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Abstract. This article considers the problem of detecting break points for a nonstation-
ary time series. Specifically, the time series is assumed to follow a parametric nonlinear time-
series model in which the parameters may change values at fixed times. In this formulation,
the number and locations of the break points are assumed unknown. The minimum
description length (MDL) is used as a criterion for estimating the number of break points,
the locations of break points and the parametric model in each segment. The best
segmentation found by minimizing MDL is obtained using a genetic algorithm. The
implementation of this approach is illustrated using generalized autoregressive conditionally
heteroscedastic (GARCH) models, stochastic volatility models and generalized state-space
models as the parametric model for the segments. Empirical results show good performance
of the estimates of the number of breaks and their locations for these various models.

Keywords. Generalized autoregressive conditionally heteroscedastic process; genetic
algorithm; minimum description length principle; model selection; multiple change point;
non-stationary time series; state-space models; stochastic volatility model.

1. INTRODUCTION

The problem of modelling a class of nonstationary time series by segmenting the
series into different linear or nonlinear stationary pieces is considered. Specifically,
the time series is assumed to follow an underlying parametric nonlinear model in
which the parameters (and possibly order of the model) change values at fixed
time points. Here, the number of break points and their locations are assumed to
be unknown. An automatic procedure, termed Auto-Seg for automatic
segmentation, is developed for obtaining an optimal segmentation.

A single change point in the distribution for independent observations has been
broadly studied in the literature. The multiple change point case, a much more
difficult problem, has also been considered. A review and an extensive list of
references for the multiple change point problem can be found in Shaban (1980),
Zacks (1983), Krishnaiah and Miao (1988), Bhattacharya (1994) and Csörg}o and
Horváth (1997).

In time series, various versions of the change point problem has also been
studied. Picard (1985), Davis et al. (1995) and Kitagawa et al. (2001) studied the
single change point problem in which the pieces are assumed to be autoregressive
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(AR) processes. Here, a change occurs if one of the parameters, including the
constant term, or white noise variance changes.

Multiple change points for dependent data are considered in Kitagawa and
Akaike (1978), Fearnhead (2005) and Davis et al. (2006) where the observed
nonstationary time series is decomposed into segments of AR processes. A more
general piecewise stationary process, for which the piecewise AR process is a
particular case, is considered in Ombao et al. (2001). McCulloch and Tsay (1993),
Djurić (1994) and Lavielle (1998). Punskaya et al. (2002) consider a Bayesian
approach to the change point problem in time series, while Csörg}o and Horváth
(1997) devote a chapter to the change point problem for dependent observations.

In this article, we consider the multiple change point problem for a class of
nonlinear processes in which the segments are modelled by a specified parametric
class of nonlinear time-series models. More precisely, let m be the unknown
number of break points of the observed time series of length n. In addition let
sj, j ¼ 1, . . . ,m be the break points between the jth and (j þ 1)th segments, and set
s0 ¼ 1 and smþ1 ¼ n þ 1. It is assumed that the jth piece of the time series fYtg is
modelled by a stationary time series fXt, jg, i.e.

Yt ¼ Xtþ1�sj�1; j; sj�1 � t < sj; ð1Þ

where the pieces fXt, jg, j ¼ 1, . . . ,m þ 1 are independent, fXt, j : t ¼ 0, ±1, ±2, . . .g
has stationary distribution phj

(Æ), and hj is a member of a parameter space Qj

with hj 6¼ hjþ1, j ¼ 1, . . . ,m. The dimension of hj and its parameter space Qj may
not only vary with j, but, as in Examples 1 and 2, it can be unknown.

While the independence of the segments in this model framework may seem
unduly restrictive, it is used primarily for convenience and numerical stability in
the formulation of the segmentation procedure Auto-Seg. After considering a few
examples, we will show in Remark 1 how our formulation can be viewed as an
approximation to a modelling scheme in which dependence in the observations is
allowed to leak across the segmented boundaries.

