature on power variations and bi- and multipower estimation (see
Examples 1 and 2 in Section 2.5 for references). There is an analysis of
variance/variation (ANOVA) based on high frequency observations (see Sec-
tion 4.4.2). We shall see in this paper that one can also estimate such quantities
as integrated betas and the leverage effect.

1We are grateful to Oliver Linton, Nour Meddahi, Eric Renault, Neil Shephard, Dan Christina
Wang, Ting Zhang, and a co-editor and two referees for helpful comments and suggestions. Fi-
nancial support from the National Science Foundation under Grants DMS 06-04758 and SES
06-31605 is also gratefully acknowledged.
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The literature on high frequency data often relies on moment estimators
derived from assuming local constancy of volatility and related quantities. To
be specific, if ti�0 = t0 < t1 < · · · < tn = T , are observation times, it is assumed
that one can validly make one period approximations of the form∫ ti+1

ti

fs dWs ≈ fti
(
Wti+1 −Wti

)
�(1)

where {Wt} is a standard Brownian motion. The cited work on mixed normal
distributions uses similar approximations to study stochastic variances. In the
case of volatility, one can, under weak regularity conditions, make the approx-
imation

∑
i

(∫ ti+1

ti

σt dWt

)2

−
∫ T

0
σ2

t dt(2)

≈
∑
i

σ2
ti

(
Wti+1 −Wti

)2 −
∑
i

σ2
ti
(ti+1 − ti)

without affecting asymptotic properties (the error in (2) is of op(n
−1/2)). Thus

the asymptotic distribution of realized volatility (sums of squared returns) can
be inferred from discrete time martingale central limit theorems. In the spe-
cial case where the σ2

t process is independent of Wt , one can even talk about
unbiasedness of the estimator.

This raises two questions: (i) Can one always invoke approximations (1)
and (2) or does the approximation in formula (1) only work for a handful of
cases such as volatility? (ii) If one can pretend that volatility characteristics
are constant from ti−1 to ti, then can one also pretend constancy over succes-
sive blocks of M (M > 1) observations, from, say ti−M to ti? If this were true,
a whole arsenal of additional statistical techniques would become available.

This paper will show that, subject to some adjustments, the answer to both
these questions is yes. There are two main gains from this. One is easy deriva-
tion of asymptotic results. The other is to give a framework for how to set up
inference procedures as follows. If σt is treated as constant over a block of M
observations, then the returns (the first differences of the observations) are
simply Gaussian, and one can therefore think “parametrically” when setting
up and analyzing estimators. Once parametric techniques have been used lo-
cally in each block, estimators of integrated quantities may then be obtained
by aggregating local estimators. Any error incurred from this analysis can be
corrected directly in the final asymptotic distribution, using adjustments that
we provide.

The advantages to thinking parametrically are threefold, as illustrated by
examples in Section 4.

Efficiency: In the case of quantities like
∫ T

0 |σ |rt dt, there can be substantial
reduction in asymptotic variance (see Section 4.1).
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Transparency: Section 4.2 shows that the analysis of integrated betas reduces
to ordinary least squares regression. Similar considerations apply to the exam-
ples (realized quantiles, ANOVA) in Section 4.4.

Definition of New Estimators: In the case of the leverage effect, blocking is
a sine qua non, as will be clear from Sections 2.5 and 4.3.

Local parametric inference appears to have been introduced by Tibshirani
and Hastie (1987), and there is an extensive literature on the subject. A review
is given in Fan, Farmen, and Gijbels (1998), and this paper should be consulted
for further references. See also Chen and Spokoiny (2007) and Cizek, Härdle,
and Spokoiny (2007) for recent papers in this area involving volatility.

Our current paper establishes, therefore, the connection of high-frequency-
data inference to local parametric inference. We make this link with the help of
contiguity. It will take time and further research to harvest the existing knowl-
edge in the area of local likelihood for use in high frequency semimartingale
inference. In fact, the estimators discussed in the applications section (Sec-
tion 4) are rather obvious once a local likelihood perspective has been adapted;
they are more of a beginning than an end. For example, local adaptation is not
considered.

We emphasize that the main outcome of this paper is to provide direction
on how to create estimators, and to provide an easy way to analyze them. It
is, however, perfectly possible to derive asymptotic results for such estimators
by other existing methods, as used in many of the papers cited above. In fact,
direct proof will permit the most careful study of the precise conditions needed
for consistency and mixed asymptotic normality for any given procedure.

A different kind of blocking—pre-averaging—was used by Podolskij and Vet-
ter (2009) and Jacod, Li, Mykland, Podolskij, and Vetter (2009) in the con-
text of inference in the presence of microstructure noise. In these papers, the
(latent) semimartingale is itself given a locally constant approximation. This
approximation would not give rise to contiguity in the absence of noise, but
we conjecture that contiguity results can be found under common types of mi-
crostructure.

In the current paper, we do not deal with microstructure. This would be
a study in itself and is deferred to a later paper. A follow-up discussion on esti-
mation with moving windows and how to use this technology for asynchronous
observations can be found in Mykland and Zhang (2009).

The plan for the paper is that Section 2 discusses measure changes in detail
and their relationship to high frequency inference. It then analyzes the one
period (M = 1) discretization. Section 3 discusses longer block sizes (M > 1).
Major applications are given in Section 4, with a summary of the methodology
(for the scalar case) in Section 4.5.

A Reader’s Guide: We emphasize that the two approximations (to block size
M = 1 and then from M = 1 to M > 1) are quite different in their methodolo-
gies. If you are only interested in the one period approximation, the material
to read is Section 2 and Appendix A.1. (Though consequences for estimation
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of the leverage effect are discussed in Section 4.3.) The block (M > 1) approx-
imation is mainly described in Sections 3 and 4, and Appendices A.2 and A.3.
An alternative way to read this paper is to head for Section 4.5 first; this section
should in any case be consulted early on and kept in mind while reading the
rest of the paper.

2. APPROXIMATE SYSTEMS

We here discuss the discretization to block size M = 1. As a preliminary,
we define some notation, and discuss measure change and stable convergence.
This section can be read independently of the rest of the paper.

2.1. Data Generating Mechanism

In general, we shall work with a broad class of continuous semimartingales,
namely Itô processes.

DEFINITION 1: A p-variate process Xt = (X(1)
t � � � � �X

(p)
t )T is called an Itô

process provided it satisfies

dXt = μt dt + σt dWt� X0 = x0�(3)

where μt and σt are adapted locally bounded random processes, of dimen-
sion p and p × p, respectively, and Wt is a p-dimensional Brownian motion.
The underlying filtration will be called (Ft). The probability distribution will
be called P .

If we set

ζt = σtσ
T
t(4)

(where T in this case means transpose), then the (matrix) integrated covari-
ance process is given as

〈X�X〉t =
∫ t

0
ζu du�(5)

The process (5) is also known as the quadratic covariation of X . We shall some-
times use “integrated volatility” as shorthand in the scalar (p = 1) case.

We shall suppose that the process Xt is observed at times 0 = t0 < t1 < · · · <
tn = T . Thus, for the moment, we assume synchronous observation of all the p
components of the vector Xt . We explaine in Mykland and Zhang (2009) how
the results encompass the asynchronous case.
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ASSUMPTION 1 —Sampling Times: In asymptotic analysis, we suppose that
tj = tn�j (the additional subscript will sometimes be suppressed). The grids Gn =
{0 = tn�0 < tn�1 < · · · < tn�n = T } will not be assumed to be nested when n varies.
We then do asymptotics as n → ∞. The basic assumption is that

max
1≤i≤n

|tn�j − tn�j−1| = o(1)�(6)

We also suppose that the observation times tn�j are nonrandom, but they are al-
lowed to be irregularly spaced. By conditioning, this means that we include the
case of random times independent of the Xt process.

We thus preclude dependence between the observation times and the
process. Such dependence does appear to exist in some cases (cf. Renault and
Werker (2009)), and we hope to return to this question in a later paper.

2.2. A Simplifying Strategy for Inference

When carrying out inference for observations in a fixed time interval [0�T ],
the process μt cannot be consistently estimated. This follows from Girsanov’s
theorem (see, for example, Chapter 3.5 of Karatzas and Shreve (1991)). For
most purposes, μt simply drops out of the calculations: it is only a nuisance
parameter. It is also a nuisance in that it complicates calculations substantially.

To deal with this most effectively, we shall borrow an idea from asset pric-
ing theory, and consider a probability distribution P∗ which is measure the-
oretically equivalent to P and under which Xt is a (local) martingale (Ross
(1976), Harrison and Kreps (1979), Harrison and Pliska (1981); see also Duffie
(1996)). Specifically, under P∗,

dXt = σt dW
∗
t � X0 = x0�(7)

where W ∗
t is a P∗-Brownian motion. Following Girsanov’s theorem,

log
dP∗

dP
= −

∫ T

0
σ−1

t μt dWt − 1
2

∫ T

0
μT

t (σtσ
T
t )

−1μt dt(8)

with

dW ∗
t = dWt + σ−1

t μt dt�(9)

Our plan is now to carry out the analysis under P∗ and adjust results back
to P using the likelihood ratio (Radon–Nikodym derivative) dP∗/dP . Specifi-
cally, suppose that θ is a quantity to be estimated (such as

∫ T

0 σ2
t dt,

∫ T

0 σ4
t dt,

or the leverage effect). An estimator θ̂n is then found with the help of P∗ and
an asymptotic result is established whereby, say,

n1/2(θ̂n − θ)
L→ N(b�a2)(10)
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under P∗. It then follows directly from the measure theoretic equivalence that
n1/2(θ̂n − θ) also converges in law under P . In particular, consistency and rate of
convergence are unaffected by the change of measure. We emphasize that this is
due to the finite (fixed) time horizon T .

The asymptotic law may be different under P∗ and P . While the normal
distribution remains, the distributions of b and a2 (if random) may change.
The main concept is stable convergence.

DEFINITION 2: Suppose that all relevant processes (Xt , σt , etc.) are adapted
to filtration (Ft). Let Zn be a sequence of FT -measurable random variables.
We say that Zn converges stably in law to Z as n → ∞ if Z is measurable
with respect to an extension of FT so that for all A ∈ FT and for all bounded
continuous g, EIAg(Zn) → EIAg(Z) as n → ∞. The same definition applies
to triangular arrays.

In the context of (10), Zn = n1/2(θ̂n − θ) and Z = N(b�a2). For further dis-
cussion of stable convergence, see Rényi (1963), Aldous and Eagleson (1978),
Chapter 3 of Hall and Heyde (1980, p. 56), Rootzén (1980), and Section 2 of
Jacod and Protter (1998, pp. 169–170).

With this tool in hand, assume that the convergence in (10) is stable. Then
the same convergence holds under P . The technical result is as follows.

PROPOSITION 1: Suppose that Zn is a sequence of random variables which con-
verges stably to N(b�a2) under P∗. By this we mean that N(b�a2)= b+aN(0�1),
where N(0�1) is a standard normal variable independent of FT ; also a and b are
FT -measurable. Then Zn converges stably in law to b+ aN(0�1) under P , where
N(0�1) remains independent of FT under P .

PROOF: EIAg(Zn) = E∗ dP
dP∗ IAg(Zn) → E∗ dP

dP∗ IAg(Z) = EIAg(Z) by uni-
form integrability of dP

dP∗ IAg(Zn) and since dP
dP∗ is FT -measurable. Q.E.D.

