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1 Introduction

When deciding between inference based on the random effects or the fixed effects estimator in
a panel data model, it is quite standard in applied work to first implement a Hausman (1978)
pretest. If the Hausman pretest rejects the pretest null hypothesis that the random effects
specification is correct, inference based on the fixed effects estimator is used in the second
stage, otherwise inference based on the random effects estimator is used which has favorable
power properties. For example, Blonigen (1997) justifies the use of random effects inference
based on a Hausman pretest while Hastings (2004) uses fixed effects inference as a result of the
Hausman pretest rejecting the random effects specification. The Hausman pretest is a common
tool, used in hundreds of applied papers and discussed in most textbooks in Econometrics, see
e.g. Wooldridge (2002, chapter 10.7.3).

It is shown in this paper that the asymptotic size of the resulting two—stage test equals
1 for empirically relevant specifications of the parameter space. An explicit formula for the
asymptotic size of the two—stage test is derived. It shows that the asymptotic size depends
on the degree of time variation in the regressors and also on the relative magnitude of the
error variance to the variance of the individual specific effect. Our results explain how these
two quantities impact the size of the two—stage test. The result that the two—stage test is size
distorted is related to the findings in Guggenberger (2007). In that paper it is shown that the
corresponding two—stage test in the linear instrumental variables (IV) model has size 1, where
the Hausman pretest is used as a test of exogeneity of a regressor. As outlined in more detail
below, the analysis of the panel data example is more complicated than the analysis of the
IV example, because in the former case the asymptotic size depends on a higher dimensional
nuisance parameter vector than in the latter case.

Based on the general theory developed in Andrews and Guggenberger (2005a, AG(2005a)
from now on), we characterize sequences of nuisance parameters that lead to the highest null
rejection probabilities of the two—stage test asymptotically. It is shown that under certain
local deviations from the random effects specification, the Hausman pretest statistic converges
to a noncentral chi—square distribution. The noncentrality parameter is small when the error
variance is large relative to the variance of the individual specific effect or when the regressors
are positively correlated over time. In this situation, the Hausman pretest has low power
against local deviations of the pretest null hypothesis and consequently, with high probability,
inference based on the random effects estimator is performed in the second stage which leads

to size distortion. However, it is also shown that the conditional size of the two—stage test,



conditional on the Hausman pretest rejecting the pretest null hypothesis, exceeds the nominal
level of the test.

Given the results in the paper, if controlling the size of a testing procedure is an objective,
the use of the two-stage procedure cannot be recommended. Its asymptotic size is severely
distorted and the size distortion is well reflected in finite sample simulations. On the other
hand, use of a t—statistic based on the fixed effects estimator has correct asymptotic size and
performs well in finite samples. If the random effects specification is correct, inference based
on the random effects estimator has correct size and has favorable power properties, but of
course leads to size distortion otherwise. Given the results in the paper, the random effects
specification should not be tested using a Hausman pretest.

It has been long known that pretests have an impact on the risk properties of estimators
and the size properties of tests, see Judge and Bock (1978) for an early reference and Guggen-
berger (2007) for additional references. As documented further below, the specification tests
proposed in Hausman (1978) are routinely used as pretests in applied work. However, besides
Guggenberger (2007) where the case of the linear IV model is studied, no results are stated
anywhere in the literature regarding the negative impact of the Hausman pretest on the size
properties of a two—stage test.

The remainder of the paper is organized as follows. Section 2 describes the model, the
objective, and defines the test statistics. In Section 3, finite sample evidence is provided.
Subsection 4.1 is based on AG(2005a). It provides theoretical background on how to calculate
the asymptotic size of a test in situations where the test statistic has a limiting distribution
that is discontinuous in nuisance parameters. In subsection 4.2 this theory is then applied to
the situation of a two—stage test where in the first stage a Hausman pretest is implemented.
All technical details are given in the Appendix.

The following notation is used in the remainder of the paper. We denote by 17 and I a
T—vector of ones and the T—dimensional identity matrix, respectively. For a matrix A with T’
rows, let My = Iy — Py, where Py = A(A’A)"1A’ is the projection onto the column space of
A. By X%,B and zg we denote the S—quantile of a chi-square distribution with one degree of
freedom and of a standard normal distribution, respectively. By I(-) we denote the indicator
function that equals 1 if the argument is true and 0 otherwise. Denote by || - || the Euclidean
norm. Finally, let R, = {z € R: 2 >0}, Rw = RU{%xo0}, and R, = Ry U {+0o0}.



2 Model and Objective

Consider the simple panel data model
(1) Vit = A+ 20 + ¢; + i,

fori =1,....N, t = 1,....,T with scalar parameters A\ and 6 and individual specific effect ¢;.!
Denote the regressor vector by wl, = (1,z;). By v, z;,w;, and u; we denote the matrices
(or vectors) with T rows given by vy, x;, wl,, and wu;, respectively. The observed data are
(yi,z;) € RT*2 i = 1,...,N. The data (x;,c;,u;), i = 1,..., N are assumed to be ii.d. with
distribution F' and uy, t = 1,...,T are i.i.d. Assume Frx; = Frc; = Eruy = 0, Epc;uy = 0,
and define 02 = Epu? and 02 = Epc?.? Our asymptotic framework has N — oo, but T fixed.

