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Abstract

In this paper we propose a bootstrap method for panel data linear regression models with
individual fixed effects. The method consists of applying the standard moving blocks bootstrap of
Künsch (1989) and Liu and Singh (1992) to the vector containing all the individual observations at
each point in time. We show that this bootstrap is robust to serial and cross sectional dependence
of unknown form under the assumption that n (the cross sectional dimension) is an arbitrary
nondecreasing function of T (the time series dimension), where T → ∞, thus allowing for the
possibility that both n and T diverge to infinity. The time series dependence is assumed to be
weak (of the mixing type) but we allow the cross sectional dependence to be either strong or weak
(including the case where it is absent). Under appropriate conditions, we show that the fixed effects
estimator (as well as its bootstrap analogue) have convergence rates that depend on the degree of
cross section dependence in the panel. Despite this, the same studentized test statistics can be
computed without reference to the degree of cross section dependence. Our simulation results
show that the moving blocks bootstrap percentile-t intervals have very good coverage properties
even when the degree of serial and cross sectional correlation is large, provided the block size is
appropriately chosen.

1 Introduction

This paper considers the bootstrap for panel data linear regression models with individual fixed effects.

The parameters of interest are the slope coefficients � and the estimation method is the fixed effects

ordinary least squares (OLS) estimator �̂. The main goal of the paper is to develop a bootstrap

method that allows for inference on � based on �̂ in a way that is robust to the potential presence of
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heteroskedasticity as well as serial and cross sectional dependence of unknown form in the regressors

and error term of the model. Handling both forms of dependence in panel data models is important

because in addition to the usual time series dependence, many panel data sets are characterized by

dependencies among individuals. A source of cross section dependence can be the presence of common

shocks such as macroeconomic shocks or political shocks. See Andrews (2005) for more discussion of

common shocks and their effects on the properties of OLS estimators in the context of cross section

regression models.

We propose the panel moving blocks bootstrap (MBB). The panel MBB consists of applying the

standard MBB of Künsch (1989) and Liu and Singh (1992) to the vector containing all the individual

observations at each point in time. Because it does not resample the individual observations directly,

the panel MBB is expected to be robust to arbitrary forms of cross sectional dependence. By relying

on the MBB, it is robust to serial dependence of unknown form as long as this dependence satisfies a

mixing type condition.

We make two main contributions. First, we study the asymptotic properties of the fixed effects

estimator for a panel linear regression model with individual fixed effects where the regressors and

errors are subject to heteroskedasticity, and serial and cross sectional dependence of unknown forms.

Building on these results, we then prove the first order asymptotic validity of the MBB in this context.

The asymptotic results are derived under the assumption that n (the cross section dimension) is

an arbitrary nondecreasing function of T (the time series dimension), where T → ∞, which allows for

large n, large T panels. To derive the asymptotic distribution of �̂ in a context that allows for arbitrary

forms of cross sectional dependence, we assume that the cross sectional sums of the individual scores for

� (after the fixed effects have been concentrated out) satisfy a central limit theorem when appropriately

standardized by n�, where � ∈ [1/2, 1]. The parameter � ensures that the long run variance of the

standardized cross sectional sums of the scores is bounded and bounded away from zero. When the

scores are subject to strong cross section dependence (due for instance to common shocks that affect all

the individuals) the appropriate value of � is 1. If instead the scores are cross sectionally independent

(or weakly dependent), � = 1/2. For each individual in the panel, we assume the regressors and error

terms to be weakly dependent in the time dimension and impose only a weak exogeneity assumption

on the regressors. Under these assumptions, we show that the rate of convergence of the fixed effects

estimator is
√
Tn1−�. For the special case of strong cross sectional dependence, where � = 1, this result

implies that the fixed effects estimator is only
√
T consistent despite the fact that both n and T are

large. Instead, if � = 1/2 (due for instance to cross sectional independence) we get
√
nT convergence.

Because our assumptions allow for weakly exogeneous regressors, the limiting distribution of �̂ contains

a bias term that is of the order OP

(
n1−�
√
T

)

. In order to obtain a limiting distribution centered at zero,

we require n1−�
√
T

→ 0. This imposes a restriction on the growth rate of n with T when � < 1. In

particular, it requires n
T → 0 when � = 1/2.

Although the rate of convergence of �̂ (and of its bootstrap analogue) depends on the degree of cross
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section dependence in the panel (as summarized by �), we show that the same t and Wald statistics

(as well as their bootstrap analogues) can be computed without reference to �. Specifically, we show

that Wald statistics studentized with a standard nonparametric heteroskedasticity and autocorrelation

consistent (HAC) variance estimator applied to the cross sectional averages of the estimated scores are

asymptotically valid, independently of the degree of cross section dependence. This result is entirely

analogous to a recent result in Hansen (2007). He shows that under cross sectional independence, the

same test statistics studentized with clustered standard errors (as proposed by Arellano (1987)) can

be computed without reference to the degree of serial dependence in the panel (which can be mixing

or not). This is true despite the fact that in Hansen’s (2007) context the rate of convergence of the

OLS estimator is either
√
n (if no mixing in the time series dimension exists) or

√
nT (under time

series mixing).

The idea of applying HAC variance estimators to cross sectional sums is not new. Driskoll and

Kraay (1998) proposed this approach for computing standard errors for panel data estimators defined

by moment conditions. Although quite general, the Driskoll and Kraay (1998) setup does not cover

the fixed effects estimator because it does not allow for individual fixed effects (the moment conditions

defining the common parameter of interest are not allowed to depend on individual time series aver-

ages). Moreover, their results assume implicitly that the degree of cross section dependence is strong

(i.e. their results only cover the case � = 1).

Recently, Vogelsang (2008) proposed a new asymptotic theory for test statistics studentized with

HAC variance estimators of cross sectional sums in the context of panel linear regression models with

individual and time effects. Specifically, Vogelsang (2008) derives the limiting distribution of the test

statistic assuming that the bandwidth is a fixed proportion of the sample size, following the approach

of Kiefer and Vogelsang (2005). His simulation results show that the fixed-b asymptotic distribution

is more accurate than the standard normal approximation in finite samples.

We study the finite sample performance of the MBB in the context of a panel linear regression

model estimated with the fixed effects estimator, where the errors and the regressors follow a factor

structure, thus displaying cross sectional and serial dependence. Our results show that the MBB

performs very well, even when there is strong serial correlation in the cross sectional averages of the

scores. The performance of the MBB method is robust to arbitrary forms of cross sectional correlation,

including the case of cross sectional independence. It outperforms the standard normal approximation

based on robust HAC standard errors. It also outperforms the fixed-b asymptotic approximation of

Vogelsang (2008) when the serial correlation is strong and the block size is appropriately chosen.

The rest of this paper is organized as follows. In Section 2, we derive the asymptotic properties of

the fixed effects estimator. Section 3 contains the bootstrap results. Section 4 reports the Monte Carlo

simulation results and Section 5 concludes. Two mathematical appendices are included. Appendix A

contains the proofs of the results in Section 2 whereas Appendix B contains the proofs of the results

in Section 3.
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2 Asymptotic properties of the fixed effects estimator

2.1 The model and the fixed effects estimator

We consider the following panel regression model

yit = �i + x′it� + "it, i = 1, . . . , n; t = 1, . . . , T, (1)

where �i are individual fixed effects, yit and "it are scalars, and xit and � are p× 1 vectors.

The parameter of interest is � and its estimator is the fixed effects OLS estimator

�̂nT =

(
n∑

i=1

T∑

t=1

(xit − x̄i) (xit − x̄i)
′
)−1 n∑

i=1

T∑

t=1

(xit − x̄i) (yit − ȳi) , (2)

where ȳi = T−1
∑T

t=1 yit and x̄i = T−1
∑T

t=1 xit.

Our goal in this section is to derive the asymptotic properties of �̂ under general forms of het-

eroskedasticity and cross sectional/serial dependence in the regressors and in the errors of model (1).

2.2 Asymptotic distribution

Next we provide a set of assumptions that allow us to characterize the asymptotic distribution of

�̂. Throughout this paper, we let n be an arbitrary nondecreasing function of T , allowing for the

possibility that n is either fixed as T → ∞ or n, T → ∞ jointly. Henceforth we write n, T → ∞ to

denote these two possibilities. In what follows, for any random vector zit, we let ∥zit∥p ≡ (E ∣zit∣p)1/p

denote its Lp norm and ∣zit∣ its Euclidean norm.

Assumption 1

(i) E ("it) = 0 and E (xit"it) = 0, for all i = 1, . . . , n, t = 1, . . . , T .

(ii) For some r > 2, ∥xit∥2r ≤ Δ <∞ and ∥"it∥2r ≤ Δ <∞ for all i = 1, . . . , n and t = 1, . . . , T .

(iii) For each i = 1, . . . , n, {(x′it, "it) : t = 1, . . . , T} are the realization of a stationary �-mixing process

with mixing coefficients �i (k) such that supi �i (k) ≤ � (k) where � (k) = Ck−� for some con-

stant C and some � > 4r
r−2 , r > 2.

Assumption 1(i) requires that for each unit i in the panel the error term be mean zero and the

regressors be contemporaneously uncorrelated with the errors. This weak exogeneity assumption is in

principle compatible with dynamic panel models. Assumption 1(ii) imposes uniform bounds on the

regressors and error moments of order 2r (with r > 2). It rules out time trends in the regressors.

Assumption 1(iii) restricts the serial dependence in the time series of the regressors and error term

for each individual i. See Hahn and Kuersteiner (2004) for a similar set of time series dependence

assumptions in the context of bias correction for nonlinear dynamic panel data models. The mixing

coefficients �i (k) are defined in the usual way. Specifically, for each i = 1, . . . , n, let wit = (x′it, "it),
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and define Gi,t−∞ = � (. . . , wi,t−1, wit) and Gi,+∞
t+k = � (wi,t+k, wi,t+k+1, . . .) as the �-fields generated by

the corresponding set of random variables. Then, for each individual i, we let

�i (k) ≡ sup
t

sup
{A∈Gi,t

−∞,B∈Gi,+∞
t+k }

∣P (A ∩B)− P (A)P (B)∣ .

Assumption 1(iii) allows for heterogeneous forms of serial dependence across i, but imposes a uniform

bound on the individual mixing coefficients. Time stationarity is imposed for simplicity. Some forms

of time heterogeneity could be allowed for but this would require extra conditions controlling the

degree of heterogeneity. Assumption 1 does not impose a restriction on the amount of cross sectional

dependence in {(x′it, "it)}.
Our next assumption requires AnT , the Hessian matrix underlying model (1), to be nonsingular,

uniformly in (n, T ). As we will see below, the asymptotic covariance matrix of �̂ depends on the

inverse of AnT , thus justifying the need for Assumption 2.

Assumption 2 AnT ≡ 1
nT

∑T
t=1

∑n
i=1E

[
(xit − �i) (xit − �i)

′] is nonsingular uniformly in n, T , i.e.

∣det (AnT )∣ ≥ � > 0 for all (n, T ) sufficiently large, where �i ≡ E (xit).

To describe our next assumption, let

snt ≡
n∑

i=1

(xit − �i) "it, for t = 1, 2, . . . , T,

denote the cross sectional sums of sit ≡ (xit − �i) "it, the individual scores for �, after concentrating

out �i. We make the following assumption.

Assumption 3 For some parameter � ∈ [1/2, 1] , as n, T → ∞,

B
−1/2
nT,�

1√
T

T∑

t=1

1

n�

n∑

i=1

(xit − �i) "it
d→ N (0, Ip) ,

where BnT,� ≡ V ar
(

1√
T

∑T
t=1

snt
n�

)

is O (1) and is uniformly positive definite.

Assumption 3 is a high level assumption that requires the double array formed by the cross sectional

sums {snt} to satisfy a central limit theorem when appropriately standardized by n�. The parameter

� reflects the degree of cross sectional dependence in the individual scores, as we now explain.

The presence of (lagged) cross sectional and/or serial dependence in the individual scores {sit} will

induce serial correlation in {snt}. Suppose {snt} is a zero mean weakly dependent stationary array,

where n is an arbitrary nondecreasing function of T . Then we can write

BnT,� ≡ V ar

(

1√
T

T∑

t=1

snt
n�

)

= Γn,� (0) +
T−1∑

�=1

(

1− �

T

) (
Γn,� (�) + Γ′

n,� (�)
)
, (3)
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where for any � ≥ 0,

Γn,� (�) =
1

n2�
E
(
snts

′
nt+�

)
=

1

n2�

n∑

i=1

n∑

j=1

E
(
sits

′
jt+�

)

is the autocovariance matrix of
{
snt
n�

}
at lag � . For BnT,� to be O (1) and uniformly positive definite,

these same restrictions need to be imposed on Γn,� (0). This restricts the amount of cross sectional

dependence in the panel. If the cross sectional dependence is pervasive and affects all individuals in

the panel (such as in the case of common shocks),
∑n

i=1

∑n
j=1E

(

sits
′
jt

)

is of order O
(
n2
)
and the

appropriate value of � is 1. If instead the cross sectional dependence is sufficiently weak such that
∑n

i=1

∑n
j=1E

(

sits
′
jt

)

is of order O (n), we need � = 1/2. This includes the case of cross sectional

independence as a special case. More generally, � = 1/2 corresponds to the case of weak cross sectional

dependence, where some mixing type condition holds for {sit} in the cross sectional dimension. We

allow for intermediate cases where
∑n

i=1

∑n
j=1E

(

sits
′
jt

)

is of order O
(
n2�
)
, with 1/2 < � < 1.