Proposition 1 substantially simplifies calculations and results. In fact, the
same strategy will be helpful for the localization results that come next in the
paper. It will turn out that the relationship between the localized and the con-
tinuous processes can also be characterized by absolute continuity and likeli-
hood ratios.

REMARK 1: It should be noted that after adjusting back from P∗ to P , the
process μt may show up in expressions for asymptotic distributions. For in-
stances of this, see Examples 3 and 5 below. One should always keep in mind
that drift most likely is present and may affect inference.

To use the measure change (8) in the subsequent development, we impose
the following condition.
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ASSUMPTION 2—Structure of the Instantaneous Volatility: We assume that
the matrix process σt is itself an Itô processes and that if λ(p)

t is the smallest eigen-
value of σt , then inft λ

(p)
t > 0 a.s.

2.3. Main Result Concerning One Period Discretization

Our main result in this section is that for the purposes of high frequency
inference, one can replace the system (7) by the approximation

P∗
n : �Xtn�j+1 = σtn�j�W̆tn�j+1 for j = 0� � � � � n− 1;X0 = x0�(11)

where �Xtn�j+1 = Xtn�j+1 − Xtn�j , and similarly for �W̆tn�j+1 and �tn�j+1. One can
view (11) as holding σt constant for one period, from tn�j to tn�j+1. We call this
a one period discretization (or localization). We are not taking a position on
what the W̆t process looks like in continuous time, or even on whether it exists
for other t than the sampling times tn�j . The only assumption is that the random
variables �W̆tn�j+1 are independent for different j (for fixed n) and that �W̆tn�j+1

has conditional distribution N(0� I�tn�j+1). We here follow the convention from
options pricing theory whereby, when the measure changes, the process (Xt)
does not change, while the driving Brownian motion changes.

To formally describe the nature of our approximations, we go through two
definitions:

DEFINITION 3—Specification of the Time Discrete Process Subject to Mea-
sure Change: We have

U(1)
tn�j

= Xtn�j �(12)

U(2)
tn�j

= (
σtn�j � 〈σ�W 〉′

tn�j
� 〈σ�σ〉′

tn�j

)
�

Utn�j = (
U(1)

tn�j
�U(2)

tn�j

)
for j = 0� � � � � n. Here, the quantity 〈σ�W 〉′

t is a three-dimensional (p × p ×
p) object (tensor) consisting of elements 〈σ(r1�r2)�W (r3)〉′

t (r1 = 1� � � � �p� r2 =
1� � � � �p� r3 = 1� � � � �p), where the prime denotes differentiation with respect
to time. Similarly, 〈σ�σ〉′

t is a four-dimensional tensor with elements of the
form 〈σ(r1�r2)�σ(r3�r4)〉′

t . Finally, denote by Xn�j the σ-field generated by Utn�ι ,
ι = 0� � � � � j.

We note here that 〈σ�W 〉′
t and 〈σ�σ〉′

t are the usual continuous time
quadratic variations, but they are only observed at the times tn�j . Through U(2)

tn�j
,

however, we do incorporate information about the continuous time system into
discrete time observations: the σt process, the leverage effect (via the tensor
〈σ�W 〉′

t), and the volatility of volatility (via 〈σ�σ〉′
t).
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For each n, the approximate probability P∗
n will live on the filtration

(Xn�j)0≤j≤n as follows:

DEFINITION 4—Specification of the First Order Approximation: Define the
probability P∗

n recursively as follows:
(i) U0 has same distribution under P∗

n as under P∗.
(ii) For j ≥ 0, the conditional P∗

n distribution of U(1)
tn�j+1

given U0� � � � �Utn�j is
given by (11).

(iii) For j ≥ 0, the conditional P∗
n distribution of U(2)

tn�j+1
given U0� � � � �Utn�j �

U(1)
tn�j+1

is the same as under P∗.

To the extent that conditional densities are defined, one can describe the
relationship between P∗ and P∗

n as

f
(
Utn�1� � � � �Utn�j � � � � �Utn�n |U0

)
(13)

=
n∏

j=1

f
(
U(1)

tn�j
|U0� � � � �Utn�j−1

)
︸ ︷︷ ︸

altered from P∗ to P∗
n

n∏
j=1

f
(
U(2)

tn�j
|U0� � � � �Utn�j−1�U

(1)
tn�j

)
︸ ︷︷ ︸

unchanged from P∗ to P∗
n

�

where f (y|x) is the density of the regular conditional distribution of y given x
with respect to a reference (say, Lebesgue) measure.

To state the main theorem, define

dζ̌t = σ−1
t dζt(σ

T )−1
t(14)

and

k
(r1�r2�r3)
t = 〈

ζ̌(r1�r2)�W (r3)
〉′
t
[3]�(15)

where the [3] means that the right hand side of (15) is a sum over three
terms, where r3 can change position with either r1 or r2: 〈ζ̌(r1�r2)�W (r3)〉′

t[3] =
〈ζ̌(r1�r2)�W (r3)〉′

t + 〈ζ̌(r1�r3)�W (r2)〉′
t + 〈ζ̌(r3�r2)�W (r1)〉′

t (note that 〈ζ̌(r1�r2)�W (r3)〉′
t is

symmetric in its two first arguments). For further discussion of this notation,
see Chapter 2.3 of McCullagh (1987, pp. 29–30). Note that k(r1�r2�r3)

tn�j
is measur-

able with respect to the σ-field Xn�j generated by Utn�ι , ι = 0� � � � � j. Finally,
set

Γ0 = 1
24

∫ T

0

p∑
r1�r2�r3=1

(
k
(r1�r2�r3)
t

)2
dt�(16)

In the univariate case, we have the representations

kt = 3
1
σ2

t

〈σ2�W 〉′
t = 6

1
σt

〈σ�W 〉′
t = 6〈logσ�W 〉′

t(17)
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and

Γ0 = 1
24

∫ T

0
k2
t dt�(18)

We now state the main result for one period discretization.

THEOREM 1: P∗ and P∗
n are mutually absolutely continuous on the σ-field Xn�n

generated by Utn�j , j = 0� � � � � n. Furthermore, let (dP∗/dP∗
n)(Utn�0� � � � �Utn�j � � � � �

Utn�n) be the likelihood ratio (Radon–Nikodym derivative) on Xn�n. Then

dP∗

dP∗
n

(
Utn�0� � � � �Utn�j � � � � �Utn�n

) L→ exp
{
Γ 1/2

0 N(0�1)− 1
2
Γ0

}
(19)

stably in law, under P∗
n , as n→ ∞. N(0�1) is independent of FT .

Based on Theorem 1, one can (for a fixed time period) carry out inference
under the model (11), and asymptotic results will transfer back to the contin-
uous model (7) by absolute continuity. This is much the same strategy as the
one to eliminate the drift described in Section 2.2. The main difference is that
we use an asymptotic version of absolute continuity. This concept is known as
contiguity and is well known in classical statistical literature (see Remark 2 be-
low). We state the following result in analogy with Proposition 1. A sequence
Zn is called tight if every subsequence has a further subsequence which con-
verges in law (see Chapter VI of Jacod and Shiryaev (2003)). Tightness is the
compactness concept which goes along with convergence in law.

COROLLARY 1: Suppose that Zn (say, n1/2(θ̂n − θ)) is tight in the sense of sta-
ble convergence under P∗

n . The same statement then holds under P∗ and P . The
converse is also true.

In particular, if an estimator is consistent under P∗
n , it is also consistent under

P∗ (and P).
Unlike the situation in Section 2.2, the stable convergence in Corollary 1

does not assure that n1/2(θ̂n − θ) is asymptotically independent of the nor-
mal distribution N(0�1) in Theorem 1. It only assures independence from
FT -measurable quantities. The asymptotic law of n1/2(θ̂n − θ) may, therefore,
require an adjustment from P∗

n to P∗.

REMARK 2: Theorem 1 says that P∗ and the approximation P∗
n are contigu-

ous in the sense of Hájek and Sidak (1967, Chapter IV), LeCam (1986), LeCam
and Yang (2000), and Jacod and Shiryaev (2003, Chapter IV). This follows
from Theorem 1 since dP∗/dP∗

n is uniformly integrable under P∗
n (since the

sequence dP∗
n/dP

∗ is nonnegative, the limit also integrates to 1 under P∗).
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REMARK 3: A nonzero 〈σ�W 〉′
t can occur in cases other than those what

is usually termed “leverage effect.” An important instance of this occurs in
Section 4.2, where 〈σ�W 〉′

t can be nonzero due to the nonlinear relationship
between two securities.

2.4. Adjusting for the Change From P∗ to P∗
n

Following (11), write

�W̆tn�j+1 = σ−1
tn�j
�Xtn�j+1 �(20)

Under the approximating measure P∗
n , �W̆tn�j+1 has distribution N(0� I�tn�j+1)

and is independent of the past.
Define the third order Hermite polynomials by hr1r2r3(x) = xr1xr2xr3 −

xr1δr2�r3[3], where, again, [3] represents the sum over all three possible terms
for this form, and δr2�r3 = 1, if r2 = r3, and = 0, otherwise. In the univariate
case, h111(x)= x3 − 3x. Set

M(0)
n = 1

12

n−1∑
j=0

(�tn�j+1)
1/2

p∑
r1�r2�r3=1

k
(r1�r2�r3)
tn�j

hr1r2r3

(
�W̆tn�j+1

(�tn�j+1)1/2

)
�(21)

Note that k(r1�r2�r3)
tn�j

is Xn�j-measurable. The adjustment result is now as follows:

THEOREM 2: Assume the setup in Theorem 1. Suppose that under P∗
n ,

(Zn�M
(0)
n ) converges stably to a bivariate distribution b+aN(0� I), where N(0� I)

is a bivariate standard normal vector independent of FT , and where the vector
b= (b1� b2)

T and the symmetric 2 × 2 matrix a are FT -measurable. Set A = aaT .
It is then the case that Zn converges stably under P∗ to b1 +A12 + (A11)

1/2N(0�1),
where N(0�1) is independent of FT .

Note that under the conditions of Theorem 1, M(0)
n converges stably under

P∗
n to a (mixed) normal distribution with mean zero and (random, but FT -

measurable) variance Γ0 (so b2 = 0 and A22 = Γ0). Thus, when adjusting from
P∗
n to P∗, the asymptotic variance of Zn is unchanged, while the asymptotic bias

may change.

REMARK 4: The logic behind this result is as follows. On the one hand, the
asymptotic variance remains unchanged in Theorem 2 as a special case of a sto-
chastic process property (the preservation of quadratic variation under limit
operations). We refer to the discussion in Chapter VI.6 in Jacod and Shiryaev
(2003, pp. 376–388), for a general treatment.

On the other hand, it follows from the proof of Theorem 1 that

log
dP∗

dP∗
n

= M(0)
n − 1

2
Γ0 + op(1)�(22)
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Thus, to the extent that the random variables Zn are correlated with M(0)
n , their

asymptotic mean will change from P∗
n to P∗. This change of mean is precisely

the value A12, which is the asymptotic covariance of Zn and M(0)
n . This is a

standard phenomenon in situations of contiguity (cf. Hájek and Sidak (1967)).

2.5. Some Initial Examples

The following discussion is meant for illustration only. The in-depth applica-
tions are in Section 4. We here only consider one-dimensional systems (p= 1).