The object of interest is to test the null hypothesis
(2) HO . 0 = 90

against a one— or two—sided alternative. One possibility to test (2) is to use a t—statistic Trg(6o)
based on the random effects estimator §RE of #. To define these quantities, let Q € RT<T be an

estimator of the variance—covariance matrix

(3) Q= EF(UZ -+ 1Tci)(ui + 1Tci)/ = Ui[T + O'ngl/T c RTXT

. . ~2 ~92 . . ~2 ~2
that replaces 02 and o2 in 2 by estimated counterparts o and o~. Possible choices for 7;, 7=,

and for the estimator Ei introduced below are discussed in subsection 5.1 of the Appendix.
Then?

_1N

~ ~ N — ~
s, Bres) = (z w;m)-lwi) S (@) 'y,
=1 1=1
~ N R
Tw = (N1 3 2(@) )", and
=1

NY2(@pp — 6))
(?RE)1/2

(4) Tre(0o) =

! Additional regressors w;; could be included into the model at the expense of more complicated notation.
The asymptotic results of the paper are identical if the intercept A is not included into the model.
>To simplify notation, we do not index o2 and o2 by F.
3The definition of Trr (o) in (4) could also be altered by replacing N ~—* Zfil xé(@)_lxi by
N N N N N N N ~
N7 2y @) ey — 30 2i(@) 7 1 (X 10() 7 1) ™ 3 15() " ).
i= i=1

i=1 i=1 i=1
As verified in (42) in the Appendix, this modification makes no difference asymptotically for the results in

the paper.



Alternatively, the test of (2) can be based on the fixed effects estimator @F g of

~ N N
(5) Orp = (3 xiMya) ™t Y- oM,y
i=1 i=1
by using the t—statistic

Nl/Q(/éFE - 90)

TFE(eo) = (?FE)1/2 s where
—~ N

(6) Vip = (N7' Y @My, 2i/5,) !
=1

for an estimator - of o2 that may differ from 2.

Letz; =T1! Zle x;; be the time average of the regressor. Inference based on the t—statistic
TrE is justified if 7; and ¢; are uncorrelated but size distorted otherwise. On the other hand
if 7; and ¢; are uncorrelated, inference based on Trg provides power advantages over inference
based on Trg. Because of this trade—off between robustness and power, oftentimes in applied
work, before testing (2), a Hausman (1978) pretest is undertaken. The pretest tests whether
the pretest null hypothesis

(7) Hpg: Corrp(c;, ;) =0

is true. If the pretest rejects the pretest hypothesis, then, in the second stage, Hy : 0 = 6y is
tested based on Trg(6p), the robust testing procedure when Hpy is false. If the pretest does not
reject (7), then in the second stage (2) is tested based on Trg(6p), the more powerful testing
procedure when (7) is true. Thus, denoting by

N(Opg — Orp)?

VFE - VRE

(8) Hy =

the Hausman statistic and by 8 the nominal size of the pretest, the resulting two—stage test

statistic Ty (6p) is given by

9) T (00) = Tre(0o)I (Hy < Xi1_3) + Tre(00) I (Hy > Xi1_3)

for an upper one-sided test and by —T%(6o) or |T3%(6o)| for a lower one-sided or a symmetric

two—sided test, respectively. The nominal size « test rejects Hy if
(10) Tn(0o) > coo(l — @),

where coo(l — @) = 21_a, 21-a, and 2,/ for the upper one-sided, lower one-sided, and

symmetric two—sided test, respectively.



The goal of this paper is to illustrate the impact of the pretest on the size properties of the
two—stage test. We show that the asymptotic size AsySz(6y) of the test differs substantially
from its nominal size @ and determine the parameters that impact AsySz(fy). Note that if
Corrp(c;, T;) is nonzero and kept fixed as N goes off to infinity, then the two-stage procedure
has asymptotic null rejection probability equal to the nominal size of the test because in this
case the Hausman pretest statistic diverges to infinity, and in the second stage Trp is used
with probability approaching 1. However, this is only a pointwise justification of the two—stage

procedure and it does not hold uniformly.

3 Finite Sample Evidence

For illustration of the overrejection problem of the two—stage test defined in (10), finite sample
simulations are conducted in this section. The theoretical results below show that the only

parameters that impact the null rejection probability asymptotically are v, = Corrg(c;, T;),
Vo1 = (TU%/EFH%HQ)I/Qa and vy = (TUE/U%L)I/?» where

(11) 02 = Ep72.

x;

The results below also prove that asymptotically, it does not matter whether or not the intercept
A is included in the model (1) and, for simplicity, we therefore consider a model without the
intercept. We choose sample size N = 100 and T' = 2 and generate R = 30,000 i.i.d. draws

from

Ti1 I pgq w o2 0
(12) T2 ~NQO, | p 1 ¢ )and< Zl)’vN(O’( . 2))

U

Ci q q 1 i

Note that different values for (p,q,c?) translate into values for ;, 741, and 74, through the
relation v, = q/(.5+.5p)"2, 74, = (.54.5p)"/2, and 74, = (2/02)'/2. Finally, we choose nominal

sizes o = 3 = .05.1

4Small choices for the pretest nominal size 3 such as 5% are common in applied work when applying Hausman
pretests, both in panel data and linear IV applications. E.g. Gaynor, Seider, and Vogt (2005, p.245) state “A
Hausman—Wu test does not reject the null hypothesis of exogeneity (p value = 0.06). ... Given these results
.. we treat volume as exogenous hereafter. ” and Bedard and Deschénes (2006, p.189) state “... the Jerry R.
Hausman (1978) test, testing the null hypothesis that the difference between TSLS and OLS coefficients is due
only to sampling error, is rejected at the 5—percent level.” However, many times the pretest nominal size 3 is

not even reported in applied papers. E.g. Blonigen (1997, p.453) states “A Hausman test indicated that the



In Table 1a) we list null rejection probabilities of the symmetric two—stage test and in Table
1b) rejection probabilities of the Hausman pretest. Results for the following 30 parameter

combinations are reported:
(13) (p,q,02) € {.3,.6,.9} x {0,.3, 4, .5,.6} x {1,5}.