Example 1 (Segmented AR process). Consider the case when, for all j ¼
1, . . . ,m þ 1, fXt, jg is the AR(pj) process

Xt; j ¼ /j0 þ /j1Xt�1; j þ � � � þ /j; pj
Xt�pj; j þ rjet; j; t ¼ . . . ;�1; 0; 1; . . . ; ð2Þ

where fet, j : t ¼ 0, ±1, ±2, . . .g is a sequence of independently and identically
distributed (i.i.d.) N(0,1) noise. If the autoregressive order pj is assumed unknown,
then the parameter hj becomes ðpj;/j; r

2
j Þ, where /j ¼ (/j0, . . . ,/j, pj

) is the vector
of AR parameters. This set-up has been considered, for example, by Kitagawa
and Akaike (1978), Fearnhead (2005) and Davis et al. (2006). If pj is known, then
hj ¼ ð/j; r

2
j Þ.

Example 2 (GARCH(p,q) process). In this example, the jth piece of the process
fYtgn

t¼1 is modelled as a generalized autoregressive conditionally heteroscedastic
(GARCH) process introduced by Bollerslev (1986); i.e.
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Yt ¼ Xtþ1�sj�1; j; sj�1 � t < sj;

where for each j ¼ 1, . . . ,m þ 1,fXt, jg is a GARCH(pj, qj) model. That is,

Xt; j ¼ rt; jet; j; t ¼ . . . ;�1; 0; 1; . . . ;

where fet, jg is i.i.d. N(0,1) and rt, j is a positive function of Xt, j given by

r2
t; j ¼ a0; j þ aj1X 2

t�1; j þ � � � þ aj; pj X
2
t�pj; j þ bj1r

2
t�1; j þ � � � þ bj; qj

r2
t�qj; j;

t ¼ . . . ;�1; 0; 1; . . . ;
ð3Þ

subject to the constraints a0, j > 0, ai, j � 0, bi, j � 0, i ¼ 1, . . . ,m þ 1 and
a1, j þ � � � þ aqj; j þ b1, j þ � � � þ bqj; j < 1. Assuming that the orders pj and qj
are unknown, then hj ¼ (pj, qj, a0, j, aj, bj), where aj and bj are the vector of ajs and
bjs in eqn (3) respectively.

Example 3 (State-space model). The jth piece of the time series fYtg is
modelled by a state-space model (SSM). If fatg is the state process, then the
conditional distribution

pðytjat; at�1; . . . ; a1; yt�1; . . . ; y1Þ ¼ pðytjatÞ; sj�1 � t < sj; ð4Þ

is assumed to belong to a known parametric family of distributions and the state
process fatg is given by

at ¼ Xtþ1�sj�1;j; sj�1 � t < sj;

where for each j, fXt, jg is the AR(pj) process in eqn (2). Assuming the order pj is
unknown, the vector of parameters becomes hj ¼ ðpj; dj;/j; r

2
j Þ, where dj is the

vector of say qj parameters associated with the specification of p(ytjat),
sj�1 � t < sj, and /j is the vector of /js associated with the AR model in eqn (2).

Two SSMs considered in this article that are widely used in the literature are the
stochastic volatility model (SVM) and the Poisson-driven model (PDM). These
processes have observation equations (4) that belong to the exponential family of
distributions. Durbin and Koopman (1997) and Kuk (1999) consider the following
form for this family

pðytjatÞ ¼ exp ðzTt bþ atÞyt � bðzTt bþ atÞ þ cðytÞ
� �

;

where zt is a vector of covariates observed at time t, b is a vector of parameters
and b(Æ) and c(Æ) are known real functions.

Remark 1. While at first glance, the assumption of independence in eqn (1)
may seem restrictive, it can be viewed as an approximating model in which
dependence is allowed across segments. For example, a natural definition of a
segmented autoregression could be specified by the recursions,

Yt ¼ /j0 þ /j1Yt�1 þ � � � þ /j;pj
Yt�pj þ rjet; sj�1 � t < sj; ð5Þ
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where fetg is i.i.d. N(0,1). Notice that the first pj values of the jth piece are written
in terms of the last pj values of the preceding piece. The log likelihood of the data
(y1, . . . , yn) based on this model, assuming that the sj and pj are known, is