EXAMPLE 1—Integral of Absolute Powers of �X: For r > 0, it is customary
to estimate

∫ T

0 |σt |r dt by a scaled version of
∑n

j=1 |�Xtn�j |r . A general theory
for this is given by Barndorff-Nielsen and Shephard (2004b) and Jacod (1994,
2008). For the important cases r = 2 and r = 4, see also Barndorff-Nielsen and
Shephard (2002), Jacod and Protter (1998), Mykland and Zhang (2006), Zhang
(2001), and other work by the same authors.

To reanalyze this estimator with the technology of this paper, note that under
P∗
n , the law of |�Xtn�j+1 |r given Xn�j is |σtn�jN(0�1)|r�tr/2

n�j+1, whereby

E∗
n

(∣∣�Xtn�j+1

∣∣r | Xn�j

) = ∣∣σtn�j

∣∣rE|N(0�1)|r�tr/2
n�j+1�(23)

Var∗
n

(∣∣�Xtn�j+1

∣∣r | Xn�j

) = ∣∣σtn�j

∣∣2r
Var

(|N(0�1)|r)�trn�j+1�

Cov∗
n

(∣∣�Xtn�j+1

∣∣r��W̆tn�j+1 | Xn�j

) = 0�

Thus, a natural estimator of θ = ∫ T

0 |σt |r dt becomes

θ̂n = 1
E|N(0�1)|r

n−1∑
j=0

�t1−r/2
n�j+1

∣∣�Xtn�j+1

∣∣r �(24)

Absolute normal moments can be expressed analytically as in (56) in Sec-
tion 4.1 below.

From (23), it follows that θ̂n − ∑n−1
j=0 |σtn�j |r�tn�j+1 is the end point of

a martingale orthogonal to W and with discrete time quadratic variation
(Var(|N(0�1)|r))/(E|N(0�1)|r)2

∑n−1
j=0 |σtn�j |2r�t2

n�j+1. By the usual martingale
central limit considerations (Jacod and Shiryaev (2003)), and since θ −∑n−1

j=0 |σtn�j |r�tn�j+1 =Op(n
−1), it follows that

n1/2(θ̂n − θ)
L→Z ×

(
Var(|N(0�1)|r)
(E|N(0�1)|r)2

T

∫ T

0
σ2r

t dH(t)

)1/2

(25)
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stably in law under P∗
n , where Z is a standard normal random variable. Here,

H(t) is the asymptotic quadratic variation of time (AQVT), given by

H(t)= lim
n→∞

n

T

∑
tn�j+1≤t

(tn�j+1 − tn�j)
2�(26)

provided that the limit exists. For further references on this quantity, see
Zhang (2001, 2006) and Mykland and Zhang (2006).

Note that in the case of equally spaced observations, θ̂n is proportional to∑n

j=1 |�Xtn�j |r ; also H(t)= t.
To get from convergence under P∗

n to convergence under P∗, we note that
|N(0�1)|r is uncorrelated with N(0�1) and N(0�1)3. We therefore obtain from
Theorems 1 and 2 that the stable convergence in (25) holds under P∗. The
same is true under the true probability P by Proposition 1.

EXAMPLE 2 —Bi- and Multipower Estimators: The same considerations
as in Example 1 apply to bi- and multipower estimators (see, in particular,
Barndorff-Nielsen and Shephard (2004b) and Barndorff-Nielsen, Graversen,
Jacod, Podolskij, and Shephard (2006)). The derivations are much the same.
In particular, no adjustment is needed from P∗

n to P∗.

EXAMPLE 3—Sum of Third Moments: We here consider quantities of the
form

Zn = n

T

n−1∑
j=0

(
�Xtn�j+1

)3
�(27)

To avoid clutter, we shall look at the equally spaced case only (�tn�j+1 = �t =
T/n for all j� n).

We shall see in Section 4.3 that quantities similar to (27) can be parlayed
into estimators of the leverage effect. For now, we just show what the simplest
calculation will bring. An important issue, which sets (27) apart from most
other cases, is that there is a need for an adjustment from P∗

n to P∗, and also
from P∗ to P .

By the same reasoning as in Example 1,

E∗
n

(
�X3

tn�j+1
| Xn�j

) = 0�(28)

Var∗
n

(
�X3

tn�j+1
| Xn�j

) = σ6
tn�j

Var(N(0�1)3)�t3 = 15σ6
tn�j
�t3�

Cov∗
n

(
�X3

tn�j+1
��W̆tn�j+1 | Xn�j

) = σ3
tn�j

Cov(N(0�1)3�N(0�1))�t2

= 3σ3
tn�j
�t2�
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Thus, Zn is the end point of a P∗
n martingale and Zn

L→ N(b�a2) stably under
P∗
n , where

b= 3
∫ T

0
σ3

t dW
∗
t �(29)

a2 = 6
∫ T

0
σ6

t dt�

REMARK 5—Sample of Calculation: To see in more detail how (29) comes
about, let V (n)

t be the P∗ martingale for which V (n)
T = Zn. Let (Xt�Vt) be the

process corresponding to the limiting distribution of (Xt�V
(n)
t ) under P∗

n . (The
prelimiting process is only defined on the grid points tn�i.) From the two last
equations in (28), and by interchanging limits and quadratic variation (Chap-
ter VI.6 in Jacod and Shiryaev (2003, pp. 376-388), cf. Remark 4 above), we
get

〈V �V 〉t = 15
∫ t

0
σ6

u du�(30)

〈V �W ∗〉t = 3
∫ t

0
σ6

u du�

Now consider the representation

dVt = ft dW
∗
t + gt dBt�

where Bt is a Brownian motion independent of FT (this is by Lévy’s theorem;
see, for example, Theorem II.4.4 of Jacod and Shiryaev (2003, p. 102), or The-
orem 3.16 of Karatzas and Shreve (1991, p. 157).). From (30),

f 2
t dt + g2

t dt = 15σ6
t dt�

ft dt = 3σ6
t dt�

In particular, g2
t = 6σ6

t . This yields (29).
What happens here is that the full quadratic variation of Vt splits into a bias

and a variance term. This is due to the nonzero covariation of V and W ∗.

In this example, b �= 0. Even more interestingly, the distributional result
needs to be adjusted from P∗

n to P∗. To see this, denote h3(x) = x3 − 3x (the
third Hermite polynomial in the scalar case). Then

Cov∗
n

(
�X3

tn�j+1
�h3

(
�W̆tn�j+1/�t

1/2
) | Xn�j

)
�t1/2(31)

= σ3
tn�j

Cov
(
N(0�1)3�h3(N(0�1))

)
�t2

= 6σ3
tn�j
�t2�
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Thus, if M(0)
n is as given in Section 2.4, it follows that (Zn�M

(0)
n ) converge

jointly, and stably, under P∗
n to a normal distribution, where the asymptotic

covariance is

A12 = 1
2

∫ T

0
ktσ

3
t dt(32)

= 3
2
〈σ2�X〉T �

since ktσ
3
t dt = 3σ−2

t 〈ζ�W 〉′
tσ

3
t dt = 3d〈ζ�X〉t = 3d〈σ2�X〉t . Thus, by Theo-

rem 2, under P∗, Zn
L→ N(b′� a2) stably, where a2 is as in (29), while

b′ = 3
∫ T

0
σ3

t dW
∗
t + 3

2
〈σ2�X〉T �(33)

We thus have a limit which relates to the leverage effect, which is interesting,
but unfortunately obscured by the rest of b′, and by the random term with
variance a2.

There is finally a need to adjust from P∗ to P . From (9), we have dW ∗
t =

dWt + σ−1
t μt dt. It follows that

b′ = 3
∫ T

0
σ3

t (dWt + σ−1
t μt dt)+ 3

2
〈σ2�X〉T �(34)

Thus, b′ is unchanged from P∗ to P , but has different distributional properties.
In particular, μt now appears in the expression. This is unusual in the high
frequency context.

It seems to be a general phenomenon that if there is random bias under P∗,
then μ will occur in the expression for bias under P . This happens again in
Example 5 in Section 4.3.

A direct derivation of this same limit is given in Example 6 of Kinnebrock
and Podolskij (2008). In their notation, σ ′

t dt = 2σ−2 d〈σ2�X〉t .

3. HOLDING σ CONSTANT OVER LONGER TIME PERIODS

3.1. Setup

We have shown in the above that it is asymptotically valid to consider systems
where σ is constant from one time point to the next. We shall in the following
show that it is also possible to consider approximate systems where σ is con-
stant over longer time periods.

We suppose that there are Kn intervals of constancy, of the form (τn�i−1� τn�i],
where

Hn = {
0 = τn�0 < τn�1 < · · ·< τn�Kn = T

} ⊆ Gn�(35)
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If we set

Mn�i = #{tn�j ∈ (τn�i−1� τn�i]}(36)

= number of intervals (tn�j−1� tn�j] in (τn�i−1� τn�i]�
we shall suppose that

max
i

Mn�i =O(1) as n → ∞�(37)

from which it follows that Kn is of exact order O(n).
We now define the approximate measure, called Qn, given by

X0 = x0;(38)

for each i = 1�Kn:

�Xtn�j+1 = στn�i−1�W
Q
tn�j+1

for tn�j+1 ∈ (τn�i−1� τn�i]�
To implement this, we use a variation over Definition 4. Formally, we define
the approximation as follows.

DEFINITION 5—Block Approximation: Define the probability Qn recursively
as follows:

(i) U0 has the same distribution under Qn as under P∗.
(ii) For j ≥ 0, the conditional Qn distribution of U(1)

tn�j+1
given U0� � � � �Utn�j

is given by (38), where �W Q
tn�j+1

is conditionally normal with mean zero and
variance I�tn�j+1.

(iii) For j ≥ 0, the conditional Qn distribution of U(2)
tn�j+1

given U0� � � � �Utn�j �

U(1)
tn�j+1

is the same as under P∗.

We can now describe the relationship between Qn and P∗
n , as follows. Let the

Gaussian log likelihood be given by


(�x;ζ)= −1
2

log det(ζ)− 1
2
�xTζ−1�x�(39)

We then obtain the following statement directly.

PROPOSITION 2: The likelihood ratio between Qn and P∗
n is given by

log
dQn

dP∗
n

(
Utn�0� � � � �Utn�j � � � � �Utn�n

)
(40)

=
∑
i

∑
τn�i−1≤tn�j<τn�i

{


(
�Xtn�j+1;ζτn�i−1�tn�j+1

)

− 

(
�Xtn�j+1;ζtn�j�tn�j+1

)}
�
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DEFINITION 6: To measure the extent to which we hold the volatility con-
stant, we define the asymptotic decoupling delay (ADD) by

K(t)= lim
n→∞

∑
i

∑
tn�j∈(τn�i−1�τn�i)∩[0�t]

(tn�j − τn�i−1)�(41)

provided the limit exists.

From (6) and (37), every subsequence has a further subsequence for which
K(·) exists (by Helly’s theorem; see, for example, Billingsley (1995, p. 336).
Thus one can take the limits to exist without any major loss of generality. Also,
when the limit exists, it is Lipschitz continuous.

In the case of equidistant observations and equally sized blocks of M obser-
vations, the ADD takes the form

K(t)= 1
2
(M − 1)t�(42)

3.2. Main Contiguity Theorem for the Block Approximation

We obtain the following main result, which is proved in Appendix A.2.