The possible choices for p and ¢ translate into a grid of values for v, in the interval [0,.74] and

the two choices for 02 translate into the values .63 and 1.41 for vy,.
Insert Table 1 here

Table 1a) reveals that the two—stage test overrejects severely. At the nominal size of 5%, the
null rejection rates reach values higher than 80% for the parameter combinations considered
here. When ¢ = 0, i.e. when ¢; and the regressors x;; and z;; are independent, the null
rejection probabilities are relatively close to the nominal size of the test and fall into the interval
[6.2%,8.6%)] over the parameter combinations reported here. In this case, inference based on
both Trr and Trg is justified. However, when ¢ is nonzero and thus c¢; and the regressors x;;
and z;5 are correlated, only inference based on Trg is justified but inference based on Tgg is
size—distorted. The two—stage test overrejects because the Hausman pretest does not reject
frequently enough (as documented in Table 1b) in these cases but the resulting inference based
on Trg in the second stage leads to very frequent rejections. For example, when p = ¢ = .6
and 02 = 5 the Hausman pretest only rejects in 45.7% of the cases. The resulting frequent use

of Tre in the second stage leads to the 51.6% rejection rate of the two-stage test.
2

The simulations reveal that overrejection increases in p and, most of the times, also in o7 .
Picking p close to 1 and/or large enough values for 02, the null rejection probability of the two—
stage test can be made arbitrarily close to 100%. This is consistent with the theoretical results
reported in the next section. Such large values of p are probably not empirically relevant, but
the important message from the simulations reported here is that severe size distortion of the

two—stage test also occurs for empirically relevant choices of the parameters.

random effects model estimates are consistent for these data, and thus I report only the more efficient random
effects model estimates.” and Banerjee and Iyer (2005, p.1205) state “A Hausman test does not reject the null
hypothesis that the OLS and IV coefficients are equal.” As further indication, that small values of § are common
in applied work, consider Bradford (2003, p.1757) that states that the Hausman statistic “which is distributed as
a chi-square with two degrees of freedom under the null is calculated at 1.46. This fails to reject the null at any
reasonable level of significance. Consequently, these two variables are treated as exogenous regressors hereafter.”
Note that the p—value in this case is .48. Thus, choices of 8 of that magnitude are considered unreasonable.

and &2, we use the degrees of freedom adjustment K = 1, see

u?

When calculating the estimators 62, 6~

cr

Subsection 5.1 below.



In contrast to the size-distorted two—stage procedure, the simple one—stage test that always
uses the test statistic Tpg has very reliable null rejection probabilities. Over all the parameter
combinations in (13), the null rejection probabilities of the one—stage test fall into the inter-
val [5.0%,5.3%]. Note that the corresponding interval of the two—stage test is [5.3%,80.8%).
Therefore, if controlling the size is an objective, use of the two—stage procedure can not be

recommended.

4 Asymptotic Size of a Test

In subsection 4.1, the theoretical background is discussed of how to determine the asymptotic
size of a fixed critical value test in a situation where the test statistic that the testing procedure
is based on, has an asymptotic distribution that may be discontinuous in certain nuisance
parameters. This theory is taken from AG(2005a) and illustrated in a motivational example,
namely inference in a simple version of the linear instrumental variables model. Then, in
subsection 4.2, this theory is applied to the two—stage test with a Hausman pretest in the first

stage.

4.1 General Theory and Motivation

Consider a general testing problem of nominal size o with test statistic Ty (6p) and nonrandom
critical value co(1 — ). Assume the model contains a possibly infinite-dimensional nuisance
parameter vector v € I'. Then, by definition, the asymptotic size of the test of Hy : 6 = 6,
equals

(14) AsySz(0y) = limsupsup Py, ,(Tn(0o) > coo(l — ),

N—oo el

where P, (-) denotes probability when the true parameters are (¢,~). Uniformity over v € T’
which is built into the definition of AsySz(fy) is crucial for the asymptotic size to give a good

approximation for the finite sample size. For illustration, consider the following example.

Example:® Consider the simple model given by a structural equation and a reduced—form
equation y; = Y20 +u, ys = 2w +v, where y1, y2, 2 € RY and 6, 7 € R are unknown parameters.
Assume {(u;,v;,2;) i < N} are i.i.d. with distribution F, where a subscript ¢ denotes the
1—th component of a vector. To test Hy : § = 0y against a two-sided alternative say, the

t-statistic Ty (6g) = |[NV2(0y — 0)/5 x| and critical value coo(1 — a) = Z1_a/2 is used, where

’See AG(2005c¢) for the general treatment of this example

8



On = (Yo P.y2) 'y Poyr, o8 = 0u(N 'ysPoyo) /2, and 33 = (N —=1)" (1 — 120n8) (11 — y20n).
The nuisance parameter vector v equals (F,m), where certain restrictions are imposed on F,
such as conditional homoskedasticity, exogeneity of the instrument, and existence of second

moments.

