
Testing for Instrument Independence in the Selection Model

Toru Kitagawa∗†
UCL and CeMMAP

September, 2009

Abstract

We develop a specification test for the independent instrument assumption in the sam-
ple selection model. We test the emptiness of the identification region of Manski (2003):
the set of outcome distributions that are compatible with data and the restriction of
statistical independence between the instrument and outcome. The size of the identi-
fication region is characterized by a scalar parameter, the integrated envelope, and in
particular the identification region is empty if and only if the integrated envelope exceeds
one. Since the empty identification region implies a violation of the exclusion restriction,
we obtain a nonparametric specification test for the instrument exclusion restriction by
developing a testing procedure for whether the integrated envelope exceeds one. This
test procedure has a non-pivotal asymptotic distribution and it is well-known that in this
case the standard nonparametric bootstrap is not valid to obtain the critical values. We
therefore develop a modified bootstrap procedure and show its validity. Monte Carlo
simulations examine the finite sample performance of this bootstrap procedure. We use
the procedure to test the independence of the instrument used by Blundell et al. (2003).
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1 Introduction

A partially identified model is a model for which the parameters of interest cannot be uniquely
determined by the observed data. In a sequence of seminal papers, Manski (1989, 1990, 1994,
2003) analyzes the selection model where some observations of outcome Y can be missing in a
nonrandom way, and stimulated research in partial identification analysis (see Manski (2003,
2007) for an overview and economic applications). Manski (1990, 1994) introduces the use
of an instrumental variable for partial identification analysis, and analyzes the identification
region for the parameters, or for the distribution of outcomes, under various restrictions on
the statistical relationship between the instrument and outcome. While the literature has
analyzed the identification region of the parameters such as the mean of Y under moment-type
restrictions,1 less is known about the identification region of the outcome distribution under
a distributional restriction of statistical independence between instrument and outcome.

In this paper, we focus on the instrument exclusion restriction; that is, an instrument Z
that is specified to be statistically independent of the underlying outcome Y . The selection
problem that this paper considers is the missing data problem with an instrument: the
outcome Y is observed if the selection indicator D is one while it is missing if D is zero, and
the researcher has a random sample of (Y · D,D,Z). For example, Y could be potential
wages that are observed only for those who are employed, and the instrument Z is a variable
that is specifed to be independent of one’s potential wage while it can affect one’s employment
status. For example, a list of instruments that has been used in this potential wage example
includes the number of kids, marital status, a measure of out-of-work income, etc. Our
object of interest is fY , the population distribution of Y , and the identification of fY leads
to identification of location parameters such as the mean or quantiles of Y . In the potential
wage example, this problem arises when the researcher is interested in estimating the wage
gaps between male and female, black and white, or skilled and unskilled. Although an
instrument Z combined with the exclusion restriction plays a crucial role in identifying fY in
the (semi)nonparametric sample selection model,2 no testing procedures have been proposed
for the instrument exclusion restriction.

This paper provides a nonparametric specification test for the instrument exclusion re-
striction in the sample selection model. In order to obtain a testable implication for the
instrument exclusion restriction, this paper first analyzes identification of fY without impos-
ing point-identifying restrictions for fY . That is, our object of interest is the identification
region for fY : the set of outcome distributions that are compatible with the empirical evi-
dence and the model restrictions. Manski (2003) analyzes the identification region for the
outcome distribution fY under the independence restriction between Y and Z. The resulting
expression there has a rather abstract form and a closed form expression is limited to the
discrete outcome case. We provide a closed-form representation of the identification region

1The tight bounds for E(Y ) under the mean independence, E(Y |Z) = E(Y ), is analyzed by Manski
(1994). Manski and Pepper (2000) derive the tight bounds for E(Y ) under the restriction of monotonic
outcome response: E(Y |Z = z) is increasing with respect to z.

2The point-identificaton of fY is achieved if an available instrument satisfies the exclusion restriction and
the selection probability Pr(D = 1|Z = z) attains one for some z. This is the identification at infinity argument
(Andrews and Schafgans (1998), Chamberlain (1986), and Heckman (1990)) based on an extrapolation by
the instrument exclusion restriction. See, e.g., Mulligan and Rubinstein (2008) for an application of the
identification at infinity strategy to the estimation of wage gaps between genders.
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that extend his result to a wider range of settings where Y can be continuous.
The main contribution of this paper is the development of a specification test. An empty

identification region implies a misspecification of the exclusion restriction, so our specification
test infers from data the emptiness of the identification region. Specification tests based on
the emptiness of the identification region for the partially identified parameters have been
studied in the literature of the moment inequality model.3 Our analysis, however, differs
from the moment inequality model since the independence restriction we consider is a distri-
butional restriction rather than a moment restriction, and, especially for continuous Y , the
identification region for the outcome distribution cannot be expressed by a finite number of
moment inequalities. The size of the identification region for the outcome distribution is
characterized by a scalar parameter, the integrated envelope: the integral of the envelope over
the conditional densities of the observed Y given Z. In particular, as Manski (2003) noticed,
the identification region is empty if and only if the integrated envelope exceeds one. There-
fore, a nonparametric specification test for the instrument exclusion restriction is obtained by
developping an inferential procedure for whether the integrated envelope exceeds one. We
propose an estimator for the integrated envelope and derive its asymptotic distribution. An
asymptotically size correct specification test for instrument independence is obtained by in-
verting the one-sided confidence intervals for the integrated envelope. A parameter similar to
the integrated envelope is considered in Pearl (1994b) and Manski (2003), but its estimation
and inference have not been analyzed. Hence, this paper is the first that provides a formal
asymptotic analysis for the integrated envelope.

The third contribution of the paper is the implementation of the test procedure. The as-
ymptotic distribution of the integrated envelope estimator is given by a supremum functional
of Gaussian processes and it is difficult to obtain the critical values analytically. Further-
more, due to a non-pivotal feature of the asymptotic distribution, the standard nonparametric
bootstrap fails to yield asymptotically valid critical values (Andrews (2000)). We therefore
develop a bootstrap procedure for the integrated envelope estimator and verify its asymp-
totic validity. Similarly to the bootstrap procedure for the moment inequality model (Bugni
(2008) and Canay (2007)), we first select the asymptotic distribution for which the bootstrap
approximation is targeted. Given the targeted asymptotic distribution, we bootstrap the
empirical processes so as to approximate the Gaussian processes (van der Vaart and Wellner
(1996)).

Blundell, Gosling, Ichimura, and Meghir (2007) consider testing the instrument indepen-
dence by inferring whether the bounds for the cumulative distribution function (cdf) of fY
intersects or not. Our specification test, however, differs from their method in the following
ways. First, their procedure tests the emptiness of potentially non-tight cdf bounds for fY
while our procedure always tests the emptiness of the tightest cdf bounds and hence our pro-
cedure can screen out more violations of the instrument exclusion. Second, the asymptotic

3 In the partially identified model with moment inequalities, a specification test for moment restrictions is
obtained as a by-product of the confidence sets for the partially identified parameters, that is, we reject the
null restriction if the confidence set is empty. A list of the literature that analyzes the confidence sets in
the moment inequality model contains Andrews, Berry and Jia (2004), Andrews and Guggenberger (2008),
Andrews and Jia (2008), Andrews and Soares (2009), Bugni (2009), Canay (2009), Chernozhukov, Hong, and
Tamer (2007), Guggenberger, Hahn, and Kim (2008), Imbens and Manski (2004), Pakes, Porter, Ho, and Ishii
(2006), Romano and Shaikh (2008, 2009), and Rosen (2008).
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validity of their bootstrap procedure is not formally investigated and its asymptotic property
is not known. Our bootstrap algorithm has an asymptotic justification in terms of correct
size.

Monte Carlo simulations illustrate the finite sample performance of our bootstrap test
procedure. While the standard subsampling procedure by Politis and Romano (1994) is
shown to be valid, we present simulation evidence that our bootstrap has better finite sample
performance. We apply the proposed test procedure to the classical model of self-selection
into the labor market using data from Blundell et al. (2007). We test whether the measure
of out-of-work income constructed in Blundell et al. (2003) is independent of the potential
wage. Our test results provide an evidence that the exclusion restriction for the out-of-work
income is misspecified. Since our procedure tests the emptiness of the identification region,
this conclusion is based on the empirical evidence alone and free from any assumptions about
the potential wage distribution and the selection mechanism.

In addition to the inference on the emptiness of the identification region, this paper pro-
vides contributions to the identification aspect of the selecton model. We use the expression
for the identification region under the exclusion restriction to examine the possibility of ob-
taining a narrower identification region by introducing the selection mechanism with latent
utility (threshold crossing selection). We consider strengthening the exclusion restriction
to the restriction that the instrument Z is jointly independent of Y and the selection het-
erogeneities. We show that this joint independence restriction does not further narrow the
identification region of fY . This implies that a further identification gain from the joint
independence restriction, which is known to exist in the counterfactual causal model with
an instrument (Balke and Pearl (1997)), does not exist in the selection model with a sin-
gle outcome. We also consider the identification gain of specifying the latent utility to be
additively separable (threshold crossing selection with an additive error). We show that
threshold crossing selection with an additive error, which is often imposed in the structural
selection model, constrains the data generating process in a certain way but does not nar-
row the identification region further than instrument independence. These results imply
that once instrument independence is imposed, threshold crossing selection is a redundant
restriction in the sense that it does not further contribute to identifying fY .

The remainder of the paper is organized as follows. Section 2 introduces the basic no-
tation and provides the identification region of fY . It also provides a refutability result of
instrument independence based on the integrated envelope. Section 3 develops the estimator
for the integrated envelope and derives its asymptotic distribution. Based on this asymptotic
distribution, Section 4 formalizes the test procedure by developing an asymptotically valid
bootstrap algorithm. We also demonstrate the validity of subsampling. Section 5 provides
simulation results and compares the finite sample performance of the bootstrap with sub-
sampling. For simplicity of exposition, our analytical framework is limited to the case with
a binary instrument up to Section 5. In Section 6, we extend the framework to the case with
a multi-valued discrete instrument. Using this extended framework, Section 7 tests whether
the out-of-work income constructed in Blundell et al. (2003) is independent of the potential
wage. Section 8 concludes. Proofs are provided in Appendix A.
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2 The identification region of the outcome distribution

2.1 Setup and notation

The random variable Y represents a scalar outcome and its support is denoted by Y ⊂R.
The marginal distribution of Y is our main interest. We assume that the distribution of Y
has a probability density function with respect to a dominating measure µ and we represent
the distribution of Y in terms of the probability density function fY .

4 Note that Y need
not be continuous and we can interpret fY (y) to be a probability mass at y when µ is the
point mass measure. The reason to focus on the density rather than the cdf is that the
identification region for the outcome distribution has a simpler expression when the data
generating process and the outcome distributions are represented in terms of densities.

The main text of this paper focuses on a binary instrument Z ∈ {1, 0} since this simpli-
fies the illustration of our main results without losing any essentials of the problem. Our
analysis for the binary instrument case can be extended to the case of a multi-valued discrete
instrument with finite points of support, which is covered in Section 6 and Appendix E.

We do not introduce covariates X into our analysis. When the exclusion restriction of
the instrument is specifed in terms of conditional independence of Z and Y given X, then the
identification analysis for fY shown below can be interpreted as the identification analysis for
the outcome distribution conditional on each covariate value. Although this approach would
be less practical in cases where some of the covariates are continuous, we do not discuss how
to control for these covariates here.5

The model has missing data. The outcome Y is randomly sampled from fY but we
do not observe all the realizations of the sampled Y . We use D to denote the selection
indicator: D = 1 indicates Y is observed and D = 0 indicates Y is missing. The data is
given as a random sample of (Y ·D,D,Z).

We represent the conditional distribution of (Y ·D,D) given Z = 1 by P = (P (·), Pmis),

P (A) ≡ Pr(Y ∈ A|D = 1, Z = 1) · Pr(D = 1|Z = 1), A ⊂ Y,
Pmis ≡ Pr(D = 0|Z = 1).

Analogously, we represent the conditional distribution of (Y · D,D) given Z = 0 by Q =
(Q(·),Qmis),

Q(A) ≡ Pr(Y ∈ A|D = 1, Z = 0) · Pr(D = 1|Z = 0), A ⊂ Y,
Qmis ≡ Pr(D = 0|Z = 0).

P (·) andQ(·) are the conditional distributions of the observed outcomes given Z multiplied by
the selection probabilities Pr(D = 1|Z). Pmis and Qmis are simply the missing probabilities
given Z. Note that a pair of P and Q uniquely characterizes the distribution of the data
except for the marginal distribution of Z, which will not play an important role for identifying
fY . Thus, we represent the data generating process of our model by a pair of P and Q. On

4We assume that µ is known. In other words, we know the support of Y to be continuous or discrete with
known points of support.

5When Z is presumed to be generated through a randomized mechanism, we do not need any covariate
information for the purpose of identifying fY .
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the other hand, Pr(·) and f· each refers to the probability distribution and the probability
density of the population that is characterized by a value of (Y,D,Z).

We denote the density function of P (·) and Q(·) on Y by p(y) and q(y), which are linked
to the population density via the following identities,

p(y) = fY |D,Z(y|D = 1, Z = 1) Pr(D = 1|Z = 1) = fY,D|Z(y,D = 1|Z = 1),

q(y) = fY |D,Z(y|D = 1, Z = 0) Pr(D = 1|Z = 0) = fY,D|Z(y,D = 1|Z = 0).

It is important to keep in mind that the density functions p(y) and q(y) integrate to the
selection probabilities Pr(D = 1|Z = 1) that are smaller than one. Note that without further
assumptions P and Q do not reveal any information for the shape of the missing outcome
distributions, fY,D|Z(y,D = 0|Z = 1) and fY,D|Z(y,D = 0|Z = 0), except for their integral,

Pmis =

∫

Y
fY,D|Z(y,D = 0|Z = 1)dµ, Qmis =

∫

Y
fY,D|Z(y,D = 0|Z = 0)dµ.

The model restrictions given below are restrictions for the population distribution of
(Y,D,Z).

Restriction-ER
Exclusion Restriction (ER): Y is statistically independent of Z.

ER is a distributional restriction and cannot be represented by a finite number of moment
restrictions if Y is continuous. A weaker version of instrument exogeneity common in
econometrics is the mean independence restriction (MI, hereafter).

Restriction-MI
Mean Independence Restriction (MI): Y is mean independent of Z, E(Y |Z) = E(Y ).

When we are mainly interested in point-identifying the mean of Y in the selection model,
MI is typically sufficient and we do not require the full statistical independence (see, e.g.,
Andrews and Schafgans (1998). However, in the partial identification context, these restric-
tions are different in terms of the identifying information for the mean, and the bounds for
E(Y ) under ER can be strictly narrower than the bounds for E(Y ) under MI (see Appendix
C for further details).

ER is a stable restriction between the instrument and outcome while MI is not (Pearl
(2000)). In other words, ER would persist for every distributional parametrization for the
outcome and instrument, while MI is not preserved, for example, with respect to a nonlinear
transformation of Y . Since we are often not sure about the right measure of Y so as to
validate MI, it is hard to argue that an instrument satisfies MI but does not satisfy ER (e.g.,
can we justify the instrument with respect to which the log wage is mean independent while
the raw wage is not?).
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2.2 The identification region of fY under the exclusion restriction

We present the identification region of fY under ER. ER implies that the conditional dis-
tribution of Y given Z does not depend on Z, fY = fY |Z . By applying the law of total
probability to the conditional distribution fY |Z , we can decompose fY into the conditional
density of the observed Y given Z and that of the missing outcomes. Using the notation
introduced above, we have

fY (y) = fY |Z(y|Z = 1) = p(y) + fY,D|Z(y,D = 0|Z = 1),
fY (y) = fY |Z(y|Z = 0) = q(y) + fY,D|Z(y,D = 0|Z = 0).

(2.1)

ER allows us to interpret that the observed outcome distributions p(y) and q(y) pro-
vide distinct identifying information for the common fY . We aggregate these identifying
information for fY by taking the envelope,

f(y) ≡ max{p(y), q(y)}.
We refer to f(y) as the envelope density and the area below the envelope density as the
integrated envelope δ(P,Q) =

∫
Y f(y)dµ.

6

The formal definition of the identification region under ER is stated as follows.

Definition 2.1 (the identification region under ER) Given a data generating process
P and Q, the identification region for fY under ER, IRfY (P,Q), is the set of fY for each of
which we can find a joint probability distribution of (Y,D,Z) that is compatible with the data
generating process and ER.

This definition for the identification region under ER is equivalent to the set of fY that
yields nonnegative missing outcome distributions fY,D|Z(y,D = 0|Z = 1) and fY,D|Z(y,D =
0|Z = 0) through (2.1) (see the proof of Proposition 2.1 in Appendix A). This implies,
without any restrictions on the missing outcome distribution, the conditions for fY to be
contained in IRfY (P,Q) are fY (y) ≥ p(y) and fY (y) ≥ q(y) µ-a.e. Hence, IRfY (P,Q) is
obtained as

IRfY (P,Q) =

{
fY :

∫

Y
fY (y)dµ = 1, fY (y) ≥ f(y) µ-a.e.

}
. (2.2)

Figure 1 provides a graphical illustration for the identification region.

Notice that IRfY (P,Q) becomes empty if and only if the integrated envelope δ(P,Q)
exceeds one. This is because the probability density function fY must integrate to one by
definition and there do not exist any probability distributions that cover the entire envelope
if δ(P,Q) > 1. Thus, refutability of ER depends only on the integrated envelope δ(P,Q)
and testing the emptiness of IRfY (P,Q) is reduced to inferring δ(P,Q) from data.

The next proposition summarizes the identification region of fY and the refutability
property for ER in the selection model.7

6Note that the envelope density is not a probability density function on Y since it does not necessarily
integrate to unity.

7When Y is discrete, this proposition is reduced to Corollary 2.3 of Manski (2003).
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Figure 1: Consider the case with a continuous Y and a binary Z. The dotted curve represents
fY the probability density of the outcome Y . The identities (2.1) and the nonnegativity of
the missing outcome densities require that the two densities p(y) and q(y) must lie below fY .
This implies that any fY which cover both p(y) and q(y) are compatible with ER and the
empirical evidence p(y) and q(y). Hence, the identification region of fY is obtained as the
collection of the probability distributions such that the individual densities each cover both p(y)
and q(y). The right-hand side figure shows the envelope density f(y) = max{p(y), q(y)}.
The integrated envelope δ(P,Q) =

∫
f(y)dy is the area below the envelope density (shadow

area). If δ(P,Q) exceeds one, then, no probability density function can cover the entire
envelope density and we obtain the empty identification region.

Proposition 2.1 (the identification region under ER) Assume that the probability dis-
tribution of Y has a density fY with respect to a dominating measure µ. Let f(y) be the
envelope density and δ(P,Q) be the integrated envelope defined by

f(y) ≡ max{p(y), q(y)}, δ(P,Q) ≡
∫

Y
f(y)dµ. (2.3)

(i) The identification region of fY under ER is given by

IRfY (P,Q) =

{
fY :

∫

Y
fY (y)dµ = 1, fY (y) ≥ f(y) µ-a.e.

}
.

(ii) IRfY (P,Q) is empty if and only if δ(P,Q) > 1.

When IRfY (P,Q) is nonempty, each fY ∈ IRfY (P,Q) has the representation of a mixture
of two probability densities weighted by δ = δ(P,Q),

fY (y) = δ
(
f(y)/δ
)

+ (1− δ)γ(y), (2.4)

where f(y)/δ is the normalized envelope density depending only on the data generating
process and γ(y) is a probability density function that can be arbitrarily chosen to span
the identification region. Thus, another way to view IRfY (P,Q) is the set of probability
distributions generated from (2.4) by choosing an arbitrary probability density γ(y).
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By this way of representing IRfY (P,Q), FY the cdf of Y whose density belongs to
IRfY (P,Q) is written as

FY (y) =

∫

(−∞,y]
f(t)dµ+ (1− δ)Γ(y),

where Γ(·) is the cdf of γ(·). Since we can choose any values between zero and one for Γ(y),
the tight cdf bounds of Y are obtained as
∫

(−∞,y]
f(t)dµ ≤ FY (y) ≤

∫

(−∞,y]
f(t)dµ+ 1− δ. (2.5)

Note that these cdf bounds can be strictly narrower than the cdf bounds constructed in
Blundell et al. (2007) (see Appendix B).