THEOREM 3—Contiguity of P∗
n and Qn: Suppose that Assumptions 1 and 2 are

satisfied. Assume that the asymptotic decoupling delay (K, equation (41)) exists.
Set

Z(1)
n = 1

2

∑
i

∑
tn�j∈[τn�i−1�τn�i)

(
�XT

tn�j+1

(
ζ−1
tn�j

− ζ−1
τn�i−1

)
�Xtn�j+1�t

−1
n�j+1

)
(43)

and let M(1)
n be the end point of the P∗

n -martingale part of Z(1)
n (see (A.25) and

(A.27) in Appendix A.2 for the explicit formulas). Define

Γ1 = 1
2

∫ T

0
tr(ζ−2

t 〈ζ�ζ〉′
t) dK(t)�(44)

where tr denotes the trace of the matrix. Then, as n → ∞, M(1)
n converges stably

in law under P∗
n to a normal distribution with mean zero and variance Γ1. Also,

under P∗
n ,

log
dQn

dP∗
n

=M(1)
n − 1

2
Γ1 + op(1)�(45)

Furthermore, if M(0)
n is as defined in (21), then the pair (M(0)

n �M(1)
n ) converges sta-

bly under P∗
n to (Γ 1/2

0 V0� Γ
1/2

1 V1), where V0 and V1 are independent and identically
distributed (i.i.d.) N(0�1), and independent of FT .
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The theorem says that P∗
n and the approximation Qn are contiguous (cf. Re-

mark 2 in Section 2.3). By the earlier Theorem 1, it follows that Qn and P∗ (and
P) are contiguous. In particular, as before, if an estimator is consistent under
Qn, it is also consistent under P∗ and P . Rates of convergence (typically n1/2)
are also preserved, but the asymptotic distribution may change.

EXAMPLE 4: For a scalar process of the form dXt = μt dt +σt dWt , and with
equidistant observations of X , Γ1 in (44) can be written

Γ1 = M − 1
4

∫ T

0
σ−4

t 〈σ2�σ2〉′
t dt�(46)

From (17) and (18), Γ0 = 3
8

∫ T

0 σ−6
t (〈σ2�X〉′

t)
2 dt. Thus, Γ0 is related to the

leverage effect, while Γ1 is related to the volatility of volatility. In the case of
a Heston (1993) model, where dσ2

t = κ(α−σ2
t ) dt+γσt dBt and B is a Brown-

ian motion correlated with W , d〈B�W 〉t = ρdt, one obtains

Γ0 = 3
8
(ργ)2

∫ T

0
σ−2

t dt� Γ1 = 1
4
γ2(M − 1)

∫ T

0
σ−2

t dt�(47)

REMARK 6 —Which Probability?: We have now done several approxima-
tions. The true probability is P and we are proposing to behave as if it is Qn.
We thus have the alterations of probability

log
dP

dQn

= log
dP

dP∗ + log
dP∗

dP∗
n

+ log
dP∗

n

dQn

�(48)

To make matters slightly more transparent, we have stated Theorem 3 under
the same probability (P∗

n) as Theorems 1 and 2. Since computations would
normally be made under Qn, however, we note that Theorem 2 applies equally
if one replaces P∗

n by Qn, and M(0)
n by M(0�Q)

n , given as in (21), with �W Q
tn�j+1

replacing �W̆tn�j+1 . (Since M(0�Q)
n = M(0)

n + op(1).) Similarly, if one lets M(1�Q)
n

be the end point of the Qn-martingale part of −Z(1)
n , one gets the same stable

convergence under Qn. Obviously, (45) should be replaced by

log
dP∗

n

dQn

=M(1�Q)
n − 1

2
Γ1 + op(1)(49)

and M(1�Q)
n = −M(1)

n + Γ1 + op(1).

3.3. Measure Change and Hermite Polynomials

The three measure changes in Remark 6 turn out to all have a representation
in terms of Hermite polynomials.
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Recall that the standardized Hermite polynomials are given by hr1(x) = xr1 ,
hr1r2(x) = xr1xr2 − δr1�r2 , and hr1r2r3(x) = xr1xr2xr3 − xr1δr2�r3[3], where, again,
[3] represents the sum over all three possible combinations, and δr2�r3 = 1, if
r2 = r3, and = 0 otherwise. In the scalar case, h1(x) = x, h11(x) = x2 − 1, and
h111(x) = x3 − 3x. From Remark 6,

M(0�Q)
n = 1

12

n−1∑
j=0

(�tn�j+1)
1/2

p∑
r1�r2�r3=1

k
(r1�r2�r3)
tn�j

hr1r2r3

(
�W Q

tn�j+1

(�tn�j+1)1/2

)
�(50)

M(1�Q)
n = −1

2

∑
i

∑
tn�j∈(τn�i−1�τn�i]

tr
(
σT

τn�i−1

(
ζ−1
tn�j

− ζ−1
τn�i−1

)
στn�i−1

× h··

(
�W Q

tn�j+1

(�tn�j+1)1/2

))
�

Similarly, define a discretized version of M(G) = ∫ T

0 σ−1
t μt dW

∗
t by

M(G�Q)
n =

n−1∑
j=0

(�tn�j+1)
1/2

(
σ−1

τn�i−1
μτn�i−1h·

(
�W Q

tn�j+1

(�tn�j+1)1/2

))
(51)

(G is for Girsanov; h· is the vector of first order Hermite polynomials, similarly
h·· is the matrix of second order such polynomials). We also set

ΓG =
∫ T

0
μT

t (σ
T
t σt)

−1μt dt�(52)

We therefore can summarize of our results:

log
dP

dP∗ = M(G�Q)
n − 1

2
ΓG + op(1)�(53)

log
dP∗

dP∗
n

= M(0�Q)
n − 1

2
Γ0 + op(1)�

log
dP∗

n

dQn

=M(1�Q)
n − 1

2
Γ1 + op(1)�

Furthermore, by the Hermite polynomial property, we obtain that these
three martingales have, by construction, zero predictable covariation (un-
der Qn). In particular, the triplet (M(G�Q)

n �M(0)
n �M(1)

n ) converges stably to
(M(G)�Γ 1/2

0 V0� Γ
1/2

1 V1), where V0 and V1 are i.i.d. N(0�1), and independent
of FT .

REMARK 7: The term M(G�Q)
n is in many ways different from M(0)

n and M(1)
n .

The convergence of the former is in probability, while the latter converge only
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in law. Thus, for example, the property discussed in Remark 4 (see also Theo-
rem 4 in the next section) does not apply to M(G�Q)

n . If Zn and M(G�Q)
n have joint

covariation, this yields a smaller asymptotic variance for Zn, but also bias. For
instances of this, see Example 3 in Section 2.5 and Example 5 in Section 4.3.

3.4. Adjusting for the Change From P∗ to Qn

The adjustment result is now similar to that of Section 2.4:

THEOREM 4: Assume the setup in Theorems 1–3. Suppose that under Qn,
(Zn�M

(0)
n �M(1)

n ) converges stably to a trivariate distribution b + aN(0� I), where
N(0� I) is a trivariate vector independent of FT , where the vector b = (b1� b2� b3)

T

and the symmetric 3 × 3 matrix a are FT -measurable. Set A = aaT . Then Zn

converges stably under P∗ to b1 +A12 +A13 + (A11)
1/2N(0�1), where N(0�1) is

independent of FT .

Recall that b2 = b3 = A23 = 0, A22 = Γ0, and A33 = Γ1. The proof is the same
as for Theorem 2. Theorem 4 states that when adjusting from Qn to P∗, the
asymptotic variance of Zn is unchanged, while the asymptotic bias may change.

4. FIRST APPLICATIONS

We here discuss various applications of our theory. For simplicity, assume
in the following that sampling is equispaced (so �tn�j = �tn = T/n for all j).
The question of irregular sampling is discussed in Mykland and Zhang (2009).
Except in Sections 4.2 and 4.4.2, we also take (Xt) to be a scalar process. We
take the block size M to be independent of i (except possibly for the first and
last block, and this does not matter for asymptotics).

Define

σ̂2
τn�i

= 1
�tn(Mn − 1)

∑
tn�j∈(τn�i�τn�i+1]

(
�Xtn�j −�Xτn�i

)2
�(54)

�Xτn�i =
1
Mn

∑
tn�j∈(τn�i�τn�i+1]

�Xtn�j = 1
Mn

(
Xτn�i+1 −Xτn�i

)
�

To analyze estimators, denote by Yn�i the information at time τn�i. Note that
Yn�i = Xn�j , where j is such that tn�j = τn�i.

4.1. Estimation of Integrals of |σt |r
We return to the question of estimating

θ =
∫ T

0
|σt |r dt�
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We shall not use estimators of the form
∑n

j=1 |�Xtn�j |r , as in Example 1. We
show how to get more efficient estimators by using the block approximation.

4.1.1. Analysis

We observe that under Qn, the �Xtn�j+1 are i.i.d. N(0�σ2
τn�i

�tn) within each
block. From the theory of uniformly minimum variance unbiased (UMVU)
estimation (see, for example, Lehmann (1983)), the optimal estimator of |στn�i |r
is ∣̂∣στn�i

∣∣r = c−1
M−1�r

(
σ̂2

τn�i

)r/2
�(55)

This also follows from sufficiency considerations. Here, cM�r is the normalizing
constant which gives unbiasedness, namely

cM�r = E

((
χ2

M

M

)r/2)
(56)

=
(

2
M

)r/2�

(
r +M

2

)

�

(
M

2

) �

where χ2
M has the standard χ2 distribution with M degrees of freedom, and �

is the Gamma function.
Our estimator of θ (which is blockwise UMVU under Qn) therefore becomes

θ̂n = (M�t)
∑
i

∣̂∣στn�i

∣∣r �(57)

It is easy to see that θ̂n asymptotically has no covariation with any of the Her-
mite polynomials in Section 3.3 and so, by standard arguments,

n1/2(θ̂n − θ)
L→ N(0�1)

(
TM

(
cM−1�2r

c2
M−1�r

− 1
)∫ T

0
σ2r

t dt

)1/2

(58)

stably in law, under P (and P∗, P∗
n , and Qn). This is because, under Qn,

Var
(
(M�t)

∑
i

̂
(∣∣στn�i

∣∣r) ∣∣∣ Yn�i

)
(59)

= σ2r
τn�i

(M�t)2c−2
M−1�r Var

((
χ2

M−1

(M − 1)

)r/2)

= σ2r
τn�i

(M�t)
TM

n

(
cM−1�2r

c2
M−1�r

− 1
)
�
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REMARK 8—Not Taking Out the Mean: One can replace σ̂2
τn�i

by

σ̃2
τn�i

= 1
�tnMn

∑
tn�j∈(τn�i�τn�i+1]

(
�Xtn�j

)2
�(60)

and take
∣̃∣στn�i

∣∣r = c−1
M�r

(
σ̃2

τn�i

)r/2
(61)

and define θ̃n accordingly. The above analysis goes through. The (random)
asymptotic variance becomes

TM
(
cM�2r

c2
M�r

− 1
)∫ T

0
σ2r

t dt�(62)

4.1.2. Asymptotic Efficiency

We note that for large M ,

asymptotic variance of n1/2(θ̂n − θ) ↓ T
r2

2

∫ T

0
σ2r

t dt�(63)

This is also the minimal asymptotic variance of the parametric maximum likeli-
hood estimator (MLE) when σ2 is constant. Thus, by choosing M on the large
side, say M = 20, one can get close to parametric efficiency (see Figure 1).

