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Abstract: The size properties of a two�stage test in a panel data model are investigated

where in the �rst stage a Hausman (1978) speci�cation test is used as a pretest of the random

e¤ects speci�cation and in the second stage, a simple hypothesis about a component of the

parameter vector is tested, using a t�statistic that is based on either the random e¤ects or the

�xed e¤ects estimator depending on the outcome of the Hausman pretest. It is shown that the

asymptotic size of the two�stage test depends on the degree of time variation in the regressors

and on the variance of the error term relative to the variance of the individual speci�c e¤ect and

equals 1 for empirically relevant speci�cations of the parameter space. Monte carlo simulations

document that the size distortion is well re�ected in �nite samples. The size distortion is

caused mainly by the poor power properties of the pretest that lead to frequent unjusti�ed

inference based on the random e¤ects estimator in the second stage. However, it is also shown

that the conditional size of the test, conditional on the Hausman pretest rejecting the pretest

null hypothesis, exceeds the nominal level of the test. Given the results in the paper, the

recommendation then is to use a t�statistic based on the �xed e¤ects estimator instead of using

the two�stage procedure.
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1 Introduction

When deciding between inference based on the random e¤ects or the �xed e¤ects estimator in

a panel data model, it is quite standard in applied work to �rst implement a Hausman (1978)

pretest. If the Hausman pretest rejects the pretest null hypothesis that the random e¤ects

speci�cation is correct, inference based on the �xed e¤ects estimator is used in the second

stage, otherwise inference based on the random e¤ects estimator is used which has favorable

power properties. For example, Blonigen (1997) justi�es the use of random e¤ects inference

based on a Hausman pretest while Hastings (2004) uses �xed e¤ects inference as a result of the

Hausman pretest rejecting the random e¤ects speci�cation. The Hausman pretest is a common

tool, used in hundreds of applied papers and discussed in most textbooks in Econometrics, see

e.g. Wooldridge (2002, chapter 10.7.3).

It is shown in this paper that the asymptotic size of the resulting two�stage test equals

1 for empirically relevant speci�cations of the parameter space. An explicit formula for the

asymptotic size of the two�stage test is derived. It shows that the asymptotic size depends

on the degree of time variation in the regressors and also on the relative magnitude of the

error variance to the variance of the individual speci�c e¤ect. Our results explain how these

two quantities impact the size of the two�stage test. The result that the two�stage test is size

distorted is related to the �ndings in Guggenberger (2007). In that paper it is shown that the

corresponding two�stage test in the linear instrumental variables (IV) model has size 1, where

the Hausman pretest is used as a test of exogeneity of a regressor. As outlined in more detail

below, the analysis of the panel data example is more complicated than the analysis of the

IV example, because in the former case the asymptotic size depends on a higher dimensional

nuisance parameter vector than in the latter case.

Based on the general theory developed in Andrews and Guggenberger (2005a, AG(2005a)

from now on), we characterize sequences of nuisance parameters that lead to the highest null

rejection probabilities of the two�stage test asymptotically. It is shown that under certain

local deviations from the random e¤ects speci�cation, the Hausman pretest statistic converges

to a noncentral chi�square distribution. The noncentrality parameter is small when the error

variance is large relative to the variance of the individual speci�c e¤ect or when the regressors

are positively correlated over time. In this situation, the Hausman pretest has low power

against local deviations of the pretest null hypothesis and consequently, with high probability,

inference based on the random e¤ects estimator is performed in the second stage which leads

to size distortion. However, it is also shown that the conditional size of the two�stage test,
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conditional on the Hausman pretest rejecting the pretest null hypothesis, exceeds the nominal

level of the test.

Given the results in the paper, if controlling the size of a testing procedure is an objective,

the use of the two�stage procedure cannot be recommended. Its asymptotic size is severely

distorted and the size distortion is well re�ected in �nite sample simulations. On the other

hand, use of a t�statistic based on the �xed e¤ects estimator has correct asymptotic size and

performs well in �nite samples. If the random e¤ects speci�cation is correct, inference based

on the random e¤ects estimator has correct size and has favorable power properties, but of

course leads to size distortion otherwise. Given the results in the paper, the random e¤ects

speci�cation should not be tested using a Hausman pretest.

It has been long known that pretests have an impact on the risk properties of estimators

and the size properties of tests, see Judge and Bock (1978) for an early reference and Guggen-

berger (2007) for additional references. As documented further below, the speci�cation tests

proposed in Hausman (1978) are routinely used as pretests in applied work. However, besides

Guggenberger (2007) where the case of the linear IV model is studied, no results are stated

anywhere in the literature regarding the negative impact of the Hausman pretest on the size

properties of a two�stage test.

The remainder of the paper is organized as follows. Section 2 describes the model, the

objective, and de�nes the test statistics. In Section 3, �nite sample evidence is provided.

Subsection 4.1 is based on AG(2005a). It provides theoretical background on how to calculate

the asymptotic size of a test in situations where the test statistic has a limiting distribution

that is discontinuous in nuisance parameters. In subsection 4.2 this theory is then applied to

the situation of a two�stage test where in the �rst stage a Hausman pretest is implemented.

All technical details are given in the Appendix.

The following notation is used in the remainder of the paper. We denote by 1T and IT a

T�vector of ones and the T�dimensional identity matrix, respectively. For a matrix A with T

rows, let MA = IT � PA; where PA = A(A0A)�1A0 is the projection onto the column space of

A: By �21;� and z� we denote the ��quantile of a chi�square distribution with one degree of

freedom and of a standard normal distribution, respectively. By I(�) we denote the indicator
function that equals 1 if the argument is true and 0 otherwise. Denote by jj � jj the Euclidean
norm. Finally, let R+ = fx 2 R : x � 0g; R1 = R [ f�1g; and R+;1 = R+ [ f+1g.
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2 Model and Objective

Consider the simple panel data model

(1) yit = �+ xit� + ci + uit;

for i = 1; :::; N; t = 1; :::; T with scalar parameters � and � and individual speci�c e¤ect ci:1

Denote the regressor vector by w0it = (1; xit): By yi; xi; wi; and ui we denote the matrices

(or vectors) with T rows given by yit; xit; w0it; and uit; respectively. The observed data are

(yi; xi) 2 RT�2; i = 1; :::; N: The data (xi; ci; ui); i = 1; :::; N are assumed to be i.i.d. with

distribution F and uit; t = 1; :::; T are i.i.d. Assume EFxit = EF ci = EFuit = 0; EF ciuit = 0;

and de�ne �2u = EFu
2
it and �

2
c = EF c

2
i .
2 Our asymptotic framework has N !1; but T �xed.