The tight bounds for the mean E(Y ) also follow from (2.4). Let Y have a compact
support Y = [yl, yu]. By specifying γ(y) as the degenerate distribution at the lower or upper
bound of the outcome support, we obtain the tight bounds for E(Y ) under ER,

(1− δ)yl +
∫

Y
yf(y)dµ ≤ E(Y ) ≤

∫

Y
yf(y)dµ+ (1− δ)yu. (2.6)

Since ER is stronger than MI, these mean bounds are equally or strictly narrower than
the tight mean bounds under MI constructed in Manski (1994). In Appendix C, we compare
the tight bounds of E(Y ) obtained from the exclusion restriction with the ones obtained
from the mean independence restriction. A sufficient condition for these two bounds for
E(Y ) to be identical is that the data generating process reveals either p(y) ≥ q(y) µ-a.e. or
q(y) ≥ p(y) µ-a.e., that is, one of the observed densities covers the other.

2.3 Does selection equation help to identify fY ?

The structural selection model formulates the selection mechanism as

D = I{v(Z,U) ≥ 0}, (2.7)

where v(Z,U) is the latent utility to rationalize the individual selection process, and U
represents the unobserved individual heterogeneities that affect one’s selection response and
are possibly dependent on the outcome Y . Recall that ER only implies independence
between the outcome Y and instrument Z, while it is silent about a statistical relationship
between the selection heterogeneity U and instrument Z. In the case where we believe Z to
be independent of any individual heterogeneities, we might want to explicitly impose joint
independence between Z and (Y, U). In that case, can we further narrow the identification
region by strengthening ER to joint independence?

An importance of this question can be motivated by a comparison with the counterfactual
causal model with endogenous treatment choice (Imbens and Angrist (1994) and Angrist et
al (1996)). Given a pair of treated and control outcomes (Y1, Y0) with the nonseparable
selection equation (2.7), it is well known that the joint independence restriction between Z
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and (Y1, Y0, U) yields a narrower identification region than marginal independence of Z and
(Y1, Y0) for the distribution of the potential outcomes.8 In constrast to the counterfactual
causal model, it has not been clarified whether or not the selection model with a single
missing outcome can enjoy an identification gain from the joint independence restriction.

When we introduce latent utility with unobserved heterogeneities U into the model, we
characterize the population by a joint distribution of (Y,D,U, Z) rather than (Y,D,Z). In
particular, if the instrument Z is binary, the population random variables (Y,D,U,Z) can be
replaced with (Y, T, Z), where T is the individual type that indicates one’s selection response
to each value of the instrument as defined in Imbens and Angrist (1994) (see also Pearl
(1994a)). Define the potential selection indicator Dz, z = 1, 0, representing one’s selection
response when the instrument was set to Z = z, i.e., Dz = I{v(z, U) ≥ 0}. The category
variable of individual type T is defined as9

T =






c : complier if D1 = 1, D0 = 0,
n : never-taker if D1 = D0 = 0,
a : always-taker if D1 = D0 = 1,
d : defier if D1 = 0, D0 = 1,

and joint independence of Z and (Y, U) is equivalently stated as joint independence of Z and
(Y, T ) (Pearl (1994a)). Accordingly, the definition of the identification region under joint
independence is defined as follows.

Definition 2.2 (the identification region under joint independence) Given a data gen-
erating process P and Q, the identification region for fY under the joint independence restric-
tion between Z and (Y,U) is the set of fY for each of which we can find a joint probability
distribution of (Y, T,Z) that is compatible with the data generating process and the joint
independence restriction.

Appendix D.1 provides a formal analysis on the construction of the identification region
under the joint independence restriction between Z and (Y,U). The main result is stated
in the next proposition.

Proposition 2.2 (invariance of the identification region) The identification region un-
der ER, IRfY (P,Q), is also the identification region of fY under joint independence between
Z and (Y,U).

8Balke and Pearl (1997) derives the tight bounds for the average treatment effects E(Y1) − E(Y0) under
the joint independence restriction (Y1, Y0, U) ⊥ Z for the binary outcome case. Kitagawa (2009) provides
a closed-form expression of the identification region as well as the tight bounds of the average treatment
effects for the continuous outcome case and shows that the joint independence restriction (Y1, Y0, U) ⊥ Z
can narrow the identification region for the distribution of (Y1, Y0) relative to the marginal independence
restriction (Y1, Y0) ⊥ Z.

9Although the single missing outcome model is not the counterfactual causal model, we name each type
as in Imbens and Angrist.
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This proposition shows that a further identification gain from the joint independence
restriction between Z and (Y,U), which is known to exist in the causal model with an
instrument (Balke and Pearl (1997)), does not exist in the selection model with a single
outcome. This redundancy of the joint independence restriction implies that the marginal
independece of Z and Y is the only refutable restriction for the instrument exogeneity.

An additional restriction we consider is a functional form specification for latent utility.
In the standard structural selection model, we specify the selection equation in the form of
threshold crossing selection with an additive error,

v(Z,U) = ṽ(Z)− U, (2.8)

where U is a scalar and ṽ(Z) depends only on the instrument. Heckman and Vytlacil
(2001a, 2001b) show that the expression of the bounds of E(Y ) under mean independence
constructed in Manski (1994) provides the tight bounds even under the joint independence
between Z and (Y,U) and the specification of the additively separable latent utility. This
result is somewhat surprising since the tight E(Y ) bounds under ER can be strictly narrower
than the E(Y ) bounds under MI, but the latter becomes the tightest once we impose the joint
independence of Z and (Y,U) and threshold crossing with an additive error. We disentangle
this puzzle using the expression of the identification region obtained through the envelope
density.

By noting the equivalence result of Vytlacil (2002), the selection process with additively
separable latent utility can be equivalently analyzed by imposing the monotonicity of Imbens
and Angrist (1994). Hence, the definition of the tight identification region in this case is
defined as follows.

Definition 2.3 (the identification region under separable utility) Given a data gen-
erating process P and Q, the identification region for fY under joint independence between
Z and (Y, U) and the specification of threshold crossing selection with an additive error is
the set of fY for each of which we can find a joint probability distribution of (Y, T, Z) that
is compatible with the data generating process and satisfies the joint independence restriction
of Z and (Y, T ) with either Pr(T = c) = 0 or Pr(T = d) = 0.

In Appendix D.2, we derive the identification region for fY under these two restrictions.
The resulting identification region for fY is given in the next proposition.

Proposition 2.3 (the identification region under separable utility) The identification
region under joint independence between Z and (Y,D1,D0) and the specification of threshold
crossing selection with an additive error is

{
IRfY (P,Q) if p(y) ≥ q(y) µ-a.e. or q(y) ≥ p(y) µ-a.e.
∅ otherwise.

(2.9)
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Figure 2: If the instrument is jointly independent of Y and the unobserved heterogeneities
in the latent utility, and threshold crossing selection with an additive error holds in the pop-
ulation, then we must observe that either p(y) or q(y) covers the other on the entire Y, as
drawn above. Note that this figure also shows the case where the tight mean bounds under
ER are identical to the tight mean bounds under MI (see Appendix C).

This result says that if the data generating process reveals either p(y) ≥ q(y) µ-a.e.
or q(y) ≥ p(y) µ-a.e., the identification region under ER is also the identification region
under the restrictions of joint independence and additively separable latent utility. In this
sense, threshold crossing selection with an additive error does not contribute to identifying
fY further than ER. This result supports the aforementioned Heckman and Vytlacil’s result
on the E(Y ) bounds since, as already mentioned in Section 2.2, given we observe either
p(y) ≥ q(y) µ-a.e. or q(y) ≥ p(y) µ-a.e., the E(Y ) bounds constructed from IRfY (P,Q)
coincide with the Manski’s E(Y ) bounds under MI.

The empty identification region in (2.9) implies that if joint independence and threshold
crossing selection with an additive error hold in the population, we must observe either
p(y) ≥ q(y) µ-a.e. or q(y) ≥ p(y) µ-a.e. In other words, the structural selection model with
additively separable latent utility constrains the data generating process in such a way that
either p(y) or q(y) covers the other on the entire Y (see Figure 2 for a visual illustration of the
observed densities for this case). Note that the condition of p(y) ≥ q(y) µ-a.e. or q(y) ≥ p(y)
µ-a.e. provides a testable implication for the joint restriction of joint independence and
additively separable latent utility. That is, we can refute it by checking whether or not one
of the observable densities p(y) or q(y) nests the other.10

The envelope density provides the maximal identifying information for fY based only on
the empirical evidence, and optimality of this aggregating scheme is free from the assumptions
that only constrain the data generating process.

10Kitagawa (2009) proposes a test procedure for whether the density p(y) nests q(y) in the context of the
counterfactual causal model with a binary instrument. This is interpreted as a test for point-identifiability
of the local average treatment effect.
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3 Estimation of the integrated envelope and a specification
test of the exclusion restriction

Our identification analysis clarified that the emptiness of the identification region under ER is
summarized by the integrated envelope δ(P,Q). We also showed that the joint independence
restriction does not tighten IRfY (P,Q). These results imply that δ(P,Q) is the only relevant
parameter for the purpose of refuting the instrument exogeneity. Hence, the rest of this paper
focuses on estimation and inference for δ(P,Q) so as to develop a specification test for the
instrument independence assumption.

Without losing any distributional information of data (Y ·D,D,Z), we define an outcome
observation recorded in data by Ydata ≡ DY + (1 − D) {mis} and express data as i.i.d
observations of (Ydata,i, Zi), i = 1, . . . ,N, where {mis} indicates that the observation of Y
is missing. Clearly, the data generating process P = (P (·), Pmis) and Q = (Q(·),Qmis)
are interpreted as the conditional distributions of the random variable Ydata given Z, which
have the support Y ∪ {mis}. We divide the full sample into two subsamples based on the
assigned value of Z ∈ {1, 0}. We denote the size of these subsamples by m =

∑N
i=1 Zi and

n =
∑N
i=1(1−Zi). We assume Zi is Bernoulli with mean λ ≡ Pr(Z = 1) ∈ [ǫ, 1− ǫ] for some

ǫ > 0 and define λN ≡ m/N . We adopt the two-sample problem with nonrandom sample
size, i.e., our asymptotic analysis is conditional on the sequence {Zi : i = 1, 2, ...}. Since
λN → λ, m→∞, and n→∞ as N →∞, we interpret the stochastic limit with respect to
N →∞ equivalent to the limit with respect to m→∞, n→∞, and λN → λ.

The test strategy considered in this paper is as follows. The null hypothesis is that
IRfY (P,Q) is nonempty, that is, δ(P,Q) ≤ 1. Since this null hypothesis is the necessary
but not a sufficient condition of instrument independence, our test is interpreted as a test for
a refutable hypothesis (Breusch (1986)). Let δ̂ be the point estimator of δ(P,Q) such that√
N(δ̂ − δ(P,Q)) has an asymptotic distribution,

√
N(δ̂ − δ(P,Q)) � J(·;P,Q, λ),

where "�" denotes weak convergence and J(·;P,Q, λ) represents the cdf of the asymptotic
distribution which can depend on P,Q, and λ. We infer whether or not δ(P,Q) ≤ 1 with
a prespecified maximal false rejection rate α by inverting the one-sided confidence intervals
with coverage 1 − α. That is, our goal is to obtain ĉ1−α, a consistent estimator of the
(1 − α)-th quantile of J(·;P,Q, λ), and to check whether the one-sided confidence intervals

[δ̂ − ĉ1−α√
N
,∞) contain 1 or not. We reject the null hypothesis if we observe δ̂ − ĉ1−α√

N
> 1.

This procedure provides a pointwise asymptotically size correct test11 since for every (P,Q)

11Andrews and Guggenberger (2008), Canay (2007), Imbens and Manski (2004), and Romano and Shaikh
(2008) analyze the uniform asymptotic validity of the confidence regions for partially identified parameters in
the moment inequality model. In this paper, we establish the pointwise asymptotic valdity of our inferential
procedure for the integrated envelope. It is not yet known whether our inferential procedure for the integrated
envelope is uniformly asymptotically valid.
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satisfying the null δ(P,Q) ≤ 1, we have

ProbP,Q,λN

(
δ̂ − ĉ1−α√

N
> 1

)
≤ ProbP,Q,λN

(
δ̂ − ĉ1−α√

N
> δ(P,Q)

)

= ProbP,Q,λN

(√
N(δ̂ − δ(P,Q)) > ĉ1−α

)

N→∞−→ 1− J(c1−α;P,Q, λ) = α.

We decompose our theoretical development into two parts. First, we develop an estimator
of δ(P,Q) and derive the asymptotic distribution of

√
N(δ̂ − δ(P,Q)) (Section 3). Second,

we focus on how to consistently estimate quantiles of the asymptotic distribution J(·;P,Q, λ)
(Section 4).

3.1 An illuminating example: binary Y

To motivate our estimation and inference procedure for δ(P,Q), we consider a simple exam-
ple in which Y is binary. The main focus of this section is to illuminate the non-pivotal
asymptotic distribution for the estimation of δ(P,Q). We also illustrate how our bootstrap
strategy resolves the problem.

3.1.1 Estimation of δ

When Y is binary, P and Q are represented by the three probabilities, (p1, p0, pmis) and
(q1, q0, qmis), where py and qy, y = 1, 0, {mis}, are the probabilities of Ydata = y given Z = 1
and Z = 0 respectively. Here, the integrated envelope δ = δ(P,Q) is defined as

δ ≡ max{p1, q1}+ max{p0, q0}. (3.1)

A sample analogue estimator for δ is constructed as

δ̂ = max{p̂1, q̂1}+ max{p̂0, q̂0},

where (p̂1, p̂0) and (q̂1, q̂0) are the maximum likelihood estimators of (p1, p0) and (q1, q0).
Here, the maximum likelihood estimators are the sample fractions of the observations clas-
sified in the corresponding category conditional on Z. The standard central limit theorem
yields

√
N






p̂1 − p1
p̂0 − p0
q̂1 − q1
q̂0 − q0




�






X1
X0
W1

W0




 ∼ N

(
0,

(
ΣP,λ O
O ΣQ,λ

))
,

where

ΣP,λ = λ−1
(
p1 (1− p1) −p1p0
−p1p0 p0(1− p0)

)
and

ΣQ,λ = (1− λ)−1
(
q1 (1− q1) −q1q0
−q1q0 q0(1− q0)

)
.
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Although the maximum likelihood estimators for p and q are asymptotically normal, δ̂
is not necessarily normal due to the max operator. Specifically, asymptotic normality fails
when the data generating process has ties in the max operator in (3.1), meaning p1 = q1
and/or p0 = q0. For example, consider the case of p1 = q1 and p0 > q0. Then, it follows that

√
N(δ̂ − δ) = max

{ √
N(p̂1 − p1)√
N(q̂1 − q1)

}
+ max

{ √
N(p̂0 − p0)√

N(q̂0 − q0) +
√
N(q0 − p0)

}

� max

{
X1
W1

}
+X0,

where the second max operation in the first line converges in distribution toX0 since
√
N(q0−

p0) → −∞. In contrast, when there are no ties (p1 �= q1 and p0 �= q0),
√
N(δ̂ − δ) is

asymptotically normal since it converges to the sum of the two normal random variables.
In order to summarize all the possible asymptotic distributions, we introduce

δ1 = p1 + p0, G1 = X1 +X0,
δ2 = p1 + q0, G2 = X1 +W0,
δ3 = q1 + p0, G3 =W1 +X0,
δ4 = q1 + q0, G4 =W1 +W0,

where δj , j = 1, . . . , 4, are the candidates of δ and at least one of them achieves the true
integrated envelope. Gj each represents the Gaussian random variable that is obtained from

the asymptotic distribution of
√
N(δ̂j − δj), where δ̂j is the sample analogue estimator of δj.

Using this notation, the asymptotic distribution of
√
N(δ̂ − δ) is expressed as

√
N(δ̂ − δ)� max

{j:δj=δ}
{Gj}. (3.2)

The index set of the max operator {j : δj = δ} indicates whether there are ties between P
and Q. For instance, in case of p1 = q1 and p0 > q0, we have {j : δj = δ} = {1, 3} . If
{j : δj = δ} is a singleton, we obtain asymptotic normality, while if it contains more than one
element, asymptotic normality fails and the asymptotic distribution is given by the extremum
value among the normal random variables {Gj : δj = δ}. Thus,

√
N(δ̂− δ) is not uniformly

asymptotically normal over the data generating process.
The failure of uniform asymptotic normality of a statistic is known as discontinuity of

the asymptotic distribution and it arises in many contexts in econometrics (e.g., weak instru-
ments, unit root, etc.). The integrated envelope also has this issue. This raises difficulties in
conducting inference on δ since we do not know which asymptotic distribution gives a better
approximation for the sampling distribution of

√
N(δ̂ − δ).

3.1.2 Inconsistency of the nonparametric bootstrap

The issue of discontinuity of the asymptotic distribution of
√
N(δ̂−δ) cannot be bypassed by

standard implementation of the nonparametric bootstrap. By following an argument similar
to Andrews (2000), it can be shown that the nonparametric bootstrap fails to consistently
estimate the asymptotic distribution of

√
N(δ̂−δ). The case of binary Y provides a canonical

example for this.
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In the standard nonparametric bootstrap, we form a bootstrap sample usingm i.i.d. draws
from the subsample {Ydata,i : Zi = 1} and n i.i.d. draws from the subsample {Ydata,i : Zi = 0}.
Let δ̂

∗
= max{p̂∗1, q̂∗1}+max{p̂∗0, q̂∗0} be the bootstrap estimator of δ where (p̂∗1, p̂

∗
0) and (q̂∗1, q̂

∗
0)

are the maximum likelihood estimators computed from the bootstrap sample. If the standard
nonparametric bootstrap were consistent, then, for almost every sequence of the original
sample, we could replicate the asymptotic distribution of

√
N(δ̂− δ) by that of

√
N(δ̂

∗ − δ̂).
This is, however, not the case when there are ties between P and Q.

Consider again the case of p1 = q1 and p0 > q0 where the asymptotic distribution of√
N(δ̂− δ) is given by max{X1,W1}+X0. The bootstrap statistic

√
N(δ̂

∗− δ̂) is written as
√
N(δ̂

∗ − δ̂) =
√
N(max{p̂∗1, q̂∗1}+ max{p̂∗0, q̂∗0})−

√
N(max{p̂1, q̂1}+ max{p̂0, q̂0})

= max
{√
N(p̂∗1 − q̂∗1), 0

}
−max

{√
N(p̂1 − q̂1), 0

}

︸ ︷︷ ︸
(i)

+max
{√
N(q̂∗0 − p̂∗0), 0

}
−max

{√
N(q̂0 − p̂0), 0

}

︸ ︷︷ ︸
(ii)

+
√
N(q̂∗1 − q̂1) +

√
N(p̂∗0 − p̂0)︸ ︷︷ ︸

(iii)

. (3.3)

We denote the probability distribution for the bootstrap sample with sizeN by {PN : N ≥ 1}.
Let ω be an element of the sample space Ω. Since

√
N(p̂1 − q̂1) weakly converges to the

Gaussian random variable G = X1−W1, we can find an Ω on which p̂1, q̂1, and G are defined
and

√
N(p̂1(ω)− q̂1(ω))→N→∞ G(ω) for almost all ω ∈ Ω (the Almost Sure Representation

Theorem, see, e.g., Pollard (1984)). The central limit theorem of triangular arrays and the
strong law of large numbers imply, for almost every ω ∈ Ω,

√
N






p̂∗1 − p̂1(ω)
p̂∗0 − p̂0(ω)
q̂∗1 − q̂1(ω)
q̂∗0 − q̂0(ω)




 �






X1
X0
W1

W0




 , (3.4)

q̂0(ω)− p̂0(ω) → q0 − p0 < 0.