Under Assumptions 1, 2 and 3, we show in the appendix (cf. Appendix A) that the fixed effects

OLS estimator has the representation,

√
Tn1−�

(

�̂nT − �
)

= A−1
nT

1√
T

T∑

t=1

1

n�

n∑

i=1

(xit − �i) "it

︸ ︷︷ ︸

d→N(0,BnT,�)

+A−1
nT ⋅RnT,�
︸ ︷︷ ︸

Bias

+ oP (1) ,

where A−1
nT ⋅ RnT,� is a bias term of order OP

(
n1−�
√
T

)

due to the estimation of the fixed effects. In

particular,

RnT,� = −n
1−�
√
T

1

n

n∑

i=1

(

1√
T

T∑

t=1

"it

)(

1√
T

T∑

s=1

(xis − �i)

)

.

Under Assumptions 1, 2 and 3, the following assumption suffices for Rn,T
P→ 0 as n, T → ∞, ensuring

that the limiting distribution of �̂nT is centered at zero.

Assumption 4 n1−�
√
T

→ 0 as n, T → ∞.

When � = 1 (the strong cross sectional dependent case), n
1−�
√
T

= 1√
T
→ 0 as T → ∞, independently

of the behavior of n (which can either be fixed or diverge to infinity at any rate relatively to T → ∞).

Assumption 4 is then automatically satisfied, and Assumptions 1 through 3 suffice for the limiting

distribution of �̂ to be centered at zero. When 1
2 ≤ � < 1, Assumption 4 imposes a requirement on

the rate at which n → ∞ with T → ∞. For the leading case in which there is weak cross sectional

dependence and � = 1/2, the requirement is that n
T → 0.

Under Assumptions 1 through 4 we can state the following result.

Theorem 2.1 Under Assumptions 1 and 2, and for any � ∈ [1/2, 1] such that Assumptions 3 and 4
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hold, we have that as n, T → ∞,

B
−1/2
nT,� AnT

√
Tn1−�

(

�̂nT − �
)

d→ N (0, Ip) .

The proof of Theorem 2.1 and of all the results in this Section are in Appendix A. According to

Theorem 2.1, �̂ is
√
Tn1−� consistent. Thus, the rate of convergence of �̂ is inversely related to the

amount of cross sectional dependence that there exists in {sit}. This trade off is explained by the

fact that the stronger the cross sectional dependence is, the less variation exists in the cross sectional

dimension and therefore the slower the rate of convergence of �̂ is as a function of n. In the limiting

case in which � = 1 (such as when a factor model is driving the cross section dependence), �̂ is only
√
T consistent despite the fact that both n and T are large. Instead, when � = 1/2 (such as when

there is cross sectional independence or weak cross sectional dependence), � = 1/2 and we get
√
nT

convergence.

Under Assumptions 1 through 4, �̂ is consistent and asymptotically unbiased even for dynamic

panel models, where the regressors are only weakly exogenous. If � = 1, Assumption 4 is redundant

and this result is true independently of the rate of growth of n and T , as we argued above. Instead, if

� < 1 Assumption 4 restricts the rate of growth of n with T, requiring that n1−�
√
T

→ 0 as n, T → ∞. In

particular, this requires n
T → 0 under cross sectional independence. If n and T are of comparable size

and the regressors contain lagged dependent variables (as in Hahn and Kuersteiner (2002) and Alvarez

and Arellano (2003); see also Bai (2009) and Moon and Weidner (2009) for more recent papers that

discuss bias correction in the context of panel models estimated with interactive fixed effects), the

term RnT,� defined above will not vanish and a bias term will appear in the asymptotic distribution of

�̂. In this case a bias correction procedure is needed. Here we do not require bias correction because

we impose Assumption 4.

We can replace Assumption 4 with the following assumption.

Assumption 4′ 1
T 2

1
n2�

∑

i,j

∑

t,s,u,vE
((
xit,k − �i,k

)
"is
(
xju,k − �j,k

)
"jv
)
≤ Δ <∞ for k = 1, . . . , p.

We can show that Assumption 4′ suffices for RnT,�
P→ 0, thus ensuring that the results in Theorem

2.1 continue to hold under Assumptions 1, 2, 3 and 4′. Although it does not impose a particular rate of

growth of n with T , this condition imposes additional restrictions on the cross sectional dependence and

on the exogeneity of the regressors. In particular, we can show that it is satisfied if "it is independent

of xjs for all (i, j) and (s, t) (a very strong form of strict exogeneity), and (x′it, "it) is independent of
(

x′js, "js
)

for all i ∕= j and all (t, s). The strict exogeneity assumption is overly restrictive when � = 1.

2.3 Variance estimation

Theorem 2.1 shows that the fixed effects OLS estimator �̂ is asymptotically distributed as a normal

distribution with mean zero and covariance matrix CnT,� ≡ A−1
nTBnT,�A

−1
nT , where AnT is defined

in Assumption 2 and BnT,� is given in (3). Under Assumption 1, a consistent estimator of AnT
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is ÂnT = 1
nT

∑T
t=1

∑n
i=1 (xit − x̄i) (xit − x̄i)

′, as Lemma A.2 shows. Next we provide a consistent

estimator of BnT,�.

We propose the following kernel estimator of BnT,�,

B̂nT,� = Γ̂nT,� (0) +

T−1∑

�=1

k
( �

M

)(

Γ̂nT,� (�) + Γ̂′
nT,� (�)

)

,

where k (⋅) is a kernel function, M is a bandwidth parameter, and for any � ≥ 0,

Γ̂nT,� (� ) = T−1n−2�
T−�∑

t=1

ŝntŝ
′
nt+� ,

with ŝnt =
∑n

i=1 (xit − x̄i) "̂it, and "̂it = yit − ȳi − (xit − x̄i)
′ �̂ the fixed effects OLS residuals.

B̂nT,� is a standard HAC estimator of the long run variance of the standardized cross sectional

sums
{
snt
n� = n−�

∑n
i=1 (xit − �i) "it

}
. Because �i and "it are unknown, we replace these with x̄i and

"̂it. To estimate BnT,� we need to take a stand on the degree of cross sectional dependence in the

panel since B̂nT,� depends on �. As we will see in the next section, we can nevertheless do inferences

on � without having to commit to a particular value of � when constructing a confidence interval or

testing hypotheses about �, if we rely on studentized statistics.

In the context of GMM estimators with panel data, Driskoll and Kraay (1998) proposed estimat-

ing the long run variance of the cross sectional averages of moment conditions defining a common

parameter vector with a standard HAC variance estimator applied to the cross sectional averages of

the estimated moment conditions. Nevertheless, their setup does not allow for individual fixed effects.

When � = 1, B̂nT ≡ B̂nT,1 is an extension of the Driskoll and Kraay approach to the case of linear

panel regression models with individual fixed effects1.

To prove the consistency of B̂nT,� for BnT,� more structure on the array
{
snt
n�

}
is required. In

particular, we replace Assumption 3 with the following assumption.

Assumption 3′ For some � ∈ [1/2, 1], we have that

(i)
∥
∥snt
n�

∥
∥
r
≤ Δ <∞, for some r > 2, for all (t, n).

(ii)
{
snt
n� : t = 1, . . . , T

}
is the realization of a zero mean stationary �-mixing double array of size

− r
r−2 , for some r > 2.

(iii) BnT,� ≡ V ar
(

1√
T

∑T
t=1

snt
n�

)

is such that BnT,� = O (1) and det (BnT,�) > � > 0 for all n, T

sufficiently large.

We can show that Assumption 3′ implies Assumption 3. Assumption 3′(i) requires the standardized

sums
{
snt
n�

}
to be Lr-bounded, uniformly in (t, n). When � = 1, this assumption is implied by

1Under cross sectional independence, there is no need to compute HAC estimators as we do here. Instead, we could
compute clustered standard errors as in Arellano (1987) (and recently analyzed in Hansen (2007) and Vogelsang (2008)).
A more efficient estimator is discussed in Stock and Watson (2008) under the additional assumption that there is no
serial correlation (in addition to cross sectional independence).
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Assumption 1(ii) since in this case moment restrictions on the the individual scores directly translate

into moment restrictions on cross sectional averages. When � < 1, Assumption 3′(i) is satisfied under

further restrictions in the cross sectional dependence. In particular, for � = 1/2, it is implied by

a mixing condition on {sit} in the cross sectional dimension. Assumption 3′(ii) restricts the serial

dependence on
{
snt
n�

}
by postulating this array to be strong mixing. See Driskoll and Kraay (1998)

for a more primitive dependence assumption on {sit} that implies Assumption 3′(ii). In particular, it

suffices that for any pair (i, j), sit and sjt+� be asymptotically independent as � → ∞. Assumption

3′(iii) is a restatement of the last part of Assumption 3.

Our next assumption describes the class of kernels that will be considered.

Assumption 5 k (⋅) ∈ K, whereK =

⎧

⎨

⎩

k (⋅) : ℝ → [0, 1] such that k (x) = k (−x) ,∀x ∈ ℝ, k (0) = 1,
k (x) is continuous at 0 and at all but a finite number of points,

∫∞
−∞ ∣k (x)∣ dx <∞, and

∫∞
−∞ ∣ (�)∣ d� <∞.

⎫

⎬

⎭

where  (�) = (2�)−1 ∫ +∞
−∞ k (x) ei�xdx.

Assumption 5 corresponds to Assumption 1 of de Jong and Davidson (2000). As they remark, it

contains many popular kernels, including the Bartlett, Quadratic Spectral, Parzen, and the Tuckey-

Hanning kernels.

Assumption 6 M ≡MnT → ∞ and Mn1−�
√
T

→ 0 as n, T → ∞.

Under Assumption 6, the growth rate of M is a function of �. When � = 1, we require that

M = o
(√

T
)

as T → ∞. When � < 1, M is required to grow at a smaller rate, namely at a rate

slower than
√
T

n1−� , which diverges to infinity as n, T → ∞ under Assumption 4. When � = 1/2, a

sufficient condition for Assumption 6 is that n = o
(√

T
)

and M = o
(
T 1/4

)
as T → ∞. We rely on

Assumption 6 to show that estimation of snt with ŝnt does not introduce a bias term in the estimation

of BnT,�.

Theorem 2.2 Under Assumptions 1, 3′, 4, 5 and 6, B̂nT,� −BnT,�
P→ 0 as n, T → ∞.

If we are willing to strengthen Assumption 4′ as follows, we can show that Assumptions 1, 3′, 4′′,

5 and 6 suffice for consistency of B̂nT,� for BnT,�.

Assumption 4′′ 1
T 2

1
n2�

∑

i,j

∑

t,s,u,v

∣
∣E
((
xit,k − �i,k

)
"is
(
xju,k − �j,k

)
"jv
)∣
∣ ≤ Δ <∞ for k = 1, . . . , p.

2.4 Hypothesis testing

Consider testing the null hypothesis H0 : R� = r against the alternative H1 : R� ∕= r, where R is a

q × p matrix of rank q and r is a p× 1 vector.

We propose the following Wald statistic for testing H0:

WnT = T
(

R�̂ − r
)′ [

RÂ−1
nT B̂nT Â

−1
nTR

′
]−1 (

R�̂ − r
)

,

where B̂nT ≡ B̂nT,1 is a HAC estimator of the long run variance of the cross sectional averages
{
snt
n

}
.

9



Theorem 2.3 Suppose Assumptions 1, 2 and 5 hold. For any � ∈ [1/2, 1] such that Assumptions 3′,

4 and 6 hold, we have that under H0 : R� = r,

WnT = T
(

R�̂ − r
)′ [

RÂ−1
nT B̂nT Â

−1
nTR

′
]−1 (

R�̂ − r
)

d→ �2
q,

where B̂nT ≡ B̂nT,1.

Theorem 2.3 shows that the same Wald statistic WnT can be computed and is asymptotically �2
q

independently of the value of � underlying the data generating process. In particular, this is true even

though we compute WnT as if the value of � was equal to 1. Suppose � < 1. Then the appropriate

Wald statistic is

WnT,� = Tn2(1−�)
(

R�̂ − r
)′ [

RÂ−1
nT B̂nT,�Â

−1
nTR

′
]−1 (

R�̂ − r
)

,

where B̂nT,� is a consistent estimator of BnT,�. Because we can write B̂nT,� = n2(1−�)B̂nT , the factor

n2(1−�) cancels out in WnT,�, implying that WnT,� = WnT for any value of �. This explains the

invariance of the Wald statistic WnT to the degree of cross sectional dependence that there exists in

the panel.

Recently, Hansen (2007) studies the asymptotic properties of test statistics studentized with the

Arellano (1987) clustered standard errors when both n and T are large. Assuming cross sectional

independence, Hansen (2007) shows that the OLS estimator is
√
n-convergent when the time series

dependence is left unrestricted whereas it is
√
nT when a mixing type condition is imposed in the time

series dimension. Despite this discontinuity in the convergence rates of the OLS estimator, Hansen

(2007) shows that the same test statistics can be used and are asymptotically valid in the two cases

(no-mixing and mixing in the time series dimension). Theorem 2.3 is the analogue of Hansen’s (2007)

result when we assume that the serial dependence is mixing and the cross sectional dependence can

either be strong or weak.

3 Bootstrap results

The bootstrap fixed effects OLS estimator is defined as

�̂
∗
nT =

(
n∑

i=1

T∑

t=1

(x∗it − x̄∗i ) (x
∗
it − x̄∗i )

′
)−1 n∑

i=1

T∑

t=1

(x∗it − x̄∗i ) (y
∗
it − ȳ∗i ) ,

where ȳ∗i = T−1
∑T

t=1 y
∗
it and x̄∗i = T−1

∑T
t=1 x

∗
it. It is the fixed effects OLS estimator of � based

on the bootstrap data
{
z∗it = (y∗it, x

∗′
it)

′ : i = 1, . . . , n, t = 1, . . . , T
}
obtained with the MBB as follows.