The object of interest is to test the null hypothesis

(2) H0 : � = �0

against a one�or two�sided alternative. One possibility to test (2) is to use a t�statistic TRE(�0)

based on the random e¤ects estimator b�RE of �: To de�ne these quantities, let b
 2 RT�T be an
estimator of the variance�covariance matrix

(3) 
 = EF (ui + 1T ci)(ui + 1T ci)
0 = �2uIT + �2c1T1

0
T 2 RT�T

that replaces �2u and �
2
c in 
 by estimated counterparts b�2u and b�2c : Possible choices for b�2u; b�2c ;

and for the estimator e�2u introduced below are discussed in subsection 5.1 of the Appendix.
Then3

(b�RE;b�RE)0 = � NP
i=1

w0i(
b
)�1wi��1 NP

i=1

w0i(
b
)�1yi;

bVRE = (N�1
NP
i=1

x0i(
b
)�1xi)�1; and

TRE(�0) =
N1=2(b�RE � �0)

(bVRE)1=2 :(4)

1Additional regressors wit could be included into the model at the expense of more complicated notation.

The asymptotic results of the paper are identical if the intercept � is not included into the model.
2To simplify notation, we do not index �2u and �

2
c by F:

3The de�nition of TRE(�0) in (4) could also be altered by replacing N�1PN
i=1 x

0
i(
b
)�1xi by

N�1[
NP
i=1

x0i(b
)�1xi � NP
i=1

x0i(b
)�11T ( NP
i=1

10T (b
)�11T )�1 NP
i=1

10T (b
)�1xi]:
As veri�ed in (42) in the Appendix, this modi�cation makes no di¤erence asymptotically for the results in

the paper.
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Alternatively, the test of (2) can be based on the �xed e¤ects estimator b�FE of �
(5) b�FE = ( NP

i=1

x0iM1Txi)
�1

NP
i=1

x0iM1T yi

by using the t�statistic

TFE(�0) =
N1=2(b�FE � �0)

(bVFE)1=2 ; where

bVFE = (N�1
NP
i=1

x0iM1Txi=e�2u)�1(6)

for an estimator e�2u of �2u that may di¤er from b�2u:
Let xi = T�1

PT
t=1 xit be the time average of the regressor. Inference based on the t�statistic

TRE is justi�ed if xi and ci are uncorrelated but size distorted otherwise. On the other hand

if xi and ci are uncorrelated, inference based on TRE provides power advantages over inference

based on TFE. Because of this trade�o¤ between robustness and power, oftentimes in applied

work, before testing (2), a Hausman (1978) pretest is undertaken. The pretest tests whether

the pretest null hypothesis

(7) HP;0 : CorrF (ci; xi) = 0

is true. If the pretest rejects the pretest hypothesis, then, in the second stage, H0 : � = �0 is

tested based on TFE(�0); the robust testing procedure when HP;0 is false. If the pretest does not

reject (7), then in the second stage (2) is tested based on TRE(�0); the more powerful testing

procedure when (7) is true. Thus, denoting by

(8) HN =
N(b�FE � b�RE)2bVFE � bVRE

the Hausman statistic and by � the nominal size of the pretest, the resulting two�stage test

statistic TN(�0) is given by

(9) T �N(�0) = TRE(�0)I(HN � �21;1��) + TFE(�0)I(HN > �21;1��)

for an upper one�sided test and by �T �N(�0) or jT �N(�0)j for a lower one�sided or a symmetric
two�sided test, respectively. The nominal size � test rejects H0 if

(10) TN(�0) > c1(1� �);

where c1(1 � �) = z1��; z1��; and z1��=2 for the upper one�sided, lower one�sided, and

symmetric two�sided test, respectively.
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The goal of this paper is to illustrate the impact of the pretest on the size properties of the

two�stage test. We show that the asymptotic size AsySz(�0) of the test di¤ers substantially

from its nominal size � and determine the parameters that impact AsySz(�0): Note that if

CorrF (ci; xi) is nonzero and kept �xed as N goes o¤ to in�nity, then the two�stage procedure

has asymptotic null rejection probability equal to the nominal size of the test because in this

case the Hausman pretest statistic diverges to in�nity, and in the second stage TFE is used

with probability approaching 1. However, this is only a pointwise justi�cation of the two�stage

procedure and it does not hold uniformly.

3 Finite Sample Evidence

For illustration of the overrejection problem of the two�stage test de�ned in (10), �nite sample

simulations are conducted in this section. The theoretical results below show that the only

parameters that impact the null rejection probability asymptotically are 
1 = CorrF (ci; xi);


21 = (T�
2
xi
=EF jjxijj2)1=2; and 
22 = (T�2c=�2u)1=2; where

(11) �2xi = EFx
2
i :

The results below also prove that asymptotically, it does not matter whether or not the intercept

� is included in the model (1) and, for simplicity, we therefore consider a model without the

intercept. We choose sample size N = 100 and T = 2 and generate R = 30; 000 i.i.d. draws

from

(12)

0BB@
xi1

xi2

ci

1CCA � N(0;

0BB@
1 p q

p 1 q

q q 1

1CCA) and
 
ui1

ui2

!
� N(0;

 
�2u 0

0 �2u

!
):

Note that di¤erent values for (p; q; �2u) translate into values for 
1; 
21; and 
22 through the

relation 
1 = q=(:5+:5p)1=2; 
21 = (:5+:5p)
1=2; and 
22 = (2=�

2
u)
1=2. Finally, we choose nominal

sizes � = � = :05:4

4Small choices for the pretest nominal size � such as 5% are common in applied work when applying Hausman

pretests, both in panel data and linear IV applications. E.g. Gaynor, Seider, and Vogt (2005, p.245) state �A

Hausman�Wu test does not reject the null hypothesis of exogeneity (p value = 0.06). ... Given these results

... we treat volume as exogenous hereafter. �and Bedard and Deschênes (2006, p.189) state �... the Jerry R.