Let us consider the event Bc = {ω ∈ Ω : G(ω) < −c} for a constant c > 0. Clearly,
Pr(Bc) > 0 holds. For ω ∈ Bc, the stochastic limit of each term in (3.3) is obtained as

(i) = max
{√
N(p̂∗1 − p̂1(ω))−

√
N(q̂∗1 − q̂1(ω)) +

√
N(p̂1(ω)− q̂1(ω)), 0

}

−max
{√
N(p̂1(ω)− q̂1(ω)), 0

}

≤ max
{√
N(p̂∗1 − p̂1(ω))−

√
N(q̂∗1 − q̂1(ω))− c, 0

}
for sufficiently large N,

� max {X1 −W1 − c, 0} ,
(ii) = max

{√
N(q̂∗0 − q̂0(ω))−

√
N(p̂∗0 − p̂0(ω)) +

√
N(q̂0(ω)− p̂0(ω)), 0

}

−max
{√
N(q̂0(ω)− p̂0(ω)), 0

}

→ 0 in probability with respect to {PN : N ≥ 1},
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and the term (iii) weakly converges to W1 +X0 by (3.4). To sum up, we have for large N

√
N(δ̂

∗ − δ̂(ω)) ≤ max{X1 − c,W1}+X0 ≤ max{X1,W1}+X0, (3.5)

where the second inequality is strict with positive probability in terms of the randomness in
drawing a bootstrap sample. Note that the last terms in (3.5) have the same probability
law as the limiting distribution of

√
N(δ̂ − δ). Therefore, along the sampling sequence of

ω ∈ Bc, the asymptotic distribution of the bootstrap statistic
√
N(δ̂

∗− δ̂(ω)) fails to coincide
with that of

√
N(δ̂ − δ). Provided that Pr(Bc) > 0, this refutes the consistency of the

nonparametric bootstrap.

3.1.3 Asymptotically valid inference

We provide two procedures for asymptotically valid inference on δ. The first approach
estimates the asymptotic distribution max{j:δj=δ}{Gj} in two steps. In the first step, we
estimate the index set Vmax≡{j : δj = δ}. In the second step, we estimate the joint
distribution of Gj ’s. The latter part is straightforward in this example since the Gj ’s are
Gaussian and their covariance matrix can be consistently estimated. For the former part,
we estimate Vmax using the sequence of slackness variables {ηN : N ≥ 1},

V̂
max(ηN) = {j ∈ {1, 2, 3, 4} :

√
N(δ̂ − δ̂j) ≤ ηN}.

In this construction of V̂max(ηN), we determine which δj achieves the population δ in terms

of whether the estimator of δj is close to δ̂ = maxj{δ̂j} or not. The value of ηN/
√
N gives

the cut-off value for how small (δ̂ − δ̂j) should be in order for such j to be included in the
estimator of Vmax. This estimator for Vmax is asymptotically valid12 if the slackness sequence
{ηN : N ≥ 1} meets the following conditions,

ηN√
N
→ 0 and

ηN√
log logN

→∞.

That is, ηN diverges to positive infinity faster than
√

log logN, but not as fast as
√
N . This

speed of divergence is implied by the law of iterated logarithm (see, e.g., Shiryaev (1996)).
By combining these two estimations, we are able to consistently estimate the asymptotic

distribution maxj∈Vmax{Gj} by

max
j∈V̂max(ηN )

{Ĝj}

where the Ĝj’s are Gaussian and their covariance matrix is estimated from the sample.
Instead of plugging in Ĝj’s, we can incorporate the nonparametric bootstrap for estimat-

ing the asymptotic distribution; given the estimator V̂max(ηN), we resample,

max
j∈V̂max(ηN )

{
√
N(δ̂

∗
j − δ̂j)}

12For the formal statement of the consistency of V̂max(ηN ), see Lemma A.2 and the proof of Proposition
4.1 in Appendix A.
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where δ̂
∗
j is the bootstrapped δ̂j . Since the standard argument of the bootstrap consistency

shows
√
N(δ̂

∗
j − δ̂j) � Gj, we can build in the nonparametric bootstrap inside the max

operator so as to obtain the consistent estimator for the asymptotic distribution. In Section
4, we extend this approach to a general setting.

As Andrews (2000) points out, another asymptotically valid method is subsampling (Poli-
tis and Romano (1994)). In subsampling, we resample fewer observations than the origi-
nal sample randomly without replacement, i.e., we resample bm(< m) observations from
{Ydata,i : Zi = 1} and bn(< n) observations from {Ydata,i : Zi = 0}. By tuning the blocksizes
to (bm, bn) →∞, (bm/m, bn/n) → 0, and bm/(bm + bn) → λ, the asymptotic distribution of√
N(δ̂ − δ) is consistently estimated by the repeated sampling of

√
B(δ̂

∗
bm,bn − δ̂),

where B = bm + bn and δ̂
∗
bm,bn = max{p̂∗1,bm, q̂∗1,bn} + max{p̂∗0,bm , q̂∗0,bn} is the estimator of δ

obtained from the subsamples of size bm and bn. To see why subsampling works, consider
the same setup p1 = q1, p0 > q0, and

√
B(δ̂

∗
bm,bn − δ̂) = max

{√
B(p̂∗1,bm − q̂∗1,bn), 0

}
−max

{√
B(p̂∗1,bm − q̂∗1,bn), 0

}

︸ ︷︷ ︸
(i)′

+max
{√
B(q̂∗0,bm − p̂∗0,bn), 0

}
−max

{√
B(q̂0 − p̂0), 0

}

︸ ︷︷ ︸
(ii)′

+
√
B(q̂∗1,bn − q̂1) +

√
B(p̂∗0,bm − p̂0)︸ ︷︷ ︸

(iii)′

.

Given the above choice of blocksizes, we can see that the asymptotic distributions of (ii)′

and (iii)′ are the same as (ii) and (iii). While, for (i)′, we obtain

(i)′ = max
{√
B(p̂∗1,bm − p̂1)−

√
B(q̂∗1,bn − q̂1) +

√
B(p̂1 − q̂1), 0

}

−max
{√
B(p̂1 − q̂1), 0

}

� max {X1 −W1, 0}

since
√
B(p̂1 − q̂1) =

√
B/N

√
N(p̂1 − q̂1) → 0 in probability (with respect to the random-

ness in the original sampling sequence). Thus, the resampling distribution of the statistic√
B(δ̂

∗
bm,bn − δ̂) correctly replicates the asymptotic distribution of

√
N(δ̂ − δ).

3.2 Generalization to an arbitrary Y

The framework of this section allows Y to be an arbitrary scalar random variable. We keep
the instrument binary for simplicity. With additional notation, we can extend our analysis
to the case with a multi-valued discrete instrument with finite points of support (see Section
6 and Appendix E).
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3.2.1 An estimator of δ

In the binary Y example, we write the true integrated envelope by

δ(P,Q) = max
j
{δj} = max






p1 + p0
p1 + q0
p0 + q1
q1 + q0






= max






P ({1, 0}) +Q(∅)
P ({1}) +Q({0})
P ({0}) +Q({1})
P (∅) +Q({1, 0})





.

Note that the last expression is further rewritten as

δ(P,Q) = max
V ∈B({1,0})

{P (V ) +Q(V c)}, (3.6)

where B({1, 0}) is the power set of {1, 0}, B({1, 0}) ={{1, 0}, {1}, {0}, ∅}, and V c = {1, 0}\V,
the complement of V . Here, P (V ) + Q(V c) is seen as a function from the power set of
Y ={1, 0} to R+ and the integrated envelope is defined as its maximum over the possible
subsets of Y ={1, 0}. A generalization to an arbitrary Y utilizes this representation of
δ(P,Q).

Let B(Y) be the Borel σ-algebra on Y. We define a set function δ(·) : B(Y)→R+,

δ(V ) = P (V ) +Q(V c), (3.7)

where V c is the complement of V , Y\V . The function δ(V ) returns the sum of the probability
on V with respect to P and the probability on V c with respect to Q. Note that the integrated
envelope δ(P,Q) is given by the value of δ(·) evaluated at E = {y ∈ Y : p(y) ≥ q(y)} since

δ(P,Q) =

∫

Y
max{p(y), q(y)}dµ

=

∫

{y:p(y)≥q(y)}
p(y)dµ+

∫

{y:p(y)<q(y)}
q(y)dµ

= P (E) +Q(Ec).

It can be shown that for an arbitrary V ∈ B(Y), δ(E) − δ(V ) ≥ 0, and therefore E is a
maximizer of δ(·) over B(Y).13 Hence, an alternative expression for the integrated envelope
δ(P,Q) is the supremum of δ(·) over B(Y),

δ(P,Q) = sup
V ∈B(Y)

{δ(V )}. (3.8)

13Let (P −Q)(B) = P (B)−Q(B) and (Q− P )(B) = Q(B)− P (B). For an arbitray B ∈ B(Y), we have

δ(E)− δ(B) = (P −Q)(E ∩ Bc) + (Q− P )(Ec ∩B).

Since (P − Q)(·) and (Q − P )(·) are nonnegative on any subsets contained in E and Ec, δ(E) − δ(B) ≥ 0
holds.
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We can see this expression of δ(P,Q) as a direct analogue of (3.6) for a more complex Y, and
the only complication appears in the class of subsets in Y on which the supremum operates.

Let Pm and Qn be the empirical probability measures for {Ydata,i : Zi = 1} and {Ydata,i :
Zi = 0}, i.e., for V ∈ B(Y),

Pm(V ) ≡ 1

m

∑

i:Zi=1

I{Ydata,i ∈ V }, Qn(V ) ≡ 1

n

∑

i:Zi=0

I{Ydata,i ∈ V }.

We define a sample analogue of δ(·) by replacing the population distribution of P (·) and Q(·)
in (3.7) with the empirical distributions Pm(·) and Qn(·),

δ̂(V ) = Pm(V ) +Qn(V
c). (3.9)

Analogous to the construction of the integrated envelope in (3.8), we propose an estimator
of δ(P,Q) by maximizing δ̂(·) over a class of subsets V ⊂B(Y),14

δ̂ ≡ sup
V ∈V

{δ̂(V )}. (3.10)

This estimator for δ(P,Q) has the class of subsets V in its construction and the estimation
procedure requires specifying V beforehand. In the next subsection, we discuss how to
specify V in order to guarantee the asymptotic validity of the estimator.

3.2.2 VC-class

When Y is discrete, V is specified as the power set of Y as in the binary Y case (3.6). On the
other hand, when Y is continuous, we cannot take V as large as B(Y). The reason is that if

we specify V = B(Y), V can contain the subset, V max =

{⋃
i:Zi=1,Ydata,i �={mis}

{Ydata,i}
}

for

any sampling sequence of {(Ydata,i, Zi)}Ni=1, N = 1, 2, . . . . This subset almost surely gives

the trivial maximum of δ̂(·),

δ̂(V max) = m−1
∑

i:Zi=1

Di + n−1
∑

i:Zi=0

Di,

and therefore provides little information on the integrated envelope no matter how large the
sample size is because it converges to Pr(D = 1|Z = 1) + Pr(D = 1|Z = 0). This forces us
to restrict the size of V smaller than B(Y) in order to guarantee the consistency of δ̂.

An appropriate restriction for this purpose is that V is the Vapnik-Červonenkis class
(VC-class) (see, e.g., Dudley (1999) for the definition of VC-class). The class of the right
unbounded intervals V = {[y,∞) : y ∈ R} is an example of the VC-class. In Figure 3, the
function δ(·) is plotted with respect to this choice of V and provides a visual illustration for
how δ(·) attains the integrated envelope at its maximum.

14Forming an estimator by maximizing a set function with respect to a class of subsets is found in the
literature of estimation for the density contours (Hartigan (1988) and Polonik (1995)).
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Figure 3: Let Y be a continuous outcome on R. In order to draw δ(·) in two dimensions, we
plot δ(·) with respect to the collection of right unbounded intervals V = {[y,∞) : y ∈ R}. As
the left-hand side figure shows, P (V ) corresponds to the right tail area of p(·) while Q(V c)
corresponds to the left tail area of q(·). δ(V ) returns the sum of these areas. The right-
hand side figure plots δ([y,∞)) with respect to y. When p(y) and q(y) cross only at y∗ as
in the left-hand side figure, δ([y,∞)) achieves its unique maximum at y∗ and the maximum
corresponds to the integrated envelope δ(P,Q). Note that the sample analogue δ̂([y,∞)) is
drawn as a random step function centered around the true δ([y,∞)).

By specifying V as the collection of right and left unbounded intervals, we obtain the half
unbounded interval class Vhalf ,

Vhalf= {∅,R} ∪ {(−∞, y] : y ∈ R} ∪ {[y,∞) : y ∈ R} . (3.11)

In order for the estimator δ̂ to be consistent to the true integrated envelope δ(P,Q), we
need to assume that the specified V contains some V which attain δ(V ) = δ(P,Q). This
assumption, or, for short, the choice of V, may be interpreted as restrictions on the global
properties of the densities rather than the local properties such as smoothness. For example,
when we specify V = Vhalf , we are imposing the restriction on the configuration of p(y) and
q(y) such that p(y) and q(y) can cross at most once as in the left-hand side panel of Figure
3.

An alternative to Vhalf considered in this paper is the histogram class Vhist, which is
defined as the power set of histogram bins whose breakpoints can float over R. For an
illustration for Vhist, consider fixed L histogram bins with a prespecified binwidth. Let
(p̂1, . . . , p̂L) and (q̂1, . . . , q̂L) be the histogram estimators for the discretized P and Q on
Y. Then, analogously to the binary Y case, we can form the estimator of the integrated
envelope in terms of the specified bins as

∑L
l=1max{p̂l, q̂l}. When we employ the histogram

class, we maximize
∑L
l=1max{p̂l, q̂l} over the possible choices of histogram bins (with a fixed

binwidth).
The algebraic definition of the histogram class is given as follows. Let h > 0 be the bin
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Figure 4: p(y) and q(y) are tied over [y′, y′′]. Given V as the collection of right unbounded
intervals, δ([y,∞)) is constant over [y′, y′′] and there is a continuum of maximizers of δ(·).
Here, the maximizer subclass is given by Vmax = {[y,∞) : y ∈ [y′, y′′]}.

width and L the number of bins. Pick an initial breakpoint y0 ∈ R and consider equally
distanced L points −∞ < y0 < y1 < · · · < yL−1 <∞ where yl = y0 + lh, l = 1, . . . , (L− 1).
Denote the (L + 1) disjoint intervals formed by these L points by H0(y0, h) = (−∞, y0],
Hl(y0, h) = (yl−1, yl], l = 1, . . . , (L − 1), and HL(y0, h) = (yL−1,∞). Let Ij(L), j =
1, . . . , 2L+1 indicate all the possible subsets of the indices {0, 1, . . . , L}. Given Y0 a set of
the smallest breakpoint y0, the histogram class with bin width h and the number of bins L
is expressed as

Vhist(h,L,Y0)=






⋃

l∈Ij(L)
Hl(y0, h) : y0 ∈ Y0, j = 1, . . . , 2L+1





. (3.12)

Although the binwidth is a tuning parameter, we obtain a finer VC-class than Vhalf .
As we saw in the binary Y case, ties between P and Q cause the non-pivotal asymptotic

distribution for the estimator of δ(P,Q). In order to consider how the ties between P and Q
can be represented in terms of the class of subsets V, let us specify V as the right unbounded
interval class {[y,∞) : y ∈ R}. If P and Q have ties as in Figure 4, the maximizer of δ(·)
over V is no longer unique and any elements in Vmax = {[y,∞) : y′ ≤ y ≤ y′′} can yield
the integrated envelope. This example illustrates that we can identify the existence of ties
between P and Q with respect to V by the size of the subclass

V
max = {V ∈ V : δ(V ) = δ(P,Q)}.

If Vmax consists of a single element V max, this means that V max is the only subset in V that
divides the outcome support into {y : p(y) ≥ q(y)} and {y : p(y) < q(y)}. Hence, there are
no ties between P and Q (with respect to the specification of V). On the other hand, if
V
max contains two distinct elements, V max1 and V max2 with µ(V max1 △ V max2 ) > 0, it can be

shown that p(y) = q(y) on V max1 △ V max2 , and therefore P and Q are tied on the set with
positive measure V max1 △ V max2 .
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Throughout our asymptotic analysis, we do not explicitly specify V. Provided that the
assumptions given below are satisfied, the main asymptotic results of the present paper are
valid independent of the choice of V. In practice, however, there is a trade-off between
the flexibility of V (richness of V) and the precision of the estimator δ̂. That is, as we
choose a larger V for a given sample size (e.g., the histogram class with finer bins), we have
more upward-biased δ̂ due to data overfitting. On the other hand, as we choose a smaller
V, the assumption that V contains some V satisfying δ(V ) = δ(P,Q) becomes less credible.
Regardless of its practical importance, we do not discuss how to choose V in this paper and
leave it for future research.

3.2.3 Asymptotic distribution of δ̂

The main assumptions that are needed for our asymptotic results are given as follows.

Assumptions

(A1) Nondegeneracy: The data generating process P and Q are nondegenerate probability
distributions on Y ∪ {mis} and the integrated envelope is positive δ(P,Q) > 0.

(A2) VC-class: V is a VC-class of measurable subsets in Y.

(A3) Optimal partition: There exists a nonempty maximizer subclass Vmax ⊂ V defined by

V
max = {V ∈ V : δ(V ) = δ(P,Q)}

(A4) Existence of maximizer : With probability one, there exists a sequence of random sets
V̂N ∈ V and V̂ maxN ∈ Vmax such that for every N ≥ 1,

δ̂(V̂N) = sup
V ∈V

{δ̂(V )}, δ̂(V̂ maxN ) = sup
V ∈Vmax

{δ̂(V )}.

Assumption (A3) implies that V contains at least one optimal subset at which the set
function δ(·) achieves the true integrated envelope. Since these subsets maximize δ(·), we
refer to the collection of these subsets as the maximizer subclass Vmax. We allow V

max to
contain more than one element to handle the aforementioned issue of ties between P and Q.
Assumption (A4) is imposed since this simplifies our proof of the asymptotic results.

The consistency of δ̂ follows from the uniform convergence of the empirical probability
measure (Glivenko-Cantelli theorem).

For the asymptotic distribution of
√
N(δ̂ − δ(P,Q)), consider

√
N(δ̂ − δ(P,Q)) = sup

V ∈V

{√
N(δ̂(V )− δ(V )) +

√
N(δ(V )− δ(P,Q))

}
. (3.13)

The first term in the supremum of (3.13) can be written as the sum of two independent
empirical processes on V,

√
N(δ̂(V )− δ(V )) =

(
N

m

)1/2√
m(Pm(V )− P (V )) +

(
N

n

)1/2√
n(Qn(V

c)−Q(V c)).
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By applying the uniform central limit theorem of empirical processes (the Donsker theorem),√
m(Pm(V ) − P (V )) and

√
n(Qn(V

c) − Q(V c)) each converges weakly to mean zero tight
Gaussian processes on V (see, e.g., van der Vaart and Wellner (1996)). Since the sum of
independent Gaussian processes also yields Gaussian processes,

√
N(δ̂(V ) − δ(V )) weakly

converges to mean zero tight Gaussian processes on V. On the other hand, the second
term in the supremum of (3.13) vanishes for V ∈ Vmax and it diverges to negative infinity
for V /∈ V

max. Therefore, for large N, the supremum is attained at some V ∈ V
max.