To see the gain from the procedure, compare to the asymptotic variance of
the estimator in Example 1, which can be written as

T

(
c1�2r

c2
1�r

− 1
)∫ T

0
σ2r

t dt�

Compared to the variance in (63), the earlier estimator has asymptotic rela-
tive efficiency (ARE)

ARE(estimator from Example 1)(64)

= asymptotic variance in (63)
asymptotic variance of estimator from Example 1

= r2

2

(
c1�2r

c2
1�r

− 1
)−1

�

Note that except for r = 2, ARE < 1. Figure 1 gives a plot of the ARE as
a function of r. As one can see, there can be substantial gain from using the
proposed estimator (57).
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FIGURE 1.—Asymptotic relative efficiency (ARE) of three estimators of θ = ∫ T

0 |σ |rt dt as
a function of r. The dotted curve corresponds to the traditional estimator, which is proportional
to

∑n
j=1 |�Xtn�j |r . The solid and dashed lines are the ARE’s of the block based estimators using,

respectively, σ̂ (solid) and σ̃ (dashed). Block sizes M = 20 and M = 100 are given. The ideal
value is ARE = 1. Blocking is seen to improve efficiency, especially away from r = 2. There is
some cost to removing the mean in each block (the difference between the dashed and the solid
curve).

REMARK 9: In terms of asymptotic distribution, there is further gain in using
the estimator from Remark 8. Specifically, AREM(θ̃)/AREM(θ̂) = M/(M −
1). This is borne out by Figure 1. However, it is likely that the drift μ, as well as
the block size M , would show up in a higher order bias calculation. This would
make σ̃ less attractive. In connection with estimating the leverage effect, it is
crucial to use σ̂ rather than σ̃ (cf. Section 4.3).

REMARK 10: We emphasize again that M has to be fixed in the present cal-
culation, so that the ideal asymptotic variance on the right hand side of (63)
is only approximately attained. It would be desirable to build a theory where
M → ∞ as n → ∞. Such a theory would presumably be able to pick up any
biases due to the blocking.

4.2. Integrated Betas

Consider processes X(1)
t � � � � �X

(p)
t and Yt which are observed synchronously

at times 0 = tn�0 < tn�1 < · · ·< tn�n = T . Suppose that these processes are related
by

dYt =
p∑

k=1

β(k)
t dX(k)

t + dZt with
〈
X(k)�Z

〉
t
= 0 for all t and k�(65)
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We consider the question of estimating θ(k) = ∫ T

0 β(k)
t dt. This estimation

problem is conceptually closely related to the realized regressions studied in
Barndorff-Nielsen and Shephard (2004a) and Dovonon, Goncalves, and Med-
dahi (2008). The ANOVA in Mykland and Zhang (2006) is concerned with the
residuals in this same model.

Under the approximation Qn, in each block τn�i−1 < tn�j ≤ τn�i the regression
(65) becomes, for the observables,

�Ytn�j =
p∑

k=1

β(k)
τn�i−1

�X(k)
tn�j

+�Ztn�j �(66)

It is therefore natural to take the estimator (β̂(1)
τn�i−1

� � � � � β̂(p)
τn�i−1

) of (β(1)
τn�i−1

� � � � �

β(p)
τn�i−1

) to be the regular least squares estimator (without intercept) based on

the observables (�X(1)
tn�j
� � � � ��X

(p)
tn�j

��Ytn�j ) inside the block. The overall esti-
mate of the vector of θ’s is then

θ̂(k)
n =

∑
i

β̂(k)
τn�i−1

M�t�(67)

From the unbiasedness of linear regression, we inherit that n1/2(θ̂n − θ) is the
end point of a (Yn�i�Qn) martingale, with discrete time quadratic covariation
matrix

n(M�t)2
∑
i

CovQn

(
β̂τn�i−1 −βτn�i−1 | Yn�i−1

)
�(68)

To see how the martingale property follows, let Y ′
n�i−1 be the smallest σ-field

containing Yn�i−1 and σ(�Xtn�j � τn�i−1 < tn�j ≤ τn�i). The precise implication of
the classical unbiasedness is that EQn(β̂τn�i−1 − βτn�i−1 | Y ′

n�i−1) = 0, whence the
stated martingale property follows by the law of iterated expectations (or tower
property).

To compute (68), note that from standard regression theory (see, e.g.,
Weisberg (1985, p. 44)),

CovQn

(
β̂τn�i−1 −βτn�i−1 | Y ′

n�i−1

) = VarQn

(
�Ztn�j | Y ′

n�i−1

) × (�XT�X)−1�(69)

where, with some abuse of notation, �X is the matrix of �X(k)
tn�j

, where k =
1� � � � �p, and the tn�j are in block number i. Now observe that under Qn, the
conditional distribution of �X given Yn�i−1 is that of M independent rows, each
row being a p-variate normal distribution with mean zero and covariance ma-
trix 〈X�X〉′

τn�i−1
�tn. (Recall that the prime here denotes differentiation with

respect to time t.) Hence, �XT�X has a Wishart distribution with scale ma-
trix 〈X�X〉′

τn�i−1
�tn and M degrees of freedom. (We refer to Mardia, Kent, and
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Bibby (1979, p. 66) for the definition of the Wishart distribution.) It follows
that (Mardia, Kent, and Bibby (1979, p. 85))

EQn

(
(�XT�X)−1 | Yn�i−1

) = (〈X�X〉′
τn�i−1

)−1
�t−1

n /(M −p− 1)�(70)

Since VarQn(�Ztn�j | Y ′
n�i−1)= 〈Z�Z〉′

τn�i−1
�tn, we finally get that

CovQn

(
β̂τn�i−1 −βτn�i−1 | Yn�i−1

)
(71)

= 〈Z�Z〉′
τn�i−1

(〈X�X〉′
τn�i−1

)−1
/(M −p− 1)�

It follows that the limit of (68) is

MT

M −p− 1

∫ T

0
〈Z�Z〉′

t(〈X�X〉′
t)

−1 dt�(72)

For the same reasons as in Sections 2.5 and 4.1 it then follows that n1/2(θ̂n − θ)
converges stably to a multivariate mixed normal distribution, with mean zero
and covariance matrix given by (72), under all of Qn, P∗

n , P∗, and P .

4.3. Estimation of Leverage Effect

We here seek to estimate 〈σ2�X〉T . We have seen in Example 3 that this
quantity can appear in asymptotic distributions, and we shall here see how the
sum of third powers can be refined into an estimate of this quantity.

The natural estimator would be

˜〈σ2�X〉T =
∑
i

(
σ̂2

τn�i+1
− σ̂2

τn�i

)(
Xτn�i+1 −Xτn�i

)
�(73)

where σ̂2
τn�i

and �Xτn�i are given above in (54). It turns out, however, that this
estimator is asymptotically biased, as follows:

PROPOSITION 3: Let M ≥ 2. In the equally spaced case, under both P∗ and P ,
and as n → ∞,

˜〈σ2�X〉T L→ 1
2
〈σ2�X〉 +N(0�1)×

(
4

M − 1

∫ T

0
σ6

t dt

)1/2

(74)

stably in law, where N(0�1) is independent of FT .
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The derivation of this result, along with that of the result in Example 5 below,
is given in Appendix A.3. This appendix gives what we think is a typical way to
show results based on the general theory of Sections 2 and 3.

Accordingly, we define an asymptotically unbiased estimator of leverage ef-
fect by

̂〈σ2�X〉T = 2
∑
i

(
σ̂2

τn�i+1
− σ̂2

τn�i

)(
Xτn�i+1 −Xτn�i

)
�(75)

In other words, ̂〈σ2�X〉T = 2 ˜〈σ2�X〉T . Following Proposition 3,

̂〈σ2�X〉T − 〈σ2�X〉 L→ c1/2
M N(0�1)(76)

stably under P∗ and P , where

cM = 16
M − 1

∫ T

0
σ6

t dt�(77)

It is important to note that the bias in ˜〈σ2�X〉T comes from error induced by
both the one period and the multiperiod discretizations (the adjustment from
P∗ to P∗

n , then to Qn). Thus, this is an instance where naïve discretization does
not work.

For fixed M , the estimator ̂〈σ2�X〉T is not consistent. By choosing large M ,
however, one can make the error as small as one wishes.

REMARK 11: It is conjectured that there is an optimal rate of M = O(n1/2)

as n → ∞. The presumed optimal convergence rate of ̂〈σ2�X〉T − 〈σ2�X〉T is
Op(n

−1/4), in analogy with the results in Zhang (2006). This makes sense be-
cause there is an inherited noisy measure σ̂2

t of σ2
t in the definition the estima-

tor ̂〈σ2�X〉T ; see (75). The problem of estimating 〈σ2�X〉T is therefore similar
to estimating volatility in the presence of microstructure noise. It would clearly
be desirable to have a theory for the case where M → ∞ with n, but this is
beyond the scope of this paper.

EXAMPLE 5—The Role of μ: The Effect of Not Removing the Mean From
the Estimate of σ2: In the development above, the drift μ did not surface. This
example gives evidence that the drift can matter. We shall see that if one does
not take out the drift when estimating σ2, μ can appear in the asymptotic bias.

Suppose that one wishes to use the estimator (75), but replacing σ̂2
τn�i

by the
estimator σ̃2

τn�i
from (60). An estimator analogous to ̂〈σ2�X〉T is then

̂〈σ2�X〉with mean

T = 2
∑
i

(
σ̃2

τn�i+1
− σ̃2

τn�i

)(
Xτn�i+1 −Xτn�i

)
�(78)
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We show in the proof for Example 5 in Appendix A.3 that, for M ≥ 2,

̂〈σ2�X〉with mean

T

L→ M − 2
M

〈σ2�X〉T − 4
M

∫ T

0
σ3

t (dWt + σ−1
t μt dt)(79)

+N(0�1)
(

16
M + 1
M2

∫ T

0
σ6

t dt

)1/2

�

Hence, with this estimator, μ does show up in asymptotic expressions. The
estimation of leverage effect is therefore a case where it is important to remove
the mean in each block.

4.4. Other Examples

We here summarize two additional examples of application that have been
studied more carefully elsewhere.

4.4.1. Realized Quantile-Based Estimation of Integrated Volatility

This methodology has been studied in a recent paper by Christensen,
Oomen, and Podolskij (2008). In the case of fixed block size and no microstruc-
ture, their results (Theorems 1 and 2) can be deduced from Theorems 1 and 3
of this paper. The key observation is that if V is the kth quantile among
�Xtn�j , with τn�i−1 < tn�j ≤ τn�i, then EQn(V

2 | Yn�i−1) = σ2
τn�i−1

EU2
(k), where U(k)

is the kth quantile of M i.i.d. standard normal random variables. Blockwise
L-statistics can be constructed similarly.

We emphasize that the paper by Christensen, Oomen, and Podolskij (2008)
goes much further in developing the quantile-based estimation technology, in-
cluding increasing block size and allowing for microstructure.