Xmþ1
j¼1

Lj�1ðwj; r
2
j ; yjÞ; ð6Þ

where yj ¼ (ysj�1, . . . , ysj � 1), wj ¼ (/0,j, . . . ,/pj,j
) and Lj�1 is the conditional

likelihood of yj given (ysj�1�pj, . . . , ysj�1�1). Here, we assume that (y1�p1, . . . , y0) are
pre-observed values and that the length nj ¼ sj � sj�1 of the jth segment is greater
than pj. The conditional likelihood can then be computed as

Lj�1ðwj; r
2
j ; yjÞ ¼ �

nj

2
lnð2pÞ � nj

2
ln r2

j

� 1

2r2
j

Xsj�1

k¼sj�1

ðyk � /j;0 � /j;1yk�1 � � � � � /j;pj
yk�pjÞ

2;

which, upon replacing r2
j with its maximum likelihood estimator r̂2

j , gives the log-
profile likelihood

Lj�1ðwj; r̂
2
j ; yjÞ ¼ �

nj

2
lnð2pÞ � nj

2
ln r̂2

j �
nj

2
:

Now, under the model formulation in eqn (1), the log likelihood is given by

Xmþ1
j¼1

Lðwj; r
2
j ; yjÞ; ð7Þ

where Lðwj; r
2
j ; yjÞ is the log-likelihood function based on the model specified by

the jth piece. For AR processes, the log-profile likelihood Lðwj; ~r2
j ; yjÞ can be well

approximated (see Brockwell and Davis, 1991) by

� nj

2
lnð2pÞ � nj

2
ln ~r2

j �
nj

2
;

where ~r2
j is the maximum likelihood estimator of r2

j based only on the observations
in the jth segment yj. Since there is often little difference between the estimates r̂2

j
and ~r2

j , the likelihoods given by eqn (6) under models (5) and (7) under the
independent segment model are nearly the same. A similar argument can be made
for the models in Examples 2 and 3 where the conditional likelihood Lj�1 is
conditional on an appropriately chosen sigma field. Furthermore, the likelihood
given by eqn (7) tends to be more numerically stable at the maximum likelihood
estimates, as a function of the configuration of change points and the orders of the
models. For these reasons, we have adopted the model framework as specified in
eqn (1) which can be viewed as an approximation to a more general formulation.

In this article, we focus on Examples 2 and 3; a more thorough treatment of
Example 1 can be found in Davis et al. (2006). The SVM and GARCH models are
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popular models to analyse log returns of financial time series. The PDM is
commonly used for modelling time series of counts. For example, Zeger (1988),
Harvey and Fernandes (1989) and Davis et al. (1998) have used PDMs for
modelling counts of individuals infected by a rare disease. Unlike Example 1, the
likelihood of the GARCH, SVM and PDMs do not have a closed form, which
makes the estimation of break points for these models, especially for the SVMs
and PDMs, computationally challenging.

The problem of finding a �best� combination of m, sjs and possibly the orders of
the segmented models can be treated as a model selection problem of non-nested
models. The best combination of these values are then found by optimizing a
desired objective function. Various selection criteria have been used in the
literature for the change point problem. For example, Kitagawa and Akaike
(1978) and Kitagawa et al. (2001) used the Akaike information criterion (AIC);
Yao (1988) used the Bayesian information criterion (BIC); Lee (1995) and Liu
et al. (1997) used modified versions of BIC; Davis et al. (2006) used minimum
description length (MDL) principle of Rissanen (1989) and Lavielle (1998) and
Gustaffson (2000) used maximum a posteriori (MAP) criterion. Bai and Perron
(1998, 2003) and Ombao et al. (2001) designed a criterion tailored to their
procedures.

In this article, we adopt the MDL principle as in Davis et al. (2006) to solve our
model selection problem. For even moderate values of n, optimization of this
criterion is not an easy task. To solve this optimization problem, a genetic
algorithm (GA) is used to find optimal or near optimal values of the MDL
criterion.

The rest of this article is organized as follows. In Section 2, we derive a general
expression for the MDL and apply it to the piecewise state-space model. In
Section 3, we give an overview of the GA and discuss its implementation to the
segmentation problem. In Section 4, we study the performance of Auto-Seg via
simulation and in Section 5 the Auto-Seg procedure is applied to the S&P 500
index and results are compared with other change point analyses. Finally,
concluding remarks are given in Section 6.