Let Zt,n ≡ (z′1t, z
′
2t, . . . , z

′
nt)

′ denote the n (p+ 1) × 1 vector containing the n cross sectional ob-

servations on zit. Let ℓ = ℓT ∈ ℕ (1 ≤ ℓ < T ) denote the length of the blocks and let Bt,ℓ =

{Zt,n, Zt+1,n, . . . , Zt+ℓ−1,n} be the block of ℓ consecutive observations starting at observation t; ℓ = 1

corresponds to the standard i.i.d. bootstrap on the vector Zt,n. Assume for simplicity that T = kℓ.
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The MBB resamples k = T/ℓ blocks randomly with replacement from the set of T − ℓ+1 overlapping

blocks {B1,ℓ, . . . , BT−ℓ+1,ℓ}. Thus, if we let I1, . . . , Ik be i.i.d. random variables uniformly distributed

on {0, . . . , T − ℓ}, the MBB pseudo-data
{
Z∗
t,n, t = 1, . . . , T

}
is the result of arranging the elements of

the k resampled blocks BI1+1,ℓ, . . . , BIk+1,ℓ in a sequence: Z∗
1,n = ZI1+1,n, Z

∗
2,n = ZI1+2,n, . . . , Z

∗
ℓ,n =

ZI1+ℓ,n, Z
∗
ℓ+1,n = ZI2+1,n, . . . , Z

∗
kl,n = ZIk+ℓ,n. The panel MBB corresponds to the standard MBB ap-

plied to the vector that contains the n cross section observations for time t. As we will prove here,

this method is robust to both serial and cross sectional dependence of unknown form when applied to

the fixed effects estimator.

A word on notation. In this paper, and as usual in the bootstrap literature, P ∗ (E∗ and V ar∗)

denotes the probability measure (expected value and variance) induced by the bootstrap resampling,

conditional on a realization of the original data. In addition, for a sequence of bootstrap statistics

Z∗
nT , we write Z∗

nT = oP ∗ (1) in probability, or Z∗
nT

P ∗
→ 0, as n, T → ∞, in probability, if for any

" > 0, � > 0, limn,T→∞ P [P ∗ (∣Z∗
nT ∣ > �) > "] = 0. Similarly, we write Z∗

nT = OP ∗ (1) as n, T → ∞,

in probability if for all " > 0 there exists a M" <∞ such that limn,T→∞ P [P ∗ (∣Z∗
nT ∣ > M") > "] = 0.

Finally, we write Z∗
nT

d∗→ Z as n, T → ∞, in probability, if conditional on the sample, Z∗
nT weakly

converges to Z under P ∗, for all samples contained in a set with probability converging to one.

For the bootstrap results we strengthen Assumption 3′ as follows.

Assumption 3′′ For some � ∈ [1/2, 1], we have that

(i)
∥
∥snt
n�

∥
∥
3r

≤ Δ <∞, for some r > 2, for all (t, n) .

(ii)
{
snt
n� : t = 1, . . . , T

}
is the realization of a zero mean stationary �-mixing double array of size

− (2+�)r
r−2 , for some r > 2, and some small � > 0.

(iii) BnT,� ≡ V ar
(

1√
T

∑T
t=1

snt
n�

)

is such that BnT,� = O (1) and det (BnT,�) > � > 0 for all n, T

sufficiently large.

Theorem 3.1 Suppose Assumptions 1 and 2 hold. For any � ∈ [1/2, 1] such that Assumptions 3′′ and

4 are verified, if ℓT → ∞ and ℓT = o
(√

T
)

as T → ∞,

sup
x∈ℝp

∣
∣
∣P ∗

(√
Tn1−�

(

�̂
∗ − �̂

)

≤ x
)

− P
(√

Tn1−�
(

�̂ − �
)

≤ x
)∣
∣
∣
P→ 0,

as n, T → ∞.

The proof of Theorem 3.1 and of all the results in this section are in Appendix B. Theorem 3.1

justifies using the order statistics of the bootstrap distribution of �̂
∗ − �̂ to approximate the quantiles

of the distribution of �̂ − �. This result is useful for constructing bootstrap percentile confidence

intervals for � with asymptotically correct coverage probabilities.

Next we discuss bootstrapping studentized statistics. Specifically, we consider testing H0 : R� = r

against H1 : R� ∕= r where R and r are as defined in the previous section. The bootstrap Wald
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statistic we propose is

W∗
nT = T

(

R�̂
∗ −R�̂

)′ [
RÂ∗−1

nT B̂∗
nT Â

∗−1
nT R′

]−1 (

R�̂
∗ −R�̂

)

,

where Â∗
nT is the bootstrap analogue of ÂnT and is given by

Â∗
nT =

1

nT

n∑

i=1

T∑

t=1

(x∗it − x̄∗i ) (x
∗
it − x̄∗i )

′ .

To define B̂∗
nT , let ŝ

∗
nt =

∑n
i=1 (x

∗
it − x̄∗i ) "̂

∗
it, where "̂

∗
it = y∗it− ȳ∗i − (x∗it − x̄∗i )

′ �̂
∗
are the bootstrap fixed

effects residuals. Note that for any j = 1, . . . , k and t = 1, . . . , ℓ, ŝ∗n,(j−1)ℓ+t =
∑n

i=1

(
xi,Ij+t − x̄∗i

)
"̃i,Ij+t,

where "̃i,t = yit − ȳ∗i − (xit − x̄∗i )
′ �̂

∗
, where Ij are i.i.d Uniform on {0, . . . , T − ℓ} . Then,

B̂∗
nT =

1

k

k∑

j=1

(

ℓ−1/2
ℓ∑

t=1

n−1ŝ∗n,(j−1)ℓ+t

)(

ℓ−1/2
ℓ∑

t=1

n−1ŝ∗n,(j−1)ℓ+t

)′

. (4)

B̂∗
nT is a consistent estimator of the bootstrap long run variance of the bootstrap cross sectional

average of the scores when � = 1. It is the multivariate analogue of the estimator of the MBB variance

proposed by Götze and Künsch (1996) for studentizing the sample mean, adapted to the fixed effects

context.

Theorem 3.2 Suppose Assumptions 1 and 2 and 5 hold and there exists � ∈ [1/2, 1] such that As-

sumptions 3′′, 4 and 6 are verified. If ℓT → ∞ such that ℓT = o
(√

T
)

, we have that

sup
x∈ℝ

∣P ∗ (W∗
nT ≤ x)− P (WnT ≤ x)∣ P→ 0,

as n, T → ∞.

Theorem 3.2 justifies using the MBB distribution of W∗
nT to compute critical values for WnT when

testing H0 against H1. The same bootstrap Wald statistic is first order asymptotically valid under

strong and weak cross sectional dependence even thoughW∗
nT is computed as if � = 1. As forWnT , this

is true because when � < 1 the convergence rate of �̂
∗
for �̂ is

√
Tn1−� and the appropriate bootstrap

variance estimator B̂∗
nT,� can be written as n2(1−�)B̂∗

nT , resulting in a bootstrap Wald statistic W∗
nT,�

that is equal to W∗
nT .

4 Monte Carlo results

This section provides simulation evidence of the finite sample performance of the MBB in the context

of the following model

yit = �i + x′it� + "it,

where "it and xit = (x1,it, x2,it, x3,it)
′ are serially and cross sectionally correlated, and "it and xit

are mutually independent. Since the distribution of the test statistics based on the fixed effects OLS
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estimator considered in this paper are exactly invariant to the value of �i and �, we can set �i = � = 0

without loss of generality.

To introduce cross sectional dependence we assume a factor structure for the errors and the re-

gressors. In particular, we let

"it = �f",t + e",it, (5)

where f",t denotes a common time varying factor with factor loading � and e",it is an idiosyncratic

term independent of f",t. The same structure is assumed for each of the regressors, i.e. for l = 1, 2, 3,

we let

xl,it = �fl,t + el,it, (6)

where (f",t, f1,t, f2,t, f3,t) and (e",it, e1,it, e2,it, e3,it) are mutually independent (thus there is strict exo-

geneity in this model).

In the first set of experiments, we consider a benchmark model (AR(1)-Gaussian) where

f",t = af",t−1 + u",t, u",t ∼ N
(
0, 1− a2

)
(7)

e",it = ae",it−1 + v",it, v",it ∼ N
(
0,
(
1− a2

) (
1− �2

))
, (8)

and u",t and v",it are mutually independent. These variables are uncorrelated over time and across

units with f",0 ∼ N (0, 1) and e",i0 ∼ N
(
0, 1 − �2

)
. We can show that for any � ,

E ("it"j,t+� ) =

{
a� if i = j,
�2a� if i ∕= j.

Thus, the error term for each individual is correlated over time with an autocorrelation coefficient

equal to a� at lag � , whereas the error terms of any two individuals (i, j) are equicorrelated according

to �2a� . A similar AR(1) structure is assumed for each regressor.

We let � ∈
{
0,
√
0.5
}
, where � = 0 implies cross sectional independence whereas � =

√
0.5 implies

a cross sectional correlation of 0.5 for each regressor and error term (note that this implies that

sit ≡ xit"it is equicorrelated with correlation equal to �4 = 0.25). Thus, � = 0 corresponds to a value

of � = 1/2 whereas � =
√
0.5 corresponds to � = 1.

We examine the finite sample performance of two-sided symmetric 95% confidence intervals for �1

based on the studentized statistic

t�̂1
≡

√
T
(

�̂1,nT − �1

)

√

Ĉ
(1,1)
nT

,

where �̂1,nT is the first element of �̂nT and Ĉ
(1,1)
nT denotes the element (1, 1) of ĈnT = Â−1

nT B̂nT Â
−1
nT ,

with ÂnT and B̂nT as given in Section 2. In particular, B̂nT is a HAC estimator of the variance of

the cross sectional averages of the individual scores based on the Bartlett kernel where the bandwidth

is chosen by Andrews’ (1991) automatic procedure based on approximating AR(1) models for the

elements of ŝnt
n ≡ n−1

∑n
i=1 ŝit. We also ran results with the QS kernel. To conserve space and
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because these results follow the same patterns as those for the Bartlett kernel, we only present results

for the Bartlett kernel.

We consider confidence intervals based on the normal approximation (N (0, 1) intervals), on the

new fixed-b asymptotic theory of Vogelsang (2008) (Fixed-b), and on the bootstrap (MBB). The

N (0, 1) intervals rely on the standard normal distribution for computing critical values for t�̂1
. The

Fixed-b intervals rely on the fixed-b asymptotic distribution of Vogelsang (2008) (see also Kiefer and

Vogelsang (2005)), where we set b = M̂
T with M̂ equal to the chosen data driven bandwidth.

The MBB intervals rely on the bootstrap distribution of

t
�̂
∗
1
=

√
T
(

�̂
∗
1,nT − �̂1,nT

)

√

Ĉ
∗(1,1)
nT

for computing the critical values of the distribution of t�̂1
. Here Ĉ

∗(1,1)
nT is the (1, 1)-element of Ĉ∗

nT =

Â∗−1
nT B̂∗

nT Â
∗−1
nT , with Â∗

nT and B̂∗
nT as given in Section 3. In particular, B̂∗

nT is the analogue of the

Götze and Künsch (1996) bootstrap variance estimator for the panel context.

To choose the block size, we exploit the asymptotic equivalence between the MBB and the Bartlett

kernel variance estimators and use the integer part of the automatic bandwidth chosen by Andrews’

automatic procedure. For comparison purposes, we also include the i.i.d. bootstrap where ℓ = 1.

Figures 1-6 contain results for the benchmark AR(1)-Gaussian model. Each figure contains results

for a particular (�, a) combination, where � ∈
{
0,
√
0.5
}
and a ∈ {0, 0.5, 0.9}. We find three panels

in each figure, corresponding to three different values of T ∈ {25, 50, 100}. Each panel depicts the

actual coverage rates of each interval as a function of n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. The

results are based on 2,000 random samples for each (n, T ) combination and the bootstrap intervals

are based on 999 bootstrap replications for each sample. We show results for four types of intervals:

the confidence intervals based on the normal approximation (N (0, 1)), the fixed-b intervals (Fixed-b)

based on the Vogelsang (2008) approach, and the MBB intervals implemented with a data-driven block

size (MBB) and a block size equal to 1 (MBB1).

Figures 1-3 consider the case when there is strong cross sectional dependence, i.e. � =
√
0.5, and

a ∈ {0, 0.5, 0.9}, respectively. Figure 1 shows that when there is no serial correlation (a = 0) but

individuals are cross sectionally correlated, some finite sample distortions arise for T = 25, especially

for the N (0, 1) intervals (whose rates are in the range 89.5%-91.5%). The Fixed-b intervals outperform

the N (0, 1) intervals by a small margin, with rates between 91.5%-94% for T = 25. The MBB with a

data-dependent block size performs the best (the selected ℓ was on average 1.60 across all values of n

and T ). For T = 100, the differences between all methods decrease and they all perform well. When

we increase a to 0.5, Figure 2 shows that the performance of all methods deteriorates, but this is more

pronounced for the N (0, 1) intervals (with rates around 85% when T = 25). The Fixed-b intervals

outperform the N (0, 1) intervals, displaying rates between 88% and 90% when T = 25, followed by the

MBB1. Choosing a block size larger than one implies a further coverage error reduction (the average
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value of the block size was 2.00 across all values of n when T = 25, 2.7 when T = 50, and 3.5 when

T = 100). Figure 3 shows that when a = 0.9 and � =
√
0.5, the degree of undercoverage increases

significantly for all methods (except for MBB). Of all methods, the N (0, 1) intervals are the most

distorted, with coverage rates between 62% and 65% for T = 25 (these rates increase to about 68%

for T = 50 and to 75% for T = 100, across all values of n). The Fixed-b intervals outperform the

i.i.d. bootstrap method (MBB1) and the N (0, 1) intervals, for all values of T and n. Overall, the best

method is MBB (with a data-driven block size equal on average to 4.4 when T = 25, 7.9 when T = 50,

and 12.2 when T = 100). The performance of the MBB intervals is very good, even for the smallest

sample size, where the actual rates are between 87.6% and 91.7%.