This argument implies that the asymptotic distribution of
√
N(δ̂ − δ(P,Q)) is given by the

supremum of the set indexed Gaussian processes over the maximizer subclass Vmax.

Proposition 3.1 (consistency and weak convergence of δ̂) Assume (A1), (A2), and
(A3).
(i) δ̂ → δ(P,Q) as N →∞ with probability one.
(ii) Assume further (A4). Let Vmax be the maximizer subclass {V ∈ V : δ(V ) = δ(P,Q)}.
Then,

√
N(δ̂ − δ(P,Q)) � sup

V ∈Vmax
{G(V )} , (3.14)

where G(V ) is the set indexed mean zero tight Gaussian process in l∞(V) with the covariance
function, for V1, V2 ∈ V,

Cov(G(V1),G(V2)) = λ−1 [P (V1 ∩ V2)− P (V1)P (V2)]

+(1− λ)−1[Q(V c1 ∩ V c2 )−Q(V c1 )Q(V c2 )].

The asymptotic distribution of
√
N(δ̂−δ(P,Q)) depends not only on the data generating

process P , Q, and λ, but also on the maximizer subclass Vmax or, equivalently, on the choice
of V. If P and Q do not have ties and Assumption (A3) holds, Vmax has the unique element
V max, then, the distribution of (3.14) is given by the projection of the Gaussian processes
onto V max so

√
N(δ̂− δ(P,Q)) is asymptotically normal. We present this special case in the

next corollary.

Corollary 3.1 (asymptotic normality of δ̂) Assume (A1) through (A4). If Vmax is a
singleton with the unique element V max, then,

√
N(δ̂ − δ(P,Q)) � N (0, σ2(P,Q, λ)),

where

σ2(P,Q, λ) = λ−1P (V max)(1− P (V max)) + (1− λ)−1Q((V max)c)(1−Q((V max)c)).

The asymptotic variance is consistently estimated by

σ̂2 = (N/m)Pm(V̂N)(1− Pm(V̂N)) + (N/n)Qn(V̂
c
N )(1−Qn(V̂ cN)).

where V̂N is a random sequence of sets that satisfy δ̂(V̂N) = supV ∈V{δ̂(V )} for N ≥ 1.
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Asymptotic normality with the consistently estimable variance makes inference straight-
forward. In some situations, however, the singleton assumption seems to be too restrictive.
For instance, consider the case where the instrument is weak in the sense that p(y) does not
differ much from q(y). Then, assuming p(y) �= q(y) almost everywhere is too restrictive.

4 Implementation of resampling methods: bootstrap and sub-
sampling validity

Given the expression of the asymptotic distribution (Proposition 3.1), we want to consistently
estimate the (1− α)-th quantile of the asymptotic distribution. We propose two asymptot-
ically valid resampling methods in this section. The resampling methods are particularly
useful since the asymptotic distribution of

√
N(δ̂− δ(P,Q)) given in Proposition 3.1 has the

form of a supremum functional of the Gaussian processes, and, especially when Vmax is not
a singleton, it is difficult to obtain the critical values analytically (Romano (1988)).

4.1 Resampling method I: a modified bootstrap

The asymptotic distribution given in Proposition 3.1 can be replicated by the asymptotic

distribution of supV ∈Vmax
{√
N(δ̂(V )− δ(V ))

}
. Hence, one method to estimate it is plug-

ging a consistent estimator for Vmax and the bootstrap analogue of
√
N(δ̂(V ) − δ(V )) into

supV ∈Vmax
{√
N(δ̂(V )− δ(V ))

}
. In this section, we validate this approach for approximating

the asymptotic distribution of
√
N(δ̂ − δ(P,Q)).

Let Y1
data,m represent the original sample of Ydata with Z = 1 and size m. Similarly, let

Y
0
data,n be the original sample of Ydata with Z = 0 and size n. Our bootstrap algorithm is

summarized as follows.

Algorithm: bootstrap for the integrated envelope

1. Pick a slackness sequence {ηN : N ≥ 1} that satisfies
ηN√
N
→ 0,

ηN√
log logN

→∞.

2. Estimate the maximizer subclass by

V̂
max(ηN) =

{
V ∈ V :

√
N(δ̂ − δ̂(V )) ≤ ηN

}
.

3. Sample m observations from Y
1
data,m and sample n observations from Y

0
data,n randomly

with replacement and construct

δ̂
∗
(V ) = P ∗m(V ) +Q∗n(V

c), V ∈ V,

where P ∗m and Q∗n are the empirical distributions constructed by the bootstrap sample.
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4. Compute

sup
V ∈V̂max(ηN )

{√
N(δ̂

∗
(V )− δ̂(V ))

}
.

5. Iterate Step 3 and 4 many times and obtain ĉboot1−α as the sample (1− α)-th quantile of
the iterated statistics.

6. Reject the null hypothesis δ(P,Q) ≤ 1 if δ̂ − ĉboot
1−α√
N
> 1.

In Step 1, we specify a value of the tuning parameter ηN . Given the choice of ηN , we
estmate Vmax in Step 2 and the above rate of divergence for ηN guarantees the estimator
V̂
max(ηN) to be consistent to Vmax (see Lemma A.2 in Appendix A). Since the asymptotic

argument only governs the speed of divergence of ηN , it provides little guidance on how to
set its value in practice. We further address this issue in the Monte Carlo study of Section
5.

Given V̂max(ηN ), in Step 3 and 4, we bootstrap the function δ̂(·) and plug in
√
N(δ̂

∗
(·)−

δ̂(·)), a bootstrap analogue of
√
N(δ̂(·)− δ(·)), to the supremum operator supV ∈V̂max(ηN )

{·}.
The bootstrap validity for empirical processes guarantees that

√
N(δ̂

∗
(·)− δ̂(·)) approximates

the Gaussian process G(·) obtained in Proposition 3.1 (see van der Vaart and Wellner (1996)
for bootstrap validity for empirical processes). By combining consistency of V̂max(ηN)

and bootstrap validity of
√
N(δ̂

∗
(·)− δ̂(·)), the statistic supV ∈V̂max(ηN )

{√
N(δ̂

∗
(V )− δ̂(V ))

}

approximates supV ∈Vmax{G(V )}.
The next proposition validates our specification test based on the above bootstrap algo-

rithm.

Proposition 4.1 (bootstrap validity) Assume (A1) through (A4). Then, the above boot-
strap test procedure yields a pointwise asymptotically size correct test for the null δ(P,Q) ≤ 1,
that is, for every P and Q satisfying δ(P,Q) ≤ 1,

lim
N→∞

ProbP,Q,λN

(

δ̂ − ĉ
boot
1−α√
N
> 1

)

≤ α.

4.2 Resampling method II: subsampling

Subsampling is valid for any statistics that possess the asymptotic distribution (Politis and
Romano (1994)). Therefore, subsampling is a valid alternative to the above bootstrap. Our
subsampling proceeds in the standard manner as in Politis and Romano (1994) except for
the two-sample nature of our problem. To illustrate our subsampling algorithm, we use the
following notation. We divide the full sample intoY1

data,m andY0
data,n as described in Section

4.1. Let (bm, bn) be a pair of subsample sizes and B = bm + bn. There exist Nm =
(m
bm

)
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distinct subsamples from Y
1
data,m, and Nn =

( n
bn

)
distinct subsamples from Y

0
data,n. The

subscripts k = 1, . . . ,Nm and l = 1, . . . , Nn indicate each distinct subsample. We denote the
estimator δ̂ evaluated at the k-th subsample of Y1

data,m and at the l-th subsample of Y0
data,n

by δ̂
∗
k,l. The subsample estimator of c1−α is defined as

ĉsub1−α = inf

{

x :
1

NmNn

Nm∑

k=1

Nn∑

l=1

I
{√
B(δ̂

∗
k,l − δ̂) ≤ x

}
≥ 1− α

}

. (4.1)

Using the obtained ĉsub1−α, we reject the null hypothesis if δ̂ − ĉsub
1−α√
N
> 1.

The construction of ĉsub1−α is similar to the one in Politis and Romano except it sums over
every combination of the two subsamples. This scheme is required since we cannot define
the estimator δ̂ if there are no observations from one of the samples.

The next proposition demonstrates the pointwise validity of subsampling.

Proposition 4.2 (subsampling validity) Assume (A1) through (A4). Let (bm, bn) →
(∞,∞), (bm/m, bn/n)→ (0, 0), and bm/(bm+bn)→ λ as N →∞. Then, the test procedure
using the subsampling critical value ĉsub1−α is pointwise asymptotically size correct, that is, for
every P and Q satisfying δ(P,Q) ≤ 1,

lim
N→∞

ProbP,Q,λN

(

δ̂ − ĉ
sub
1−α√
N
> 1

)

≤ α.

Whenm and n are large, computing the critical values through (4.1) is difficult because of
the large values of Nm and Nn. In this case, ĉsub1−α can be approximated by randomly chosen
subsamples (Politis et al. (1999)). Specifically, we construct the subsamples by repeatedly
sampling bm and bn observations from Y

1
data,m and Y0

data,n without replacement. Note that,
analogous to the slackness sequence ηN in the modified bootstrap, subsampling also has a
practical difficulty in choosing the blocksizes (bm, bn).

4.3 Power of the test against fixed alternatives

Due to the restriction of V to a VC-class, the test procedure is not able to screen out all the
data generating processes that have δ(P,Q) > 1. In order for asymptotic power of the test
to be one against a fixed alternative, the alternative must meet the following condition.

Definition 4.1 (consistent alternatives) The data generating process P and Q is a con-
sistent alternative with respect to a VC-class V if

sup
V ∈V

{δ(V )} > 1.
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In the discrete Y case, any data generating processes that have δ(P,Q) > 1 are the
consistent alternatives. On the other hand, for a continuous Y , δ(P,Q) > 1 does not imply
that the data generating process is a consistent alternative since V is strictly smaller than
B(Y). This implies that a specification of V affects the refutability of the test procedure in
the sense that as we specify a smaller V, less alternatives can be screened out by the test.
This can be seen as another aspect of the trade-off between precision of the estimator δ̂ and
the fineness of V.

The next proposition shows that the proposed test procedures are consistent in power
against the consistent alternatives.

Proposition 4.3 (power against fixed alternatives) The test procedures based on the
proposed bootstrap and subsampling are consistent in power against the consistent alterna-
tives, i.e., for each consistent alternative P and Q,

lim
N→∞

ProbP,Q,λN

(

δ̂ − ĉ
boot
1−α√
N
> 1

)

= 1,

lim
N→∞

ProbP,Q,λN

(

δ̂ − ĉ
sub
1−α√
N
> 1

)

= 1.

5 Monte Carlo simulations

In order to evaluate the finite sample performance of the proposed test procedures, we conduct
Monte Carlo studies for various specifications of P and Q. Since the asymptotically valid
test procedures attain the nominal size when δ(P,Q) = 1, we set the integrated envelope
equal to one for every specification. Throughout our simulation experiments, we consider
two samples with equal size, m = n.

We specify Y to be continuous on the unit interval Y = [0, 1]. As for a specification of
V, we employ the half unbounded interval class Vhalf as defined in (3.11). Our Monte Carlo
specifications all satisfy the optimal partition condition of Assumption (A3).

Let φ(µ, σ) be the normal density with mean µ and standard deviation σ whose support
is restricted on [0, 1] (the truncated normal). The following four specifications of P and Q
are simulated (see Figure 5).
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Design 1: No ties, p(y) = 0.54× φ(0.65, 0.10),

q(y) = 0.54× φ(0.35, 0.10),

Design 2: No ties, p(y) = 0.84× φ(0.60, 0.20),

q(y) = 0.75× φ(0.46, 0.23),

Design 3: Partially tied p(y) =

{
0.70× φ(0.50, 0.20) for y ≤ 0.66
0.58× φ(0.70, 0.25) for y > 0.66

,

q(y) =

{
0.70× φ(0.50, 0.20) for y > 0.34
0.58× φ(0.30, 0.25) for y ≤ 0.34

Design 4: Completely tied, p(y) = q(y) = φ(0.50, 0.23).

In Design 1 and Design 2, there are no ties between p(y) and q(y), while p(y) and q(y) differ
more significantly in Design 1 than in Design 2. Design 3 represents the case where p(y) and
q(y) are tied on a subset of the outcome support. As an extreme case, Design 4 features a
p(y) that is identical to q(y).

We estimate the critical values using four different methods. The first method uses
the critical values implied from asymptotic normality (Corollary 3.1). The second method
uses the naive implementation of the nonparametric bootstrap, that is, given δ̂, we resample√
N(δ̂

∗ − δ̂) where δ̂
∗
is the bootstrap analogue of δ̂. The third method is subsampling.

We consider three different choices of the blocksizes, (bm, bn) = (m/3, n/3), (m/6, n/6), and
(m/10, n/10). As the fourth method, we apply our bootstrap procedure with three choices
of the slackness variable, ηN = 5.0, 2.0, and 0.5. The Monte Carlo simulations are repli-
cated 3000 times. Subsampling and bootstrap are iterated 300 times for each Monte Carlo
replication.

Table 1 shows the simulated rejection probabilities for nominal test size, α = 0.25, 0.10,
0.05, and 0.01. The result shows that, except for Design 1, the normal approximation and
the naive bootstrap over-reject the null. In particular, their test size is seriously biased
when the two densities have ties, as our asymptotic analysis predicts. It is worth noting
that, against the asymptotic normality in Corollary 3.1, the normal approximation does not
perform well in Design 2. This is because the finite sample distribution of the statistic is
approximated better by the distribution with ties than the normal distribution. Although
the naive bootstrap is less size-distorted than the normal approximation, we can confirm
that it also suffers from ties (Design 3 and 4). Thus, our simulation results indicate that,
except for the case where p(y) and q(y) are significantly different as in Design 1, the normal
approximation and the naive bootstrap are not useful for inferring δ.

Subsampling shows a good finite sample performance for Design 1 and Design 2 when the
blocksizes are specified as (m/10, n/10). However, if the blocksize is large such as (m/3, n/3),
the test performance is as bad as the normal approximation. Although Proposition 4.2
validates subsampling for any data generating processes, the simulation results suggest that
the subsampling is contaminated by the ties.

Among the four methods simulated, the modified bootstrap has the best size performance
given an appropriate tuning of ηN , i.e., ηN = 0.5 for Design 2, ηN = 2 for Design 3, and
ηN = 5 for Design 4. However, test size is rather sensitive to the choice of ηN . As we set ηN
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Monte Carlo Specifications
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Figure 5: There are no ties in Design 1 and Design 2. In Design 3, the two densities are
partially tied. In Design 4, the two densities are identical.
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larger than optimal, we obtain a smaller rejection rate and the test becomes conservative. On
the other hand, by setting ηN smaller than optimal, the rejection rate tends to be upwardly
biased and approaches that of the naive bootstrap.

Table 1-I (Design 1): Simulated Rejection Rates
3000 MC replications. 300 subsampling/bootstrap replications.

Sample size m = n = 300 m = n = 1000

Nominal rejection prob. 25% 10% 5% 1% 25% 10% 5% 1%

Normal Approx. 28.6% 13.2% 6.5% 1.6% 26.9% 12.1% 6.9% 1.3%*

Naive bootstrap 26.0%* 10.8%* 5.8%* 1.7% 25.9%* 10.7%* 6.1% 1.6%

Subsampling (m/3, n/3) 31.6% 16.1% 10.7% 4.4% 29.4% 15.4% 10.6% 4.1%

(m/6, n/6) 27.5% 13.5% 7.6% 2.4% 26.6%* 12.8% 7.6% 2.4%

(m/10, n/10) 25.9%* 12.2% 6.9% 1.9% 24.7%* 11.2% 6.4% 1.8%

Our bootstrap ηN= 5 12.9% 4.6% 2.3% 0.6%* 14.7% 5.6% 2.4% 0.6%*

ηN= 2 17.1% 6.1% 3.2% 0.9%* 18.1% 7.1% 3.3% 0.7%*

ηN= 0.5 21.1% 8.5% 4.4%* 1.1%* 21.8% 9.3%* 4.8%* 1.0%*

Blundell et al.’s bootstrap 0% 0% 0% 0% 0% 0% 0% 0%

s.e. 0.8% 0.5% 0.4% 0.2% 0.8% 0.5% 0.4% 0.2%

*: the estimated rejection rate is not significantly different from the nominal size at the 1% level.

Table 1-II (Design 2)
3000 MC replications. 300 subsampling/bootstrap replications.

Sample size m = n = 300 m = n = 1000

Nominal rejection prob. 25% 10% 5% 1% 25% 10% 5% 1%

Normal Approx. 41.8% 20.1% 10.4% 2.7% 37.2% 16.9% 9.3% 2.0%

Naive bootstrap 32.4% 14.1% 8.2% 2.4% 29.4% 13.3% 7.0% 1.8%

Subsampling (m/3, n/3) 38.8% 20.0% 13.6% 5.7% 33.9% 18.5% 12.5% 4.9%

(m/6, n/6) 30.3% 14.8% 9.0% 3.1% 28.2% 13.4% 7.6% 2.4%

(m/10, n/10) 26.3%* 12.1% 7.3% 2.4% 24.6%* 11.3% 6.1% 2.0%

Our bootstrap ηN= 5 11.8% 5.1% 2.5% 0.5% 12.3% 4.6% 2.3% 0.6%*

ηN= 2 15.8% 6.2% 3.3% 0.8%* 15.6% 6.0% 3.0% 0.8%*

ηN= 0.5 25.6%* 10.7%* 6.0%* 1.5% 23.6%* 9.9%* 5.1%* 1.3%*

Blundell et al.’s bootstrap 2.7% 0.3% 0.1% 0% 2.0% 0.1% 0% 0%

s.e. 0.8% 0.5% 0.4% 0.2% 0.8% 0.5% 0.4% 0.2%

*: the estimated rejection rate is not significantly different from the nominal size at the 1% level.

31



Table 1-III (Design 3)
3000 MC replications. 300 subsampling/bootstrap replications.

Sample size m = n = 300 m = n = 1000

Nominal rejection prob. 25% 10% 5% 1% 25% 10% 5% 1%

Normal Approx. 61.5% 35.0% 21.5% 5.9% 62.2% 35.9% 23.0% 5.9%

Naive bootstrap 45.5% 24.2% 14.1% 4.6% 46.2% 25.8% 15.4% 4.6%

Subsampling (m/3, n/3) 53.0% 32.6% 23.6% 10.5% 52.0% 33.7% 24.5% 10.8%

(m/6, n/6) 42.7% 23.7% 15.2% 5.7% 43.3% 24.8% 15.5% 5.9%

(m/10, n/10) 37.3% 20.3% 11.6% 4.3% 38.5% 20.3% 12.2% 4.0%

Our bootstrap ηN= 5 21.5% 8.9% 4.5%* 0.8%* 23.2%* 9.0%* 4.9%* 1.1%*

ηN= 2 23.6%* 9.8%* 5.2%* 1.1%* 25.8%* 10.3%* 5.3%* 1.5%

ηN= 0.5 37.3% 17.9% 10.2% 3.0% 39.5% 20.2% 10.7% 3.1%

Blundell et al.’s bootstrap 10.5% 2.7% 0.9% 0.1% 10.9% 1.9% 0.7% 0%

s.e. 0.8% 0.5% 0.4% 0.2% 0.8% 0.5% 0.4% 0.2%

*: the estimated rejection rate is not significantly different from the nominal size at the 1% level.

Table 1-IV (Design 4)
3000 MC replications. 300 subsampling/bootstrap replications.