Following AG (2005a), the parameter +y is decomposed into three components: v = (7v;,vs, V3)-
The points of discontinuity of the asymptotic distribution of the test statistic of interest are
determined by the first component, . The parameter space of v, is I';. The second component,
v, of v also affects the limit distribution of the test statistic, but does not affect the distance
of the parameter v to the point of discontinuity. The parameter space of 7, is I's. The third
component, v5, of v does not affect the limit distribution of the test statistic. The parameter
space for 74 is I'3(7y,72), which generally may depend on 7, and ,. The parameter space I’
for v satisfies

Assumption A. (i)

(15) I={(71,7273) 171 €T1,72 €2 C R y3 € T3(71,72) }

and (ii) Ty = |74, ~7%] for some —oco < 74 < 4% < oo that satisfy v < 0 < ~%, where | denotes
the left endpoint of an interval that may be open or closed at the left end and | is defined
analogously for the right endpoint.

Example (continued): Decompose the nuisance parameter into v = (v, s, 7V3), Where

Y1 = |(EFZ2'2)1/27T/0-U|7 Y2 = P and V3 = (Faﬂ-)7 where 012; = EFUzzv O-%L = EFu227 and p =
Corrp(u;,v;). The parameter spaces for v, and 7, are I'y = R, and I'y = [—1,1]. The details
for the restrictions on the parameter space I's = I'3(7,,75) for 75 are given in AG(2005¢) and

are such that the following CLT holds under sequences v = vy for which vy, = 7, y — ha:

(16) ( (N1 2)"V2N-122/y /g, ) ., ( Vs ) ~ N(0, ( 1 he ))
(N122) V2NV /a, Vo by hy 1

In this example, the asymptotic distribution of the statistic Ty (o) has a discontinuity at v, = 0.
Under different sequences v, = v, y such that v, y — 0, the limit distribution of Ty (6) may
be different. More precisely, denote by vy ), a sequence of nuisance parameters v = 7, such
that N'/%y; — hy and v, — hy and h = (hy, h). It is shown below that under 7y ,, the limit
distribution of Ty (6y) depends on h; and hy and only on hy and he. As long as hy is finite,
the sequence v, converges to zero, yet the limit distribution of Ty () does not only depend

on the limit point 0 of 7,, but depends on how precisely v, converges to zero, indexed by the

convergence speed N'/2 and the localization parameter h;. In contrast, the limit distribution

9



of Tx(6p) only depends on the limit point hy of v, but not on how ~, converges to hy. In

that sense, the limit distribution is discontinuous in v, at 0, but continuous on I'y in «,. The

parameter 5 does not influence the limit distribution of T (6y) by virtue of the CLT in (16).
If hy < oo, it is shown in AG(2005c) that under 7y,

yépzu/(o'uo'v> gl,h (wy,h2 + hl)wu,hg
(17) Yy Loy /o —a | & | = (Y py + h1)?
G,/0% Wi,h (1= ho&yp/Eapn)* + (1 - h%)ﬁih/ﬁg,h

and thus T (09) —a Jp, where Jj is the distribution of [£, , /(€412 5)"/?|. If by = 00, T (00) —4
Jp, where in this case .Jj, is the distribution of the absolute value of a standard normal random

variable independent of hs.

Formalizing the additional aspects of the example, we now define the index set for the

different asymptotic null distributions of the test statistic T (o) of interest. Let

H = {h=(hy,hs) € R} : 3 {7y = (Yn1, YN Yng) €L N > 1}
(18) such that N"yy; — hy and vy, — ho}.
Definition of {yy, : N > 1}: Given r > 0 and h = (h1, h2) € H, let {yy, = (Vnn1 YNn2
Ynns3) i N > 1} denote a sequence of parameters in I' for which N"yy;,; — hy and vy 5,5 — ha.
In the example, r = 1/2 and H = R o x [~1,1]. The sequence {7y, : N > 1} is defined such
that under {yy, : N > 1}, the asymptotic distribution of T () depends on h and only h.

This is formalized in the following assumption and has already been illustrated in the above

example.

Assumption B. For some r > 0, all h € H, all sequences {7y, : N > 1}, and some distribu-
tions Jy, T (0o) —a Jp under {yy, : N > 1}.

The next theorem, a special case of Theorem 1(a) in AG(2005a), provides a formula for
AsySz. In contrast to the formula of AsySz in (14), the formula in the theorem can be used for

explicit calculation. It shows that the “worst case” sequence of nuisance parameters, a sequence

that yields the highest asymptotic null rejection probability, is of the type {yy, : N > 1}.

Theorem 1 (AG(2005a)) Suppose Assumptions A and B hold where J, : R — [0,1] is a
continuous function. Then, AsySz(8y) = suppepll — Jn(coo(l — @))].

Example (continued): Here AsySz(0y) = supjer, _«-1,1[1 — Ju(21-a/2)], where for
h1 < o0, Jj is the distribution of [€, ,,/(&,,m2,)"?| and for hy = oo, J, is the distribution
of the absolute value of a standard normal random variable. The asymptotic size can be easily

calculated by simulation of J, over a fine grid over vectors h in H.
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4.2 Asymptotic Size After Hausman Pretest

In this subsection, we return to the panel data application and the two—stage test with a
Hausman pretest in the first stage introduced in (10). To apply Theorem 1, we have to determine
the decomposition of the nuisance parameter vector v into “discontinuous” and “continuous”
elements, the rate of convergence r, and verify Assumptions A and B. Finally, one needs to

derive the limiting distribution .J, of the test statistic T (o) under {yy,}.
Let v = (71,72,7s) With 75 = (Y21, 722),

To2
(19) Y1 = COTTF(%@), Yo1 = (m)l/27 Yoo = (TUg/Ui)1/27

and 75 = (F, \). The component v,, measures the expected time variation in the regressor while
the component 74, is a function of the ratio of the variances of the individual specific effect and
the error term u;. In all the examples studied in AG(2005a—¢), v, is one-dimensional and this
is the only example where the v,—component is two-dimensional. In particular, Guggenberger
(2007) studies the asymptotic size of the two—stage test in the linear IV context where the
Hausman pretest is used as a test of exogeneity of a regressor. The 7,—component there is
scalar and is a function of the concentration parameter. Here, the situation is more complex
and two separate parameters impact the asymptotic size of the two—stage test through ~,.