Figures 4-6 contain the results for � = 0 and a ∈ {0, 0.5, 0.9}, respectively. A comparison between

these figures and Figures 1-3 shows that the degree of coverage distortions for all methods decreases but

the results follow the same patterns as when � =
√
0.5. In particular, the MBB is the best performing

method among the ones we consider and its performance is very good across different values of a, T,

and n.

An alternative approach in computing the bootstrap statistic t
�̂
∗
1
is to replace B̂∗

nT with an estimator

of the same form as B̂nT , where the bootstrap data replaces the original data. This naive approach

was recently considered by Gonçalves and Vogelsang (2008) in the pure time series context. Their

results show that there is a close link between the naive bootstrap and the fixed-b asymptotic theory,

with the naive i.i.d. bootstrap (where the block size equals 1) following almost exactly the fixed-b

asymptotic theory. We also considered this approach in the context of the AR(1)-Gaussian model for

the special case where � =
√
0.5 and n = 25 and T = 50. Figure 7 presents the results. Each of the

three plots in Figure 7 (corresponding to three different values of a) shows the actual coverage rates

of different confidence intervals across 25 different values of the bandwidth: M ∈ {2, 4, . . . , 50}. Six

different confidence intervals are considered: the N (0, 1) intervals, the Fixed-b intervals, the MBB

intervals based on the Götze and Künsch (1996) variance estimator (given in eq. (4) of Section 3),

with ℓ = 1 (MBB1) and ℓ = 10 (MBB10), and the naive-MBB intervals based on the Bartlett kernel

HAC estimator evaluated with the bootstrap data, with a block size equal to 1 (N-MBB1) and equal

to 10 (N-MBB10). The results follow the same patterns found in Gonçalves and Vogelsang (2008) for

the pure time series context. In particular, there is a close link between the Fixed-b intervals and

the naive MBB interval based on ℓ = 1. Both tend to dominate the N (0, 1) approximation across all

values of M . Increasing the value of ℓ above one is helpful when there is strong serial correlation.

The comparison between the naive MBB and the MBB based on Götze and Künsch (1996) variance

estimator depends on the magnitude of M and how it relates to ℓ. MBB10 tends to overcover for

small values of M whereas it undercovers for large values of M . In contrast, the naive MBB based

on ℓ = 10 (N-MBB10) always undercovers, but less than the MBB10 for large values of M . When

M = ℓ = 10 and a = 0.9, this results in better coverage rates for MBB10 as compared to N-MBB10.2

2In unreported results, we found that the naive MBB implemented with a data dependent bandwidth and a data
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We also ran simulations for two other models. The AR(1)-t6 model replaces the normal distribu-

tions in (7) and (8) with Student-t6 distributions, suitably scaled so as to guarantee that V ar (f",t) = 1

and V ar (e",it) = 1− �2. For the MA(1)-Gaussian model, we let

f",t = u",t +  u",t−1, u",t ∼ N
(

0,
(
1 +  2

)−1
)

(9)

e",it = v",it +  v",it−1, v",it ∼ N
(

0,
(
1 +  2

)−1 (
1− �2

))

, (10)

which implies that E ("it"j,t+1) =  
1+ 2 when i = j, and E ("it"j,t+1) = �2  

1+ 2 when i ∕= j. The

correlations are zero for any other value of � . Two different values of  were considered:  = 0.5 and

 = 0.9.

Table 1 contains results for (n, T ) ∈ {(25, 25) , (25, 50) , (50, 25) , (50, 50)} when � =
√
0.5. We only

reports results for the N (0, 1) intervals, the Fixed-b intervals and the MBB intervals. All methods

rely on a data dependent bandwidth parameter for the computation of the Bartlett kernel, chosen by

Andrews’ (1991) automatic procedure based on approximating AR(1) models for the elements of ŝnt
n .

Table 1 also shows the average value of the bandwidth across the 2000 Monte Carlo simulations. The

MBB uses a block size equal to the nearest integer of the data dependent bandwidth parameter. The

first panel presents results for the AR(1)-Gaussian model (corresponding to a subset of the results

displayed in Figures 1-3) whereas the second panel gives results for the AR(1)-t6 model. A comparison

between these two panels shows that replacing the Gaussian distribution with a Student-t6 distribution

induces a slight increase in the error rates obtained with all methods, but more so for the N (0, 1)

method than for the remaining methods. The MBB remains the best performing method. The last

panel of Table 1 shows results for the MA(1)-Gaussian model. The results are comparable to the ones

obtained for the first panel when a = 0.5. In particular, the MBB with a data dependent block size

that relies on the automatic procedure of Andrews (1991) based on approximating AR(1) models is

robust to the autocorrelation structure induced by an MA(1) model for the two values of  considered.

5 Conclusion

In this paper we introduce and show the first order asymptotic validity of the moving blocks bootstrap

for fixed effects estimators of panel linear regression models with individual fixed effects. We show

that this method is robust to heteroskedasticity and cross sectional and serial dependence of unknown

forms under the assumption that n is an arbitrary nondecreasing function of T and T → ∞ (thus

allowing for the possibility that both n and T diverge to infinity). We derive our results under weak

time series dependence, but allow for the possibility that the cross section dependence is either weak

(with cross sectional independence as a special case) or strong. We show that although the fixed effects

estimator and its bootstrap analogue have convergence rates that are a function of the degree of cross

dependent block size was dominated by the MBB based on the Götze and Künsch (1996) variance estimator considered
in Figures 1-6.
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section dependence, the same t and Wald statistics can be computed independently of how much cross

section dependence there is in the data. Our simulation results show that the block bootstrap has

better finite sample properties than competitors based on the normal approximation or on the fixed-b

asymptotic theory, as derived by Vogelsang (2008), provided the block size is appropriately chosen

(and given that the bandwidth is chosen in a data dependent fashion).

The crucial condition under which the MBB works is that a mixing condition holds in the time

series dimension. If such a condition does not hold, the MBB is not valid. This occurs for instance if the

error term includes an individual specific random effect that is uncorrelated with the regressors and the

estimated model does not include an individual fixed effect, as in the simulations of Hounkannounon

(2008). In this case, all observations for a given individual are equicorrelated over time and this will

not satisfy our mixing conditions in the time series dimension.

The MBB as well as the HAC standard errors do not exploit any mixing in the cross sectional

dimension. This is an attractive feature because no natural ordering in the cross sectional dimension

need exist (other approaches that rely on the availability of a cross sectional ordering have been

proposed in the literature on cross sectional dependence, see e.g. Conley (1999), and more recently,

Ibragimov and Mueller (2009), Bester, Conley and Hansen (2008) and Bester, Conley, Hansen and

Vogelsang (2008)). Nevertheless, if an ordering in the cross sectional dimension exists, the MBB as

proposed here may not be the most efficient method. Proposing a bootstrap method that exploits the

mixing conditions in both dimensions (cross sectional and time series) is an important area of research.

A Appendix A: proofs of the results in Section 2.

This Appendix is organized as follows. First, we state some auxiliary lemmas and their proofs. Then,

we prove the results in Section 2. Throughout we will let �i ≡ E (xit) for all (i, t). We first state a

well known maximal inequality for strong mixing double arrays.

Lemma A.1 Let {XNt : t = 1, 2, . . . , N = 1, 2, . . .} be a zero mean �−mixing array with mixing coeffi-

cients

� (k) ≡ supt sup{A∈GNt
−∞,B∈GN,+∞

t+k } ∣P (A ∩B)− P (A)P (B)∣, where GNt−∞ = � (. . . ,XNt) and GN,+∞
t+k =

� (XN,t+k, . . .). Then for some constant K and for any 1 < p < r,

(i) If 1 < p < 2,
∥
∥
∥maxj≤N

∣
∣
∣
∑j

t=1 XNt
∣
∣
∣

∥
∥
∥
p
≤ K

(
∑∞

k=1 � (k)
1
p
− 1

r

)(
∑N

t=1 ∥XNt∥
p
r

)1/p
.

(ii) If p ≥ 2,
∥
∥
∥maxj≤N

∣
∣
∣
∑j

t=1 XNt
∣
∣
∣

∥
∥
∥
p
≤ K

(
∑∞

k=1 � (k)
1
p
− 1

r

)(
∑N

t=1 ∥XNt∥
2
r

)1/2
.

The next set of results are auxiliary in deriving the asymptotic distribution of �̂nT .

Lemma A.2 Under Assumption 1, as n, T → ∞,

a) ÃnT −AnT →P 0, where ÃnT ≡ 1
nT

∑n
i=1

∑T
t=1 (xit − �i) (xit − �i)

′ .
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b) 1
n

∑n
i=1 (�i − x̄i) (�i − x̄i)

′ →P 0.

c) ÂnT −AnT →P 0, where ÂnT ≡ 1
nT

∑n
i=1

∑T
t=1 (xit − x̄i) (xit − x̄i)

′ .

Lemma A.3 Under Assumptions 1, 3 (or 3′) and 4, as n, T → ∞,

a) B
−1/2
nT,�

1√
T

∑T
t=1

1
n�

∑n
i=1 (xit − �i) "it →d N (0, Ip).

b) 1√
T

∑T
t=1

1
n�

∑n
i=1 (�i − x̄i) "it →P 0.

c) B
−1/2
nT,�

1√
T

∑T
t=1

1
n�

∑n
i=1 (xit − x̄i) "it →d N (0, Ip).

Proof of Lemma A.1. By Corollary 17.6 (Davidson, 1994, p. 265), we can show that
{
XNt,GNt−∞

}

is an Lp-mixingale with mixingale coefficients  (k) = � (k)1/p−1/r and mixingale constants cNt =

O (∥XNt∥r). We can then apply the maximal inequalities for Lp-mixingales given e.g. in Hansen

(1991, 1992).

Proof of Lemma A.2. a) We show that E
∣
∣
∣ÃnT −AnT

∣
∣
∣ → 0 as n, T → ∞, from which the result

follows given Markov’s inequality. For each i, let wit ≡
(
xit,k − �i,k

) (
xit,l − �i,l

)
, a typical (k, l)

element of (xit − �i) (xit − �i)
′. Define �iT ≡ ∑T

t=1 (wit − E (wit)). For each i, under Assumption

1(ii), {wit − E (wit)} is a zero mean process with supi,t ∥wit∥r ≤ Δ < ∞. By 1(iii), it is �-mixing of

size − 4r
r−2 uniformly in i. Thus, it follows that

E
∣
∣
∣ÃnT,kl −AnT,kl

∣
∣
∣ ≤ 1

nT

n∑

i=1

sup
1≤i≤n

E ∣�iT ∣ ≤
1

nT

n∑

i=1

sup
1≤i≤n

∥�iT ∥2 .

For each i, Assumption 1 and Lemma A.1 imply that E ∣�iT ∣ ≤ ∥�iT ∥2 = O
(√

T
)

uniformly in i.

Thus, it follows that E
∣
∣
∣ÃnT,kl −AnT,kl

∣
∣
∣ = O

(
T−1/2

)
= o (1). b) We can write

R1,nT ≡ 1

n

n∑

i=1

(�i − x̄i) (�i − x̄i)
′ = − 1

n

n∑

i=1

T−2
T∑

t=1

T∑

s=1

(xit − �i) (xis − �i)
′

= − 1

n

n∑

i=1

T−2
T∑

t=1

T∑

s=1

zitz
′
is,

where we let zit ≡ xit − �i. We show that E ∣R1,nT ∣ → 0 and consequently R1,nT →P 0 by Markov’s

inequality. Define �iT ≡∑T
t=1 zit. It follows that

R1,nT = − 1

nT 2

n∑

i=1

(
T∑

t=1

zit

)(
T∑

s=1

z′is

)

= − 1

nT 2

n∑

i=1

�iT �
′
iT .

The triangle inequality and the Cauchy-Schwartz inequality imply that

E ∣R1,nT ∣ ≤
1

nT 2

n∑

i=1

E
∣
∣�iT �

′
iT

∣
∣ ≤ 1

nT 2

n∑

i=1

∥�iT ∥22 .
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Next we show that ∥�iT ∥2 = O
(
T 1/2

)
uniformly in i using a maximal inequality for mixing processes.

This implies that E ∣R1,nT ∣ = O
(
1
T

)
= o (1) as T → ∞. Specifically, for each i, Assumption 1

implies that zit is a zero mean �-mixing process with �i (k) ≤ � (k). Thus, by Lemma A.1, we have

that ∥�iT ∥2 ≤ K
∑∞

k=1 � (k)
1
2
− 1

r

(
∑T

t=1 ∥zit∥
2
r

)1/2
for some r > 2. Assumption 1(ii) implies that

∥zit∥r ≤ Δ < ∞ whereas Assumption 1(iii) implies that
∑∞

k=1 � (k)
1
2
− 1

r < ∞, thus proving that

∥�iT ∥2 ≤ CT 1/2 for some constant C. c) Adding and subtracting appropriately, we can write

ÂnT −AnT = ÃnT + a2,nT + a3,nT + a4,nT −AnT ,

where a2,nT ≡ 1
nT

∑n
i=1

∑T
t=1 (xit − �i) (�i − x̄i)

′, a3,nT = a′2,nT , and a4,nT ≡ 1
nT

∑n
i=1

∑T
t=1 (�i − x̄i) (�i − x̄i)

′.