Hausman (1978) test, testing the null hypothesis that the di¤erence between TSLS and OLS coe¢ cients is due

only to sampling error, is rejected at the 5�percent level.�However, many times the pretest nominal size � is

not even reported in applied papers. E.g. Blonigen (1997, p.453) states �A Hausman test indicated that the
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In Table 1a) we list null rejection probabilities of the symmetric two�stage test and in Table

1b) rejection probabilities of the Hausman pretest. Results for the following 30 parameter

combinations are reported:

(13) (p; q; �2u) 2 f:3; :6; :9g � f0; :3; :4; :5; :6g � f1; 5g:

The possible choices for p and q translate into a grid of values for 
1 in the interval [0,.74] and

the two choices for �2u translate into the values .63 and 1.41 for 
22:

Insert Table 1 here

Table 1a) reveals that the two�stage test overrejects severely. At the nominal size of 5%, the

null rejection rates reach values higher than 80% for the parameter combinations considered

here. When q = 0, i.e. when ci and the regressors xi1 and xi2 are independent, the null

rejection probabilities are relatively close to the nominal size of the test and fall into the interval

[6.2%,8.6%] over the parameter combinations reported here. In this case, inference based on

both TRE and TFE is justi�ed. However, when q is nonzero and thus ci and the regressors xi1
and xi2 are correlated, only inference based on TFE is justi�ed but inference based on TRE is

size�distorted. The two�stage test overrejects because the Hausman pretest does not reject

frequently enough (as documented in Table 1b) in these cases but the resulting inference based

on TRE in the second stage leads to very frequent rejections. For example, when p = q = :6

and �2u = 5 the Hausman pretest only rejects in 45.7% of the cases. The resulting frequent use

of TRE in the second stage leads to the 51.6% rejection rate of the two�stage test.

The simulations reveal that overrejection increases in p and, most of the times, also in �2u:

Picking p close to 1 and/or large enough values for �2u; the null rejection probability of the two�

stage test can be made arbitrarily close to 100%. This is consistent with the theoretical results

reported in the next section. Such large values of p are probably not empirically relevant, but

the important message from the simulations reported here is that severe size distortion of the

two�stage test also occurs for empirically relevant choices of the parameters.

random e¤ects model estimates are consistent for these data, and thus I report only the more e¢ cient random

e¤ects model estimates.�and Banerjee and Iyer (2005, p.1205) state �A Hausman test does not reject the null

hypothesis that the OLS and IV coe¢ cients are equal.�As further indication, that small values of � are common

in applied work, consider Bradford (2003, p.1757) that states that the Hausman statistic �which is distributed as

a chi�square with two degrees of freedom under the null is calculated at 1.46. This fails to reject the null at any

reasonable level of signi�cance. Consequently, these two variables are treated as exogenous regressors hereafter.�

Note that the p�value in this case is .48. Thus, choices of � of that magnitude are considered unreasonable.

When calculating the estimators b�2u; b�2c ; and e�2u; we use the degrees of freedom adjustment K = 1; see

Subsection 5.1 below.
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In contrast to the size�distorted two�stage procedure, the simple one�stage test that always

uses the test statistic TFE has very reliable null rejection probabilities. Over all the parameter

combinations in (13), the null rejection probabilities of the one�stage test fall into the inter-

val [5.0%,5.3%]. Note that the corresponding interval of the two�stage test is [5.3%,80.8%].

Therefore, if controlling the size is an objective, use of the two�stage procedure can not be

recommended.

4 Asymptotic Size of a Test

In subsection 4.1, the theoretical background is discussed of how to determine the asymptotic

size of a �xed critical value test in a situation where the test statistic that the testing procedure

is based on, has an asymptotic distribution that may be discontinuous in certain nuisance

parameters. This theory is taken from AG(2005a) and illustrated in a motivational example,

namely inference in a simple version of the linear instrumental variables model. Then, in

subsection 4.2, this theory is applied to the two�stage test with a Hausman pretest in the �rst

stage.

4.1 General Theory and Motivation

Consider a general testing problem of nominal size � with test statistic TN(�0) and nonrandom

critical value c1(1 � �): Assume the model contains a possibly in�nite�dimensional nuisance

parameter vector 
 2 �: Then, by de�nition, the asymptotic size of the test of H0 : � = �0

equals

(14) AsySz(�0) = lim sup
N!1

sup

2�

P�0;
(TN(�0) > c1(1� �));

where P�;
(�) denotes probability when the true parameters are (�; 
): Uniformity over 
 2 �
which is built into the de�nition of AsySz(�0) is crucial for the asymptotic size to give a good

approximation for the �nite sample size. For illustration, consider the following example.

Example:5 Consider the simple model given by a structural equation and a reduced�form

equation y1 = y2�+u; y2 = z�+ v; where y1; y2; z 2 RN and �; � 2 R are unknown parameters.
Assume f(ui; vi; zi) : i � Ng are i.i.d. with distribution F; where a subscript i denotes the
i�th component of a vector. To test H0 : � = �0 against a two�sided alternative say; the

t�statistic TN(�0) = jN1=2(b�N � �0)=b�N j and critical value c1(1 � �) = z1��=2 is used, where

5See AG(2005c) for the general treatment of this example
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b�N = (y02Pzy2)�1y02Pzy1; b�N = b�u(N�1y02Pzy2)
�1=2; and b�2u = (N � 1)�1(y1 � y2b�N)0(y1 � y2b�N):

The nuisance parameter vector 
 equals (F; �); where certain restrictions are imposed on F;

such as conditional homoskedasticity, exogeneity of the instrument, and existence of second

moments.

Following AG (2005a), the parameter 
 is decomposed into three components: 
 = (
1; 
2; 
3):

The points of discontinuity of the asymptotic distribution of the test statistic of interest are

determined by the �rst component, 
1: The parameter space of 
1 is �1: The second component,


2; of 
 also a¤ects the limit distribution of the test statistic, but does not a¤ect the distance

of the parameter 
 to the point of discontinuity. The parameter space of 
2 is �2: The third

component, 
3; of 
 does not a¤ect the limit distribution of the test statistic. The parameter

space for 
3 is �3(
1; 
2); which generally may depend on 
1 and 
2: The parameter space �

for 
 satis�es

Assumption A. (i)

(15) � = f(
1; 
2; 
3) : 
1 2 �1; 
2 2 �2 � Rq; 
3 2 �3(
1; 
2)g

and (ii) �1 = b
`1; 
u1c for some �1 � 
`1 < 
u1 � 1 that satisfy 
`1 � 0 � 
u1 ; where b denotes
the left endpoint of an interval that may be open or closed at the left end and c is de�ned
analogously for the right endpoint.