2. MODEL SELECTION

As suggested before, the problem of finding a �best� segmentation of the data can
be posed as a model selection problem and we shall use the two-part MDL
method of Rissanen (1989) (see also Hansen and Yu, 2001; Lee, 2001) to solve it.
In general, the idea of MDL for solving a model selection problem is to select the
modelM 2 F that achieves the best compression of the data, where F is a family
of candidate models. This can be performed using the following steps. First, given
any modelM in F, the data y is split into two parts: M̂ plus the corresponding
residuals êM̂, where M̂ denotes a fitted version ofM. Then the total code length
(i.e. the amount of hardware memory, typically in terms of number of bits) for
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storing y is calculated as the sum of the individual code lengths of M̂ and êM̂.
Notice that this total code length for y is a function of M̂. Lastly, the model
M̂ that gives the smallest such total code length of y is chosen (and defined) as the
best fitting model for the problem. As a good compression method and a good
statistical model share the same characteristic of capturing the regularities in the
data, one should expect that this idea of code length minimization will lead to
good choices of statistical models.

To apply this MDL idea to the current problem, we need to derive various
expressions for code length comparison. Let CL(z) denote the code length of an
object z and F be the class of piecewise processes defined in eqn (1). The goal is to
find the code length CL(y) of the data y ¼ (y1,y2, . . . , yn) associated with any
member M 2 F. Following the convention of Rissanen (1989), CL(y) is
decomposed into

CLðyÞ ¼ CLðM̂Þ þ CLðêjM̂Þ; ð8Þ

where CLðM̂Þ denotes the code length of the fitted model M̂ and CLðêjM̂Þ is the
code length of the corresponding residuals (conditional on the fitted model M̂).
The MDL defines the best segmentation for our problem as the one that
minimizes CL(y). Therefore, we need to derive expressions for CLðM̂Þ and
CLðêjM̂Þ and we begin with the former.

Before proceeding, we introduce some notation. First, recall that all the model
parameters in the jth segments are collected in hj. For a reason to be made clear
below, we partition hj as hj ¼ (fj, wj), where fj collects all the integer-valued
parameters, such as those unknown model orders (e.g. AR order) as in Examples
1–3, while wj contains all the real-valued parameters. We shall use cj and dj to
denote the dimensionality of fj and wj respectively. We shall also assume that
given m, the sjs and the fjs, the unique maximum likelihood estimate ŵj of the
real-valued parameters wj can be obtained. Lastly, let nj ¼ sj � sj�1 be the
number of observations in the jth segment of M; thus (s1, . . . , sm) and
(n1, . . . , nmþ1) provide equivalent information. With this set-up, any fitted
model M̂ can be completely characterized by m, the njs, the fjs and the ŵjs.
Therefore, CLðM̂Þ can be decomposed as

CLðM̂Þ ¼ CLðmÞ þ CLðn1Þ þ � � � þ CLðnmþ1Þ
þ CLðf1Þ þ � � � þ CLðfmþ1Þ þ CLðŵ1Þ þ � � � þ CLðŵmþ1Þ; ð9Þ

which, as shown in the Appendix, admits the following expression:

CLðM̂Þ ¼ log2 mþ ðmþ 1Þ log2 nþ
Xmþ1
j¼1

Xcj

k¼1
log2 fkj þ

Xmþ1
j¼1

dj

2
log2 nj; ð10Þ

where fkj is the kth entry of fj.
The next step is to derive an expression for the second term CLðêjM̂Þ in eqn (8).