4.4.2. Analysis of Variance/Variation

A related problem to the one discussed above in Section 4.2 is that of analysis
of variance/variation (Zhang (2001) and Mykland and Zhang (2006)). We are
again in the situation of the regression (65), but now the purpose is to estimate
〈Z�Z〉T , that is, the residual quadratic variation of Y after regressing on X .
Blocking can here be used in much the same way as in Section 4.2.

4.5. Abstract Summary of Applications

We here summarize the procedure which is implemented in the applications
section above. We remain in the scalar case.

In the type of problems we have considered, the parameter θ to be estimated
can be written as

θ =
∑
i

θn�i +Op(n
−1)�(80)
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where, under the approximating measure, θn�i is approximately an integral
from τn�i−1 to τn�i. Estimators are of the form

θ̂n =
∑
i

θ̂n�i�(81)

where θ̂n�i uses M or (in the case of the leverage effect) 2M increments. If one
sets Zn�i = nα(θ̂n�i − θn�i), we need that Zn�i is a martingale under Qn. α can be
0, 1/2, or any other number smaller than 1. We then show in each individual
case that, in probability,

∑
i

VarQn (Zn�i | Yn�i−1)→
∫ T

0
f 2
t dt�(82)

∑
i

CovQ
n

(
Zn�i�W

Q
τn�i

−W Q
τn�i−1

| Yn�i−1

) →
∫ T

0
gt dt

for some functions (processes) ft and gt . We also find the following limits in
probability:

A12 = 1
12

lim
n→∞

∑
i

CovQ
n

(
Zn�i�

∑
tn�j∈(τn�i−1�τn�i]

(�tn�j+1)
1/2ktn�j(83)

× h3

(
�W Q

tn�j+1

(�tn�j+1)1/2

) ∣∣∣ Yn�i−1

)
and

A13 = −1
2

lim
n→∞

∑
i

CovQ
n

(
Zn�i�

∑
tn�j∈(τn�i−1�τn�i]

(
σ2

τn�i−1

(
ζ−1
tn�j

− ζ−1
τn�i−1

)

× h2

(
�W Q

tn�j+1

(�tn�j+1)1/2

)) ∣∣∣ Yn�i−1

)
�

We finally obtain the following statement:

THEOREM 5 —Summary of Method in the Scalar Case: In the setting de-
scribed and subject to regularity conditions,

nα(θ̂n − θn)
L→ b+A12 +A13 +N(0�1)

(∫ T

0
(f 2

t − g2
t ) dt

)1/2

(84)

stably in law under P∗ and P , with N(0�1) independent of FT . b is given by

b=
∫ T

0
gt dW

∗
t =

∫ T

0
gt(dWt + σ−1

t μt dt)�(85)
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5. CONCLUSION

The main finding of the paper is that one can in broad generality use first
order approximations when defining and analyzing estimators. Such approxi-
mations require an ex post adjustment involving asymptotic likelihood ratios,
and these are given. Several examples are provided in Section 4.

The theory relies heavily on the interplay between stable convergence and
measure change, and on asymptotic expansions for martingales. We here give
a technical summary of the findings.

The paper deals with two forms of discretization: to block size M = 1 and
then to block size M > 1. Each of these forms has to be adjusted for by using
an asymptotic measure change. Accordingly, the asymptotic likelihood ratios
can be called dP∗

∞/dP and dQ∞/dP . There is similarity here to the measure
change dP∗/dP used in option pricing theory, where P∗ is an equivalent mar-
tingale measure (a probability distribution under which the drift of an under-
lying process has been removed; for our purposes, discounting is not an issue);
for more discussion and references, see Section 2.2. In fact, for the reasons
given in that section, we can, for simplicity, assume that the probabilities P∗

n

and Qn also are such that the (observed discrete time) process has no drift.
It is useful to write the likelihood ratio decomposition

log
dQ∞
dP

= log
dQ∞
dP∗∞

+ log
dP∗

∞
dP∗ + log

dP∗

dP
�(86)

We saw in Section 3.3 that these three likelihood ratios (LR) are of similar form
and can be represented in terms of Hermite polynomials of the increments of
the observed process. The connections are summarized in Table I.

TABLE I

MEASURE CHANGES (LIKELIHOOD RATIOS) TIED TO THREE PROCEDURES MODIFYING
PROPERTIES OF THE OBSERVED PROCESSa

Type of Compensating Size of LR Order of Relevant
Approximation LR Is Related to Hermite Polynomial

One period discretization dP∗
∞/dP∗ Leverage effect 3

(M = 1)
Multiperiod discretization dQ∞/dP∗

∞ Volatility of volatility 2
(block M > 1)

Removal of drift dP∗/dP Mean 1

aP is the true probability distribution, P∗ is the equivalent martingale measure (as in option pricing theory). P∗
n

is the probability for which (1) is exact, and Qn is the probability for which one can use
∫ ti
ti−M fs dWs ≈ fti−M (Wti −

Wti−M ). The two measure changes dP∗
n/dP

∗ and dQn/dP
∗
n have asymptotic limits, denoted by subscript ∞. This

connects to the statistical concept of contiguity (cf. Remark 2).
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The three approximations all lead to adjustments that are absolutely con-
tinuous. This fact means that for estimators, consistency and rate of conver-
gence are unaffected by the the approximation. It turned out that asymptotic
variances are similarly unaffected (Remark 4 in Section 2.4). Asymptotic dis-
tributions can be changed through their means only (Sections 2.4 and 3.4). We
emphasize that this is not the same as introducing inconsistency.

A number of unsolved questions remain. The approach provides a tool for
analyzing estimators; it does not always give guidance as to how to define es-
timators in the first place. Also, the theory requires block sizes (M) to stay
bounded as the number of observations increases. It would be desirable to have
a theory where M → ∞ with n. This is not possible with the likelihood ratios
we consider, but may be available in other settings, such as with microstruc-
ture noise. Causality effects from observation times to the process, such as in
Renault and Werker (2009), would also need an extended theory.

APPENDIX: PROOFS

A.1. Proofs of Theorems 1 and 2

To avoid having asterisks (∗) everywhere, use the notation P for P∗ until
the end of the proof of Theorem 1 only, and without loss of generality. This
is only a matter of notation. One understands the differential σt dWt to be
a p-dimensional vector with r1th component

∑p

r2=1 σ
(r1�r2)
t dW

(r2)
t . To study the

properties of this approximation, consider the following “strong approxima-
tion.” Set

dσt = σ̃t dt + ft dWt + gt dBt�(A.1)

where ft is a tensor and gt dBt is a matrix, with B a Brownian motion indepen-
dent of W (g and B can be tensor processes). For example, component (r1� r2)

of the matrix ft dWt is
∑p

r3=1 f
(r1�r2�r3)
t dW (r3). Note that σt is an Itô process by

Assumption 2. Then

�Xtn�j+1 = σtn�j�Wtn�j+1 +
∫ tn�j+1

tn�j

(
σt − σtn�j

)
dWt(A.2)

= σtn�j�Wtn�j+1 + ftn�j

∫ tn�j+1

tn�j

(∫ t

tn�j

dWu

)
dWt

+ dB dW term + higher order terms�

It will turn out that the two first terms on the right hand side will matter in our
approximation. Note first that by taking quadratic covariations, one obtains

f
(r1�r2�r3)
t = 〈

σ(r1�r2)�W (r3)
〉′
t
�(A.3)
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To proceed with the proof, some further notation is needed. Define

dσ̆t = σ−1
t dσt�(A.4)

f̆
(r1�r2�r3)
t = 〈

σ̆ (r1�r2)�W (r3)
〉′
t
=

p∑
r4=1

(σ−1
t )(r1�r4)f

(r4�r2�r3)
t ;

σ̆
(r1�r2)
t and f̆

(r1�r2�r3)
t are not symmetric in (r1� r2). However, since dζt =

d(σtσ
T
t ) = σt dσt + (σt dσt)

T + dt terms, we obtain from (14) that dζ̌t =
σ−1

t dσt + (σ−1
t dσt)

T + dt terms. Hence

〈
ζ̌(r1�r2)�W (r3)

〉′
t
= f̆

(r1�r2�r3)
t + f̆

(r2�r1�r3)
t �(A.5)

Also

k
(r1�r2�r3)
t = 〈

ζ̌(r1�r2)�W (r3)
〉′
t
[3] = f̆

(r1�r2�r3)
t [6]�(A.6)

Finally, we let �t = T/n (the average �tn�j+1).

PROOF OF THEOREM 1: Note that, from (20) and (A.2),

�W̆tn�j+1 = �Wtn�j+1 + f̆tn�j

∫ tn�j+1

tn�j

(∫ t

tn�j

dWu

)
dWt(A.7)

+ dB dW term + higher order terms�

In the representation (A.7), we obtain, up to Op(�t
5/2),

cum3

(
�W̆

(r1)
tn�j+1

��W
(r2)
tn�j+1

��W
(r3)
tn�j+1

|Ftn�j

)
(A.8)

�= cum
(∑

s2�s3

f̆
(r1�s2�s3)
tn�j

∫ tn�j+1

tn�j

(∫ t

tn�j

dW (s3)
u

)
dW

(s2)
t �

�W
(r2)
tn�j+1

��W
(r3)
tn�j+1

∣∣∣Ftn�j

)

=
∑
s2�s3

f̆
(r1�s2�s3)
tn�j

cum
(∫ tn�j+1

tn�j

(∫ t

tn�j

dW (s3)
u

)
dW

(s2)
t �

�W
(r2)
tn�j+1

��W
(r3)
tn�j+1

∣∣∣Ftn�j

)

=
∑
s2�s3

f̆
(r1�s2�s3)
tn�j

Cov
(∫ tn�j+1

tn�j

(∫ t

tn�j

dW (s3)
u

)
dt δs2�r2��W

(r3)
tn�j+1

∣∣∣Ftn�j

)
[2]
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=
∑
s3

f̆
(r1�r2�s3)
tn�j

Cov
(∫ tn�j+1

tn�j

(∫ t

tn�j

dW ∗(s3)
u

)
dt��W

(r3)
tn�j+1

∣∣∣Ftn�j

)
[2]

=
∫ tn�j+1

tn�j

dt
∑
s3

f̆
(r1�r2�s3)
tn�j

Cov
(∫ t

tn�j

dW ∗(s3)
u ��W

(r3)
tn�j+1

∣∣∣Ftn�j

)
[2]

=
∫ tn�j+1

tn�j

dt
∑
s3

f̆
(r1�r2�s3)
tn�j

(t − tn�j)δs3�r3[2]

= 1
2
�t2

n�j+1f̆
(r1�r2�r3)
tn�j

[2]�

where [2] represents the swapping of r2 and r3 (see McCullagh (1987,
pp. 29–30) of for a discussion of the notation). In the third transition, we have
used the third Bartlett type identity for martingales. Hence

cum3

(
�W̆

(r1)
tn�j+1

��W̆
(r2)
tn�j+1

��W̆
(r3)
tn�j+1

|Ftn�j

)
(A.9)

= 1
2
�t2

n�j+1f̆
(r1�r2�r3)
tn�j

[6] +Op

(
�t5/2

)

= 1
2
�t2

n�j+1

〈
ζ̌(r1�r2)�W (r3)

〉′
tn�j

[3] +Op

(
�t5/2

)

by symmetry. Set κr1�r2�r3 = cum3(�W̆
(r1)
tn�j+1

/�t1/2
n�j+1��W̆

(r2)
tn�j+1

/�t1/2
n�j+1��W̆

(r3)
tn�j+1

/

�t1/2
n�j+1|Ftn�j ), and similarly for other cumulants. From (15) and (A.9),

κr1�r2�r3 = 1
2
�t1/2

n�j+1k
(r1�r2�r3)
tn�j

+Op(�t)�(A.10)