By part a) of this Lemma, ÃnT −AnT → 0. We can show that

a2,nT =
1

n

n∑

i=1

(x̄i − �i) (�i − x̄i)
′ = − 1

n

n∑

i=1

(�i − x̄i) (�i − x̄i)
′ ,

which goes to zero as n, T → ∞ given part b). The same holds for a3,nT and a4,nT , thus completing

the proof.

Proof of Lemma A.3. Part a) is Assumption 3. Alternatively, if we let snt
n� ≡ 1

n�

∑n
i=1 (xit − �i) "it,

under Assumption 3′ (i)-(iii), the array
{
snt
n� : t = 1, 2, . . . , T

}
satisfies the assumptions of Theorem

5.20 of White (2001), implying a). Part b) follows by noting that �i − x̄i = − 1
T

∑T
t=1 (xit − �i), and

using Assumption 4. Part c) follows from parts a) and b) by noting that

B
−1/2
nT,�

1√
T

T∑

t=1

1

n�

n∑

i=1

(xit − x̄i) "it = B
−1/2
nT,�

1√
T

T∑

t=1

1

n�

n∑

i=1

(xit − �i) "it

+B
−1/2
nT,�

1√
T

T∑

t=1

1

n�

n∑

i=1

(�i − x̄i) "it.

Proof of Theorem 2.1. We can write

√
Tn1−�

(

�̂nT − �
)

= Â−1
nT

1√
T

T∑

t=1

1

n�

n∑

i=1

(xit − x̄i) "it.

Under Assumption 1, by Lemma A.2, ÂnT −AnT →P 0 as n, T → ∞. Assumption 2 guarantees A−1
nT

exists. Thus, we have that

√
Tn1−�

(

�̂nT − �
)

= A−1
nT

1√
T

T∑

t=1

1

n�

n∑

i=1

(xit − x̄i) "it + oP (1) .

Adding and subtracting appropriately yields

1√
T

T∑

t=1

1

n�

n∑

i=1

(xit − x̄i) "it =
1√
T

T∑

t=1

1

n�

n∑

i=1

(xit − �i) "it

︸ ︷︷ ︸

→dN(0,BnT,�)

+ RnT,�
︸ ︷︷ ︸

=oP (1)

,

given Assumptions 3 and 4 (or 4′) and Lemma A.2. This proves the result.
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Proof of Theorem 2.2. By definition,

B̂nT,�−BnT,� = T−1
T∑

t=1

n−2�ŝntŝ
′
nt+2

T−1∑

�=1

k
( �

M

)
(

T−1
T−�∑

t=1

n−2�ŝntŝ
′
nt+� + T−1

T−�∑

t=1

n−2�ŝnt+� ŝ
′
nt

)

−BnT,�,

where ŝnt =
∑n

i=1 (xit − x̄i) "̂it, where "̂it is the fixed effects OLS residual. In particular,

"̂it = (yit − ȳi)− (xit − x̄i)
′ �̂ = yit − x′it�̂ − �̂i,

where �̂i = ȳi − x̄′i�̂. Since "it = yit − �i − x′it�, it follows that

"̂it = "it − x′it

(

�̂ − �
)

− (�̂i − �i) .

We can write

�̂i − �i = −x̄′i
(

�̂ − �
)

+ "̄i,

implying that

"̂it = "it − x′it

(

�̂ − �
)

− (�̂i − �i) = "it − (xit − x̄i)
′
(

�̂ − �
)

− "̄i.

We can write ŝnt = snt + rnt, where

snt =

n∑

i=1

(xit − �i) "it, and

rnt = (ant + bnt) + cnt ≡ dnt + cnt.

Let �iT =
∑T

t=1 (xit − �i) ≡
∑T

t=1 zit and �iT =
∑T

t=1 "it. Then,

ant =
n∑

i=1

(�i − x̄i) "it = −T−1
n∑

i=1

�iT "it,

bnt = −
n∑

i=1

(xit − x̄i) "̄i = −
n∑

i=1

(xit − �i) "̄i −
n∑

i=1

(�i − x̄i) "̄i

= −T−1
n∑

i=1

zit�iT + T−2
n∑

i=1

�iT ⋅ �iT ≡ b1nt + b2nT ,

cnt ≡ −
n∑

i=1

(xit − x̄i) (xit − x̄i)
′
(

�̂ − �
)

.

Substituting ŝnt in B̂nT,� −BnT,� yields

B̂nT,� −BnT,� = I1,nT + I2,nT + I3,nT + I ′3,nT ,

where

I1nT ≡ T−1
T∑

t=1

n−2�snts
′
nt +

T−1∑

�=1

k
( �

M

)
(

T−1
T−�∑

t=1

n−2�snts
′
nt+� + T−1

T−�∑

t=1

n−2�snt+�s
′
nt

)

−BnT,�,
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I2nT ≡ T−1
T∑

t=1

n−2�sntr
′
nt

︸ ︷︷ ︸

≡J0
sr,nT

+ T−1
T∑

t=1

n−2�rnts
′
nt

︸ ︷︷ ︸

≡J0′
sr,nT

+ T−1
T∑

t=1

n−2�rntr
′
nt

︸ ︷︷ ︸

J0
rr,nT

,

and

I3,nT ≡
T−1∑

�=1

k
( �

M

)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

T−1
T−�∑

t=1

n−2�sntr
′
nt+�

︸ ︷︷ ︸

J�
sr,nT

+ T−1
T−�∑

t=1

n−2�rnts
′
nt+�

︸ ︷︷ ︸

J�
rs,nT

+ T−1
T−�∑

t=1

n−2�rntr
′
nt+�

︸ ︷︷ ︸

J�
rr,nT

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

By Assumption 3′(i) and (ii), I1nT,�
P→ 0 given Theorem 2.1 in de Jong and Davidson (2000) applied

to the array
{
snt
n�

}
provided Assumption 5 holds and M → ∞ such that M/T → 0. Next we show

that each of the remaining terms is oP (1). Specifically, we bound each of the J terms above.

Start with J0
sr,nT . We can write

J0
sr,nT = T−1

T∑

t=1

n−2�sntd
′
nt + T−1

T∑

t=1

n−2�sntc
′
nt ≡ J0

sr.1,nT + J0
sr.2,nT .

Replacing dnt with ant + bnt yields

J0
sr.1,nT = T−1

T∑

t=1

n−2�snta
′
nt + T−1

T∑

t=1

n−2�sntb
′
nt ≡ Xsa,nT +Xsb,nT .

By the Cauchy-Schwartz inequality,

∣Xsa,nT ∣ ≤
(

T−1
T∑

t=1

∣
∣n−�snt

∣
∣2

)1/2(

T−1
T∑

t=1

∣
∣n−�ant

∣
∣2

)1/2

.

Similarly,

∣Xsb,nT ∣ ≤
(

T−1
T∑

t=1

∣
∣n−�snt

∣
∣2

)1/2(

T−1
T∑

t=1

∣
∣n−�bnt

∣
∣2

)1/2

.

Next we provide a bound for each of the sums in Xsa,nT and Xsb,nT which holds unifomly in n, T .

Consider T−1
∑T

t=1 ∣n−�snt∣
2
. Under Assumption 3′(i), ∥n−�snt∥r ≤ Δ < ∞ for some r > 2 and

therefore T−1
∑T

t=1 ∣n−�snt∣
2
= OP (1) . Next consider T−1

∑T
t=1 ∣n−�ant∣

2
. The Minkowski and the

Cauchy-Schwartz inequalities imply that

∥
∥n−�ant

∥
∥
2
≤ T−1n−�

n∑

i=1

∥�iT "it∥2 ≤ T−1n−�
n∑

i=1

∥�iT ∥4 ∥"it∥4 ≤ ΔT−1n−�
n∑

i=1

∥�iT ∥4 ,

where we have used Assumption 1(ii) to bound ∥"it∥4. By definition of the L4- and the Euclidean

norms, ∥�iT ∥4 =
(

E ∣�iT ∣4
)1/4

=
(

E
∣
∣
∑p

k=1 �
2
iT,k

∣
∣
2
)1/4

≤
(
∑p

k=1E
∣
∣�iT,k

∣
∣4
)1/4

≤ ∑p
k=1

∥
∥�iT,k

∥
∥
4
. For

each k = 1, . . . , p, we can show that
∥
∥�iT,k

∥
∥
4
≤ C

√
T for some constant C independent of i. In

particular, Lemma A.1 implies that
∥
∥�iT,k

∥
∥
4
≤ K

∑∞
j=1 � (j)

1
4
− 1

r′
(
∑T

t=1 ∥zit,k∥
2
r′

)1/2
for some r′ > 4.
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Setting r′ = 2r (where r > 2) and using the size condition in Assumption 1(iii′) [we need � > 4r
r−2 ] and

the moment condition in Assumption 1(ii), it follows that
∥
∥�iT,k

∥
∥
4
= O

(√
T
)

uniformly in i. Thus,

∥n−�ant∥2 ≤ Cn1−�T−1/2. This implies that
(

T−1
∑T

t=1 ∣n−�ant∣
2
)1/2

= OP

(
n1−�
√
T

)

, and therefore

Xsa,nT = OP

(
n1−�√
T

)

= oP (1) ,

under Assumptions 1, 3 and 4. Alternatively, using the definition of the Euclidean norm, we can write

T−1
T∑

t=1

∣
∣n−�ant

∣
∣2 = T−1

T∑

t=1

∣
∣
∣
∣
∣
−n−�T−1

n∑

i=1

�iT "it

∣
∣
∣
∣
∣

2

=

p
∑

k=1

T−3n−2�
T∑

t=1

n∑

i=1

n∑

j=1

�iT,k"it�jT,k"jt

=

p
∑

k=1

T−3n−2�
T∑

t=1

T∑

s=1

T∑

u=1

n∑

i=1

n∑

j=1

zis,k"itzju,k"jt.

This term will be OP
(
T−1

)
if

T−2n−2�
T∑

t,s,u,v=1

n∑

i,j=1

∣E (zis,k"itzju,k"jt)∣ ≤ Δ <∞, for all k = 1, . . . , p, (11)

which is Assumption 4′′. Under this assumption, it follows that Xsa,nT = OP
(
T−1/2

)
. Next we

analyze T−1
∑T

t=1 ∣n−�bnt∣
2
. Since bnt = b1nt + b2nT , we have that

∥
∥n−�bnt

∥
∥
2
≤
∥
∥n−�b1nt

∥
∥
2
+
∥
∥n−�b2nT

∥
∥
2
,

where

∥
∥n−�b1nt

∥
∥
2
≤ n−�T−1

n∑

i=1

∥zit�iT ∥2 ≤ n−�T−1
n∑

i=1

∥zit∥4 ∥�iT ∥4 = O
(
n1−�

)
O
(
T−1

)
O (1)O

(

T 1/2
)

= O

(
n1−�

T 1/2

)

,

given the mixing and moment conditions imposed under Assumption 1. Similarly,

∥
∥n−�b2nT

∥
∥
2
≤ n−�T−2

n∑

i=1

∥�iT ∥4 ⋅ ∥�iT ∥4 = O
(
n1−�

)
O
(
T−2

)
O
(

T 1/2
)

O
(

T 1/2
)

= O

(
n1−�

T

)

.

This implies then that
(

T−1
∑T

t=1 ∣n−�bnt∣
2
)1/2

= OP
(
n(1−�)T−1/2

)
and thusXsb,nT = OP

(
n(1−�)T−1/2

)
=

oP (1) if we impose Assumption 4. Alternatively, we can write

T−1
T∑

t=1

∣
∣n−�b1nt

∣
∣2 = T−1

T∑

t=1

∣
∣
∣
∣
∣
n−�T−1

n∑

i=1

zit�iT

∣
∣
∣
∣
∣

2

=

p
∑

k=1

T−3n−2�
∑

i,j

∑

t

zit,k�iT zjt,k�jT

= T−1
p
∑

k=1

⎧

⎨

⎩
T−2n−2�

∑

i,j

∑

t,s,u

zit,k"iszjt,k"ju

⎫

⎬

⎭
.
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The term in the curly brackets will be OP (1) under (11), implying that T−1
∑T

t=1 ∣n−�b1nt∣
2

=

OP
(
T−1

)
. Similarly,

T−1
T∑

t=1

∣
∣n−�b2nT

∣
∣2 =

∣
∣
∣
∣
∣
n−�T−2

n∑

i=1

�iT ⋅ �iT

∣
∣
∣
∣
∣

2

=

p
∑

k=1

T−4n−2�
∑

i,j

�iT,k�iT �jT,k�jT

= T−2
p
∑

k=1

⎧

⎨

⎩
T−2n−2�

∑

i,j

∑

t,s,u,v

zit,k"iszju,k"jv

⎫

⎬

⎭
.

The term in the curly brackets is OP (1) under (11), implying that the whole expression is OP
(
T−2

)
.