Example (continued): Decompose the nuisance parameter into 
 = (
1; 
2; 
3); where


1 = j(EF z2i )1=2�=�vj; 
2 = �; and 
3 = (F; �); where �2v = EFv
2
i ; �

2
u = EFu

2
i ; and � =

CorrF (ui; vi): The parameter spaces for 
1 and 
2 are �1 = R+ and �2 = [�1; 1]. The details
for the restrictions on the parameter space �3 = �3(
1; 
2) for 
3 are given in AG(2005c) and

are such that the following CLT holds under sequences 
 = 
N for which 
2 = 
2;N ! h2:

(16)

 
(N�1z0z)�1=2N�1=2z0u=�u

(N�1z0z)�1=2N�1=2z0v=�v

!
!d

 
 u;h2
 v;h2

!
� N(0;

 
1 h2

h2 1

!
):

In this example, the asymptotic distribution of the statistic TN(�0) has a discontinuity at 
1 = 0:

Under di¤erent sequences 
1 = 
1;N such that 
1;N ! 0; the limit distribution of TN(�0) may

be di¤erent. More precisely, denote by 
N;h a sequence of nuisance parameters 
 = 
N such

that N1=2
1 ! h1 and 
2 ! h2 and h = (h1; h2): It is shown below that under 
N;h; the limit

distribution of TN(�0) depends on h1 and h2 and only on h1 and h2: As long as h1 is �nite,

the sequence 
1 converges to zero, yet the limit distribution of TN(�0) does not only depend

on the limit point 0 of 
1; but depends on how precisely 
1 converges to zero, indexed by the

convergence speed N1=2 and the localization parameter h1. In contrast, the limit distribution
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of TN(�0) only depends on the limit point h2 of 
2 but not on how 
2 converges to h2: In

that sense, the limit distribution is discontinuous in 
1 at 0, but continuous on �2 in 
2: The

parameter 
3 does not in�uence the limit distribution of TN(�0) by virtue of the CLT in (16).

If h1 <1; it is shown in AG(2005c) that under 
N;h

(17)

0BB@
y02Pzu=(�u�v)

y02Pzy2=�
2
vb�2u=�2u
1CCA!d

0BB@
�1;h

�2;h

�2u;h

1CCA =

0BB@
( v;h2 + h1) u;h2
( v;h2 + h1)

2

(1� h2�1;h=�2;h)
2 + (1� h22)�

2
1;h=�

2
2;h

1CCA
and thus TN(�0)!d Jh, where Jh is the distribution of j�1;h=(�2;h�2u;h)1=2j. If h1 =1; TN(�0)!d

Jh; where in this case Jh is the distribution of the absolute value of a standard normal random

variable independent of h2:

Formalizing the additional aspects of the example, we now de�ne the index set for the

di¤erent asymptotic null distributions of the test statistic TN(�0) of interest. Let

H = fh = (h1; h2) 2 R1+q1 : 9 f
N = (
N;1; 
N;2; 
N;3) 2 � : N � 1g

such that N r
N;1 ! h1 and 
N;2 ! h2g:(18)

De�nition of f
N;h : N � 1g: Given r > 0 and h = (h1; h2) 2 H; let f
N;h = (
N;h;1; 
N;h;2;

N;h;3) : N � 1g denote a sequence of parameters in � for which N r
N;h;1 ! h1 and 
N;h;2 ! h2:

In the example, r = 1=2 and H = R+;1 � [�1; 1]: The sequence f
N;h : N � 1g is de�ned such
that under f
N;h : N � 1g; the asymptotic distribution of TN(�0) depends on h and only h:
This is formalized in the following assumption and has already been illustrated in the above

example.

Assumption B. For some r > 0; all h 2 H; all sequences f
N;h : N � 1g; and some distribu-
tions Jh; TN(�0)!d Jh under f
N;h : N � 1g:

The next theorem, a special case of Theorem 1(a) in AG(2005a), provides a formula for

AsySz: In contrast to the formula of AsySz in (14), the formula in the theorem can be used for

explicit calculation. It shows that the �worst case�sequence of nuisance parameters, a sequence

that yields the highest asymptotic null rejection probability, is of the type f
N;h : N � 1g:

Theorem 1 (AG(2005a)) Suppose Assumptions A and B hold where Jh : R ! [0; 1] is a

continuous function. Then, AsySz(�0) = suph2H [1� Jh(c1(1� �))]:

Example (continued): Here AsySz(�0) = suph2R+;1�[�1;1][1 � Jh(z1��=2)]; where for

h1 < 1; Jh is the distribution of j�1;h=(�2;h�2u;h)1=2j and for h1 = 1, Jh is the distribution
of the absolute value of a standard normal random variable. The asymptotic size can be easily

calculated by simulation of Jh over a �ne grid over vectors h in H.
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4.2 Asymptotic Size After Hausman Pretest

In this subsection, we return to the panel data application and the two�stage test with a

Hausman pretest in the �rst stage introduced in (10). To apply Theorem 1, we have to determine

the decomposition of the nuisance parameter vector 
 into �discontinuous�and �continuous�

elements, the rate of convergence r; and verify Assumptions A and B. Finally, one needs to

derive the limiting distribution Jh of the test statistic TN(�0) under f
N;hg.
Let 
 = (
1; 
2; 
3) with 
2 = (
21; 
22);

(19) 
1 = CorrF (ci; xi); 
21 = (
T�2xi

EF jjxijj2
)1=2; 
22 = (T�

2
c=�

2
u)
1=2;

and 
3 = (F; �): The component 
21 measures the expected time variation in the regressor while

the component 
22 is a function of the ratio of the variances of the individual speci�c e¤ect and

the error term uit. In all the examples studied in AG(2005a�e), 
2 is one�dimensional and this

is the only example where the 
2�component is two�dimensional. In particular, Guggenberger

(2007) studies the asymptotic size of the two�stage test in the linear IV context where the

Hausman pretest is used as a test of exogeneity of a regressor. The 
2�component there is

scalar and is a function of the concentration parameter. Here, the situation is more complex

and two separate parameters impact the asymptotic size of the two�stage test through 
2.