At the same time (dζ = ζ̃dt + d martingale),

Cov
(
�X

(r1)
tn�j+1

��X
(r2)
tn�j+1

|Ftn�j

)
(A.11)

= �tn�j+1ζ
(r1�r2)
tn�j

+E

(∫ tn�j+1

tn�j

(
ζ(r1�r2)
u − ζ

(r1�r2)
tn�j

)
du

∣∣∣Ftn�j

)

= �tn�j+1ζ
(r1�r2)
tn�j

+E

(∫ tn�j+1

tn�j

du

∫ u

tn�j

ζ̃(r1�r2)
v dv

∣∣∣Ftn�j

)

= �tn�j+1ζ
(r1�r2)
tn�j

+ 1
2
�t2

n�j+1ζ̃
(r1�r2)
tn�j

+Op(�t
3)�

so that Cov(�W̆ (r1)
tn�j+1

��W̆
(r2)
tn�j+1

|Ftn�j )= �tn�j+1δ
r1�r2 +Op(�t

2) and

κr1�r2 = δ
r1�r2
tn�j

+Op(�t)�(A.12)
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Since X is a martingale, we also have κr =E(�W̆ (r)
tn�j+1

|Ftn�j )= 0.
In the notation of Chapter 5 of McCullagh (1987), we take λr1�r2 = δr1�r2 , and

let the other λ’s be zero. From now on, we also use the summation convention.
By the development in Chapter 5.2.2 of McCullagh, obtain the Edgeworth ex-
pansion for the density fn�j+1 of �W̆tn�j+1/�t

1/2
n�j+1 given Ftn�j , on the log scale

as

log fn�j+1(x) = logφ(x;δr1�r2)+ 1
3!κ

r1�r2�r3hr1r2r3(x)(A.13)

+ 1
2
(κr1�r2 − λr1�r2)hr1r2(x)+ 1

4!κ
r1�r2�r3�r4hr1r2r3r4(x)

+ κr1�r2�r3κr4�r5�r6hr1r2r3r4r5r6(x)
[10]
6!

− 1
72

(
κr1�r2�r3hr1r2r3(x)

)2 +Op

(
�t3/2

)
�

where we for simplicity have used the summation convention. Note that the
three last lines contain terms of order Op(�t) (or smaller).

We note, following formula (5.7) in McCullagh (1987, p. 149), that hr1r2r3 =
hr1hr2hr3 − hr1δr2�r3[3], with hr1 = δr1�r2x

r2 . Observe that

Zr1 = hr1

(
�W̆tn�j+1

(�tn�j+1)1/2

)
= δr1�r2�W̆

r2
tn�j+1

(�tn�j+1)1/2
�(A.14)

Under the approximating measure, therefore, the vector consisting of elements
Zr1 is conditionally normally distributed with mean zero and covariance matrix
δr1�r2 .

It follows that

hr1r2r3

(
�W̆tn�j+1

(�tn�j+1)1/2

)
= Zr1Zr2Zr3 −Zr1δr2�r3[3]�(A.15)

Under the approximating measure, therefore, En(hr1r2r3(�W̆tn�j+1/(�tn�j+1)
1/2)|

Ftn�j )= 0, while

Covn

(
hr1r2r3

(
�W̆tn�j+1

(�tn�j+1)1/2

)
�hr4r5r6

(
�W̆tn�j+1

(�tn�j+1)1/2

)∣∣∣Ftn�j

)
(A.16)

= δr1�r4δr2�r5δr3�r6[6]�
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where the [6] refers to all six combinations where each δ has one index from
{r1� r2� r3} and one from {r4� r5� r6}. It follows that

Varn

(
1
3!κ

r1�r2�r3hr1r2r3

(
�W̆tn�j+1

(�tn�j+1)1/2

)∣∣∣Ftn�j

)
(A.17)

= 1
36

κr1�r2�r3κr4�r5�r6

×Covn

(
hr1r2r3

(
�W̆tn�j+1

(�tn�j+1)1/2

)
�hr4r5r6

(
�W̆tn�j+1

(�tn�j+1)1/2

)∣∣∣Ftn�j

)

= 1
6
κr1�r2�r3κr4�r5�r6δr1�r4δr2�r5δr3�r6

= �tn�j+1
1
24

k
r1�r2�r3
tn�j

k
r4�r5�r6
tn�j

δr1�r4δr2�r5δr3�r6 +Op

(
�t3/2

)
by symmetry of the κ’s. Thus

∑
tn�j+1≤t

Varn

(
1
3!κ

r1�r2�r3hr1r2r3

(
�W̆tn�j+1

(�tn�j+1)1/2

)∣∣∣Ftn�j

)
(A.18)

p→
∫ t

0

1
24

kr1�r2�r3
u kr4�r5�r6

u δr1�r4δr2�r5δr3�r6 du

under P∗
n , still using the summation convention. Note that (A.18), with t = T ,

is the same as Γ0 in (16). By the same methods, and since Hermite polynomials
of different orders are orthogonal under the approximating measure,

∑
tn�j+1≤t

Covn

(
hr1r2r3

(
�W̆tn�j+1

(�tn�j+1)1/2

)
� hr4

(
�W̆tn�j+1

(�tn�j+1)1/2

)∣∣∣Ftn�j

)
p→ 0�(A.19)

By the methods of Jacod and Shiryaev (2003), it follows that

M̌(0)
n =

n−1∑
j=0

1
3!κ

r1�r2�r3hr1r2r3

(
�W̆tn�j+1

(�tn�j+1)1/2

)
(A.20)

converges stably in law to a normal distribution with random variance Γ0. (Note
that M̌(0)

n = M(0)
n +Op(�t

1/2) from (21) and that we are still using the summa-
tion convention.) We now observe that, in the notation of (A.13),

log
dP∗

dP∗
n

=
n−1∑
j=0

(log fn�j+1 − logφ)
(

�W̆tn�j+1

(�tn�j+1)1/2

)
�(A.21)
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By the same reasoning as above, the terms other than M̌(0)
n and its discrete time

quadratic variation (A.18) go away. Thus log(dP∗/dP∗
n) = M̌(0)

n − 1
2Γ0 + op(1)

and the result follows. Q.E.D.

REMARK 12: The proof of Theorem 1 uses the Edgeworth expansion (A.13).
The proof of the broad availability of such expansions in the martingale case
goes back to Mykland (1993, 1995a, 1995b), who used a test function topology.
The formal existence of Edgeworth expansions in our current case is proved
by iterating the expansion (A.2) as many times as necessary and bounding the
remainder. In the diffusion case, similar arguments have been used in the esti-
mation and computation theory in Aït-Sahalia (2002).

PROOF OF THEOREM 2: It follows from the development in the proof of
Theorem 1 that

log
dP∗

dP∗
n

= M(0)
n − 1

2
Γ0 + op(1)�(A.22)

where M(0)
n is as defined in equation (21). Write that, under P∗

n , (Zn�M
(0)
n )

L→
(Z�M) with M = Γ 1/2

0 V1 and Z = b1 + c1M + c2V2, where V1 and V2 are inde-
pendent and standard normal (independent of FT ). Denote the distribution of
(Z�M) as P∗

∞ to avoid confusion.
It follows that, for bounded and continuous g, and by uniform integrability,

E∗g(Zn) = E∗
ng(Zn)exp

{
M(0)

n − 1
2
Γ0

}
(1 + o(1))(A.23)

→ Eg(Z)exp
{
M − 1

2
Γ0

}

= E∗
∞g

(
b1 + c1Γ

1/2
0 V1 + c2V2

)
exp

{
Γ 1/2

0 V1 − 1
2
Γ0

}

=
∫ ∞

−∞
E∗

∞g
(
b1 + c1Γ

1/2
0 v+ c2V2

)
exp

{
Γ 1/2

0 v− 1
2
Γ0

}
(2π)−1/2

× exp
{
−1

2
v2

}
dv

=
∫ ∞

−∞
E∗

∞g
(
b1 + c1Γ

1/2
0

(
u+ Γ 1/2

0

) + c2V2

)

× (2π)−1/2 exp
{
−1

2
u2

}
du (u= v − Γ 1/2

0 )

= E∗
∞g(Z + c1Γ0)�
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The result then follows since c1Γ0 =A12. Q.E.D.

A.2. Proof of Theorem 3

Let Z(1)
n be given by (43). Set

�Z(1)
n�tn�j+1

= 1
2
�XT

tn�j+1

(
ζ−1
tn�j

− ζ−1
τn�i−1

)
�Xtn�j+1�t

−1
n�j+1(A.24)

and note that Z(1)
n = ∑

j �Z
(1)
n�tn�j+1

. Set Aj = ζ1/2
tn�j

ζ−1
τn�i−1

ζ1/2
tn�j

− I.
Since �Xtn�j is conditionally Gaussian, we obtain (under P∗

n)

EP∗
n

(
�Z(1)

n�tn�j+1
|Xn�tn�j

) = −1
2

tr(Aj)(A.25)

and

conditional variance of �Z(1)
n�tn�j+1

= 1
2

tr(A2
j )�(A.26)

Finally, let M(1)
n be the (end point of the) martingale part (under P∗

n) of Z(1)
n ,

so that

M(1)
n =Z(1)

n + 1
2

∑
j

tr(Aj)�(A.27)

If 〈·� ·〉G represents discrete time predictable quadratic variation on the grid G ,
then equation (A.26) yields

〈
M(1)

n �M(1)
n

〉G = 1
2

∑
j

tr(A2
j )�(A.28)

Now note that, analogous to the development in Zhang (2001, 2006),
Mykland and Zhang (2006), and Zhang, Mykland, and Aït-Sahalia (2005),

〈
M(1)

n �M(1)
n

〉G = 1
2

∑
j

tr
(
ζ−2
τn�i−1

(
ζtn�j − ζτn�i−1

)2)
(A.29)

= 1
2

∑
j

tr
(
ζ−2
τn�i−1

(〈ζ�ζ〉tn�j − 〈ζ�ζ〉τn�i−1

)) + op(1)

= 1
2

∑
j

tr
(
ζ−2
τn�i−1

〈ζ�ζ〉′
τn�i−1

)
(tn�j − τn�i−1)+ op(1)

= 1
2

∫ T

0
tr(ζ−2

t 〈ζ�ζ〉′
t) dK(t)+ op(1)= Γ1 + op(1)�
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where K is the ADD given by equation (41).
At this point, observe that Assumption 2 entails, in view of Lemma 2 in

Mykland and Zhang (2006), that

sup
j

tr(A2
j )→ 0 as n→ ∞�(A.30)

Since also,

for r > 2� |tr(Ar
j)| ≤ tr(A2

j )
r/2�(A.31)

it follows that

log
dQn

dP∗
n

= Z(1)
n + 1

2

∑
i

∑
tn�j∈(τn�i−1�τn�i]

(
log detζtn�j − log detζτn�i−1

)
(A.32)

= Z(1)
n + 1

2

∑
j

log det(I +Aj)

= Z(1)
n + 1

2

∑
j

(
tr(Aj)− tr(A2

j )

2
+ tr(A3

j )

3
+ · · ·

)

= M(1)
n − 1

4

∑
j

tr(A2
j )+ 1

6

∑
j

tr(A3
j )+ · · ·

= M(1)
n − 1

2
〈
M(1)

n �M(1)
n

〉G + op(1)�

Now let 〈M(1)
n �M(1)

n 〉 be the quadratic variation of the continuous martingale
that coincides at points tn�j with the discrete time martingale leading up to
the end point M(1)

n . By a standard quarticity argument (as in the proof of
Remark 2 in Mykland and Zhang (2006)), (A.29)–(A.31) and the conditional
normality of �Z(1)

n�tn�j+1
yield that 〈M(1)

n �M(1)
n 〉 = 〈M(1)

n �M(1)
n 〉G + op(1). The sta-

ble convergence to a normal distribution with variance Γ1 then follows by the
same methods as in Zhang, Mykland, and Aït-Sahalia (2005). The result is thus
proved. Q.E.D.