Thus, under this condition, Xsb,nT = OP
(
T−1

)
= oP (1). To conclude, we get that J0

sr.1,nT =

OP

(
n1−�

T 1/2

)

under Assumptions 1,3′ and 4, or OP

(
1

T 1/2

)

under condition (11). Next we study J0
sr.2,nT =

T−1
∑T

t=1 n
−2�sntc

′
nt, where cnt ≡ −∑n

i=1 (xit − x̄i) (xit − x̄i)
′
(

�̂ − �
)

. Let p = 1 for simplicity and

write Wnt = n−1
∑n

i=1 (xit − x̄i)
2 . Then we have that

J0
sr.2,nT =

[

n1−�
(

�̂ − �
)]

︸ ︷︷ ︸

OP

(

1√
T

)

⋅ T−1
T∑

t=1

(
n−�snt

)
⋅Wnt,

where n1−�
(

�̂ − �
)

= OP

(
1√
T

)

under the assumptions of Theorem 2.1. By the Cauchy-Swchartz

inequality,

∣
∣
∣
∣
∣
T−1

T∑

t=1

(
n−�snt

)
⋅Wnt

∣
∣
∣
∣
∣
≤
(

T−1
T∑

t=1

∣
∣n−�snt

∣
∣2

)1/2

⋅
(

T−1
T∑

t=1

∣Wnt∣2
)1/2

= OP (1) ⋅OP (1) ,

since ∥n−�snt∥r ≤ Δ < ∞ under Assumption 3′ and ∥Wnt∥ ≤ Δ < ∞ under Assumption 1(ii)

that ∥xit∥2r ≤ Δ < ∞. It follows that J0
sr.2,nT = OP

(
1√
T

)

= oP (1) under our assumptions. This

concludes the proof that J0
sr,nT = OP

(
n1−�

T 1/2

)

under Assumptions 1,3′ and 4, or OP

(
1

T 1/2

)

under

Assumptions 1, 3′ and condition (11). To complete the proof that I2nT = oP (1) we need to study

J0
rr,nT ≡ T−1

∑T
t=1 n

−2�rntr
′
nt. Recalling that rnt = dnt + cnt, where dnt = ant + bnt, it follows that

J0
rr,nT = T−1

T∑

t=1

n−2� (dnt + cnt) (dnt + cnt)
′

= T−1
T∑

t=1

n−2�dntd
′
nt + T−1

T∑

t=1

n−2�dntc
′
nt

+T−1
T∑

t=1

n−2�cntd
′
nt + T−1

T∑

t=1

n−2�cntc
′
nt

≡ J0
rr.1,nT + J0

rr.2,nT + J0′
rr.2,nT + J0

rr.3,nT .
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Writing dnt = ant + bnt, it follows that

J0
rr.1,nT = T−1

T∑

t=1

n−2�dntd
′
nt = T−1

T∑

t=1

n−2� (ant + bnt) (ant + bnt)
′

= T−1
T∑

t=1

n−2�anta
′
nt + T−1

T∑

t=1

n−2�antb
′
nt + T−1

T∑

t=1

n−2�bnta
′
nt + T−1

T∑

t=1

n−2�bntb
′
nt.

Take the first term. It follows that
∣
∣
∣
∣
∣
T−1

T∑

t=1

n−2�anta
′
nt

∣
∣
∣
∣
∣
≤
(

T−1
T∑

t=1

∣
∣n−�ant

∣
∣2

)2/2

= OP

(

n2(1−�)

T

)

or O
(
T−1

)
,

under Assumption 4 or condition (11) (plus Assumptions 1 and 3′). Similarly,

∣
∣
∣
∣
∣
T−1

T∑

t=1

n−2�antb
′
nt

∣
∣
∣
∣
∣

≤
(

T−1
T∑

t=1

∣
∣n−�ant

∣
∣2

)1/2(

T−1
T∑

t=1

∣
∣n−�bnt

∣
∣2

)1/2

= OP

(
n1−�

T 1/2

)

OP

(
n1−�

T 1/2

)

= OP

(

n2(1−�)

T

)

,

or O
(
T−1

)
if condition (11) is used instead of Assumption 4. The last term in J0

rr.1,nT can be analyzed

similarly concluding the analyzis of J0
rr.1,nT . For J0

rr.2,nT , replace cnt ≡ −
∑n

i=1 (xit − x̄i)
2
(

�̂ − �
)

=

−Wnt ⋅ n
(

�̂ − �
)

, where Wnt is defined as above and we let p = 1 for simplicity. Then we can show

that

J0
rr.2,nT = T−1

T∑

t=1

n−2�dntc
′
nt =

[

n1−�
(

�̂ − �
)]

︸ ︷︷ ︸

OP

(

1√
T

)

⋅ T−1
T∑

t=1

(
n−�dnt

)
⋅Wnt

︸ ︷︷ ︸

O
(

n1−�√
T

)

or O
(

1√
T

)

,

showing that J0
rr.2,nT = OP

(
n1−�

T

)

or O
(
1
T

)
. Using the same arguments, we can show that J0

rr.3,nT =

OP
(
1
T

)
under both sets of assumptions. Thus, it follows that J0

rr,nT = OP

(
n1−�

T

)

or O
(
1
T

)
, which

concludes the proof that I2nT = oP (1).

Finally we analyze I3,nT . By the triangle inequality,

∣I3,nT ∣ ≤
T−1∑

�=1

∣
∣
∣k
( �

M

)∣
∣
∣

(∣
∣J�sr,nT

∣
∣+
∣
∣J�rs,nT

∣
∣+
∣
∣J�rr,nT

∣
∣
)
,

where for � = 1, . . . , T,

J�sr,nT = T−1
T−�∑

t=1

n−2�sntr
′
nt+� , J

�
rs,nT = T−1

T−�∑

t=1

n−2�rnts
′
nt+� , and J

�
rr,nT = T−1

T−�∑

t=1

n−2�rntr
′
nt+� .

Using the same arguments as above, we can show that each of these terms is either OP

(
n1−�
√
T

)

un-

der Assumptions 1 and 3’, or OP
(
T−1/2

)
if we impose condition (11), uniformly in � . Thus, since
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1
M

∑T−1
�=−(T−1)

∣
∣k
(
�
M

)∣
∣→

∫ +∞
−∞ ∣k (x)∣ dx <∞, by Assumption 5, it follows that

∣I3nT ∣ ≤M

(

1

M

M∑

�=1

k
( �

M

)

OP

(
n1−�√
T

))

= OP

(
Mn1−�√

T

)

,

or ∣I3,nT ∣ = OP

(
M√
T

)

, if condition (11) is added.

Proof of Theorem 2.3. The proof follows by Theorems 2.1 and 2.2.

B Appendix B: proofs of the results in Section 3.

First, we state some auxiliary lemmas and their proofs. Then, we prove the results in Section 3.

Lemma B.1 Under Assumption 1, if ℓ = o (T ) as T → ∞,

a) n−1T−1
∑n

i=1

∑T
t=1 (x

∗
itx

∗′
it − xitx

′
it)

P ∗
→ 0, in probability.

b) n−1
∑n

i=1 (x̄
∗
i − x̄i) (x̄

∗
i − x̄i)

′ P ∗
→ 0, in probability.

c) Â∗
nT − ÂnT

P ∗
→ 0, in probability, where Â∗

nT = 1
nT

∑n
i=1

∑T
t=1 (x

∗
it − x̄∗i ) (x

∗
it − x̄∗i )

′ and ÂnT =

1
nT

∑n
i=1

∑T
t=1 (xit − x̄i) (xit − x̄i)

′ .

Lemma B.2 Suppose Assumption 1 holds. For any � ∈ [1/2, 1] such that Assumptions 3′′ and 4 are

verified, if ℓ = o
(√

T
)

as T → ∞,

B
−1/2
nT,�

1√
T

T∑

t=1

1

n�

n∑

i=1

(x∗it − x̄∗i ) "
∗
it
d∗→ N (0, Ip) ,

as n, T → ∞, in probability.

Theorem B.1 Suppose Assumption 1 holds. For any � ∈ [1/2, 1] such that Assumptions 3′′ and 4

are verified, if ℓ = o
(√

T
)

as T → ∞, B̂∗
nT,� −BnT,� →P ∗

0, in probability.

Proof of Lemma B.1. For simplicity and without loss of generality, we consider the scalar case

with p = 1. Proof of a). Let wit = x2it and write w̄i ≡ T−1
∑T

t=1wit. We want to show that

W ∗
nT ≡ 1

n

∑n
i=1 (w̄

∗
i − w̄i) = oP ∗ (1) , in probability. By repeated application of Markov’s inequality, it

suffices to show that E ∣E∗ ∣W ∗
nT ∣∣ = o (1) as n, T → ∞. Adding and subtracting appropriately implies

that

W ∗
nT =

1

n

n∑

i=1

(w̄∗
i − E∗ (w̄∗

i )) +
1

n

n∑

i=1

(E∗ (w̄∗
i )− w̄i) ≡W ∗

1nT +W ∗
2nT .

Using the properties of the MBB, we can write

w̄∗
i − E∗ (w̄∗

i ) = k−1ℓ−1
k∑

j=1

ℓ∑

t=1

(
wi,Ij+t − E∗ (w̄∗

i )
)
≡ k−1ℓ−1

k∑

j=1

Ai,Ij+t,
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where Ai,j+t ≡
∑ℓ

t=1 (wi,j+t − E∗ (w̄∗
i )) and Ij ∼ i.i.d. {0, 1, . . . , T − ℓ}. It follows that for each i,

E∗ ∣w̄∗
i − E∗ (w̄∗

i )∣ ≤ k−1ℓ−1
k∑

j=1

E∗ ∣∣Ai,Ij+t
∣
∣ = ℓ−1 1

T − ℓ+ 1

T−ℓ∑

j=0

∣Ai,j+t∣ .

By the triangle inequality,

∣Ai,j+t∣ ≤
∣
∣
∣
∣
∣

ℓ∑

t=1

(wi,j+t −E (wi,j+t))

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

ℓ∑

t=1

(E (wi,j+t)− E∗ (w̄∗
i ))

∣
∣
∣
∣
∣
,

which implies that

E∗ ∣W ∗
1nT ∣ =

1

n

n∑

i=1

E∗ ∣w̄∗
i − E∗ (w̄∗

i )∣

≤ 1

n

n∑

i=1

ℓ−1 1

T − ℓ+ 1

T−ℓ∑

j=0

∣
∣
∣
∣
∣

ℓ∑

t=1

(wi,j+t − E (wi,j+t))

∣
∣
∣
∣
∣

+
1

n

n∑

i=1

ℓ−1 1

T − ℓ+ 1

T−ℓ∑

j=0

∣
∣
∣
∣
∣

ℓ∑

t=1

(E (wi,j+t)− E∗ (w̄∗
i ))

∣
∣
∣
∣
∣

≡ W1.1,nT +W1.2,nT .

Next we show that E (E∗ ∣W ∗
1nT ∣) = o (1) . We start by showing that E ∣W1.1,nT ∣ = o (1). Let !it ≡

wit − E (wit) = wit − �w,i, where E (wit) ≡ �w,i by time stationarity. Under Assumption 1(ii).,

∥!it∥r ≤ Δ <∞, whereas Assumption 1(iii) implies that {!it} is a zero mean �-mixing process of size

− 2r
r−2 , uniformly in i = 1, . . . , n. It follows that

E ∣W1.1,nT ∣ ≤
1

n

n∑

i=1

ℓ−1 1

T − ℓ+ 1

T−ℓ∑

j=0

E

∣
∣
∣
∣
∣

ℓ∑

t=1

!i,t+j

∣
∣
∣
∣
∣
= O

(

ℓ−1/2
)

= o (1) ,

provided ℓ → ∞, as we assume. In particular, under Assumption 1, a maximal inequality yields

E
∣
∣
∣
∑ℓ

t=1 !i,t+j

∣
∣
∣ ≤

(

E
∣
∣
∣
∑ℓ

t=1 !i,t+j

∣
∣
∣

2
)1/2

= O
(√

ℓ
)

, uniformly in i. Next consider W1.2,nT . We have

that

E ∣W1.2,nT ∣ =
1

n

n∑

i=1

E ∣�wi − E∗ (w̄∗
i )∣ =

1

n

n∑

i=1

E (E∗ ∣!̄∗
i ∣) ,

where !̄∗
i ≡ T−1

∑T
t=1 !

∗
it. Since E

∗ ∣!̄∗
i ∣ ≤

(

E∗ ∣!̄∗
i ∣2
)1/2

, it follows by Jensen’s inequality that

E ∣W1.2,nT ∣ ≤
1

n

n∑

i=1

E
(

E∗ ∣!̄∗
i ∣2
)1/2

≤ 1

n

n∑

i=1

(

E
(

E∗ ∣!̄∗
i ∣2
))1/2

.

Under Assumption 1, by Lemma A.1 of Gonçalves and White (2005), we can show that

E
(

E∗ ∣!̄∗
i ∣2
)

=
1

T 2
E

⎛

⎝E∗

∣
∣
∣
∣
∣

T∑

t=1

!∗
it

∣
∣
∣
∣
∣

2
⎞

⎠

︸ ︷︷ ︸

O(T )+O(ℓ2)

= O

(
1

T

)

+O

(
ℓ2

T 2

)

,
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uniformly in i. This implies E ∣W1.2,nT ∣ = O
(

1√
T

)

+ O
(
ℓ
T

)
if ℓ = o (T ), concluding the proof that

W ∗
1nT = oP ∗ (1) in probability. To end the proof of a), we consider W ∗

2nT . We have that

∣W ∗
2nT ∣ ≤

1

n

n∑

i=1

∣E∗ (!̄∗
i )∣++

1

n

n∑

i=1

∣!̄i∣ .