This second term is the code length of the residuals of the fitted model M̂, and, as
demonstrated by Rissanen (1989), it is given by the negative of the log (base 2)
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likelihood of M̂. If we denote L(wj; yj) the observed likelihood of the jth piece and
switch the log base from 2 to e, then we have the following as our final total code
length expression for CL(y):

MDLðm; s1; . . . ; sm; f1; . . . ; fmþ1Þ
¼ CLðyÞ

¼ logmþ ðmþ 1Þ log nþ
Xmþ1
j¼1

Xcj

k¼1
log fkj þ

Xmþ1
j¼1

dj

2
log nj �

Xmþ1
j¼1

Lðŵj; yjÞ; ð11Þ

where the last summand is obtained from the assumption that the pieces are
independent. The best fitting model for y is then the minimizer of
MDL(m,s1, . . . , sm,f1, . . . , fmþ1) in eqn (11). Since the values of ŵjs are uniquely
determined once m, sjs and fjs are specified, they are suppressed in the notation of
MDL(m,s1, . . . , sm,f1, . . . , fmþ1).

Example 4 (State-space model). Recall from Example 3 that hj ¼ ðpj; dj;/j; r
2
j Þ.

Let us assume that pj is the only integer parameter in hj. Then fj ¼ pj and
wj ¼ ðdj;/j; r

2
j Þ. Thus, cj ¼ 1, dj ¼ pj þ qj þ 2, where qj is defined in Example 3.

Then

Xmþ1
j¼1

Xcj

k¼1
log fkj ¼

Xmþ1
j¼1

log pj; and
Xmþ1
j¼1

dj

2
log nj ¼

Xmþ1
j¼1

pj þ qj þ 2

2
log nj: ð12Þ

Now, let yj :¼ (ysj�1, . . . , ysj�1) and aj :¼ (asj�1, . . . , asj�1) be the vector of obser-
vations and states of the jth piece ofM. In addition, let kj :¼ ð/; r2

j Þ. For a fixed
(known) value of pj, the likelihood of this piece based on the complete data (yj, aj)
becomes

Lðwj; yj; ajÞ ¼ pðyjjaj; djÞpðajjkjÞ

¼
Ynj

t¼1
pðyt; jjat; j; djÞ

 !
jVjj1=2 exp �ðaj � ljÞ

T
Vjðaj � ljÞ=2

h i
=ð2pÞnj=2;

ð13Þ

where V�1j :¼ covfajg; lj ¼ /0; j=ð1� /1; j � � � � � /pj; jÞ1 is the vector of means of
the state process, and 1 is a vector of ones. From eqn (13), it follows that the
likelihood of the observed data is given by the product of nj-fold integrals

Lðw1; . . . ;wmþ1; yÞ ¼
Ymþ1
j¼1

Z
Lðwj; yj; ajÞdaj: ð14Þ

Except in simple cases, the integrals in eqn (14) cannot be computed explicitly.
In this article, we use the approximation La(wj; yj) [see eqn (15)] to the likelihood
given in Davis and Rodriguez-Yam (2005). Briefly, this approximation is based
on a second-order Taylor series expansion of log p(yjjaj; dj) in a neighbourhood
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of the posterior mode of p(ajjyj; wj). To simplify notation, for the jth piece we
�drop� the sub-index j that appears in yj, aj, etc. Now, let a� be the mode of the
posterior distribution p(ajy; w). In addition, let l(d; yja) :¼ log p(yja; d) and
R(a, a�) be the remainder of its second-order Taylor series expansion around a�.
Since p(ajy; w) / p(yja, d)p(ajk) ¼ L(w; y, a), the vector a� can be found by
maximizing the complete likelihood L(w; y, a). For the jth segment, the posterior
distribution p(ajy;w) is approximated, as described in Davis and Rodriguez-Yam
(2005), by

paðajy; wÞ ¼ /ða; a�; ðK� þ VÞ�1Þ;

where /(Æ; l, R) is the multivariate normal density with mean l and covariance
matrix R and

K� :¼ � @2

@a@aT
lðd; yjaÞja¼a� :

This is the same density that is used in the importance sampling procedure of
Durbin and Koopman (1997). In the importance sampling context, the ability
to draw random samples easily is a key advantage of this density. Moreover,
closed formed expressions can be used to give a reasonably close approxima-
tion to the exact likelihood. On the jth segment, the likelihood has the
factorization

Lðw; yÞ ¼ Laðw; yÞEraðwÞ;

where

EraðwÞ :¼
Z
<n

eRða;a�Þpaðajy; wÞda;

and R(a; a�) is the second-order Taylor series expansion of l(d; yja) around a�,
and