A.3. Proofs Concerning the Leverage Effect (Section 4.3)

PROOF OF PROPOSITION 3 : We here show how to arrive at the final result
in Proposition 3. This serves as a fairly extensive illustration of how to apply
the theory developed in the earlier sections.

By rearranging terms, write

˜〈σ2�X〉T =
∑
i

(
σ2

τn�i+1
− σ2

τn�i

)(
Xτn�i+1 −Xτn�i

)
(A.33)



INFERENCE FOR CONTINUOUS SEMIMARTINGALES 1439

+
∑
i

(
σ̂2

τn�i
− σ2

τn�i

)(
Xτn�i −Xτn�i−1

)

−
∑
i

(
σ̂2

τn�i
− σ2

τn�i

)(
Xτn�i+1 −Xτn�i

) +Op(n
−1)�

where the Op(n
−1) term comes from edge effects. Note that by conditional

Gaussianity, both the two last sums in (A.33) are Qn-martingales with respect
to the σ fields Yn�i. They are also orthogonal in the sense that

CovQ
n

((
σ̂2

τn�i
− σ2

τn�i

)(
Xτn�i −Xτn�i−1

)
�(A.34) (

σ̂2
τn�i

− σ2
τn�i

)(
Xτn�i+1 −Xτn�i

) | Yn�i

) = 0�

Under Qn and conditionally on the information up to time τn�i−1, σ̂2
τn�i

=
σ2

τn�i
χ2

M−1/(M−1) and �Xτn�i = στn�i (�t/M)1/2N(0�1), where χ2
M−1 and N(0�1)

are independent. It follows that

VarQn
((
σ̂2

τn�i
− σ2

τn�i

)(
Xτn�i −Xτn�i−1

) | Yn�i

)
(A.35)

= σ4
τn�i

(M − 1)−2
(
Xτn�i −Xτn�i−1

)2
Var(χ2

M−1)

= 2σ4
τn�i

(M − 1)−1
(
Xτn�i −Xτn�i−1

)2
�

Hence, under Qn, the quadratic variation of
∑

i(σ̂
2
τn�i

− σ2
τn�i

)(Xτn�i − Xτn�i−1)
converges to

2
M − 1

∫ T

0
σ6

t dt�(A.36)

At the same time, it is easy to see that this sum has asymptotically zero co-
variation with the increments of M(0�Q)

n and M(1�Q)
n , and also with W Q. Hence∑

i(σ̂
2
τn�i

− σ2
τn�i

)(Xτn�i −Xτn�i−1) converges stably under P to a normal distribu-
tion with mean zero and variance (A.36).

The situation with the other sum
∑

i(σ̂
2
τn�i

− σ2
τn�i

)(Xτn�i+1 − Xτn�i ) is more
complicated. First of all,

VarQn
((
σ̂2

τn�i
− σ2

τn�i

)(
Xτn�i+1 −Xτn�i

) | Yn�i

)
(A.37)

= σ6
τn�i

(M�t)Var
((

χ2
M−1

M − 1
− 1

)
N(0�1)

)

= 2
M − 1

σ6
τn�i

(M�t)�
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Hence the asymptotic quadratic variation is

2
M − 1

∫ T

0
σ6

t dt�(A.38)

The sum is asymptotically uncorrelated with W Q, since

CovQ
n

((
σ̂2

τn�i
− σ2

τn�i

)(
Xτn�i+1 −Xτn�i

)
�Wτn�i+1 −Wτn�i | Yn�i

)
(A.39)

= σ3
τn�i

(M�t)Cov
((

χ2
M−1

M − 1
− 1

)
N(0�1)�N(0�1)

)

= 0�

Overall, under Qn, we have the stable convergence

∑
i

(
σ̂2

τn�i
− σ2

τn�i

)(
Xτn�i+1 −Xτn�i

) L→ N(0�1)
(

2
M − 1

∫ T

0
σ6

t dt

)1/2

�(A.40)

There is, however, covariation between this sum and M(0�Q)
n . It is shown be-

low in Remark 13 (see equation (A.47)) that A12 = 3
2M 〈σ2�X〉T , where A12

has the same meaning as in Theorems 2 and 4 (in Sections 2.4 and 3.4, re-
spectively). Similarly, there is covariation with M(1�Q)

n , and one can show that
A13 = M−3

2M 〈σ2�X〉T . Thus, by Theorem 4, under P∗, we have (stably)
∑
i

(
σ̂2

τn�i
− σ2

τn�i

)(
Xτn�i+1 −Xτn�i

)
(A.41)

L→ 1
2
〈σ2�X〉T +N(0�1)

(
2

M − 1

∫ T

0
σ6

t dt

)1/2

�

Because of the orthogonality (A.34), and since
∑

i(σ
2
τn�i+1

− σ2
τn�i

)(Xτn�i+1 −
Xτn�i )− 〈σ2�X〉T = Op(n

−1/2) by Proposition 1 of Mykland and Zhang (2006),

it follows that ˜〈σ2�X〉T − 1
2 〈σ2�X〉 converges stably (under P∗) to a normal

distribution with mean as in equation (A.41) and variance contributed by the
second and third terms on the right hand side of (A.33). We have thus shown
Proposition 3. Q.E.D.

REMARK 13—Sample of Calculation: To see how the reasoning works in
the case of covariations, consider the case of covariation between

∑
i(σ̂

2
τn�i

−
σ2

τn�i
)(Xτn�i+1 −Xτn�i ) and M(0�Q)

n . We proceed as follows.
If hr is the rth (scalar) Hermite polynomial, set

Gr�i =
∑

tn�j∈(τn�i�τn�i+1]
hr

(
�W Q

tn�j
/�t1/2

)
�(A.42)
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note that

Xτn�i+1 −Xτn�i = στn�i�t
1/2G1�i�(A.43)

σ̂2
τn�i

− σ2
τn�i

= σ2
τn�i

M − 1

(
G2�i − 1

M
G2

1�i + 1
)
�

At the same time,

M(0�Q)
n = 1

12
(�t)1/2

∑
i

kτn�iG3�i + op(1)�(A.44)

The covariance for each i increment becomes

CovQ
n

((
σ̂2

τn�i
− σ2

τn�i

)(
Xτn�i+1 −Xτn�i

)
�

1
12

(�t)1/2kτn�iG3�i

∣∣∣ Yn�i

)
(A.45)

= 1
12

�t
kτn�iσ

3
τn�i

M − 1
CovQ

n

((
G2�i − 1

M
G2

1�i + 1
)
G1�i�G3�i

∣∣∣ Yn�i

)

= 1
2
(M�t)

kτn�iσ
3
τn�i

M

since, by orthogonality of the Hermite polynomials and by normality,

CovQ
n

((
G2�i − 1

M
G2

1�i + 1
)
G1�i�G3�i

∣∣∣ Yn�i

)
(A.46)

= cumQ
3�n(G1�i�G2�i�G3�i | Yn�i)

− 1
M

cumQ
4�n(G1�i�G1�i�G1�i�G3�i | Yn�i)

=M cum3

(
h1(N(0�1))�h2(N(0�1)�h3(N(0�1)))

)
− cum4

(
h1(N(0�1))�h1(N(0�1))�h1(N(0�1))�h3(N(0�1))

)
= 6(M − 1)�

The covariation with M(0�Q)
n therefore converges to

A12 = 1
2M

∫ T

0
ktσ

3
t dt(A.47)

= 3
2M

〈σ2�X〉T

as in (32).
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PROOF FOR EXAMPLE 5: In analogy with (73), define

˜〈σ2�X〉
with mean

T =
∑
i

(
σ̃2

τn�i+1
− σ̃2

τn�i

)(
Xτn�i+1 −Xτn�i

)
�(A.48)

We have the representation

σ̃2
τn�i

− σ2
τn�i

= σ2
τn�i

M
G2�i�(A.49)

We now consider the terms analogous to those in (A.33). The analysis of∑
i(σ̃

2
τn�i

−σ2
τn�i

)(Xτn�i −Xτn�i−1) is unaffected by this change, except that (A.36)

is replaced by 2
M

∫ T

0 σ6
t dt. However, this is not true for the term

∑
i(σ̃

2
τn�i

−
σ2

τn�i
)(Xτn�i+1 −Xτn�i ), which we analyze in the following paragraph.

Observe that σ̃2
τn�i

= M−1
M

σ̂2
τn�i

+ (�Xτn�i )
2/�t. Hence,

∑
i

(
σ̃2

τn�i
− σ2

τn�i

)(
Xτn�i+1 −Xτn�i

)
(A.50)

= M − 1
M

∑
i

(
σ̂2

τn�i
− σ2

τn�i

)(
Xτn�i+1 −Xτn�i

)

+ 1
M

Kn

T

∑
i

(
Xτn�i+1 −Xτn�i

)3 − 1
M

∫ T

0
σ2

t dXt + op(1)�

where Kn = n/M and the op(1) term comes (only) from the approximation of
− 1

M

∑
i σ

2
τn�i

(Xτn�i+1 −Xτn�i ) by − 1
M

∫ T

0 σ2
t dXt . It is easy to see that the first two

terms on the right hand side of (A.50) have zero Qn covariation and hence, as-
ymptotically, zero P∗ covariation (Remark 4 in Section 2.4). Since we are thus
in a position to easily aggregate the normal parts of the limiting distributions,
we obtain the limit of the first term from (A.41) and the limit of the second
term from Example 3 in Section 2.5. Hence, stably under P∗, with U1 and U2

as independent standard normal,

∑
i

(
σ̃2

τn�i
− σ2

τn�i

)(
Xτn�i+1 −Xτn�i

)
(A.51)

L→ M − 1
M

(
1
2
〈σ2�X〉T +U1

(
2

M − 1

∫ T

0
σ6

t dt

)1/2)

+ 1
M

(
3
∫ T

0
σ3

t dW
∗
t + 3

2
〈σ2�X〉T +U2

(
6
∫ T

0
σ6

t dt

)1/2)
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− 1
M

∫ T

0
σ2

t dXt

= 2
M

∫ T

0
σ3

t dW
∗
t + M + 2

2M
〈σ2�X〉T

+N(0�1)
(

2M + 4
M2

∫ T

0
σ6

t dt

)1/2

�

Since the terms in (A.50) have zero Qn covariation with
∑

i(σ̃
2
τn�i

−σ2
τn�i

)(Xτn�i −
Xτn�i−1), the result in Example 5 follows. Q.E.D.
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