The first term is of order OP

(
1√
T

)

+ OP
(
ℓ
T

)
, by the same argument as that used to study W1.2,nT .

The second term is of order OP

(
1√
T

)

given that E
∣
∣
∣
∑T

t=1 !it

∣
∣
∣

2
= O (T ) by a maximal inequality.

To prove b), note that

n−1
n∑

i=1

(x̄∗i − x̄i)
2 = n−1

n∑

i=1

(x̄∗i − E∗ (x̄∗i ) +E∗ (x̄∗i )− x̄i)
2 ≤ 2

(
J∗
1,nT + J∗

2,nT

)
,

where J∗
1,nT ≡ n−1

∑n
i=1 (x̄

∗
i − E∗ (x̄∗i ))

2, and J∗
2,nT ≡ n−1

∑n
i=1 (E

∗ (x̄∗i )− x̄i)
2 . Using the same argu-

ments as above, we can show that E
∣
∣
∣E∗

∣
∣
∣J∗
l,nT

∣
∣
∣

∣
∣
∣ = o (1) as n, T → ∞. Consider first J∗

1,nT . Note that

x̄∗i − E∗ (x̄∗i ) = T−1
∑T

t=1 (x
∗
it − E∗ (x̄∗i )) = k−1ℓ−1

∑k
j=1

∑ℓ
t=1

(
xi,t+Ij − E∗ (x̄∗i )

)
≡ Ai,Ij , where Ij ∼

i.i.d. Uniform on {0, 1, . . . , T − ℓ}, and Ai,j =
∑ℓ

t=1 (xi,j+t − E∗ (x̄∗i )). We can write

J∗
1,nT = n−1

n∑

i=1

(x̄∗i −E∗ (x̄∗i ))
2 = n−1

n∑

i=1

⎛

⎝k−1ℓ−1
k∑

j=1

Ai,Ij

⎞

⎠

2

,

and it follows that

E∗ ∣∣J∗
1,nT

∣
∣ ≤ n−1

n∑

i=1

k−2ℓ−2E∗

∣
∣
∣
∣
∣
∣

⎛

⎝

k∑

j=1

Ai,Ij

⎞

⎠

2∣∣
∣
∣
∣
∣

≤ n−1
n∑

i=1

k−2ℓ−2k

k∑

j=1

E∗ ∣∣Ai,Ij
∣
∣2

= n−1
n∑

i=1

ℓ−2E∗ ∣Ai,I1 ∣2 = n−1
n∑

i=1

ℓ−2 1

T − ℓ+ 1

T−ℓ∑

j=0

∣Ai,j ∣2

= n−1
n∑

i=1

ℓ−2 1

T − ℓ+ 1

T−ℓ∑

j=0

∣
∣
∣
∣
∣

ℓ∑

t=1

zi,t+j + ℓ (�i − E∗ (x̄∗i ))

∣
∣
∣
∣
∣

2

≤ Cn−1
n∑

i=1

ℓ−2 1

T − ℓ+ 1

T−ℓ∑

j=0

∣
∣
∣
∣
∣

ℓ∑

t=1

zi,t+j

∣
∣
∣
∣
∣

2

+ n−1
n∑

i=1

ℓ−2 ∣ℓ (�i − E∗ (x̄∗i ))∣2 ≡ F1 + F2,

where zi,t+j ≡ xi,t+j−�i, and where the first inequality holds by the triangle inequality and the second

and third hold by the cr-inequality. We can show that E ∣F1∣ = O
(
ℓ−1
)
= o (1) if ℓ→ ∞. Specifically,

for each i, Assumption 1 implies that zi,t+j is a zero mean �-mixing process with �i (k) ≤ � (k).

Thus, by Lemma A.1, we have that E
∣
∣
∣
∑ℓ

t=1 zi,t+j

∣
∣
∣

2
≤ K

(
∑∞

k=1 � (k)
1
2
− 1

r

)2∑ℓ
t=1 ∥zi,t+j∥

2
r for some

r > 2. Assumption 1(ii) implies that ∥zi,t+j∥r ≤ Δ < ∞ whereas Assumption 1(iii) implies that
∑∞

k=1 � (k)
1
2
− 1

r <∞, thus proving that E
∣
∣
∣
∑ℓ

t=1 zi,t+j

∣
∣
∣

2
≤ Cℓ for some constant C. Thus,

E ∣F1∣ ≤ n−1
n∑

i=1

ℓ−2 1

T − ℓ+ 1

T−ℓ∑

j=0

E

∣
∣
∣
∣
∣

ℓ∑

t=1

zi,t+j

∣
∣
∣
∣
∣

2

≤ Kn−1
n∑

i=1

ℓ−2ℓ = O
(
ℓ−1
)
.
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Next, we show that E ∣F2∣ = O
(
T−1

)
+ O

((
ℓ
T

)2
)

. Since �i − E∗ (x̄∗i ) = −T−1
∑T

t=1E
∗ (x∗it − �i) =

−T−1
∑T

t=1E
∗ (z∗it) = −E∗ (z̄∗i ) , it follows that

F2 = n−1
n∑

i=1

ℓ−2 ∣ℓ (�i −E∗ (x̄∗i ))∣2 = n−1
n∑

i=1

ℓ−2ℓ2 ∣�i − E∗ (x̄∗i )∣2 ≤ n−1
n∑

i=1

E∗
(

∣z̄∗i ∣2
)

.

We can show that E
∣
∣
∣E∗

(

∣z̄∗i ∣2
)∣
∣
∣ = O

(
1
T

)
+ O

(
ℓ2

T 2

)

uniformly in i, which implies that F2 = oP ∗ (1)

in probability.

To prove c), note that we can write

Â∗
nT − ÂnT =

(

1

nT

n∑

i=1

T∑

t=1

x∗2it − 1

nT

n∑

i=1

T∑

t=1

x2it

)

− 1

n

n∑

i=1

(x̄∗i − x̄i)
2 − 2

1

n

n∑

i=1

(x̄∗i − x̄i) x̄i

≡ a∗1,nT − a∗2,nT − a∗3,nT .

By parts a) and b), a∗1,nT = oP ∗ (1) and a∗2,nT = oP ∗ (1), in probability, respectively. To show that

a∗3,nT = oP ∗ (1) , in probability, it suffices to show that E
∣
∣
∣E∗

∣
∣
∣a∗3,nT

∣
∣
∣

∣
∣
∣ = o (1) as n, T → ∞. By the

triangle inequality,

E∗ ∣∣a∗3,nT
∣
∣ ≤ 1

n

n∑

i=1

x̄iE
∗ ∣x̄∗i − x̄i∣ ,

and therefore E
∣
∣
∣E∗

∣
∣
∣a∗3,nT

∣
∣
∣

∣
∣
∣ ≤ 1

n

∑n
i=1

(

E ∣x̄i∣2
)1/2 (

E (E∗ ∣x̄∗i − x̄i∣)2
)1/2

. We can show that E ∣x̄i∣2 ≤
Δ >∞ whereas E (E∗ ∣x̄∗i − x̄i∣)2 = O

(
1
ℓ

)
+O

(
1
T

)
= o (1), uniformly in i. This completes the proof.

Proof of Lemma B.2. Let "∗0it = y∗it − x∗′it� − �i and note that "∗it = "∗0it − x∗′it

(

�̂ − �
)

− (�̂i − �i) .

Similarly, "̂it = "it − x′it

(

�̂ − �
)

− (�̂i − �i). By the FOC for �̂,
∑n

i=1

∑T
t=1 (xit − x̄i) "̂it = 0. Thus,

adding an subtracting appropriately, we can write

1√
T

T∑

t=1

1

n�

n∑

i=1

(x∗it − x̄∗i ) "
∗
it = �∗1,nT + �1,nT − �∗

2,nT + �3,nT − �∗
4,nT ,

where

�∗1,nT ≡ 1√
T

T∑

t=1

1

n�

n∑

t=1

(
(x∗it − �i) "

∗0
it − (xit − �i) "it

)
=

1√
T

T∑

t=1

(
s∗nt
n�

− snt
n�

)

;

�1,nT ≡ 1√
T

T∑

t=1

1

n�

n∑

i=1

(x̄i − �i) "it;

�∗
2,nT ≡ 1√

T

T∑

t=1

1

n�

n∑

i=1

(x̄∗i − �i) "
∗0
it ;

�3,nT ≡ 1√
T

T∑

t=1

1

n�

n∑

i=1

(xit − x̄i)
(

x′it

(

�̂ − �
)

+ (�̂i − �i)
)

; and

�∗
4,nT ≡ 1√

T

T∑

t=1

1

n�

n∑

i=1

(x∗it − x̄∗i )
(

x∗′it

(

�̂ − �
)

+ �̂i − �i

)

.
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By Theorem Theorem 2.2 of Gonçalves and White (2002) (see also Gonçalves and de Jong (2003)

for weaker moment conditions), we can show that B
−1/2
n,T �∗1,nT →d∗ N (0, Ip), in probability, provided

{
snt
n�

}
satisfies Assumption 3′′ and ℓ = o

(√
T
)

. �1,nT is equal to the bias term RnT,� and therefore is

oP (1) under Assumption 4. Next we show that �∗
2,nT = oP ∗ (1) in probability. Writing z̄∗i = x̄∗i −�i ≡

T−1
∑T

t=1 z
∗
it, we have that

�∗
2,nT =

1

T
√
T

1

n�

n∑

i=1

(
T∑

t=1

z∗it

)(
T∑

t=1

"∗0it

)

.

By repeated application of the Cauchy Schwartz inequality, it follows that

E
(
E∗ ∣∣�∗

2,nT

∣
∣
)

≤ 1

T
√
Tn�

n∑

i=1

E

(

E∗

∣
∣
∣
∣
∣

(
T∑

t=1

z∗it

)(
T∑

t=1

"∗0it

)∣
∣
∣
∣
∣

)

≤ 1

T
√
Tn�

n∑

i=1

⎧

⎨

⎩
E

⎛

⎝E∗

∣
∣
∣
∣
∣

T∑

t=1

z∗it

∣
∣
∣
∣
∣

2
⎞

⎠E

⎛

⎝E∗

∣
∣
∣
∣
∣

T∑

t=1

"∗0it

∣
∣
∣
∣
∣

2
⎞

⎠

⎫

⎬

⎭

1/2

.

Using Assumption 1, we can show that uniformly in i, E

(

E∗
∣
∣
∣
∑T

t=1 z
∗
it

∣
∣
∣

2
)

= O (T )+O
(
ℓ2
)
and simi-

larly for E

(

E∗
∣
∣
∣
∑T

t=1 "
∗0
it

∣
∣
∣

2
)

. This implies that the term in curly brackets is
{
O
(
T 2
)
+O

(
ℓ4
)
+O

(
Tℓ2
)}1/2 ≤

O (T ) + O
(
ℓ2
)
+ O

(√
Tℓ
)

. Thus, E
(

E∗
∣
∣
∣�∗

2,nT

∣
∣
∣

)

= O
(
n1−�
√
T

)

+ O
(
n1−�
√
T

ℓ2

T

)

+ O
(
n1−�
√
T

ℓ√
T

)

= o (1)

under the assumptions that n1−�
√
T

→ 0 and ℓ√
T
→ 0. Finally, we can show that �3,nT −�∗

4,nT = oP ∗ (1).

We can write

�3,nT − �∗
4,nT =  ∗

1,nT +  ∗
2,nT ,

where  ∗
2,nT = 0 and  ∗

1,nT ≡
(

ÂnT − Â∗
nT

)√
Tn1−�

(

�̂ − �
)

= oP ∗ (1) × OP (1) = oP ∗ (1), in prob-

ability, given Lemma B.1.c) and the fact that
√
Tn1−�

(

�̂ − �
)

= OP (1) by Theorem 2.1, which

completes the proof.

Proof of Theorem B.1. Take p = 1. We follow the proof of Gonçalves and White (2004), adapting

it to the fixed effects estimator context. For any j = 1, . . . , k and t = 1, . . . , ℓ, let ŝ∗n,(j−1)ℓ+t =
∑n

i=1

(
xi,Ij+t − x̄∗i

)
"̃i,Ij+t, where "̃it = yit − x̄′i�̂

∗ − �̂∗
i , with �̂∗

i = ȳ∗i − x̄∗′i �̂
∗
, and where Ij are

i.i.d Uniform on {0, . . . , T − ℓ} . Similarly, let s∗n,(j−1)ℓ+t =
∑n

i=1

(
xi,Ij+t − �i

)
"i,Ij+t, where "it =

yit − x′it� − �i. Consider

B∗0
nT,� =

1

k

k∑

j=1

(

ℓ−1/2
ℓ∑

t=1

n−�
(

s∗n,(j−1)ℓ+t − s̄∗nT

)
)2

=
1

k

k∑

j=1

(

ℓ−1/2
ℓ∑

t=1

n−�s∗n,(j−1)ℓ+t

)2

− ℓn−2�s̄∗2nT ,

where s̄∗nT = T−1
∑T

t=1 s
∗
nt. We can apply Lemma B.1 of Gonçalves and White (2004) to show that

B∗0
nT,�−B∗

nT,� = oP ∗ (1) in probability, where B∗
nT,� = V ar∗

(
1√
T

∑T
t=1

s∗nt
n�

)

. Since B∗
nT,�−BnT,�

P→ 0,

it suffices to show that B̂∗
nT,� − B∗0

nT,�
P ∗
→ 0, in probability. Let Ŝ∗

n,j ≡ n−�
∑ℓ

t=1 ŝ
∗
n,(j−1)ℓ+t and
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S∗
n,j ≡ n−�

∑ℓ
t=1 s

∗
n,(j−1)ℓ+t. We have that

B̂∗
nT,� −B∗0

nT,� =
1

k

k∑

j=1

ℓ−1
(

Ŝ∗2
n,j − S∗2

n,j

)

+ ℓn−2�s̄∗2nT ≡ D∗
1 +D∗

2,

where D∗
2 = OP ∗

(
ℓ
T

)
in probability (by an argument similar to that used in Gonçalves and White

(2004)). Next we prove that D∗
1 = oP ∗ (1) in probability. We can write ŝ∗nt = s∗nt + a∗nt + b∗nt, where

a∗nt =
∑n

i=1 (�i − x̄∗i ) "
∗0
it and

b∗nt = −
n∑

i=1

(x∗it − x̄∗i )x
∗
it

(

�̂
∗ − �

)

−
n∑

i=1

(x∗it − x̄∗i ) (�̂
∗
i − �i) ≡ b∗1n,t + b∗2n,t.