Sample size m = n = 300 m = n = 1000

Nominal rejection prob. 25% 10% 5% 1% 25% 10% 5% 1%

Normal Approx. 99.8% 82.8% 56.8% 18.8% 99.9% 82.5% 55.8% 17.9%

Naive bootstrap 77.9% 50.7% 32.2% 10.9% 77.9% 48.9% 31.6% 10.4%

Subsampling (m/3, n/3) 82.7% 63.6% 49.3% 23.4% 83.4% 63.6% 45.8% 22.9%

(m/6, n/6) 69.6% 43.3% 31.4% 13.2% 67.7% 41.5% 27.4% 10.9%

(m/10, n/10) 63.7% 36.4% 23.0% 9.3% 56.8% 32.2% 20.3% 7.4%

Our bootstrap ηN= 5 24.6%* 10.0%* 5.3%* 1.3%* 23.3%* 9.4%* 5.2%* 1.4%*

ηN= 2 34.7% 19.1% 10.8% 2.5% 33.2% 16.6% 9.9% 2.7%

ηN= 0.5 68.3% 39.8% 24.7% 7.3% 69.2% 40.0% 23.9% 7.2%

Blundell et al.’s bootstrap 49.6% 22.2% 11.5% 2.9% 50.4% 23.2% 12.1% 2.8%

s.e. 0.8% 0.5% 0.4% 0.2% 0.8% 0.5% 0.4% 0.2%

*: the estimated rejection rate is not significantly different from the nominal size at the 1% level.

A practical difficulty in implementing our bootstrap is that the optimal value of ηN
depends on the underlying data generating process. The simulation results indicate that
the optimal ηN tends to be larger as the two densities are more similar. To explain this
finding, recall the criterion function

√
N(δ̂− δ̂(V )), which is used to construct the estimator

V̂
max(ηN). For a fixed ηN and Ṽ ∈ Vmax, as the distribution of

√
N(δ̂− δ̂(Ṽ )) shifts toward

the positive direction, V̂max(ηN) becomes less precise in the sense that we are more likely to
exclude such Ṽ ∈ Vmax from V̂

max(ηN). In fact, the distribution of
√
N(δ̂ − δ̂(Ṽ )) depends
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on the underlying Vmax. This can be seen from

E(
√
N(δ̂ − δ̂(Ṽ ))) = E(

√
N(δ̂ − δ(P,Q)))−E(

√
N(δ̂(Ṽ )− δ(Ṽ )))

≈ E

(
sup

V ∈Vmax
{G(V )}

)
.

Since the supremum of the Gaussian process tends to be higher as the index set Vmax

becomes larger, this approximation implies that the mean of
√
N(δ̂ − δ̂(Ṽ )) at Ṽ ∈ Vmax

tends to be higher as the index set Vmax expands. Hence, when the data generating process
has more ties, we need to choose a larger value of ηN in order to make the estimator for Vmax

more accurate.
The tables also provide simulation results for the bootstrap procedure used in Blundell

et al. (2007).15 Note that the bounds for the cdf of Y constructed in Blundell et al. is
not always tight depending on the data generating process. But, for our specifications of
the data generating process, the width of their cdf bounds achieves the value of integrated
envelope at least one point in the outcome support (see Proposition B.1 in Appendix B).
Hence, the refuting rule of Blundell et al. such that the upper and lower cdf bounds cross
at some y in the outcome support yields an identical conclusion to the one based on the
integrated envelope. Nevertheless, our simulation results exhibit unstable performance of
their bootstrap. For instance, it is very conservative for Design 1 and Design 2, while it
overrejects the null for Design 4.

6 Extension to a multi-valued discrete instrument

In this section, we show how the framework of the binary Z can be extended to the case
with a multi-valued discrete Z. The analytical framework presented in this section is used
in the empirical appication of the next section. The main focus of this section is a general-
ization of the estimation and inference procedure for the integrated envelope rather than a
generalization of the identification analysis of Section 2 (see E.1 for a generalization of the
identification results).

Suppose that Z has the support with K <∞ discrete points, Z ∈ {z1, . . . , zK}. Denote
the probability distribution of Ydata conditional on Z = zk by Pk = (Pk(·), Pk,mis),

Pk(A) ≡ Pr(Y ∈ A|D = 1, Z = zk) Pr(D = 1|Z = zk),

Pk,mis ≡ Pr(D = 0|Z = zk).

We use the lowercase letter pk to denote the density of Pk(·) on Y. The envelope density is
defined as

f(y) = max
k
{pk(y)},

and the integrated envelope δ is the integral of f(y) over Y.
15Blundell et al. (2007) do not provide asymptotic validity of their bootstrap procedure.
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Now, consider the function δ(·) as a map from a K-partition of Y to R+. That is, given

a K-partition of Y, V = (V1, . . . , VK) such that
K⋃

k=1

Vk = Y and µ(Vk ∩ Vl) = 0 for k �= l, we
define δ(·) as

δ(V) =
K∑

k=1

Pk(Vk). (6.1)

This can be seen as a generalization of (3.7) to the case with a multi-valued instrument.
Similarly to the binary Z case, δ(·) is maximized when each subset Vk is given by {y : pk(y) ≥
pl(y) ∀l �= k}, k = 1, . . . ,K, and the maximum is equal to the integrated envelope. Here, the
class of K-partitions as the domain of δ(·) is written as

V =

{

V = (V1, . . . , VK) : V1 ∈ V1, . . . , VK ∈ VK ,
K⋃

k=1

Vk = Y, µ(Vk ∩ Vk′) = 0 ∀ k �= k′
}

,

(6.2)

where each Vk, k = 1, . . . ,K, is a class of subsets in Y. Then, the integrated envelope has
an expression similar to (3.8),

δ = sup
V∈V

{δ(V)} , V1 = · · · = VK = B(Y).

Let nk =
∑N
i=1 I{Zi = zk} and Pnk the empirical probability distribution of Pk. The

estimator δ̂ is obtained by replacing each Pk in (6.1) with the empirical distribution Pnk and
restrict each Vk in (6.2) to a VC-class,

δ̂ = sup
V∈V

{
δ̂(V)
}
, where δ̂(V) =

K∑

k=1

Pnk
(Vk). (6.3)

Under the assumptions analogous to (A1) through (A4) of Section 3.2.3, δ̂ has the asymptotic
distribution given by

√
N(δ̂ − δ)� sup

V∈Vmax
{G(V)}

where Vmax = {V ∈ V : δ(V) = δ} and G(V) are tight mean zero Gaussian processes on V
(see Appendix E.2 for further details).

It is straightforward to accomodate the multi-valued discrete instrument to the bootstrap
algorithm given in Section 4.1. The modifications are that the notation for a subset V is
replaced with a K-partition V, the class of subsets V is replaced with the class of partitions
(6.2), and (6.1) is used for the function δ̂(·). Note that the rate of divergence of the
slackness sequence ηN remained the same. The bootstrap sample is formed by resampling nk
observations with replacement from the subsample {Ydata,i : Zi = zk} for each k = 1, . . . ,K.
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7 An empirical application

We apply our bootstrap procedure to test the exogeneity of an instrument used in the classical
problem of self-selection into the labor market. The data set that we use is a subset of the
one used in Blundell et al. (2007). The original data source is the U.K. Family Expenditure
Survey and our sample consists of the pooled repeated cross sections of individuals of age
23 to 54 for the periods from 1995 to the first quarter of 2000. The main concern of our
empirical analysis is whether the out-of-work welfare income is statistically independent of
the potential wage or not.

We introduce the conditioning covariates X which include gender, education, and age.
As in Blundell et al. (2007), three education groups are defined, "statutory schooling", those
who left school by age 16, "high-school graduates", those who left school at age 17 or 18,
and "at least some college", those who completed schooling after 18. We form four age
groups, 23 -30, 31 - 38, 39 - 46, and 47 - 54. As an instrument, we use the out-of-work
income constructed in Blundell et al. (2003), which measures the welfare benefit for which
the worker would be eligible when he is out of work (see Blundell et al (2003) for details).
The participation indicator D is one if the worker reported himself being employed or self-
employed and earning positive labor income. Wage is measured as the logarithm of the usual
weekly earnings divided by the usual weekly working hours and deflated by the quarterly U.K.
retail price index.

For each covariate group X = x, we discretize the instrument by clustering the percentile
ranks of the out-of-work income with every ten percentiles. We denote the instrument
category within the group X = x by zk,x, k = 1, . . . , 10. The envelope density and the
integrated envelope of the group X = x are written as,

f(y|x) = max
k=1,...,10

{pk,x(y|x)} , δx =

∫

R

f(y|x)dy

where pk,x(y) = f(y|D = 1, Z = zk,x,X = x) Pr(D = 1|Z = zk,x,X = x).
Our specification of the partition class (6.2) is the histogram class, V1 = · · · = V10 =

Vhist(h,L,Y0), with binwidth h = 0.4, the number of bins L = 10, and the possible initial
breakpoints Y0 as the grid points within [1, 1.4] with grid size 0.02. For the multi-valued
instrument, the partition class is so large that it is computationally burdensome to construct
the estimator of the maximizer subclass V̂max(ηN) since we need to evaluate δ̂ − δ̂(V ) for
all the possible partitions. In order to reduce the computational burden, we develop an
algorithm to construct V̂max(ηN) in Appendix F and use it to obtain the empirical result.

We choose an optimal value of ηN in the following manner. First, we run a Monte Carlo
simulation in which the simulated sample size is set to the actual size and the data generating
process is specified as the parametric estimate of the observed wage distributions. Specifi-
cally, for each x and k = 1, . . . , 10, we specify pk,x(y) as the normal density (multiplied by the
sample selection rate) with the mean and variance equal to the sample mean and variance
of the observed wage. Accordingly, the population integrated envelope δx is obtained by
numerically integrating the envelope over the parametric estimates. Second, for each candi-

date of ηN , we simulate the one-sided confidence intervals C1−α(ηN ) =

[
δ̂x − ĉboot

1−α(ηN )√
N

,∞
]

1500 times with the nominal coverage (1−α) = 0.75, 0.90, 0.95, and 0.99 with 300 bootstrap
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iterations. As for possible values of ηN , we consider the grid points between 0.5 and 12 with
grid size 0.5. After simulating the empirical coverage for each ηN , we search the value of ηN
that yields the best empirical coverage in terms of minimizing the squared discrepancy from
the nominal coverage,

η∗N = arg min
ηN=0.5,1.0,...,12.0






∑

α=0.01, 0.05, 0.1, 0.25

[
(1− α)− P̂ r(δx ∈ C1−α(ηN ))

]2

α(1− α)





,

where P̂ r(δx ∈ C1−α(ηN )) is the simulated coverage of the one-sided confidence intervals.
As implied by the Monte Carlo study in the previous section, this manner of choosing the
slackness variable is reasonable if the estimated normal densities well represent the similarity
among the underlying densities pk,x(y). As an illustration for this, Figure 6 draws the kernel
density estimates and the estimated normal densities for the group of female workers ages
23 - 31 with some college education. Although some of the kernel density estimates seem
multimodal, we can observe that the normal estimates well capture the configuration of the
observed wage densities.

Figure 6 shows that the observed wage tends to be higher for the worker with the higher
out-of-work income. This is commonly observed in other groups. Two contrasting hypothe-
ses are possible to explain this observation. The first hypothesis is from the perspective of
the violation of the exclusion restriction. If the out-of-work income is associated with one’s
potential wage positively and the selection process is nearly random, we can observe that
the actual wage is higher as the out-of-work income is higher. Another hypothesis is that a
very heterogenous selection process can generate the configuration of the observed densities.
That is, the instrument satisfies the exclusion restriction, but the less productive workers
tend to exit the labor market as their out-of-work income gets higher. Rejecting the null by
our specification test can empirically refute the latter hypothesis.

Table 2 shows the result of the bootstrap specification test.16 η∗N indicates the value of
the slackness variable obtained from the Monte Carlo procedure described above. We reject
the null at a 5% significance level for 5 covariate groups, especially for the workers of younger
age. Thus, our test results provide evidence of misspecification of the exclusion restriction
for the out-of-work income conditional on the categorized covariates. By the virtue of partial
identification analysis, this conclusion is based on the empirical evidence alone and free from
any assumptions about the potential wage distribution and the selection mechanism.

8 Concluding remarks

From the partial identification point of view, this paper analyzes the identification power
of the restriction of instrument independence in the selection model. By focusing on the

16For the groups with statutory schooling, the integrated envelope estimates δ̂ do not exceed one due to the
low participation rate. Accordingly, we do not reject the null for these groups and the test results for these
groups are not presented in Table 2.
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Observed wage densities, age 23-31 female with college education
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Figure 6: The left-hand side figure presents the kernel density estimates for the observable
densities pk,x(y|x), where we use the Gaussian kernel with bandwidth 0.1. The right-hand
side figure gives the parametric (normal) estimates for the densities. In the Monte Carlo
simulations to look for the optimal ηN , the estimated normal densities are specified as the
data generating process.
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Table 2: The bootstrap specification test of the exogeneity of the out-of-work income
400 Bootstrap iterations

Some college education

Male Female

N Pr (D = 1|x) p-value η∗N N Pr (D = 1|x) p-value η∗N
age 23-30 1047 0.84 0.000*** 4.0 1196 0.80 0.014** 2.0

31-38 1158 0.81 0.184 7.5 1131 0.69 0.998 6.0

39-46 900 0.77 0.196 7.5 840 0.74 1.000 9.0

47-54 675 0.70 0.886 10.5 594 0.75 0.886 8.0

High-school graduates

Male Female

N Pr (D = 1|x) p-value η∗N N Pr (D = 1|x) p-value η∗N
age 23-30 799 0.81 0.016** 5.0 1354 0.72 0.946 3.0

31-38 1014 0.80 0.008*** 6.5 1592 0.68 0.998 5.0

39-46 804 0.78 0.968 7.0 990 0.75 0.680 3.5

47-54 561 0.69 0.050** 4.0 698 0.70 0.966 6.5

Note ***: rejection at 1% significance, **: rejection at 5% significance.

envelope density, we provide the analytically tractable representation of the identification
region for the outcome distribution under the restriction that the instrument is independent
of the outcome. We focus on the integrated envelope, which is the key parameter for
examining the emptiness of the identification region.

We show that the restriction of the instrument as jointly independent of the outcome and
selection heterogeneities does not further tighten the identification region. In addition, we
show that threshold crossing selection with an additive error constrains the data generating
process but, does not tighten the identification region. These identification results imply
that integrating the identifying information for fY using the envelope density always provides
maximal identification for the outcome distribution under the exclusion restriction.

This paper is the first that analyzes estimation and inference for the integrated envelope.
We propose the estimator for the integrated envelope and derive its asymptotic distribution.
Using this asymptotic result, we develop the nonparametric specification test for instrument
independence. Due to ties among the underlying probability densities, the estimator has a
non-pivotal asymptotic distribution and therefore, the standard nonparametric bootstrap is
not valid. To overcome this, we consider the asymptotically valid bootstrap algorithm for
the integrated envelope estimator. Our procedure first selects the target distribution for
the bootstrap approximation by estimating whether or not the observable outcome densities
have ties.

The estimation of the ties uses the slackness variable ηN . The Monte-Carlo simulations
show that given the appropriate choice of ηN , the proposed bootstrap approximates the finite
sample distribution of the statistic accurately. Although the optimal ηN depends on the
true data generating process and the test performance is rather sensitive to a choice of ηN ,

38



our simulation results indicate that the bootstrap outperforms subsampling over a reasonable
range of values of ηN . This paper does not provide a formal analysis on how to choose ηN .
In the empirical application, we search the optimal value of ηN through the Monte Carlo
simulations where the population data generating process is substituted by its parametric
estimate. This way of tuning ηN can be seen as a practical solution for finding its reasonable
value.

We apply the proposed test procedure to test whether the measure of out-of-work income
constructed in Blundell et al. (2003) is independent of the potential wage. Our test results
provide an evidence that the exclusion restriction for the out-of-work income is misspecified.
Since our procedure tests the emptiness of the identification region, this conclusion is based
on the empirical evidence alone and free from any assumptions about the potential wage
distribution and the selection mechanism.

Appendix A: Lemmas and Proofs

Proof of Proposition 2.1. (i) Let P and Q be given by data and assume δ(P,Q) ≤ 1. Let F∗ be the
set of outcome distributions defined as F∗ = {fY : fY (y) ≥ p(y) and fY (y) ≥ q(y), µ-a.e.}. For an arbitrary
fY ∈ F∗, we shall construct a joint probability law of (Y,D,Z) that is compatible with the data generating
process P and Q, and ER. Since the marginal distribution of Z is irrelevant to the analysis, we focus on the
conditional law of (Y,D) given Z. Let B be an arbitrary Borel set. In order for the conditional law of (Y,D)
given Z to be compatible with the data generating process, we must have

Pr(Y ∈ B,D = 1|Z = 1) =

∫

B

p(y)dµ,

Pr(Y ∈ B,D = 1|Z = 0) =

∫

B

q(y)dµ.

Pin down the probability of {Y ∈ B,D = 0} given Z to

Pr(Y ∈ B,D = 0|Z = 1) =

∫

B

[fY (y)− p(y)]dµ,

Pr(Y ∈ B,D = 0|Z = 0) =

∫

B

[fY (y)− q(y)]dµ.

Note that the constructed probabilities are nonnegative by construction and they satisfy ER since Pr(Y ∈
B|Z = 1) = Pr(Y ∈ B|Z = 0) =

∫
B
fY (y)dµ. This implies each fY ∈ F∗ is contained in the identification

region under ER.
On the other hand, consider a marginal outcome distribution fY /∈ F∗. Then, there exists a Borel set A with
µ(A) > 0 such that

∫

A

[fY (y)− p(y)]dµ < 0 or

∫

A

[fY (y)− q(y)]dµ < 0. (A.1)

Note that the probabilities of {Y ∈ A,D = 0} given Z are written as

Pr(Y ∈ A,D = 0|Z = 1) = Pr(Y ∈ A|Z = 1)− Pr(Y ∈ A,D = 1|Z = 1)

=

∫

A

[fY |Z(y|Z = 1)− p(y)]dµ

Pr(Y ∈ A,D = 0|Z = 0) = Pr(Y ∈ A|Z = 0)− Pr(Y ∈ A,D = 1|Z = 0)

=

∫

A

[fY |Z(y|Z = 0)− q(y)]dµ
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If ER is true, fY |Z = fY must hold. Then, by (A.1) one of the above probabilities are negative, and therefore
we cannot construct a conditional law of (Y,D) given Z that is compatible with the data generating process
and ER.
Thus, we conclude F∗ is the identification region under ER. (ii) is obvious.

Proof of Proposition 2.2. See Appendix D.1.

Proof of Proposition 2.3. See Appendix D.2.

Notation: For the rest of this appendix, we use the following notation. Our analysis is conditional on an
infinite sequence of {Zi : i = 1, 2 . . . , }. For the probability space (Ω,F ,P), the sample space Ω consists of
pairs of the i.i.d infinite sequences of {Ydata,i(ω) : Zi = 1} and {Ydata,i(ω) : Zi = 0}. We abbreviate almost
surely with respect to P by "a.s." and infinitely often by "i.o.". V always stands for a VC-class of subsets in
Y equipped with the seminorm dR(V1, V2) = R(V1 △ V2) where R denotes a nonnegative measure on B(Y).
In particular, we define dP+Q(V1, V2) = P (V1 △ V2) +Q(V1 △ V2). Let (Pm − P )(V ) ≡ Pm(V ) − P (V ) and
(Qn −Q)(V ) ≡ Qn(V )−Q(V ). We refer to the space of bounded functions on V as l∞(V) where the metric
is the sup metric ‖x‖∞ = supV ∈V |x(V )|. Set indexed empirical processes which map V→ l∞(V) are denoted
by GP,m(·) ≡

√
m(Pm −P )(·) and GQ,n(·) ≡

√
n(Qn −Q)(·). For a nonmeasurable event A, P∗(A) indicates

the outer probability (see van der Vaart and Wellner (1996) for the definition).

Proof of Proposition 3.1 (i).