The parameter space � of 
 is de�ned as in (15) with q = 2; �2 = �21 � �22 and

(20) �1 = [�1; 1]; �21 = [�1; �1]; and �22 = [�2; �2]

for some 0 < �1 < �1 < 1 and 0 < �2 < �2 <1: Let

�3(
1; 
2) = f(F; �) : � 2 R; EFxit = EF ci = EFuit = 0;

EFu
2
it = �2u; EF c

2
i = �2c for some �nite �

2
u; �

2
c > 0;

CorrF (ci; xi) = 
1; (T�
2
xi
=EF jjxijj2)1=2 = 
21; (T�

2
c=�

2
u)
1=2 = 
22;

EFxituis = EFxitxisuivci = EF ciuit = 0; EF (x
2
i c
2
i ) = �2xi�

2
c + 2(EFxici)

2;

EFxitxisuivuiw = EFxitxisEFuivuiw;


EF �jxi=�xij2+�; (jjxijj2=EF jjxijj2)1+�;

jx0iui=(�xi�u)j2+�; jxiui=(�xi�u)j2+�; jxici=(�xi�c)j2+�; (u2it=�2u)1+�)


 �Mg(21)

for some constants � > 0; M <1; and subindices t; s; v; w = 1; :::; T: The condition EF (x2i c
2
i ) =

EFx
2
iEF c

2
i +2(EFxici)

2 holds, for example, if xi and ci are jointly normal. The remaining condi-

tions are moment restrictions, that imply that Liapounov�type central limit theorems (CLT) or

weak law of large numbers (WLLN) for independent L1+��bounded random variables hold, and
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the conditional homoskedasticity�type assumption EFxitxisuivuiw = EFxitxisEFuivuiw. With

the above de�nitions, Assumption A clearly holds.

For H de�ned as in (18) it follows that

(22) H = H1 �H2 = R1 � [�1; �1]� [�2; �2]:

For every h = (h1; h2) 2 H; denote by f
N;hg � � a sequence of parameters with components

N;h;1; 
N;h;2 = (
N;h;21; 
N;h;22); and 
N;h;3; 
N;h = (
N;h;1; 
N;h;2; 
N;h;3); where


N;h;1 = CorrFN (ci; xi); 
N;h;21 = (
TEFNx

2
i

EFN jjxijj2
)1=2; 
N;h;22 = (TEFN c

2
i =EFNu

2
it)
1=2 s.t.

N1=2
N;h;1 ! h1; 
N;h;2 ! h2; and 
N;h;3 = (FN ; �N) 2 �3(
N;h;1; 
N;h;2):

(23)

In the Appendix, for every h 2 H we derive the limit distribution Jh of the test statistic

TN(�0) under the sequence f
N;hg; see (51). This veri�es Assumption B with r = 1=2.
Then, applying Theorem 1 the asymptotic size of the two�stage test equals

(24) AsySz(�0) = sup
h2H

[1� Jh(c1(1� �))]

with H de�ned in (22) and Jh de�ned in (51). The formula applies to upper, lower one�

sided, and symmetric two�sided versions of the test with c1(1 � �) = z1��; z1��; and z1��=2;

respectively. Note that AsySz(�0) depends on �; �; and on the boundaries in the de�nition of

�2: For notational simplicity, this dependence is suppressed.

Figure 2 plots the asymptotic maximal rejection probability of the symmetric two�stage

test, where the maximum is taken over h1 2 H1; as a function of h21 and h22, i.e. the �gure

plots the function

(25) f(h21; h22) = sup
h12H1

[1� J(h1;h21;h22)(c1(1� �))]

for � = � = :05:6 For small values of h21; f(h21; h22) is close to the nominal size 5% of the test.

For h21 � :4; f(h21; h22) < :1: The size distortion increases as h21 increases and the asymptotic

maximal null rejection probability gets arbitrarily close to 1 as h21 ! 1 (as documented in

6For each h; the results are based on R = 30; 000 random draws from the distribution of Jh: We consider h1
values in [-2000,2000] using a grid with stepsize .01 on [0,.1], stepsize .1 on [.1,1] stepsize 1 on [1,10], stepsize 10

on [10,100], and stepsize 50 on [100,2000] and the analogous grid for negative h1 values.
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additional simulations). For �xed h21; the function f(h21; h22) decreases as h22 increases and

as h22 ! 1 it decreases to the nominal size of the test. However, the slope of the function

f(h21; �) is rather small and it takes rather large values of h22 to make f(h21; h22) small when
h21 is close to 1. For example, f(:95; h22) equals 63.7, 40.0, 25.9, 16.9, 13.0, 10.8, and 9.4% for

h22 = 1; 2; :::; 7:

Insert Figure 2 here

What is the reason for the size distortion? It is shown in (47) that HN !d �
2
1(h

2
1h(h+1)

�1)

for h = h222(1� h221) under 
N;h; where �
2
1(�) denotes a noncentral chi�square distribution with

one degree of freedom with noncentrality parameter given by the expression in brackets. If

h1h 6= 0; the Hausman pretest has nonzero local power. However, the noncentrality parameter
h21h(h+1)

�1 of the limiting distribution in (47) is small when h is small which is the case if h21
is close to 1 or if h22 is close to 0. In these cases, the pretest has poor power properties and the

two�stage test frequently uses inference based on TRE in the second stage. But the test based

on TRE tends to reject frequently under moderate failures of the pretest hypothesis (7) which

leads to size distortion of the two�stage test. The parameter h21 is close to 1when there is little

time variation in the regressor, i.e. in the extreme case where xit = xis for all s; t = 1; :::; T;

h21 = 1: In the case where xit; t = 1; :::; T is i.i.d., h21 = T�1=2; for example, h21 = :71 and

h21 = :58 when T = 2 or 3, respectively. Note that if �1 = :71; the simulations for Figure 2

show that AsySz(�0) is about 30% if �2 is small. So, even in the case where the regressor xit
is uncorrelated for di¤erent time indices t; the two�stage test is extremely size distorted.7 The

parameter h22 is small when the ratio of the variances of the individual speci�c e¤ect and of

the error term is small.

Insert Table 3 here

Table 3 reports conditional rejection probabilities of the symmetric two�stage test, conditional

on the Hausman pretest rejecting the pretest null hypothesis, R � C � R = P (TN(�0) >

c1(1��)jHN > �21;1��); and conditional on the pretest not rejecting the pretest null hypothesis,

R � C � NR = P (TN(�0) > c1(1 � �)jHN < �21;1��); when � = � = :05 and h1 = 15 for a

grid of h21 and h22 values. Table 3 also reports rejection probabilities of the Hausman pretest.