The parameter space I' of 7 is defined as in (15) with ¢ = 2, 'y = I'y; X T'ys and
(20) Fl = [—1, 1], Fgl = [Hl,ﬁl], and F22 = [K/Q,EQ]
for some 0 < k1 <Ky <1 and 0 < Ky < Ry < 0. Let

T3(v1,7,) = {(F,\) : AN € R; Epxy = Epc; = Epuy =0,
Eru? = 02, Epc? = o for some finite 02,02 > 0,
Corrp(ci, Ti) = 71, (TU%-/EFH%W)UQ = Y1; (TUE/U?)UQ = Ya22;
Erzyus = Epxyrisun,c; = Epciuy = 0, EF(fzch) = U%.Ug + Q(EFTiCi)z,
EpziZistitin = ErratisErvit, |Er (|Ti/oz 7", (||zil?/Epllzi] ),

(21) [/ (02,00) 7, 1700/ (05,00) 77, [Tici/ (05,00 ) P70, (ui/on)' )| < M}

for some constants § > 0, M < oo, and subindices ¢, s,v,w = 1, ..., T. The condition Ep(7?c?) =
FE Ffprcf +2(E Ffici)Q holds, for example, if Z; and ¢; are jointly normal. The remaining condi-
tions are moment restrictions, that imply that Liapounov—type central limit theorems (CLT) or

weak law of large numbers (WLLN) for independent L'*°~bounded random variables hold, and

11



the conditional homoskedasticity-type assumption Epr;x;stuiytiin = ErxiTisEpt,t,. With

the above definitions, Assumption A clearly holds.
For H defined as in (18) it follows that

(22) H = H1 X HQ = Roo X [lil,ﬁl] X [HQ,EQ].

For every h = (hy, hy) € H, denote by {7y ,} C I' a sequence of parameters with components

YN YNR2 = (7N,h,2177N,h,22)7 and INR3 YN = (7N,h,177N,h,2’7N,h,3), where

_ TEp,T;
7N,h,1 = COTTFN (Ciaxi)> 7N,h,21 = ( ~ 2)1/2a 7N,h,22 = (TEFNC?/EFNu%t)l/z s.t.
Epy|lzil|
N1/27N,h,1 — ha, TNR2 hs, and YNh3 = (Fnv, An) € F3(7N,h,1>’)’N,h,2)-
(23)

In the Appendix, for every h € H we derive the limit distribution J, of the test statistic
T'n(0o) under the sequence {7y}, see (51). This verifies Assumption B with r = 1/2.

Then, applying Theorem 1 the asymptotic size of the two—stage test equals
(24) AsySz(6p) = sup[l — Jp(coo(1 — a))]

heH

with H defined in (22) and Jj defined in (51). The formula applies to upper, lower one-
sided, and symmetric two—sided versions of the test with c,(1 — @) = 214, 21-q, and z;_, /24
respectively. Note that AsySz(6y) depends on «, 3, and on the boundaries in the definition of
I's. For notational simplicity, this dependence is suppressed.

Figure 2 plots the asymptotic maximal rejection probability of the symmetric two-stage
test, where the maximum is taken over h; € H;p, as a function of hg; and hgg, i.e. the figure
plots the function

(25) f(ha1, haa) = sup [1 — Jiny hoy hos) (Coo (1 — @))]
hi1€H,

for o = 3 = .05.° For small values of hay, f(ha1, ho) is close to the nominal size 5% of the test.
For hoy < .4, f(ha1, hoa) < .1. The size distortion increases as ho; increases and the asymptotic

maximal null rejection probability gets arbitrarily close to 1 as hy; — 1 (as documented in

6For each h, the results are based on R = 30,000 random draws from the distribution of J,. We consider h;
values in [-2000,2000] using a grid with stepsize .01 on [0,.1], stepsize .1 on [.1,1] stepsize 1 on [1,10], stepsize 10
on [10,100], and stepsize 50 on [100,2000] and the analogous grid for negative h; values.
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additional simulations). For fixed hg;, the function f(hai, hoo) decreases as hos increases and
as hgy — 00 it decreases to the nominal size of the test. However, the slope of the function
f(hay,+) is rather small and it takes rather large values of hgy to make f(hay, hoy) small when
hay is close to 1. For example, f(.95, has) equals 63.7, 40.0, 25.9, 16.9, 13.0, 10.8, and 9.4% for
oy =1,2,..., 7.

Insert Figure 2 here

What is the reason for the size distortion? It is shown in (47) that Hy —4 x3(R2h(h+1)7")
for h = h3,(1 — h3;) under vy ,, where x3(-) denotes a noncentral chi-square distribution with
one degree of freedom with noncentrality parameter given by the expression in brackets. If
hih # 0, the Hausman pretest has nonzero local power. However, the noncentrality parameter
h2h(h+ 1)~ of the limiting distribution in (47) is small when A is small which is the case if hg;
is close to 1 or if hoy is close to 0. In these cases, the pretest has poor power properties and the
two—stage test frequently uses inference based on Txg in the second stage. But the test based
on Trg tends to reject frequently under moderate failures of the pretest hypothesis (7) which
leads to size distortion of the two—stage test. The parameter hs; is close to 1when there is little
time variation in the regressor, i.e. in the extreme case where x;; = x;5 for all s,t = 1,..., T,
hoy = 1. In the case where z;, t = 1,...,T is i.i.d., hoy = T~ Y?; for example, ho; = .71 and
ho1 = .58 when T' = 2 or 3, respectively. Note that if K, = .71, the simulations for Figure 2
show that AsySz(6p) is about 30% if k5 is small. So, even in the case where the regressor z;
is uncorrelated for different time indices ¢, the two-stage test is extremely size distorted.” The
parameter hgs is small when the ratio of the variances of the individual specific effect and of
the error term is small.