Since δ(P,Q) = supV ∈V {δ(V )} and δ̂ = supV ∈V

{
δ̂(V )

}
, δ̂ − δ(P,Q) is written as

δ̂ − δ(P,Q) = sup
V ∈V

{Pm(V ) +Qn(V
c)} − sup

V ∈V
{P (V ) +Q(V c)} .

Note that δ̂ − δ(P,Q) is bounded above by supV ∈V {(Pm − P )(V ) + (Qn −Q)(V c)} and bounded below by
infV ∈V {(Pm − P )(V ) + (Qn −Q)(V c)} . Therefore,

∣∣∣δ̂ − δ(P,Q)
∣∣∣ ≤ sup

V ∈V
|(Pm − P )(V ) + (Qn −Q)(V c)|

≤ sup
V ∈V

|(Pm − P )(V )|+ sup
V ∈V

|(Qn −Q)(V c)| .

Since V is the VC-class by Assumption (A2), the Glivenko-Cantelli theorem implies supV ∈V |(Pm − P )(V )| → 0
a.s. The class of subsets {V c : V ∈ V} is also a VC-class and, therefore, supV ∈V |(Qn −Q)(V c)| → 0 a.s. as

well. Thus, δ̂ is consistent in the strong sense.

We use the next lemma in the proof of Proposition 3.1 (ii) below.

Lemma A.1. Assume (A1) through (A4). Let V̂ be a maximizer of δ̂(·) over V and V̂ max be a maximizer of
δ̂(·) over the maximizer subclass Vmax = {V ∈ V : δ(V ) = δ(P,Q)}. Then, dP+Q(V̂ , V̂

max) → 0 as N → ∞
a.s.

Proof of Lemma A.1. We first show
∣∣∣δ(V̂ )− δ(P,Q)

∣∣∣ → 0 a.s. By Assumption (A3), Vmax is nonempty

and let us pick an arbitrary element V max ∈ Vmax. By noting δ(V ) = δ̂(V )− (Pm − P )(V )− (Qn −Q)(V c),
we have

0 ≤ δ(P,Q)− δ(V̂ ) = δ(V max)− δ(V̂ )

= δ̂(V max)− δ̂(V̂ )

+(Pm − P )(V̂ ) + (Qn −Q)(V̂ c)− (Pm − P )(V max)− (Qn −Q)((V max)c)

≤ (Pm − P )(V̂ ) + (Qn −Q)(V̂ c)− (Pm − P )(V max)− (Qn −Q)((V max)c)

→ 0 a.s.
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by the Glivenko-Cantelli theorem. Thus, δ(V̂ ) converges to δ(P,Q) a.s.
Note that the function δ(·) is continuous on V with respect to the semimetric dP+Q since, for V1, V2 ∈ V,

|δ(V1)− δ(V2)| ≤ |P (V1)− P (V2)|+ |Q(V c
1 )−Q(V c

2 )|
= |P (V1)− P (V2)|+ |Q(V1)−Q(V2)|
≤ P (V1 △ V2) +Q(V1 △ V2)

= dP+Q(V1, V2).

Given these results, let us suppose that the conclusion is false, that is, assume that there exist positive ǫ and
ζ such that P({dP+Q(V̂ , V̂

max) > ǫ, i.o.}) > ζ. Since the event {dP+Q(V̂ , V̂
max) > ǫ} implies {V̂ /∈ Vmax},

the continuity of δ(·) with respect to the semimetric dP+Q and the definition of Vmax imply that we can find
ξ > 0 such that P({δ(P,Q) − δ(V̂ ) > ξ, i.o.}) > ζ holds. This contradicts the almost sure convergence of
δ(V̂ ) to δ(P,Q) shown above. Hence, dP+Q(V̂ , V̂

max)→ 0 a.s.

Proof of Proposition 3.1 (ii). Given the VC-class V, the Donsker theorem (theorem 2.5.2 and theorem
2.6.4 in van der Vaart and Wellner (1996)) asserts that the empirical processes GP,m(V ) =

√
m(Pm −P )(V ),

and GQ,n(V ) =
√
n(Qn−Q)(V ) weakly converge to the tight Brownian bridge processes GP (V ) and GQ(V ) in

l∞(V). These weakly converging sequences of the empirical processes GP,m(V ) and GQ,n(V ) are asymptotically
stochastically equicontinuous with respect to the seminorm dP and dQ respectively (theorem 1.5.7 of van der
Vaart and Wellner ). That is, for any η > 0,

lim
β→0

lim
m→∞

supP∗
(

sup
dP (V,V

′
)<β

|GP,m(V )−GP,m(V
′)| > η

)

= 0.

lim
β→0

lim
n→∞

supP∗
(

sup
dQ(V,V

′
)<β

|GQ,n(V )−GQ,n(V
′)| > η

)

= 0.

We apply these facts to show that the difference between
√
N(δ̂−δ(P,Q)) and supV ∈Vmax{

√
N(δ̂(V )−δ(V ))}

are asymptotically negligible.
Since δ(V ) = δ(P,Q) on Vmax ⊂ V,

sup
V ∈Vmax

{
√
N(δ̂(V )− δ(V ))} = sup

V ∈Vmax
{
√
N(δ̂(V )− δ(P,Q))}

≤ sup
V ∈V

{
√
N(δ̂(V )− δ(P,Q))} =

√
N(δ̂ − δ(P,Q))

holds. Let V̂ be and V̂ max be the maximizer of δ̂(·) on V and Vmax respectively, which are assumed to exist
by Assumption (A4). Then,

0 ≤
√
N(δ̂ − δ(P,Q))− sup

V ∈Vmax

{√
N(δ̂(V )− δ(P,Q))

}

=
√
N(δ̂(V̂ )− δ̂(V̂ max))

= (N/m)1/2
√
m(Pm(V̂ )− Pm(V̂

max)) + (N/n)1/2
√
n(Qn(V̂

c)−Qn((V̂
max)c))

= (N/m)1/2(GP,m(V̂ )−GP,m(V̂
max)) + (N/n)1/2(GQ,n(V̂

c)−GQ,n((V̂
max)c)).

By Lemma A.1, we have dP+Q(V̂ , V̂
max)→ 0 a.s. and this implies dP (V̂ , V̂

max)→ 0 and dQ(V̂
c, (V̂ max)c)→ 0

a.s. The asymptotic stochastic equicontinuity implies that GP,m(V̂ ) − GP,m(V̂
max) → 0 and (GQ,n(V̂

c) −
GQ,n((V̂

max)c))→ 0 in outer probability. Thus, we conclude
√
N(δ̂−δ(P,Q))−supV ∈Vmax

{√
N(δ̂(V )− δ(V ))

}
=

oP∗(1) and the asymptotic distribution of
√
N(δ̂−δ(P,Q)) is identical to that of supV ∈Vmax

{√
N(δ̂(V )− δ(V ))

}
.

Hence, in the rest of the proof, we focus on deriving the asymptotic distribution of supV ∈Vmax
{√

N(δ̂(V )− δ(V ))
}
.

The weak convergence of
√
N(δ̂(V )− δ(V )) follows from the Donsker theorem,

√
N(δ̂(V )− δ(V )) = (N/m)−1/2GP,m(V ) + (N/n)

−1/2GQ,n(V
c)

� λ−1/2GP (V ) + (1− λ)−1/2GQ(V ) ≡ G(V ),
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where GP are the tight P -brownian bridge processes in l∞(V) and GQ are the tight Gaussian processes in
l∞(V) with the covariance kernel

Cov(GQ(V1), GQ(V2)) = Q(V c
1 ∩ V c

2 )−Q(V c
1 )Q(V

c
2 ), V1, V2 ∈ V.

Since GP and GQ are independent Gaussian processes, the covariance kernel of G(V ) = λ−1/2GP (V ) + (1−
λ)−1/2GQ(V ) is given by

Cov(G(V1), G(V2)) = λ−1 [P (V1 ∩ V2)− P (V1)P (V2)]

+(1− λ)−1[Q(V c
1 ∩ V c

2 )−Q(V c
1 )Q(V

c
2 )].

Lastly, we note that the supremum functional supV ∈Vmax{·} on l∞(V) is continuous with respect to the sup
metric since for x1, x2 ∈ l∞(V),

| sup
V ∈Vmax

{x1(V )} − sup
V ∈Vmax

{x2(V )} | ≤ sup
V ∈Vmax

{|x1(V )− x2(V )|}

≤ sup
V ∈V

{|x1(V )− x2(V )|}

= ‖x1 − x2‖∞ .

Thus, by applying the continuous mapping theorem of stochastic processes, we obtain the desired result,

sup
V ∈Vmax

{√
N(δ̂(V )− δ(V ))

}
� sup

V ∈Vmax
{G(V )} .

Proof of Corollary 3.1. Given Vmax = {V max}, Proposition 3.1 (ii) immediately yields the asymptotic
normality. Consistency of the plug-in variance estimator follows since

|Pm(V̂ )− P (V max)| ≤ |(Pm − P )(V̂ )|+ |P (V̂ )− P (V max)|
≤ |(Pm − P )(V̂ )|+ dP+Q(V̂ , V

max)

→ 0 a.s.

by the Glivenko Cantelli theorem and Lemma A.1. A similar result holds for Qm(V̂
c). Hence, σ̂2 →

σ2(P,Q, λ) a.s.

The next lemma shows that V̂max(ηN ) introduced in the first step of the bootstrap algorithm is consistent
to Vmax. This lemma is used for the proof of Proposition 4.1 below.

Lemma A.2. Assume (A1) through (A4). Let {ηN : N ≥ 1} be a positive sequence satisfying ηN√
N

→ 0

and ηN√
log logN

→ ∞. For the semimetric dP+Q(V1, V2) = P (V1 △ V2) + Q(V1 △ V2), define ǫ-cover of the

maximizer subclass Vmax by

V
max
ǫ =

{
V ∈ V : inf

V ′∈Vmax

{
dP+Q(V, V

′)
}
≤ ǫ

}
.

For the estimator V̂max(ηN) =
{
V ∈ V :

√
N(δ̂ − δ̂(V )) ≤ ηN

}
define a sequence of events

Aǫ
N =

{
V
max ⊆ V̂

max(ηN) ⊆ V
max
ǫ

}
.

Then, for each ǫ > 0,

P

(
lim

N→∞
inf Aǫ

N

)
= 1,
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that is, with probability one, Aǫ
N occurs for all N with the finite number of exceptions.

Proof of Lemma A.2. We first state the law of the iterated logarithm for empirical processes on VC-classes
(LIL, see Alexander and Talagrand (1989)).
For a VC-class V and set indexed empirical processes, GP,m(V ) =

√
m(Pm − P )(V ),

(LIL) lim
m→∞

sup sup
V ∈V

∣∣∣∣
GP,m(V )√
log logm

∣∣∣∣ ≤ 1 a.s.

Let τN,m =
√
N/m

√
log logm√
log logN

√
log logN

ηN
and τN,n =

√
N/n

√
log logn√
log logN

√
log logN

ηN
. Consider

sup
V ∈V

∣∣∣∣

√
N

ηN

(δ̂(V )− δ(V ))

∣∣∣∣ ≤ τN,m sup
V ∈V

∣∣∣∣
GP,m(V )√
log logm

∣∣∣∣+ τN,n sup
V ∈V

∣∣∣∣
GQ,n(V

c)√
log logn

∣∣∣∣ .

Since τN,m → 0 and τN,n → 0 as N → ∞, the right hand side of the above inequality converges to zero a.s.
by the LIL. Hence,

lim
N→∞

sup
V ∈V

∣∣∣∣

√
N

ηN

(δ̂(V )− δ(V ))

∣∣∣∣ = 0 a.s. (A.2)

Based on this almost sure result, we next show P

(
lim inf

{
V
max ⊆ V̂

max(ηN )
})

= 1. Note that, by the con-

struction of V̂max(ηN ), V
max ⊆ V̂

max(ηN ) occurs if and only if supV ∈Vmax
{√

N
ηN

(
δ̂ − δ̂(V )

)}
≤ 1. Therefore,

it suffices to show

lim sup sup
V ∈Vmax

{√
N

ηN

(
δ̂ − δ̂(V )

)}
≤ 1 a.s.

Consider
√
N

ηN

(
δ̂ − δ̂(V )

)
=

√
N

ηN

(δ̂ − δ(P,Q))−
√
N

ηN

(
δ̂(V )− δ(V )

)
+

√
N

ηN

(δ(P,Q)− δ(V )) (A.3)

Since δ(P,Q)− δ(V ) = 0 on Vmax, we have

sup
V ∈Vmax

√
N

ηN

(
δ̂ − δ̂(V )

)
≤
∣∣∣∣

√
N

ηN

(δ̂ − δ(P,Q))

∣∣∣∣
︸ ︷︷ ︸

(i)

+ sup
V ∈Vmax

∣∣∣∣

√
N

ηN

(
δ̂(V )− δ(V )

)∣∣∣∣
︸ ︷︷ ︸

(ii)

.

By the almost sure convergence (A.2), (ii)→ 0 a.s. So it suffices to show (i)→ 0 a.s. By noting δ̂ = δ̂(V̂ ),
δ̂(V ) = δ(V ) + (Pm − P )(V ) + (Qn − Q)(V c), and denoting an arbitrary element in Vmax by V max, (i) → 0
a.s. is shown from

(i) ≤
∣∣∣∣

√
N

ηN

(δ̂(V̂ )− δ(V̂ ))

∣∣∣∣+
√
N

ηN

(δ(V max)− δ(V̂ ))

≤
∣∣∣∣

√
N

ηN

(δ̂(V̂ )− δ(V̂ ))

∣∣∣∣+
√
N

ηN

(δ̂(V max)− δ̂(V̂ ))

+τN,m

∣∣∣∣∣
GP,m(V̂ )√
log logm

∣∣∣∣∣
+ τN,m

∣∣∣∣
GP,m(V

max)√
log logm

∣∣∣∣

+τN,n

∣∣∣∣∣
GQ,n(V̂

c)√
log log n

∣∣∣∣∣
+ τN,n

∣∣∣∣
GQ,n((V

max)c)√
log logn

∣∣∣∣

≤
∣∣∣∣

√
N

ηN

(δ̂(V̂ )− δ(V̂ ))

∣∣∣∣+ τN,m

∣∣∣∣∣
GP,m(V̂ )√
log logm

∣∣∣∣∣
+ τN,m

∣∣∣∣
GP,m(V

max)√
log logm

∣∣∣∣

+τN,n

∣∣∣∣∣
GQ,n(V̂

c)√
log log n

∣∣∣∣∣
+ τN,n

∣∣∣∣
GQ,n((V

max)c)√
log logn

∣∣∣∣

→ 0 a.s. by LIL.
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Thus, P
(
lim inf

{
V
max ⊆ V̂

max(ηN)
})

= 1 is proved.

Next, we show P

(
lim inf

{
V̂
max(ηN ) ⊆ V

max
ǫ

})
= 1. Since the event

{
V̂
max(ηN ) ⊆ V

max
ǫ

}
is equivalent to

infV ∈V\Vmaxǫ

{√
N

ηN
(δ̂ − δ̂(V ))

}
> 1, it suffices to show

lim
N→∞

inf inf
V ∈V\Vmaxǫ

{√
N

ηN

(δ̂ − δ̂(V ))

}
> 1 a.s.

We obtain from (A.3)

inf
V ∈V\Vmaxǫ

{√
N

ηN

(
δ̂ − δ̂(V )

)}
≥

√
N

ηN

(δ̂ − δ(P,Q))− sup
V ∈V\Vmaxǫ

{√
N

ηN

(
δ̂(V )− δ(V )

)}

+ inf
V ∈V\Vmaxǫ

{√
N

ηN

(δ(P,Q)− δ(V ))

}

Note that the first two terms have been already proved to converge to zero a.s. For the third term, the
continuity of δ(·) with respect to the semimetric dP+Q (see the proof of Proposition 3.1 (ii)) implies that

there exists ζ(ǫ) > 0 such that δ(P,Q) − δ(V ) > ζ(ǫ) for any V ∈ V\Vmaxǫ . Since
√

N
ηN

→ ∞, we obtain

infV ∈V\Vmaxǫ

{√
N

ηN
(δ(P,Q)− δ(V ))

}
≥

√
N

ηN
ζ(ǫ)→∞. Therefore, limN→∞ inf infV ∈V\Vmaxǫ

{√
N

ηN
(δ̂ − δ̂(V ))

}
=

∞ a.s. and this implies P
(
lim inf

{
V̂
max(ηN) ⊆ V

max
ǫ

})
= 1.

Combining these two results completes the proof.

Proof of Proposition 4.1. We indicate an infinite sequence of {(Ydata,i, Zi) : i = 1, 2, . . . } by ω ∈ Ω.
Denote a random sequence of the probability laws governing the randomness in the bootstrap sample by
{PN : N ≥ 1}. Once we fix ω, {PN : N ≥ 1} can be seen as a nonrandom sequence of the probability laws.
The bootstrap is consistent if, for almost every ω ∈ Ω,

sup
V ∈V̂max(ηN )(ω)

{√
N(δ̂

∗
(V )− δ̂(V )(ω))

}
� sup

V ∈Vmax
{G(V )}

where G(V ) is the Gaussian processes obtained in Proposition 3.1 (ii). Here, the random objects subject to
the probability law of the original sampling sequence are indexed by ω.
By Lemma A.2, for sufficiently large N ,

sup
V ∈V∗

{√
N(δ̂

∗
(V )− δ̂(V )(ω))

}
≤ sup

V ∈V̂max(ηN )(ω)

{√
N(δ̂

∗
(V )− δ̂(V )(ω))

}

≤ sup
V ∈Vmaxǫ

{√
N(δ̂

∗
(V )− δ̂(V )(ω))

}
(A.4)

holds for almost all ω ∈ Ω. Let G∗
P,m(·) =

√
m(P ∗

m − Pm)(·) and G∗
Q,n =

√
n(Q∗

n −Qn)(·) be bootstrapped
empirical processes where P ∗

m and Q∗
n are the empirical probability measures constructed from the bootstrap

sample. By the almost sure convergence of the bootstrap empirical processes (Theorem 3.6.3 in van der Vaart
and Wellner (1996)),

√
N(δ̂

∗
(V )− δ̂(V )(ω)) =

√
N

m
G∗

P,m(V ) +

√
N

n
G∗

Q,n(V
c)� G(V ),

uniformly over V for almost all ω. Therefore, for the lower bound term and the upper bound term in (A.4),
we have

sup
V ∈Vmax

{√
N(δ̂

∗
(V )− δ̂(V )(ω))

}
� sup

V ∈Vmax
{G(V )} ,

sup
V ∈Vmaxǫ

{√
N(δ̂

∗
(V )− δ̂(V )(ω))

}
� sup

V ∈Vmaxǫ

{G(V )} .
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Since the tight Gaussian processes G(V ) are almost surely continuous with respect to dP+Q, the asymptotic
stochastic equicontinuity of the Gaussian processes imply

sup
V ∈Vmax

{√
N(δ̂

∗
(V )− δ̂(V )(ω))

}
− sup

V ∈Vmaxǫ

{√
N(δ̂

∗
(V )− δ̂(V )(ω))

}
→ 0

in probability with respect to {PN : N ≥ 1} as ǫ→ 0. Hence, from (A.4), we conclude that

sup
V ∈V̂max(ηN )(ω)

{√
N(δ̂

∗
(V )− δ̂(V )(ω))

}
� sup

V ∈Vmax
{G(V )} .

Assumption (A1) and (A2) implies that G(V ) are non-degenerate Gaussian processes on V ∈ V
max and,

therefore, the distribution of supV ∈Vmax {G(V )} is absolutely continuous on R (see Proposition 11.4 in Davy-
dov, Lifshits, and Smorodina (1998)). Therefore, the ĉboot

1−α converges to c1−α in probability with respect to
{PN : N ≥ 1} for almost every ω ∈ Ω. Hence, for every P and Q with δ(P,Q) ≤ 1,

ProbP,Q,λN

(
δ̂ − ĉboot

1−α√
N

> 1

)
≤ ProbP,Q,λN

(
δ̂ − ĉboot

1−α√
N

> δ(P,Q)

)

= ProbP,Q,λN

(√
N(δ̂ − δ(P,Q)) > ĉboot

1−α

)

→ 1− J(c1−α;P,Q, λ) = α.