Even though h1 = 15 is quite large, these latter rejection probabilities can be quite small,

especially when h21 is close to one and/or h22 is close to 0. This is consistent with the local

power result of the Hausman pretest described in the previous paragraph because when h21 is

close to one and/or h22 is close to 0 then the noncentrality parameter h21h(h + 1)
�1 is close to

7Values of h21 close to zero are possible if xit is negatively correlated, a case which is probably of lesser

importance in applied work.
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0. For example, when h21 = :75 and h22 = :1; then the Hausman pretest rejects in 16.9% of

the cases. However, in cases where the Hausman pretest does not reject �despite the fact that

h1 is 15�the rejection probability in the second stage can be very high. This is because then

in the second stage inference is based on TRE which takes on relatively large values when h1 is

nonzero. For example, in the case h21 = :75 and h22 = :2; conditional on the Hausman pretest

not rejecting (which happens in 49.5% of the cases), the test rejects with probability 59.1%

in the second stage. Perhaps more surprisingly, size distortion of the two�stage test is also

caused by the two�stage test rejecting at high frequency conditional on the Hausman pretest

rejecting in the �rst stage. This is despite the fact, that then in the second stage inference is

based on the statistic TFE and the unconditional size of the one�stage test based on TFE is

� = :05: For example, in the case h21 = :75 and h22 = :05; conditional on the Hausman pretest

rejecting (which happens in 8.0% of the cases), the test rejects with probability 26.0% in the

second stage. The reason for this overrejection is that the Hausman statistic and the t�statistic

TFE are correlated and if the former statistic takes on large values (and therefore the pretest

hypothesis is rejected and the two�stage test is based on TFE in the second stage) the latter

statistic is likely to take on a large value too. This correlation increases as h21 approaches one

and/or h22 approaches zero.8

5 Appendix
The Appendix provides possible choices for the variance estimators b�2u; b�2c ; and e�2u and contains
the derivation of the asymptotic distribution of the two�stage test statistic under sequences

f
N;hg:

5.1 Possible choices for b�2u; b�2c; and e�2u
Following Wooldridge (2002, p.260 and 271), one alternative to de�ne the variance estimators

is as follows. Let

(26) (b�OLS;b�OLS)0 = � NP
i=1

w0iwi

��1 NP
i=1

w0iyi

be the pooled OLS estimator of (
; �)0 and

(27) bvit = yit � w0it(
b�OLS;b�OLS)0

8Note that if we evaluate the limiting distribution �H;h of Hn in (45) at h21 = 1 and h22 = 0 the result is

�2FE;h which is the squared limiting distribution of TFE ; derived in (40).
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the residuals from pooled OLS regression estimating vit = ci + uit: Then let

b�2v = (NT �K)�1
NP
i=1

TP
t=1

bv2it;
b�2c = (NT (T � 1)=2�K)�1

NP
i=1

T�1P
t=1

TP
s=t+1

bvitbvis;
b�2u = b�2v � b�2c(28)

for K = 0 or 2 depending on whether a degrees�of�freedom correction is desired. We can also

estimate �2u based on the �xed e¤ects estimator b�FE in (5). Let yi = T�1
PT

t=1 yit and let

(29) euit = (yit � yi)� (xit � xi)b�FE
be the �xed e¤ects residuals estimating uit and de�ne the estimator

(30) e�2u = (N(T � 1)�K)�1
NP
i=1

TP
t=1

eu2it:
For the asymptotic results below, the speci�c choice of variance estimators b�2u or e�2u does not
matter as long as they are consistent in the sense that b�2u=�2u !p 1 and e�2u=�2u !p 1 under

sequences f
N;hg with �nite h1:

5.2 Derivation of Jh

In this subsection, the limit distribution of the test statistic TN(�0) is derived under sequences

f
N;hg: Two cases are dealt with separately. Case I has jh1j <1 while Case II has jh1j =1:

In Case I, 
1 ! 0: Recall that if FN is the true distribution, then �2c = EFN c
2
i ; �

2
u = EFNu

2
it;

and �2xi = EFNx
2
i . Under any sequence f
N;hg for which 
N;h;1 = CorrFN (ci; xi)! 
1;

(31)0BBBBBB@
(�2xi�

2
c)
�1=2N�1=2

NP
i=1

(xici � EFNxici)

(�2xi�
2
u=T )

�1=2N�1=2
NP
i=1

xiui

(EFN jjxijj2�2u)�1=2N�1=2
NP
i=1

x0iui

1CCCCCCA!d

0BB@
 c;
1
 u;h21
 u;h21

1CCA � N(0;

0BB@
1 + 
21 0 0

0 1 h21

0 h21 1

1CCA):

The result holds by the Liapounov CLT for independent, mean zero, L2+��bounded ran-

dom variables using the moment restrictions in (21) noting that EFNx
2
iu
2
i = �2xi�

2
u=T and

EFN (x
0
iui)

2 = EFN jjxijj2�2u. In particular, the condition EFN (x2i c2i ) = �2xi�
2
c + 2(EFNxici)

2 from

(21) yields

(32) EFN (xici � EFNxici)
2 = EFN (xici)

2 � (EFNxici)2 = �2xi�
2
c + (EFNxici)

2
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and thus (�2xi�
2
c)
�1EFN (xici � EFNxici)

2 = 1 + CorrFN (ci; xi)
2: The limiting distribution  c;
1

is independent of  u;h21 ;  u;h21 because of the conditions EFNxituis = EFNxitxisuivci = 0 for

t; s; v = 1; :::; T: Finally, the covariance between  u;h21 and  u;h21 is h21: This holds because

EFNxiuix
0
iui = EFNu

2
iEFNx

2
i which holds because EFNxitxisuivuiw = EFNxitxisEFNuivuiw for

t; s; v; w = 1; :::; T:

Next, the joint limiting distribution of the t�statistics and the Hausman statistic are de-

rived. We �rst assume that 
 and �2u are known and replace b
 and e�2u by 
 and �2u in the
test statistics. We then show that this modi�cation does not matter asymptotically. The rel-

evant ingredients in the t�statistics and Hausman statistic are the expressions
PN

i=1 x
0
i

�1vi;PN

i=1 x
0
iM1Tui;

PN
i=1 x

0
i

�1xi; and

PN
i=1 x

0
iM1Txi; where

(33) vi = ui + 1T ci:

We �rst derive the appropriate normalizations of these expressions and their limit expressions.