Insert Table 3 here

Table 3 reports conditional rejection probabilities of the symmetric two—stage test, conditional
on the Hausman pretest rejecting the pretest null hypothesis, R — C — R = P(Tn(0y) >
Coo(1—0)|Hy > X%,1— 5), and conditional on the pretest not rejecting the pretest null hypothesis,
R—C —NR = P(Tn(0o) > coo(l — a)|Hy < x7,_5), when o = 3 = .05 and hy; = 15 for a
grid of he; and ho values. Table 3 also reports rejection probabilities of the Hausman pretest.
Even though h; = 15 is quite large, these latter rejection probabilities can be quite small,
especially when hs; is close to one and/or has is close to 0. This is consistent with the local
power result of the Hausman pretest described in the previous paragraph because when ho; is

close to one and/or hgs is close to 0 then the noncentrality parameter h?h(h 4 1)~ is close to

"Values of hy; close to zero are possible if z;; is negatively correlated, a case which is probably of lesser

importance in applied work.
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0. For example, when hg; = .75 and hoy = .1, then the Hausman pretest rejects in 16.9% of
the cases. However, in cases where the Hausman pretest does not reject — despite the fact that
hi is 15— the rejection probability in the second stage can be very high. This is because then
in the second stage inference is based on Trgr which takes on relatively large values when h; is
nonzero. For example, in the case hoy = .75 and hgs = .2, conditional on the Hausman pretest
not rejecting (which happens in 49.5% of the cases), the test rejects with probability 59.1%
in the second stage. Perhaps more surprisingly, size distortion of the two—stage test is also
caused by the two—stage test rejecting at high frequency conditional on the Hausman pretest
rejecting in the first stage. This is despite the fact, that then in the second stage inference is
based on the statistic Trgr and the unconditional size of the one—stage test based on Trg is
a = .05. For example, in the case hg; = .75 and hyy = .05, conditional on the Hausman pretest
rejecting (which happens in 8.0% of the cases), the test rejects with probability 26.0% in the
second stage. The reason for this overrejection is that the Hausman statistic and the ¢t—statistic
Trp are correlated and if the former statistic takes on large values (and therefore the pretest
hypothesis is rejected and the two—stage test is based on Trg in the second stage) the latter
statistic is likely to take on a large value too. This correlation increases as ho; approaches one

and/or hyy approaches zero.®

5 Appendix

The Appendix provides possible choices for the variance estimators 83, 33, and 53 and contains
the derivation of the asymptotic distribution of the two—stage test statistic under sequences
{”YN,h}-

~2
and o,

. . ~2 ~92
5.1 Possible choices for o, o,

Following Wooldridge (2002, p.260 and 271), one alternative to define the variance estimators
is as follows. Let
N 7 ’ N / Ty ’
(26) (ows.ons) = (L ufw) 3 uly
i=1 i=1
be the pooled OLS estimator of (v, #)" and

(27) Ui = Yir — wgt(}\\OLsa/éOLS)l

8Note that if we evaluate the limiting distribution Emp of Hy in (45) at ho; = 1 and hgy = 0 the result is

% g, Which is the squared limiting distribution of Trp, derived in (40).
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the residuals from pooled OLS regression estimating v;; = ¢; + uy;. Then let

N T
G, = (NT - K)™' 32 >,

i=1t=1

(28) 6. =0>-0"

for K = 0 or 2 depending on whether a degrees—of-freedom correction is desired. We can also
estimate o2 based on the fixed effects estimator 5}7‘ pin (5). Lety, =T7! Zthl yi and let

~

(29) Uiy = (Yir — ;) — (i — Ti)0rp

be the fixed effects residuals estimating u;; and define the estimator

u

(30) oo = (N(T —1) - K)—liévjéjlaft.

For the asymptotic results below, the specific choice of variance estimators 83 or 53 does not
matter as long as they are consistent in the sense that /02 —, 1 and ./0% —, 1 under

sequences {7y} with finite ;.

5.2 Derivation of J,,

In this subsection, the limit distribution of the test statistic T () is derived under sequences

{7nn} Two cases are dealt with separately. Case I has |h;| < oo while Case II has |h;| = oo.

In Case I, v; — 0. Recall that if Fly is the true distribution, then 0% = Ep,c?, 02 = Ep,u%,
and 02 = Ep,7;. Under any sequence {y ,} for which vy, , = Corrp, (¢;, %) — 7,
(31)
N
2 N-1/2N-1/2N (7 .
et g i) N
(0202 /T) " V2N-1/2 > T —a | Yan, |~ N, 0 1 hy |)
- G 0 hy 1

N
(Epyllzil[Po?) 2N 37 2l
i=1

The result holds by the Liapounov CLT for independent, mean zero, L?>T°-bounded ran-
dom variables using the moment restrictions in (21) noting that Ep,Z:u; = o2 02/T and
Epy (2iu;)? = Epy||z;]|?0%. In particular, the condition Ep, (T7¢}) = 02 02 + 2(Ep, T;c;)? from
(21) yields

(32) EFN (Eici — EFNTiCZ‘)Z = EFN (fici)z — (fEFNT,‘Ci)2 = a%iai + (EFNEiCi>2
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and thus (02,02) ' Epy (Tici — EpyTic;)? = 1 + Corrpy(c;, T;)?. The limiting distribution ¢, -
is independent of ¢y, , 1, 1, because of the conditions Ep,wjus = EpyTyvisunc; = 0 for
and 1) is hsy. This holds because

EpTiuwiu; = Epyu?Er, T2 which holds because Ep,TiiTisUivtiw = EpyTiuTisEpy Uiy, for

t,s,v = 1,...,T. Finally, the covariance between 1)

w,ho21 u,ha21

t,s,v,w=1,..,1T.