Proof of Proposition 4.2. In order to be explicit about the sample size used to construct the estimator,
we notate the estimator by δ̂N when the sample with size N is used. Denote the cumulative distribution
function of

√
N(δ̂N − δ(P,Q)) by

JN (x, P,Q, λN ) = ProbP,Q,λN

{√
N(δ̂N − δ(P,Q)) ≤ x

}
.

where ProbP,Q,λN (·) represents the probability law with respect to the data generating process P and Q with
λN = m/N .
Let us define the subsampling estimator for JN(x, P,Q, λN) by

LN (x) =
1

NmNn

Nm∑

k=1

Nn∑

l=1

1
{√

B(δ̂
∗
k,l − δ̂N ) ≤ x

}
.

Let

UN (x) =
1

NmNn

Nm∑

k=1

Nn∑

l=1

1
{√

B(δ̂
∗
k,l − δ(P,Q)) ≤ x

}
,

in which δ̂N in LN(x) is replaced with δ(P,Q). Note that UN(x) has the representation of the two-sample
U-statistic with degree bm and bn,

UN (x) =
1

NmNn

Nm∑

k=1

Nn∑

l=1

h(Y1
data,bm,k,Y

0
data,bn,l),

where Y1
data,bm,k represents the k-th subsample drawn from Y

1
data,m, Y0

data,bn,l the l-th subsample drawn

from Y
0
data,, and h(Y1

data,bm,k,Y
0
data,bn,l) = 1

{√
B(δ̂

∗
k,l − δ(P,Q)) ≤ x

}
. Since for each k and l, Y1

data,bm,k

and Y0
data,bn,l are i.i.d. samples with size bm and bn from P and Q, the mean of the kernel of the U-statistic

satisfies

E(h(Y1
data,bm,k,Y

0
data,bn,l)) = JB(x, P,Q, λB),
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where JB(x, P,Q, λB) is the cdf of
√
B(δ̂B − δ(P,Q)) and λB = bm/B. Then, by the Hoeffding inequality for

the two sample U-statistic (p25-p26 of Hoeffding (1963)),

ProbP,Q,λB (|UN (x)− JB(x, P,Q, λB)| ≥ ǫ) ≤ 2 exp
{
−2Kǫ2

}

where

K = min

{
m

bm
,
n

bn

}
.

By the specification of the blocksizes, K →∞ holds, so it follows that

UN (x)− JB(x, P,Q, λB)→ 0

in probability. Since JB(·, P,Q, λB) converges weakly to J(·;P,Q, λ) the cdf of supV ∈V{G(V )} and J(·;P,Q, λ)
is continuous as we addressed in the proof of Proposition 4.1, JB(x;P,Q, λB)→ J(x;P,Q, λ) holds for every
x. Therefore, UN (x) converges to J(x;P,Q, λ) in probability. By replicating the argument in Politis and
Romano (1994), it follows that LN,B(x) − UN (x) → 0 in probability. Thus, LN,B(x) → J(x;P,Q, λ) in
probability.
Given this result, ĉsub

1−α converges to the (1 − α)-th quantile of J(·;P,Q, λ) in probability (see, e.g., lemma
11.2.1 in Lehmann and Romano (2005)). Therefore, for every P and Q with δ(P,Q) ≤ 1,

ProbP,Q,λN

(
δ̂N − ĉsub

1−α√
N

> 1

)
≤ ProbP,Q,λN

(
δ̂N − ĉsub

1−α√
N

> δ(P,Q)

)

= ProbP,Q,λN

(√
N(δ̂N − δ(P,Q)) > ĉsub

1−α

)

→ 1− J(c1−α;P,Q, λ) = α.

Proof of Proposition 4.3. Fix a consistent alternative P and Q. Let δ̃(P,Q) = supV ∈V{δ(V )}. With a
slight abuse of notation, denote by Vmax the class of subsets that attain the supremum of δ(V ). By repeating
the same argument as in the proof of Proposition 3.1, it is shown that

√
N(δ̂ − δ̃(P,Q)) has the asymptotic

distribution,

√
N(δ̂ − δ̃(P,Q))� sup

V ∈Vmax
{G(V )} ∼ J(·;P,Q, λ),

where G(V ) is the set indexed Gaussian processes obtained in the Proposition 3.1 and J(·;P,Q, λ) represents
its cdf. Let JN (·;P,Q, λN) be the cdf of

√
N(δ̂ − δ̃(P,Q)).

Note that the bootstrap critical value ĉboot
1−α and the subsampling critical value ĉsub

1−α are both consistent (in
probability) to c1−α, the (1− α)-th quantile of J(·;P,Q, λ). Denote these consistent critical values by ĉ1−α.
Then, for ǫ = δ̃(P,Q)− 1 > 0,

ProbP,Q,λN

(
δ̂ − ĉ1−α√

N
> 1

)
= ProbP,Q,λN

(
δ̂ − ĉ1−α√

N
+ ǫ > δ̃(P,Q)

)

= ProbP,Q,λN

(
δ̂ − ĉ1−α√

N
+ ǫ > δ̃(P,Q)

)

= ProbP,Q,λN

(√
N(δ̂ − δ̃(P,Q)) > ĉ1−α −

√
Nǫ
)

= 1− JN(ĉ1−α −
√
Nǫ;P,Q, λN )

→ 1 as N →∞.
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Appendix B: A Comparison with the cdf bounds in Blundell
et al. (2007)

In this appendix, we compare the tight cdf bounds based on the envelope density (2.5) with the cdf bounds
used in Blundell et al. (2007). We shall show that the latter do not always yield the tightest bounds.

Based on a moment restriction for the cdf of Y , FY |Z(y|z) = E(I{Y ∈ (−∞, y]}|Z = z) = E(I{Y ∈
(−∞, y]}) = FY (y), Blundell et al. (2007) use the mean independence bounds of Manski (1994) to construct
the bounds for FY (y),

max {P ((−∞, y]), Q((−∞, y])} ≤ FY (y) (B.1)

≤ min {P ((−∞, y]) + Pmis, Q((−∞, y]) +Qmis} .

These bounds, which we call the naive cdf bounds hereafter, are not necessarily the tightest possible under
ER (Proposition B.1 below). The reason is that the naive cdf bounds only utilize the restriction that the
probability of the event {Y ≤ y} does not depend on Z. This restriction is certainly weaker than the
statistical independence restriction since the full statistical independence requires that Pr(Y ∈ A|Z) for any
subsets A ⊂ Y does not depend on Z.

For stating the main result of this section, we define the dominance relationship between p(y) and q(y).

Definition B.1 (dominance in density) (i) The density p(y) dominates q(y) on A ⊂ Y if p(y) ≥ q(y)
holds µ-a.e. on A.
(ii) p(y) is the dominating density if p(y) dominates q(y) on Y .

p(y) is the dominating density if p(y) covers q(y) on the entire outcome support. If this is the case,
q(y) does not provide identifying information for fY further than p(y) because the maximal area under fY

is occupied by p(y) alone. The existence of the dominance relationship guarantees the interchangeability
between max operation and integration, that is,

∫

A

max{p(y), q(y)}dµ = max
{∫

A

p(y)dµ,

∫

A

q(y)dµ

}
.

if and only if p(y) dominates q(y) on A
This fundamental identity provides the following tightness result of the naive cdf bounds.

Proposition B.1 (tightness of the naive cdf bounds) (i) The naive cdf bounds at y ∈ Y are tight under
ER if and only if either p(y) or q(y) dominates the other on (−∞, y] and either p(y) or q(y) dominates the
other on (y,∞).
(ii) The naive cdf bounds are tight under ER for all y ∈ Y if and only if the data generating process reveals
the dominating density.

Proof of Proposition B.1. (i) Fix y ∈ Y . For the lower bound of the naive cdf bounds,

max

{∫

(−∞,y]

p(y)dµ,

∫

(−∞,y]

q(y)dµ

}

≤
∫

(−∞,y]

max{p(y), q(y)}dµ

=

∫

(−∞,y]

f(y)dµ

= the lower bound of the tight cdf bounds.

Note that the inequality holds in equality if and only if either p(y) or q(y) dominates the other on (−∞, y].
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Figure 7: In the left-hand side figure, the naive cdf bounds at y∗ are tight. On the other
hand, when p(y) and q(y) are drawn as in the right-hand side figure, the naive cdf bounds
are not tight at any y ∈ Y (Proposition B.1).

For the upper bound of the naive cdf bounds,

min

{∫

(−∞,y]

p(y)dµ+ Pmis,

∫

(−∞,y]

q(y)dµ+Qmis

}

= min

{

1−
∫

(y,∞)

p(y)dµ, 1−
∫

(y,∞)

q(y)dµ

}

= 1−max
{∫

(y,∞)

p(y)dµ,

∫

(y,∞)

q(y)dµ

}

≥ 1−
∫

(y,∞)

f(y)dµ

=

∫

(−∞,y]

f(y)dµ+ 1− δ

= the upper bound of the tight cdf bounds,

where the inequality holds in equality if and only if either p(y) or q(y) dominates the other on (y,∞).
The statement (ii) clearly follows from (i).

When we employ the naive cdf bounds, we would refute ER if the lower and upper bound of the cdf cross
at some y. This refuting rule is as powerful as the one based on the integrated envelope if the condition
in Proposition B.1 (i) holds at some y. However, this holds in a rather limited situation where some left
unbounded intervals (−∞, y] or right unbounded intervals (y,∞) can correctly divide Y into {y : p(y) ≥ q(y)}
and {y : p(y) < q(y)} (see Figure 7).

Appendix C: Identification power of ER relative to MI

Consider the bounded outcome support Y = [yl, yu]. Manski (1994) derives the tight E(Y ) bounds under MI,

max

{∫

Y
yp(y)dµ+ ylPmis,

∫

Y
yq(y)dµ+ ylQmis

}
(C.1)

≤ E(Y ) ≤ min

{∫

Y
yp(y)dµ+ yuPmis,

∫

Y
yq(y)dµ+ yuQmis

}
.
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The next proposition shows the necessary and sufficient condition for the MI mean bounds (C.1) to
coincide with the ER mean bounds (2.6).

Proposition C.1 (Identification power of ER relative to MI) The MI mean bounds (C.1) coincide
with the ER mean bounds (2.6) if and only if the data generating process reveals dominating densities on
(yl, yu] and [yl, yu).

Proof. The lower bound of the MI mean bounds is written as

max

{∫

Y
yp(y)dµ+ yl

(
1−

∫

Y
p(y)dµ

)
,

∫

Y
yq(y)dµ+ yl

(
1−

∫

Y
q(y)dµ

)}

= max

{∫

Y
(y − yl)p(y)dµ,

∫

Y
(y − yl)q(y)dµ

}
+ yl

≤
∫

Y
(y − yl)f(y)dµ+ yl

=

∫

Y
yf(y)dµ+ (1− δ)yl

= the lower bound of the ER mean bounds,

where the inequality holds in equality if and only if either (y − yl)p(y) ≥ (y − yl)q(y), µ-a.e. on [yl, yu] or
(y − yl)p(y) ≤ (y − yl)q(y), µ-a.e. on [yl, yu] holds. This condition is equivalently stated as the existence of
the dominating density on (yl, yu] since the necessary and sufficient condition for (y − yl)p(y) ≥ (y − yl)q(y),
µ-a.e. on [yl, yu] is p(y) ≥ q(y) µ-a.e. on (yl, yu].
Similarly, for the upper bound of the MI mean bounds, we have

min

{∫

Y
yp(y)dµ+ yu

∫

Y
(1− p(y))dµ,

∫

Y
yq(y)dµ+ yu

∫

Y
(1− q(y))dµ

}

= yu −max
{∫

Y
(yu − y)p(y)dµ,

∫

Y
(yu − y)q(y)dµ

}

≥ yu −
∫

Y
(yu − y)f(y)dµ

=

∫

Y
yf(y)dµ+ (1− δ)yu

= the upper bound of the ER mean bounds,

where the inequality holds in equality if and only if either (yu − y)p(y) ≥ (yu − y)q(y) µ-a.e. on [yl, yu] or
(yu − y)p(y) ≤ (yu − y)q(y) µ-a.e. on [yl, yu] is true. Similarly to the lower bound case, this is equivalent to
the existence of the dominating density on [yl, yu).
By combining the results for the lower and upper bound, we conclude that the MI mean bounds coincide with
the ER mean bounds if and only if the data generating process reveals a dominating density on (yl, yu] and
[yl, yu).

This proposition demonstrates that when we observe the dominating density, that is, either p(y) or q(y)
covers the other on the entire Y , ER does not provide narrower bounds for E(Y ) than MI. The intuition
of this proposition is given as follows. When we construct the ER mean bounds, we allocate the amount
of unidentified probability, which is given by one minus the integrated envelope 1 − δ, to the worst-case or
best-case outcome. Consequently, the width of the mean bounds is determined by the amount of unidentified
probability, (yu − yl)(1− δ). On the other hand, when we construct the MI mean bounds, we first construct
the bounds for E(Y ) from P and Q separately and then, we take the intersection of these. The width of
these two bounds are therefore determined by Pmis and Qmis. If one of them is equal to 1− δ, it implies that
we cannot reduce the amount of unidentified probability by strengthening MI to ER. Therefore the ER mean
bounds coincide with the MI mean bounds if min{Pmis, Qmis} = 1− δ and this holds if the data generating
process presents the dominating density on Y. Note that when Y is binary, the above proposition implies
the ER mean bounds and the MI mean bounds always coincide. Of course, this must be the case since these
two restrictions are equivalent if Y is binary.
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Appendix D: No identification gains from the selection equa-
tion

In this appendix, we investigate whether the two restrictions on the selection mechanism can further narrow
IRfY (P,Q). The first restriction is a stronger version of ER, the random assignment of instrument (RA,
hereafter), which specifies Z to be jointly independent of the outcome and the unobserved heterogeneities
in the selection equation. The second restriction is the monotonic selection response to instrument, which
restricts the selection process to the threshold crossing selection with an additive error. Both are common
restrictions in the structural selection model.

D.1 Imposing the random assignment restriction

We denote the distribution of types by πt, t ∈ {c, n, a, d}, e.g., πc ≡ Pr(T = c) = Pr({U : v(1, U) ≥ 0 >
v(0, U)}).17 The source of the nonrandom selection process is the dependence between Y and one’s selection
heterogeneities U . Given the binary instrument Z, this dependence is reduced to the dependence between
Y and T , and therefore we can allow distinct outcome distributions conditional on each T (Balke and Pearl
(1997) and Imbens and Rubin (1997)). We denote the outcome density conditional on type T = t by
gt(y) ≡ fY |T (y|T = t), t = c, n, a, d.

The random assignment restriction is defined as follows.

Restriction-RA
Random Assignment Restriction (RA): Z is jointly independent of (Y, T ).

The implication of imposing RA is summarized by the next lemma.

Lemma D.1 If a joint probability distribution on (Y, T, Z) satisfies RA, then, the following identities hold
µ-a.e.,

p(y) = hc(y) + ha(y),
q(y) = hd(y) + ha(y),

fY (y)− p(y) = hd(y) + hn(y),
fY (y)− q(y) = hc(y) + hn(y),

(*)

where ht(y) = πtgt(y).
Conversely, given a data generating process P and Q, and a marginal distribution of outcome fY , if there exist
nonnegative functions ht(y), t = c, n, a, d, that satisfy (*) µ-a.e., then we can construct a joint probability law
on (Y, T, Z) that is compatible with the data generating process and RA.

Proof. Assume that a population distribution of (Y, T, Z) satisfies RA. Then, for B ∈ B(Y),

P (B) = Pr(Y ∈ B,D = 1|Z = 1)
= Pr(Y ∈ B,T ∈ {c, a}|Z = 1)
= Pr(Y ∈ B,T = c|Z = 1) + Pr(Y ∈ B,T = a|Z = 1)
= Pr(Y ∈ B,T = c) + Pr(Y ∈ B,T = a)

= πc Pr(Y ∈ B|T = c) + πa Pr(Y ∈ B|T = a).

Note that the second line follows since the event {Y ∈ B,D = 1|Z = 1} is equivalent to {Y ∈ B,T ∈ {c, a}|Z = 1}.
The fourth line follows by RA. As the density expression of the above, we obtain

p(y) = πcgc(y) + πaga(y),

17 It would be most intuitive if we specify an element of the sample space to be an individual in the population,
that is, each individual is characterized by the unique value of Y and U .
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which corresponds to the first identity of the constraints (*). We obtain the second constraint in a similar
manner and we omit its derivation for brevity. As for the third constraint in (*),

Pr(Y ∈ B)− P (B) = Pr(Y ∈ B|Z = 1)− Pr(Y ∈ B,D = 1|Z = 1)
= Pr(Y ∈ B,D = 0|Z = 1)
= Pr(Y ∈ B, T ∈ {n, d}|Z = 1)
= πc Pr(Y ∈ B|T = n) + πa Pr(Y ∈ B|T = d).

We obtain the fourth constraint in a similar manner. This completes the proof of the former statement.
To prove the converse statement of the proposition, suppose that, for a given data generating process P
and Q and a marginal distribution of fY , we have nonnegative functions ht(·) for t = c, n, a, d satisfying the
constraints (*). Since the marginal distribution of Z is irrelevant to the analysis, we focus on constructing the
conditional law of (Y, T ) given Z. Let us specify both Pr(Y ∈ B,T = t|Z = 1) and Pr(Y ∈ B,T = t|Z = 0) to
be equal to

∫
B
ht(y)dµ ≥ 0, t = c, n, a, d. These are valid probability measures since

∑
t Pr(Y ∈ Y, T = t|Z =

z) =
∑

t

∫
Y ht(y)dµ =

∫
Y fY (y)dµ = 1. This probability law satisfies RA by construction. Furthermore, the

constructed joint distribution is compatible with the data generating process and the proposed fY since

Pr(Y ∈ B,D = 1|Z = 1) = Pr(Y ∈ B, T = c|Z = 1) + Pr(Y ∈ B,T = a|Z = 1)

=

∫

B

hc(y)dµ+

∫

B

ha(y)dµ = P (B),

Pr(Y ∈ B,D = 1|Z = 0) = Pr(Y ∈ B, T = d|Z = 0) + Pr(Y ∈ B,T = a|Z = 0)

=

∫

B

hd(y)dµ+

∫

B

ha(y)dµ = Q(B),

Pr(Y ∈ B) =
∑

t=c,n,a,d

Pr(Y ∈ B,T = t)

=
∑

t=c,n,a,d

∫

B

ht(y)dµ =

∫

B

fY (y)dµ.

This completes the proof.

By the converse part of the above lemma, the identification region of fY under RA is formed as the
collection of fY ’s for each of which we can find the feasible nonnegative functions ht(·), t = c, n, a, d satisfying
(*). Recall that, when we construct IRfY (P,Q), we only concern whether fY (y) is greater than or equal
to p(y) and q(y). Here, we need to concern the existence of the nonnegative densities ht(·), t = c, n, a, d,
compatible with the constraints (*). Proposition 2.2 in the main text shows that this additional requirement
does not narrow the identification region IRfY (P,Q).

Proof of Proposition 2.2. By Lemma D.1, It suffices to show that, for a data generating process P and Q
and an arbitrary fY ∈ IRfY (P,Q), we can find nonnegative density functions ht(y), t = c, n, a, d, satisfying
the constraints (*).
Figure 8 illustrates the proof of this redundancy result. Given a data generating process, p(y) and q(y), pick
an arbitrary fY ∈ IRfY (P,Q). We can find four partitions in the subgraph of fY (y), which are labeled as
C, N, A, and D in Figure 8. Consider imputing the type-specific density ht(y) as the height of one of the
proposed partitions,

C : hc(y) = f(y)− q(y),

N : hn(y) = fY (y)− f(y),

A : ha(y) = min{p(y), q(y)},
D : hd(y) = f(y)− p(y).