It follows that

Ŝ∗
n,j = n−�

ℓ∑

t=1

s∗n,(j−1)ℓ+t + n−�
ℓ∑

t=1

a∗n,(j−1)ℓ+t + n−�
ℓ∑

t=1

b∗n,(j−1)ℓ+t ≡ S∗
n,j +R∗

1n,j +R∗
2n,j.

and

∣D∗
1∣ ≤ 2

k

k∑

j=1

ℓ−1
(∣
∣R∗2

1,nj

∣
∣+
∣
∣R∗2

2,nj

∣
∣+
∣
∣S∗
n,jR

∗
1n,j

∣
∣+
∣
∣S∗
n,jR

∗
2n,j

∣
∣
)

≤ 2

k

k∑

j=1

ℓ−1
∣
∣R∗2

1,nj

∣
∣+

2

k

k∑

j=1

ℓ−1
∣
∣R∗2

2,nj

∣
∣+ 2

1

k

k∑

j=1

ℓ−1
∣
∣S∗
n,jR

∗
1n,j

∣
∣+ 2

1

k

k∑

j=1

ℓ−1
∣
∣S∗
n,jR

∗
2n,j

∣
∣

≡ A∗ +B∗ + C∗ +D∗.

We show that each of these terms vanishes in probability. We first prove that E (E∗ ∣A∗∣) → 0. We

have that E (E∗ ∣A∗∣) ≤ 2
k

∑k
j=1 ℓ

−1E
(

E∗
∣
∣
∣R∗2

1,nj

∣
∣
∣

)

. But

E∗ ∣∣R∗2
1,nj

∣
∣ = E∗

∣
∣
∣
∣
∣

ℓ∑

t=1

n−�
n∑

i=1

(�i − x̄∗i ) "
∗0
i,(j−1)ℓ+1

∣
∣
∣
∣
∣

2

= E∗

∣
∣
∣
∣
∣
n−�

n∑

i=1

(�i − x̄∗i )
ℓ∑

t=1

"i,Ij+t

∣
∣
∣
∣
∣

2

≤ n−2�n

n∑

i=1

(

E∗
(

(�i − x̄∗i )
4
))1/2

⎛

⎝E∗

∣
∣
∣
∣
∣

ℓ∑

t=1

"i,Ij+t

∣
∣
∣
∣
∣

4
⎞

⎠

1/2

,

implying that

E (E∗ ∣A∗∣) ≤ 2ℓ−1n1−2�
n∑

i=1

[
E
(
E∗ (z̄∗4i

))]1/2

⎡

⎣E

⎛

⎝E∗

∣
∣
∣
∣
∣

ℓ∑

t=1

"i,I1+t

∣
∣
∣
∣
∣

4
⎞

⎠

⎤

⎦

1/2

,

where z̄∗i ≡ x̄∗i − �i. By an application of Lemma A.1 of Gonçalves and White (2005), we can show

that E
(
E∗ (z̄∗4i

))
= O

(
1
T 2

)
+O

(
ℓ4

T 4

)

uniformly in i (for this, it suffices that ∥zit∥2r ≤ ∞ and {zit} is

�−mixing of size − 4r
r−2 , for some r > 2), whereas

E

⎛

⎝E∗

∣
∣
∣
∣
∣

ℓ∑

t=1

"i,I1+t

∣
∣
∣
∣
∣

4
⎞

⎠ =
1

T − ℓ+ 1

T−ℓ∑

j=0

E

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

ℓ∑

t=1

"i,j+t

∣
∣
∣
∣
∣

4
∣
∣
∣
∣
∣
∣

= O
(
ℓ2
)
,
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also uniformly in i. Thus E (E∗ ∣A∗∣) = O
(
ℓ−1
)
O
(
n2(1−�)

) (

O
(
ℓ
T

)
+O

(
ℓ3

T 2

))

= O
(
n2(1−�)

T

)

+

O
(
n2(1−�)

T
ℓ2

T

)

= o (1), provided n1−�
√
T

→ 0 and ℓ2

T → 0. Next we show that E (E∗ ∣C∗∣) = o (1).

By the Cauchy-Schwartz inequality

C∗ =
2

k

k∑

j=1

ℓ−1
∣
∣S∗
n,jR

∗
1n,j

∣
∣ ≤ 2

⎛

⎝
1

k

k∑

j=1

ℓ−1
∣
∣S∗
n,j

∣
∣2

⎞

⎠

1/2⎛

⎝
1

k

k∑

j=1

ℓ−1
∣
∣R∗

1n,j

∣
∣2

⎞

⎠

1/2

,

implying that

E

⎛

⎝E∗

⎛

⎝
1

k

k∑

j=1

ℓ−1
∣
∣S∗
n,jR

∗
1n,j

∣
∣

⎞

⎠

⎞
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⎛

⎝
1

k

k∑

j=1

ℓ−1E
(

E∗ ∣∣S∗
n,j

∣
∣2
)

⎞

⎠

1/2⎛

⎝
1

k

k∑

j=1

ℓ−1E
(
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1n,j

∣
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)

⎞

⎠

1/2

= O

(

n2(1−�)

T

)

+O

(

n2(1−�)

T

ℓ2

T

)

= o (1) ,

where we have used the previous result and the fact that we can show that 1
k

∑k
j=1 ℓ

−1E

(

E∗
∣
∣
∣S∗
n,j

∣
∣
∣

2
)

=

O (1) (this relies on an application of a maximal inequality to the array
{
snt
n�

}
). Next, consider B∗:

B∗ =
2

k
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∣
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∣
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2

k
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∣
∣
∣
∣
∣
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t=1

n−�b∗n,(j−1)ℓ+t

∣
∣
∣
∣
∣

2
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k
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∣
∣
∣
∣
∣
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∣
∣
∣
∣
∣

2

+
2

k
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∣
∣
∣
∣
∣
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∣
∣
∣
∣
∣

2
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1 +B∗

2 .

We have that

B∗
1 =

2

k

k∑
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ℓ−1

∣
∣
∣
∣
∣

ℓ∑

t=1

n−1
n∑
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(

x∗i,(j−1)ℓ+t − x̄∗i

)
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∣
∣
∣
∣
∣

2
∣
∣
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(

�̂
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∣
∣

2
≡ 1

T
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∣
∣
∣

√
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(

�̂
∗ − �
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∣
∣

2
.

Because
√
Tn1−�

(

�̂
∗ − �

)

= OP ∗ (1), it suffices that 1
TΨ

∗ = oP ∗ (1), in probability. For some constant

K,

1

T
E (E∗ ∣Ψ∗∣) ≤ K

T

2

k

k∑
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ℓ−1ℓ
ℓ∑
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n∑
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E
(
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(
xi,Ij+t − x̄∗i

)
xi,Ij+t

∣
∣2
)

= O

(
ℓ

T

)

= o (1) ,

if ℓ = o (T ). This shows that B∗
1 = oP ∗ (1), in probability. Next consider B∗

2 . Let "̄
∗0
i ≡ T−1

∑T
t=1 "

∗0
it

and note that �̂∗
i − �i = "̄∗0i − x̄∗′i

(

�̂
∗ − �

)

. It follows that

b∗2n,(j−1)ℓ+1 = −n−�
n∑
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(

x∗i,(j−1)ℓ+t − x̄∗i

)

(�̂∗
i − �i)

= −n−�
n∑

i=1

(

x∗i,(j−1)ℓ+t − x̄∗i

)

"̄∗0i − n−�
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(

x∗i,(j−1)ℓ+t − x̄∗i

)
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,
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which implies that

B∗
2 ≤ K

2

k

k∑

j=1

ℓ−1

∣
∣
∣
∣
∣

ℓ∑

t=1

n−�
n∑
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(
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)
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∣
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2
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2

k
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∣
∣
∣
∣
∣
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n∑
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(

x∗i,(j−1)ℓ+t − x̄∗i

)
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∣
∣
∣
∣
∣

2
∣
∣
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(
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1 +

K
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∣
∣
∣

√
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(

�̂
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∣
∣

2
.

The second term is oP ∗ (1) in probability, as we proved before. For M∗
1 , we can argue as for A∗ to

show that E (E∗ ∣M∗
1 ∣) = O

(
n2(1−�)

T

)

+ O
(
ℓ2n2(1−�)

T 2

)

= o (1) under the assumptions that n1−�
√
T

→ 0

and ℓ2

T → 0. Thus B∗ = oP ∗ (1) in probability. Finally, we show that D∗ = oP ∗ (1), in probability.

We have that ∣D∗∣2 ≤
[

2

(

1
k

∑k
j=1 ℓ

−1
∣
∣
∣S∗
n,j

∣
∣
∣

2
)1/2

(B∗)1/2
]2

= OP ∗ (1) × oP ∗ (1) = oP ∗ (1) , since

1
k

∑k
j=1 ℓ

−1
∣
∣
∣S∗
n,j

∣
∣
∣

2
= OP ∗ (1) and B∗ = oP ∗ (1) in probability.

Proof of Theorem 3.1. We can write

√
Tn1−�

(

�̂
∗ − �̂

)

= Â∗−1
nT

1√
T

T∑

t=1

n−�
n∑

i=1

(x∗it − x̄∗i ) "
∗
it

= A−1
nTB

1/2
nT,�B

−1/2
nT

1√
T

T∑

t=1

n−�
n∑

i=1

(x∗it − x̄∗i ) "
∗
it

+
[(

Â−1
nT −A−1

nT

)

+
(

Â∗−1
nT − Â−1

nT

)] 1√
T

T∑

t=1

n−�
n∑

i=1

(x∗it − x̄∗i ) "
∗
it

≡ �∗1,nT + �∗2,nT .

By Lemma B.2, B
−1/2
nT AnT �

∗
1,nT →d∗ N (0, Ip) whereas Lemmas A.2.c) and B.1.c), and the fact that

1√
T

∑T
t=1 n

−�∑n
i=1 (x

∗
it − x̄∗i ) "

∗
it = OP ∗ (1) imply that �∗2,nT = oP ∗ (1), in probability.

Proof of Theorem 3.2. The proof follows from Theorems 3.1 and B.1 using standard arguments.
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Figure 1: Empirical coverage rates, AR(1)-Gaussian model, a = 0.0 and � =
√
0.5
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Figure 2: Empirical coverage rates, AR(1)-Gaussian model, a = 0.5 and � =
√
0.5
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Figure 3: Empirical coverage rates, AR(1)-Gaussian model, a = 0.9 and � =
√
0.5
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Figure 4: Empirical coverage rates, AR(1)-Gaussian model, a = 0.0 and � = 0.0
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Figure 5: Empirical coverage rates, AR(1)-Gaussian model, a = 0.5 and � = 0.0
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Figure 6: Empirical coverage rates, AR(1)-Gaussian model, a = 0.9 and � = 0.0
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Table 1. Empirical coverage rates of symmetric 95% nominal level confidence intervals,
� =

√
0.5

Model T n Bandwidth N (0, 1) Fixed-b MBB

AR(1)-Gaussian a = 0.0 25 25 1.61 91.10 93.90 95.50
50 1.62 91.15 93.55 95.75

50 25 1.64 93.00 94.20 95.30
50 1.63 94.05 94.75 95.45

a = 0.5 25 25 2.06 84.75 89.20 93.60
50 2.02 84.40 89.15 93.65

50 25 2.68 89.15 91.30 94.25
50 2.74 89.60 91.55 93.85

a = 0.9 25 25 4.45 65.70 74.85 90.40
50 4.41 63.70 74.45 89.80

50 25 7.95 68.25 78.15 91.75
50 7.96 67.40 77.80 92.05

AR(1)-t6 a = 0.0 25 25 1.55 90.30 92.95 95.65
50 1.54 90.95 93.20 95.75

50 25 1.59 92.85 94.60 95.85
50 1.55 92.80 93.55 95.45

a = 0.5 25 25 2.03 84.90 88.65 93.20
50 2.01 83.75 88.10 92.50

50 25 2.69 88.95 91.00 94.00
50 2.72 87.90 90.50 93.75

a = 0.9 25 25 4.42 62.75 74.25 90.00
50 4.44 62.70 73.65 90.80

50 25 7.95 68.55 79.15 93.40
50 7.96 67.70 77.20 91.85

MA(1)-Gaussian  = 0.5 25 25 1.82 88.05 90.80 94.05
50 1.84 87.10 90.75 94.05

50 25 2.22 91.05 92.25 94.05
50 2.24 89.95 91.65 93.80

 = 0.9 25 25 2.10 86.35 90.25 93.40
50 2.11 84.90 89.30 93.80

50 25 2.79 90.25 91.60 93.70
50 2.79 88.25 91.45 93.80
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