Next, the joint limiting distribution of the t—statistics and the Hausman statistic are de-

2

rived. We first assume that 2 and o

are known and replace () and 52 by Q and o2 in the
test statistics. We then show that this modification does not matter asymptotically. The rel-
evant ingredients in the ¢-statistics and Hausman statistic are the expressions Zf\il AV
SN @My, SN 20 e, and SOV | @) My, x;, where

(33) V; = U; + ]-Tci'

We first derive the appropriate normalizations of these expressions and their limit expressions.

We first consider Case I in which case 73 = 0. Note that
(34) Q' =02y — olpll, for 0 = o020, %(02 + 0>T) " .
Then,

Zij\il x;Q_lvz-
= Y 2w + N (2 Q e — Epy@}Q 7 re; + Ep Q7 rce;)
(35) = o0, 3N wu — T?0 o Tl + (02 + 02T) ' TS (Fici — EpyTici + EpyTic;)

and thus by (31)

(36) T~ oz o, (on + oo T)N T2 0L, aiQ v = (haz +hog Yo Wy — haatb g, + 000+ .
Furthermore, because S~ | /My u; = SN (vhu; — TT4;),

(37) (BryllzilPol) ANV 300 2 Migts —a Yupy, — b, -

Also, because SN #/Q  a; = o8 (072]|7i||? — oT?%2) it follows by a WLLN (using the last

two lines in (21)) and straightforward calculations that

(38) oo PT N} SN 2y =, (hyt + 1)hy — 1.
Finally because .~ | /My, x; = S0 (|2 [> — T72) it follows that

(39) (Bryllzal )7 N0 aiMyga —, 1 — hy.
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Results (37), (39) and the continuous mapping theorem immediately imply that

wu,hgl - h’2lwﬂ,h21
(1—h3y)1?

N N
(40)  Trp(fo) = (AN Y aiMya) AN T2 2l Myju; —a Eppp, ~
=1 =1

Note that the distribution {pp ) does not depend on h; and we extend the definition of §pp ),
in (40) to the case |hq| = 0.
To derive the limit distribution of Trg(6y), first note that by partitioned regression, it follows
that
N—1/2[ S i Q ;- % xéQfllT(% 1707 117)7 ! % 1207 1,]
-1 i=1 i=1 i=1

1/2/9 _ i=

(41)  NY2(lpp —0) = - - - -
NS i tey — 3 Q- e (0 190 ) = 30 150 .

=1 =1 =1

i=1

By (36) and (38) the normalizations for the numerator and denominator in (41) are T~ o (024

02T) and 07105 *T 2, respectively. However, by straightforward calculations
(42)
N N N o2 N
o o TN e (2 1507 ) T 1507 ] = (N7 2T/ 05)” = 0p(1),
! i=1 i=1 i=1 o i=1
where the last equality holds because 70,202 — hy? and N™' SN 7;/oz, = 0,(1) by a
WLLN for independent L'*°-bounded random variables and (21). Using an analogous argument

for the numerator in (41), it follows that

N N -1 N
(43) Toz,0.0,°NY*(Opp — 0) = Toz,0.0,° <N_1 > x;Q_lxi) N2 210 0 + 0,(1).
=

7 =1

Therefore, using (43), (36), and (38)

N —1/2 N
Tre(fy) = <N_1 > x;Q_lfci) N2 S 2 + 0,(1)
=1

b3 =1

(ha2 + h521)h511¢u,h21 — haatg py, + Yoo+ M1
((hag + 1)hy® — 1)M/2(1 4 hg,)1/2

(44) - deE,h ~

It is easy to verify that Trg(6g) —4 N(0,1) when h; = 0. Finally, using (36)—(39) and straight-

forward calculations, the limiting distribution of the Hausman statistic under {vyy,} with
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|h1| < oo is given by

N N N N
N3 wfMy, )™t Y i Myus — (30 2 ) ™ 7 i)
Hy = ———5—— e +op(1)
(N1 Z riMyyxi/o?) ™t — (N7 Y0 oy ta) !
] =1

08+ 0T 9 A1 S -1 1/2 g, 1/2 ’
—2 TFE(O-UN Z CL’ZQ l’z) — TRE<N Z JIZ-MlTl’,;) + Op(l)
i=1 i=1

— alpp~ (1+ hgz)[fFE,h<h512 — iy (3, + 1)71>1/2 - 5RE,h(h512 - 1)1/2]27
(45)

1 g

where the last step holds because

)1N E:le Tag(aijtazT)’l,

=

)lN Z:sz 1,

.MZ
8|
=

s
Il
—

N N
(TN 'S ) Yo NS ol ey = (TN
i=1

=1

=N

s
I
—

N N
(46) (TN 'S @) 'N 'S oMy, 2, = (TN™?
=1 =1

N

and because (TN~ > 7?)"IN-! Zx x; —yp hop and To?(0? + 02T)™! — h3,(h2, + 1)1 It
=1

follows from (45) that the limit dlstrlbutlon of Hy is

(47) X3 (hih(h +1)71) for b = h3,(1 — h3y)

and thus Hy —4 x? if hy = 0.
In Case II, under sequences {7y} for which |h;| = oo the following limits hold jointly

)

and thus in this case, with probability approaching 1, fixed effect inference is conducted in
stage two and since {pp ), ~ N(0,1) it follows that the asymptotic rejection probability of the
two—stage test equals « in this case.