We �rst consider Case I in which case 
21 = 0: Note that

(34) 
�1 = ��2u IT � �1T1
0
T ; for � = �2c�

�2
u (�

2
u + �2cT )

�1:

Then, PN
i=1 x

0
i

�1vi

=
PN

i=1 x
0
i

�1ui +

PN
i=1(x

0
i

�11T ci � EFNx

0
i

�11T ci + EFNx

0
i

�11T ci)

= ��2u
PN

i=1 x
0
iui � T 2�

PN
i=1 xiui + (�

2
u + �2cT )

�1T
PN

i=1(xici � EFNxici + EFNxici)(35)

and thus by (31)

(36) T�1��1xi �
�1
c (�

2
u+�

2
cT )N

�1=2PN
i=1 x

0
i

�1vi !d (h22+h

�1
22 )h

�1
21  u;h21�h22 u;h21+ c;0+h1:

Furthermore, because
PN

i=1 x
0
iM1Tui =

PN
i=1(x

0
iui � Txiui);

(37) (EFN jjxijj2�2u)�1=2N�1=2PN
i=1 x

0
iM1Tui !d  u;h21 � h21 u;h21 :

Also, because
PN

i=1 x
0
i

�1xi =

PN
i=1(�

�2
u jjxijj2 � �T 2x2i ) it follows by a WLLN (using the last

two lines in (21)) and straightforward calculations that

(38) ��1��2xi T
�2N�1PN

i=1 x
0
i

�1xi !p (h

�2
22 + 1)h

�2
21 � 1:

Finally because
PN

i=1 x
0
iM1Txi =

PN
i=1(jjxijj2 � Tx2i ) it follows that

(39) (EFN jjxijj2)�1N�1PN
i=1 x

0
iM1Txi !p 1� h221:
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Results (37), (39) and the continuous mapping theorem immediately imply that

(40) TFE(�0) = (�
2
uN

�1
NP
i=1

x0iM1Txi)
�1=2N�1=2

NP
i=1

x0iM1Tui !d �FE;h �
 u;h21 � h21 u;h21
(1� h221)

1=2
:

Note that the distribution �FE;h does not depend on h1 and we extend the de�nition of �FE;h
in (40) to the case jh1j =1:

To derive the limit distribution of TRE(�0); �rst note that by partitioned regression, it follows

that

(41) N1=2(b�RE � �) =

N�1=2[
NP
i=1

x0i

�1vi �

NP
i=1

x0i

�11T (

NP
i=1

10T

�11T )

�1
NP
i=1

10T

�1vi]

N�1[
NP
i=1

x0i

�1xi �

NP
i=1

x0i

�11T (

NP
i=1

10T

�11T )�1

NP
i=1

10T

�1xi]:

By (36) and (38) the normalizations for the numerator and denominator in (41) are T�1��1xi �
�1
c (�

2
u+

�2cT ) and �
�1��2xi T

�2, respectively. However, by straightforward calculations

(42)

��1��2xi T
�2N�1[

NP
i=1

x0i

�11T (

NP
i=1

10T

�11T )

�1
NP
i=1

10T

�1xi] =

�2u
T�2c

(N�1
NP
i=1

xi=�xi)
2 = op(1);

where the last equality holds because T�1��2c �2u ! h�222 and N
�1PN

i=1 xi=�xi = op(1) by a

WLLN for independent L1+��bounded random variables and (21). Using an analogous argument

for the numerator in (41), it follows that

(43) T�xi�c�
�2
u N1=2(b�RE � �) = T�xi�c�

�2
u

�
N�1

NP
i=1

x0i

�1xi

��1
N�1=2

NP
i=1

x0i

�1vi + op(1):

Therefore, using (43), (36), and (38)

TRE(�0) =

�
N�1

NP
i=1

x0i

�1xi

��1=2
N�1=2

NP
i=1

x0i

�1vi + op(1)

! d�RE;h �
(h22 + h�122 )h

�1
21  u;h21 � h22 u;h21 +  c;0 + h1

((h�222 + 1)h
�2
21 � 1)1=2(1 + h222)1=2

:(44)

It is easy to verify that TRE(�0)!d N(0; 1) when h1 = 0: Finally, using (36)�(39) and straight-

forward calculations, the limiting distribution of the Hausman statistic under f
N;hg with
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jh1j <1 is given by

HN =

N((
NP
i=1

x0iM1Txi)
�1

NP
i=1

x0iM1Tui � (
NP
i=1

x0i

�1xi)

�1
NP
i=1

x0i

�1vi)

2

(N�1
NP
i=1

x0iM1Txi=�
2
u)
�1 � (N�1

NP
i=1

x0i

�1xi)�1

+ op(1)

= (TN�1
NP
i=1

x2i )
�1�

2
u + �2cT

�2u

�
TFE(�

2
uN

�1
NP
i=1

x0i

�1xi)

1=2 � TRE(N
�1

NP
i=1

x0iM1Txi)
1=2

�2
+ op(1)

! d�H;h � (1 + h222)[�FE;h(h�221 � h222(h
2
22 + 1)

�1)1=2 � �RE;h(h
�2
21 � 1)1=2]2;

(45)

where the last step holds because

(TN�1
NP
i=1

x2i )
�1�2uN

�1
NP
i=1

x0i

�1xi = (TN

�1
NP
i=1

x2i )
�1N�1

NP
i=1

x0ixi � T�2c(�
2
u + �2cT )

�1;

(TN�1
NP
i=1

x2i )
�1N�1

NP
i=1

x0iM1Txi = (TN
�1

NP
i=1

x2i )
�1N�1

NP
i=1

x0ixi � 1;(46)

and because (TN�1
NP
i=1

x2i )
�1N�1

NP
i=1

x0ixi !p h
�2
21 and T�

2
c(�

2
u + �2cT )

�1 ! h222(h
2
22 + 1)

�1: It

follows from (45) that the limit distribution of HN is

(47) �21(h
2
1h(h+ 1)

�1) for h = h222(1� h221)

and thus HN !d �
2
1 if h1 = 0:

In Case II, under sequences f
N;hg for which jh1j =1 the following limits hold jointly

(48)

 
TFE(�0)

HN

!
!d

 
�FE;h

1

!

and thus in this case, with probability approaching 1, �xed e¤ect inference is conducted in

stage two and since �FE;h � N(0; 1) it follows that the asymptotic rejection probability of the

two�stage test equals � in this case.