Note that the obtained ht(y), t = c, n, a, d, satisfy the constraints (*) and they are nonnegative by construction.
This way of imputing the four densities is feasible for any fY ∈ IRfY (P,Q). By Lemma D.1, the conclusion
follows.
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Figure 8: A graphical illustration of the invariance result of the identification region under
RA (Proposition 2.2).

D.2 Imposing the monotonic selection response to an instrument

Provided that the population distribution satisfies RA, threshold crossing selection with an additive error is
equivalent to the monotonicity of Imbens and Angrist (1994) (Vytlacil (2002)). Thus, the identification gain of
imposing the additively separable threshold crossing formulation is examined by adding Imbens and Angrist’s
monotonicity to our analysis.18 In this appendix, we refer to the monotonicity of Imbens and Angrist, or
equivalently, threshold crossing selection with an additive error, as the monotonic selection response to an
instrument (MSR, hereafter). Throughout the analysis, we assume Pr(D1 = 1) ≥ Pr(D0 = 1). This is
equivalent to assuming that the selection probability is nondecreasing with respect to Z. Since we can always
redefine the value of Z compatible with this assumption, we do not lose any generality by restricting our
analysis to this case.

Restriction-MSR
Monotonic Selection Response to an Instrument (MSR): Without loss of generality, assume Pr(D1 =

1) ≥ Pr(D0 = 1). The selection process satisfies MSR if D1 ≥ D0 holds for the entire population, that is, no
defiers exist in the population πd = 0.

From the partial identification point of view, the implication of MSR is summarized in the next proposition,
which covers Proposition 2.3 in the main text.

Proposition D.2 (Existence of the dominating density under MSR) Suppose that a population
distribution of (Y, T, Z) satisfies RA and MSR.
(i) Then, p(y) is the dominating density.
(ii) The MI mean bounds (2.6) coincide with the ER mean bounds (C.1).
Conversely, for a given data generating process, P and Q,
(iii) The identification region under RA and MSR is given by

{
IRfY (P,Q) if p(y) is the dominating density
∅ if p(y) is not the dominating density

Proof of Proposition 2.3 and D.2. (i) From the first two constraints in (*), πd = 0 implies that
p(y)− q(y) = πcgc(y) ≥ 0. (ii) This follows from Proposition C.1. (iii) Suppose that p(y) is the dominating

18Note that the monotonicity of Imbens and Angrist is discussed in the context of the counterfactual
causal model. Although our analysis is for the missing data, we can consider an analogous restriction to
the monotonicity since the monotonicity only concerns the population distribution of the potential selection
indicators.
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Figure 9: If RA and MSR are satisfied, we must observe the above configuration of the
densities (Proposition 2.3 and D.2). A indicates the subgraph of q(y). The subgraph of
p(y) minus that of q(y) and the subgraph of fY (y) minus that of p(y) are labeled as C and
N, respectively.

density. For an arbitrary fY ∈ IRfY (P,Q), we want to show that there exists a way to impute the type
specific nonnegative functions ht(y), t = c, n, a, d, that are compatible with the constraints (*) and MSR, i.e.,
the defier’s density hd(y) is zero. Consider the following way of imputing the type specific densities,

hc(y) = p(y)− q(y),
hn(y) = fY (y)− p(y),
ha(y) = q(y),
hd(y) = 0.

(D.1)

These densities satisfy the constraints (*) and as in the proof of the converse statement of Lemma D.1, they
yield a joint distribution of (Y, T, Z) that meets RA and MSR. Since this way of constructing ht(y) is feasible
for any fY ∈ IRfY (P,Q), we conclude that IRfY (P,Q) is the identification region under RA and MSR.
The emptiness of the identification region when p(y) is not the dominating density is implied by (i) of this
proposition.

This proposition shows that when RA and MSR hold in the population distribution of (Y, T, Z), then the
data generating process must reveal the dominating density. The presence of the dominating density makes
ER redundant relative to MI in terms of the width of E(Y ) bounds (Proposition C.1).

If the data generating process reveals the dominating density, then, imposing MSR does not further
narrow IRfY (P,Q). This is because MSR does not constrain how to impute the missing outcomes. To see
why, consider the configuration of p(y) and q(y) and an arbitrary fY (y) as shown in Figure 9. In (D.1), we
pin down the type-specific densities, hc(y), ha(y), and hn(y) to the height of the area C, A, and N of Figure
9. This implies that each fY ∈ IRfY (P,Q) is obtained by the unique imputation of the never-taker’s density
without violating MSR. Hence, we obtain the identification region under RA and MSR as IRfY (P,Q).

Appendix E: Extension to a multi-valued discrete instrument

This appendix provides a framework that covers the case with a multi-valued instrument.
Assume that the support of Z consists of K points denoted by Z = {z1, . . . , zK}. Denote the probability

distribution of Ydata conditional on Z = zk by Pk = (Pk(·), Pk,mis),

Pk(A) = Pr(Y ∈ A|D = 1, Z = zk) Pr(D = 1|Z = zk),

Pk,mis = Pr(D = 0|Z = zk).
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We represent the data generating process by P = (P1, . . . , PK). We use the lowercase letter pk to stand for
the density of Pk on Y. The envelope density is defined as

f(y) = max
k

{pk(y)}.

Analogous to the binary instrument case, we say pk(y) is the dominating density on A if for all l �= k,
pk(y) ≥ pl(y) holds µ-a.e. on A.

E.1 A generalization of the identification results

Results similar to Proposition 2.1, B.1, and C.1 are obtained even when Z is multi-valued. Proofs proceed
in the same way as in the binary instrument case and are therefore omitted for brevity. We notate the
identification region of fY , {fY : fY (y) ≥ f(y) µ-a.e.}, by IRfY (P).

In order to demonstrate a generalization of Proposition 2.2 (invariance of IRfY (P) under RA) and D.2
(existence of the dominating density under RA and MSR), we construct the type indicator T in the following
manner. For the K-valued instrument, individual’s selection response is uniquely characterized by an array
of K potential selection indicators Dk, k = 1, . . . ,K. Dk indicates whether the individual is selected when
Z is exogenously set at zk. In total, there are 2K number of types in the population and we interpret T as a
random variable indicating one of the 2K types. Let T be the set of all types and define Tk ⊂ T be the set of
types with Dk = 1, Tk = {t ∈ T : Dk = 1}. Tk is interpreted as the subpopulation of those who are selected
when Z = zk.

Similarly to the binary Z case, RA is stated that Z is jointly independent of (Y, T ). We keep the notation
πt = Pr(T = t) and gt(y) = fY |T (y|T = t). Analogous to the equations (*), if the population satisfies RA,
then, for all k = 1, . . . ,K, we have

pk(y) =
∑

t∈Tk πtgt(y),

fY (y)− pk(y) =
∑

t∈T \Tk πtgt(y),

The converse statement in Lemma D.1 holds as well for the multi-valued instrument case. That is, for a given
data generating process P and a marginal outcome distribution fY , if we can find the nonnegative functions
{ht(y) : t ∈ T } that satisfy, for all k = 1, . . . ,K,

pk(y) =
∑

t∈Tk ht(y),

fY (y)− pk(y) =
∑

t∈T \Tk ht(y),
(**)

then we can construct a joint distribution of (Y, T, Z) that is compatible with P and RA. A proof of this
follows in a similar manner to the proof of Lemma D.1 and we do not present it here.

The redundancy of RA holds even when Z is multi-valued.

Proposition 2.2’. For a multi-valued instrument, IRfY (P) is the identification region under RA.

Proof. When IRfY (P) is empty, it is obvious that the identification region under RA is empty. Hence,
assume IRfY (P) is nonempty.

Pick an arbitrary fY ∈ IRfY (P). Our goal is to find the set of nonnegative functions {ht(y)}t∈T that
are compatible with the constraints (**).
Let Sk be the subgraph of pk(y) and Sc

k the supgraph of pk(y), i.e., Sk = {(y, f) ∈ Y×R+ : 0 ≤ f ≤ pk(y)} and
Sc

k = {(y, f) ∈ Y × R+ : f > pk(y)}. We denote the subgraph of fY by SfY . Note that, by the construction
of IRfY (P), Sk ⊂ SfY holds for all k. Using the K subgraphs {Sk, k = 1, . . . ,K}, SfY is partitioned into 2K

disjoint subsets. Each of these is represented by the K intersection of the subgraphs or supgraphs of pk(y)
such as S1 ∩ Sc

2 ∩ · · · ∩ SK ∩ SfY .
By noting that each t is one-to-one corresponding to a unique binary array of {Dk : k = 1, . . . ,K}, we define
a subset A(t) ⊂ SfY by assigning one of the disjoint subsets formed within SfY ,

A(t) =




⋂

l:Dl=1

Sl



 ∩




⋂

l:Dl=0

Sc
l



 ∩ SfY .

54



Let us fix k. Note that the set of types Tk = {t ∈ T : Dk = 1} and T \ Tk = {t ∈ T : Dk = 0} both contain
2K−1 distinct types. Consider taking the union of A(t) over t ∈ Tk and t ∈ T \ Tk,

⋃

t∈Tk

A(t) =
⋃

t∈Tk



Sk ∩




⋂

l
=k:Dl=1

Sl



 ∩




⋂

l
=k:Dl=0

Sc
l



 ∩ SfY



 , (E.1)

⋃

t∈T \Tk

A(t) =
⋃

t∈T \Tk



Sc
k ∩




⋂

l
=k:Dl=1

Sl



 ∩




⋂

l
=k:Dl=0

Sc
l



 ∩ SfY



 . (E.2)

In the above expressions, the subset

(
⋂

l
=k:Dl=1

Sl

)

∩
(

⋂

l
=k:Dl=0

Sc
l

)

∩ SfY can be seen as one of the disjoint

subsets within SfY partitioned by the (K − 1) subgraphs S1, . . . , Sk−1, Sk+1, . . . , SK . Since each t ∈ Tk one-

to-one corresponds to one of the partitioned subsets

(
⋂

l
=k:Dl=1

Sl

)

∩
(

⋂

l
=k:Dl=0

Sc
l

)

∩SfY and each t ∈ T \Tk

also one-to-one corresponds to one of them, the union in the right hand side of (E.1) is the union of mutually
disjoint and exhaustive partitions of Sk ∩ SfY . Therefore, the identities (E.1) and (E.2) are reduced to

⋃

t∈Tk

A(t) = Sk ∩ SfY = Sk,

⋃

t∈T \Tk

A(t) = Sc
k ∩ SfY .

For a set A ∈ Y × R+, define the coordinate projection on R+ by Πy(A) = {f ∈ R+ : (y, f) ∈ A}. Since
A(t)’s are mutually disjoint, applying the coordinate projection to the above identities yields

⋃

t∈Tk

Πy(A(t)) = Πy(Sk),

⋃

t∈T \Tk

Πy(A(t)) = Πy(S
c
k ∩ SfY ).

We take the Lebesgue measure Leb(·) to the above identities. By noting Πy(A(t)) are disjoint over t,
Leb [Πy(Sk)] = pk(y), and Leb [Πy(S

c
k ∩ SfY )] = fY (y)− pk(y), we have

∑

t∈Tk

Leb [Πy(A(t))] = pk(y),

∑

t∈T \Tk

Leb [Πy(A(t))] = fY (y)− pk(y).

These equations suggest us to pin down each ht(y) to Leb [Πy(A(t))]. Each ht(y) is by construction non-
negative and we can see they agree with the constraints (**). Since k is arbitrary, this completes the proof.

For a generalization of Proposition D.2, we without loss of generality assume that k < l implies Pr(Dk =
1) ≤ Pr(Dl = 1).

Restriction-MSR (Multivariate Z)
Without loss of generality, assume Pr(Dk = 1) ≤ Pr(Dk+1 = 1) for all k = 1, . . . , (K − 1). The selection

process satisfies MSR if Dk ≤ Dk+1 for all k = 1, . . . , (K − 1) over the entire population.

Proposition D.2’. Suppose that a population distribution of (Y, T, Z) satisfies RA and MSR.
(i) Then, the data generating process P satisfies

p1(y) ≤ p2(y) ≤, . . . ,≤ pK(y) µ-a.e.
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(ii) The MI mean bounds

max
k

{∫

Y
ypk(y)dµ+ ylPk({mis})

}
≤ E(Y ) ≤ min

k

{∫

Y
ypk(y)dµ+ yuPk({mis})

}

are identical to the ER mean bounds (2.6).
Conversely, given the data generating process P = (P1, . . . , PK), the identification region under RA and

MSR is given by

{
IRfY (P) if p1(y) ≤ p2(y) ≤, . . . ,≤ pK(y) µ-a.e.
∅ otherwise.

Proof. (i) From (**), we have

pk(y) =
∑

t∈Tk∩Tk+1

πtgt(y) +
∑

t∈Tk∩(T \Tk+1)
πtgt(y),

pk+1(y) =
∑

t∈Tk+1∩Tk

πtgt(y) +
∑

t∈Tk+1∩(T \Tk)
πtgt(y).

Note that the types in Tk ∩ (T \ Tk+1) have Dk = 1 and Dk+1 = 0 and they do not exist in the population by
MSR. Therefore,

∑
t∈Tk∩(T \Tk+1) πtgt(y) = 0 holds and we conclude

pk+1(y)− pk(y) =
∑

t∈Tk+1∩(T \Tk)
πtgt(y) ≥ 0.

This proposition implies the existence of the dominating density. An application of Proposition C.1 yields
(ii).
For the converse statement, we assume that the data generating process reveals p1(y) ≤ p2(y) ≤, . . . ,≤ pK(y)
µ-a.e. Let us pick an arbitrary fY ∈ IRfY (P). We construct a joint distribution of (Y, T, Z) that is
compatible with RA and MSR. Note that under MSR the possible types in the population are characterized
by a nondecreasing sequence of K binary variables {Dk}K

k=1. Hence, there are at most (K+1) types allowed
to exist in the population. We use t∗l , l = 1, . . . ,K, to indicate the type whose {Dk}K

k=1 is zero up to the l-th
element and one afterwards. We denote the type whose {Dk}K

k=1 is one for all k by t∗0. Note that Tl+1∩(T \Tl)
the set of types with Dl = 0 and Dl+1 = 1 consists of only t∗l under MSR. Let

ht∗
0
(y) = p1(y),

ht∗
l
(y) = pl+1(y)− pl(y), for l = 1, . . . , (K − 1),

ht∗
K
(y) = fY (y)− pK(y),

ht(y) = 0, for the rest of t ∈ T .

This construction provides nonnegative ht(y)’s. The constructed ht(y)’s satisfy (**) since for each k =
1, . . . ,K, we have

∑

t∈Tk

ht(y) =
k−1∑

l=0

ht∗
l
(y) = pk(y),

∑

t∈T \Tk

ht(y) =

K∑

l=k

ht∗
l
(y) = fY (y)− pk(y).

Thus, we conclude that there exists a joint probability law of (Y, T, Z) that is compatible with the data
generating process and satisfies RA and MSR. Since this way of constructing ht(y)’s is feasible for any
fY ∈ IRfY (P), we conclude that IRfY (P) is the identification under RA and MSR. The emptiness of the
identification region follows immediately from (i).
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E.2 A generalization of Proposition 3.1

We use the same notation as in Section 6. Here, we provide a generalization of Proposition 3.1 to the multi-
valued instrument case. The following assumptions that are analogous to (A1) through (A4) of Section 3.2.3
are imposed.

Assumptions

(A1’) Nondegeneracy : P1, . . . , Pk are nondegenerate distributions on Y ∪ {mis} and the integrated envelope
is positive δ > 0.

(A2’) VC-class : V1, . . . ,VK are VC-classes of measurable subsets in Y .

(A3’) Optimal Partition : There exists a nonempty maximizer subclass of partitions Vmax ⊂ V,

V
max = {V ∈ V : δ(V) = δ}

(A4’) Existence of a maximizer: with probability one, there exists a sequence of random partitions V̂N ∈ V
and V̂max

N ∈ Vmax such that

δ̂(V̂N ) = sup
V∈V

{δ̂(V)}, δ̂(V̂max
N ) = sup

V∈Vmax
{δ̂(V)}

holds for every N ≥ 1.

A generalization of Proposition 3.1 is given as follows. A proof can be given in the same manner as the
proof of Proposition 3.1, and is therefore omitted for brevity.

Proposition 3.1’. Assume (A1’), (A2’), and (A3’)
(i) δ̂ → δ as N →∞ with probability one.
(ii) Assume further (A4’). Let Vmax be the maximizer subclass of partitions{V ∈ V : δ(V) = δ}. Then,

√
N(δ̂ − δ)� sup

V∈Vmax
{G(V)} . (E.3)

Here, G(V) is the mean zero tight Gaussian processes in l∞(V) with the covariance kernel given by, for
V
1 = (V 1

1 , . . . , V
1
K) ∈ V and V2 = (V 2

1 , . . . , V
2
K) ∈ V,

Cov(G(V1), G(V2)) =
K∑

k=1

λ−1k

[
Pk(V

1
k ∩ V 2

k )− Pk(V
1
k )P (V

2
k )
]
,

where λk = Pr(Z = zk).

Appendix F: An algorithm to estimate Vmax in the histogram
class

This appendix presents an algorithm used in the empirical application (Section 7). There, we specify V as
the histogram class, i.e., V1 = · · · = VK = Vhist(h,L,Y0). The main purpose of the following algorithm
is to reduce the computational burden in constructing the estimator of the maximizer subclass of partitions
V̂
max(ηN ).

Let us fix the number of bins, binwidth, and the initial breakpoint y0. For each Pnk , let Pnk (H0(y0)),. . . ,
Pnk (HL(y0)) be the histogram estimates with respect to the (L + 1) bins, H0(y0), . . . ,HL(y0), as defined in
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Section 3.2.2. On each bin Hl(y0), we infer which Pk achieves maxk′{Pk′(Hl(y0))} based on the following
criterion: k = argmaxk′{Pk′(Hl(y0))} if

√
N

(
max

k′
{Pnk′

(Hl(y0))} − Pnk (Hl(y0))

)
≤ wl(y0)∑L

l=1wl(y0)
ηN , (F.1)

where wl(y0) =
√
λ−1k∗ Pnk∗ (Hl(y0))(1− Pnk∗ (Hl(y0))) with k∗ = argmaxk′

{
Pn

k′
(Hl(y0))

}
. The weighting

term is introduced in order to control the variance of the histogram estimates. That is, for the bin on which
maxk′{Pnk′

(Hl(y0))} is larger, we take a relatively larger margin below maxk′{Pnk′
(Hl(y0))} to admit other

Pk to be tied with Pk∗ on Hl(y0). By implementing this procedure for every bin, we obtain a set of indices
Imaxk (y0) ⊂ {0, 1, . . . , L} for k = 1, . . . ,K that indicates the bins for which Pnk passes the criterion (F.1). By
repeating this procedure for each y0, we form the estimator of the maximizer subclass by

V̂
max(ηN )=

{

(V1, . . . , VK) :

K⋃

k=1

Vk = Y , µ(Vk ∩ Vk′) = 0 for ∀k �= k′, V1 ∈ V̂1, . . . , VK ∈ V̂K

}

(F.2)

where V̂k =

{
⋃

l∈Imax
k

(y0)

Hl(y0) : y0 ∈ Y0
}

for k = 1, . . . ,K.

For a fixed y0, V contains KL+1 partitions and a crude way of constructing V̂max(ηN) would have the
computational complexity O(KL). The above algorithm reduces the computational complexity from O(KL)
to O(KL).
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