In summary,
(49) Ty(0o) —a Jj,
under {7y}, where J; is the distribution of the random variable

(50) &= Erpnl (Epp < X%,l—ﬁ) +E&ppnl (§pp > X%,l—ﬁ)

and {pp 1, {pppy and g, have been defined in (40), (44), and (45), respectively.
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Define —J;, and |J| as the distribution of the random variable —¢ and |} |, respectively.

For an upper one—sided, lower one-sided, and symmetric two—sided test, define
(51) ‘]h - ‘];:7 _‘];;7 and |(];L<|7

respectively. The distribution J;, depends on 3 but for notational simplicity, this dependence

is suppressed. The derivations above imply that Assumption B holds with r = 1/2.
To conclude the derivation of the asymptotic distribution of T (), it has to be verified

that replacing Q and 53 by 2 and o2 does not matter asymptotically. We only do so in Case I,
Case II can be dealt with analogously. For Case I, it is clear that it is sufficient to show that

N Y N
(N (@) M) N 0 ey = 1+ 0,(1),

=1 i=1

N N ~
(N2 3 a0 o) N2 Y (@) o = 14 0,(1), and
=1

=1

(52) g, /02 =1+ 0y(1).

We verify (52) for the estimators 5>, 5>, and &~ defined in Subsection 5.1. We only verify the

first of the three conditions, the other conditions are verified analogously. To do so, note that

21— U2+,72TTN Z _2/(N Z T;7;)

i=1 i=1 ul_/\2 AQTTN 12—2/( 121.;:131)
i=1

and thus it is enough to show that

~2 A2
g

(54) — = 1+ 0,(1) and that — =1+ 0,(1),

2
lop o

because using hy € [k, Fa] for 0 < ky < By < 00, the second condition in (54) implies o, 26T —
h3, = 0,(1) and thus (54) implies (5 + 5-T)~'G°T — (02 + 02T) " '02T = 0,(1). We only show
the first condition o, 25> = 1+ 0,(1), the second condition in (54) can be verified analogously.

For notational convenience, assume K = 0 in (28). By definition

N T N T-1 T

(55) o, =0,—0.=(NT)"' Y >0, — (NT(T—-1)/2)"" Y Y. Vitlis,
i=1i=1 i=1 =1 s—=t+1

where

(56) Vit = Yir — w;t(}\\OL&b\OLS)/ = w((\,0) — (//\\OLSa/H\OLS),) + ¢ + U
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Multiplying out in (55), it follows that all the contributions with a ¢;—factor cancel out. For the
contributions with only u;factors we have (NT)"' 32N ST w2 /02 =14 0,(1) by a WLLN

for independent L'*?-bounded random variables and (21) and

(57) (NT(T = 1)/2) 7 S, 300 oo wartss [0 = 0p(1)

also by the WLLN because Er, u;;u;s = 0. Finally, the terms involving w/, ((A, #)'— (/):O 15,00 Ls))—

components are negligible. For example, consider the cross term

TX_:1

1t=1s

Mz

i wiwy — (NT(T —1)/2)7! il

(wiis + wz‘suit)> /Ui-

7~
> >
| |
)

-
N
N——
7~
}2
“Mz

It is 0,(1) using a WLLN for the mean zero vectors wj;u;; and w;u;s and by consistency of the
pooled OLS estimators. This concludes the proof of showing that replacing Q and 53 by 2 and

02 does not affect the limiting distribution .Jj,.
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Finite Sample (Null) Rejection Probabilities (in %) of a) Symmetric Two—stage

Tables and Figures

Table 1°

Test and b) Hausman Pretest for N = 100,7 =2,a = = .05

a) o2 =5 o2 =1
p\¢ | O 3 A4 .5 .6 0 3 A4 5] .6
9 86 373 56.0 71.6 80.8 |82 59.2 715 66.6 552
.6 | 7.7 327 459 533 51.6 | 7.0 350 283 152 7.2
B 169 277 346 331 242|162 186 102 5.5 53
b)
9 |51 72 89 114 14.1 |52 158 23.9 35.1 47.2
.6 5.2 153 23.7 339 45754 449 69.6 874 96.8
3 155 263 425 597 76.3 (59 703 91.9 99.0 99.9
Table 3!

Asymptotic Rejection Probabilities (in %) of Symmetric Two—stage

Test Conditional on Pretest (Not) Rejecting o = 3 = .05, hy =15

R-C-R R—C—NR P(Hy > x31_4)

hai\ha2 | .05 2 3.0 1 3105 1 2 3
75 1260 13.7 50 35|88 201 59.1 83.7[80 16.9 50.5 83.2
8 |31.0 165 58 35| 93 223 648 925|74 148 433 759
85 375 207 73 39| 98 246 702 952|69 125 351 65.1
9 466 27.7 10.0 5.1|104 27.0 752 97.1|6.3 10.1 258 49.6
95 1608 41.7 175 89 |11.0 295 79.8 983 |57 7.6 156 289

9The results are based on R = 30,000 simulation repetitions.

10The results are based on R = 3,000,000 simulation repetitions.
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