In summary,

(49) T �N(�0)!d J
�
h;

under f
N;hg; where J�h is the distribution of the random variable

(50) ��h = �RE;hI(�H;h � �21;1��) + �FE;hI(�H;h > �21;1��)

and �FE;h; �RE;h; and �H;h have been de�ned in (40), (44), and (45), respectively.
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De�ne �J�h; and jJ�hj as the distribution of the random variable ���h and j��hj; respectively.
For an upper one�sided, lower one�sided, and symmetric two�sided test, de�ne

(51) Jh = J�h;�J�h; and jJ�hj;

respectively. The distribution Jh depends on � but for notational simplicity, this dependence

is suppressed. The derivations above imply that Assumption B holds with r = 1=2:

To conclude the derivation of the asymptotic distribution of TN(�0), it has to be veri�ed

that replacing b
 and e�2u by 
 and �2u does not matter asymptotically. We only do so in Case I,
Case II can be dealt with analogously. For Case I, it is clear that it is su¢ cient to show that

(N�1
NP
i=1

x0i(b
)�1xi)�1N�1
NP
i=1

x0i

�1xi = 1 + op(1);

(N�1=2
NP
i=1

x0i

�1vi)

�1N�1=2
NP
i=1

x0i(b
)�1vi = 1 + op(1); and
e�2u=�2u = 1 + op(1):(52)

We verify (52) for the estimators b�2u; b�2c ; and e�2u de�ned in Subsection 5.1. We only verify the
�rst of the three conditions, the other conditions are veri�ed analogously. To do so, note that

(53) (N�1
NP
i=1

x0i(b
)�1xi)�1N�1
NP
i=1

x0i

�1xi =

b�2u
�2u

1� �2cT
�2u+�

2
cT
TN�1

NP
i=1

x2i =(N
�1

NP
i=1

x0ixi)

1� b�2cTb�2u+b�2cT TN�1
NP
i=1

x2i =(N
�1

NP
i=1

x0ixi)

and thus it is enough to show that

(54)
b�2u
�2u
= 1 + op(1) and that

b�2c
�2c
= 1 + op(1);

because using h2 2 [�2; �2] for 0 < �2 < �2 <1; the second condition in (54) implies ��2u b�2cT �
h222 = op(1) and thus (54) implies (b�2u + b�2cT )�1b�2cT � (�2u + �2cT )�1�2cT = op(1): We only show

the �rst condition ��2u b�2u = 1 + op(1); the second condition in (54) can be veri�ed analogously.
For notational convenience, assume K = 0 in (28). By de�nition

(55) b�2u = b�2v � b�2c = (NT )�1 NP
i=1

TP
t=1

bv2it � (NT (T � 1)=2)�1 NP
i=1

T�1P
t=1

TP
s=t+1

bvitbvis;
where

(56) bvit = yit � w0it(
b�OLS;b�OLS)0 = w0it((�; �)

0 � (b�OLS;b�OLS)0) + ci + uit:

19



Multiplying out in (55), it follows that all the contributions with a ci�factor cancel out. For the

contributions with only uit�factors we have (NT )�1
PN

i=1

PT
t=1 u

2
it=�

2
u = 1 + op(1) by a WLLN

for independent L1+��bounded random variables and (21) and

(57) (NT (T � 1)=2)�1
PN

i=1

PT�1
t=1

PT
s=t+1 uituis=�

2
u = op(1)

also by theWLLN becauseEFNuituis = 0: Finally, the terms involvingw
0
it((�; �)

0�(b�OLS;b�OLS)0)�
components are negligible. For example, consider the cross term 

�� b�OLS
� � b�OLS

!0�
2(NT )�1

NP
i=1

TP
t=1

wituit � (NT (T � 1)=2)�1
NP
i=1

T�1P
t=1

TP
s=t+1

(wituis + wisuit)

�
=�2u:

(58)

It is op(1) using a WLLN for the mean zero vectors wituit and wituis and by consistency of the

pooled OLS estimators. This concludes the proof of showing that replacing b
 and e�2u by 
 and
�2u does not a¤ect the limiting distribution Jh:
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Tables and Figures

Table 19

Finite Sample (Null) Rejection Probabilities (in %) of a) Symmetric Two�stage

Test and b) Hausman Pretest for N = 100; T = 2; � = � = :05

a) �2u = 5 �2u = 1

pnq 0 .3 .4 .5 .6 0 .3 .4 .5 .6

.9 8.6 37.3 56.0 71.6 80.8 8.2 59.2 71.5 66.6 55.2

.6 7.7 32.7 45.9 53.3 51.6 7.0 35.0 28.3 15.2 7.2

.3 6.9 27.7 34.6 33.1 24.2 6.2 18.6 10.2 5.5 5.3

b)

.9 5.1 7.2 8.9 11.4 14.1 5.2 15.8 23.9 35.1 47.2

.6 5.2 15.3 23.7 33.9 45.7 5.4 44.9 69.6 87.4 96.8

.3 5.5 26.3 42.5 59.7 76.3 5.9 70.3 91.9 99.0 99.9

Table 310

Asymptotic Rejection Probabilities (in %) of Symmetric Two�stage

Test Conditional on Pretest (Not) Rejecting � = � = :05; h1 = 15

R� C �R R� C �NR P (HN > �21;1��)

h21nh22 .05 .1 .2 .3 .05 .1 .2 .3 .05 .1 .2 .3

.75 26.0 13.7 5.0 3.5 8.8 20.1 59.1 88.7 8.0 16.9 50.5 83.2

.8 31.0 16.5 5.8 3.5 9.3 22.3 64.8 92.5 7.4 14.8 43.3 75.9

.85 37.5 20.7 7.3 3.9 9.8 24.6 70.2 95.2 6.9 12.5 35.1 65.1

.9 46.6 27.7 10.0 5.1 10.4 27.0 75.2 97.1 6.3 10.1 25.8 49.6

.95 60.8 41.7 17.5 8.9 11.0 29.5 79.8 98.3 5.7 7.6 15.6 28.9

9The results are based on R = 30; 000 simulation repetitions.
10The results are based on R = 3; 000; 000 simulation repetitions.
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