Laðw; yÞ :¼ jVj1=2

jK� þ Vj1=2
exp h� � 1

2
ða� � lÞTVða� � lÞ

� �
: ð15Þ

Here, h� :¼ l(d; yja)ja¼a�. Ignoring the term eR(a;a
�) in the integrand of Era(w),

an approximation to the likelihood La(w; y) given by eqn (15) is obtained. For
SVMs and PDMs, the estimates obtained by maximizing La(w; y) were found
to be close to the Monte Carlo maximum likelihood estimates given for
example by Durbin and Koopman (1997) and Sandmann and Koopman (1998).
A plausible explanation for this approximation to work is the following. Under
the assumption that the second-order Taylor series expansion of l(d; yja)
around a� is a reasonable approximation to l(d; yja) for values of a not too far
from a�, the value eR(a,a

�) must be reasonably close to 1. Since the probability
that a is far away from a� must be negligible, the term Era(w) should not be
much different from 1 and hence La(w; y) is expected to be a good
approximation to L(w; y).
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Now by using eqn (12), replacing Lðŵj; yjÞ with its approximation Laðŵj; yjÞ,
and writing fj ¼ pj, eqn (11) becomes

MDLðm; s1; . . . ; sm; p1; . . . ; pmþ1Þ ¼ logmþ ðmþ 1Þ log nþ
Xmþ1
j¼1

log pj

þ
Xmþ1
j¼1

pj þ qj þ 2

2
log nj �

Xmþ1
j¼1

Laðŵj; yjÞ;

ð16Þ

where ŵj is the optimizer of eqn (15). The best fitting model for y is then the
minimizer of MDL(m,s1, . . . , sm, p1, . . . , pmþ1) in eqn (16).

3. OPTIMIZATION USING THE GENETIC ALGORITHM

3.1. The genetic algorithm

As we will see later in this section, the optimization of eqn (11) is �model
dependent�. To give an idea of how to proceed, we describe how to optimize the
MDL in eqn (16) for the state-space model from Example 4. Optimization for
other examples can be achieved in a similar manner. Even for moderate values
of n, the minimization of MDL(m, s1, . . . , sm, p1, . . . , pmþ1) with respect to m,
s1, . . . , sm, p1, . . . , pmþ1 is not trivial. A procedure that we will use to overcome
this problem is the GA, a class of evolutionary algorithms, first proposed by
Holland (1992). GAs are randomized search techniques that mimic natural
selection to find the maximum (or minimum) of an objective function. Among
others, Chatterjee et al. (1996) and Gaetan (2000) and Lee (2002) have applied
GAs to statistical problems with good results.

The basic component of the GA are structures typically named chromosomes,
which are usually represented as vectors. While the basics of the canonical GA
can be found in Holland (1992) and Eshelman (2000), we give a brief summary.
An initial population of M chromosomes are selected (usually at random) and to
each individual a probability, which can be proportional to its objective function
value, is assigned; that is, chromosomes having better objective function values
would have higher probabilities. Then an offspring is created by mating
individuals selected according to the assigned probabilities. Two typical genetic
operators for mating are crossover and mutation. The new offspring and the
parents are merged to create a new population (generation) of sizeM. The process
is iterated to create new generations. The iterations are stopped once a
convergence criterion is met. De Jong (1975) suggests to return the best
individual found in successive generations. This is referred to as an elitist step
which guarantees monotonicity of the algorithm.

There are many variations of the above canonical GA. For example, parallel
implementations can be applied to speed up the convergence rate as well as to
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reduce the chance of converging to sub-optimal solutions (Forrest, 1991; Alba and
Troya, 1999). In this article, we implement the following Island Model. Instead of
running only one search in one giant population, the island model simultaneously
runs NI (number of islands) canonical GAs in NI different sub-populations.
Periodically, a number of individuals are allowed to migrate amongst the islands
according to some migration policy. The migration can be implemented in
numerous ways (Martin et al., 2000; Alba and Troya, 2002). In this article, we
adopt the following migration policy: after every Mi generations, the worst MN

chromosomes from the jth island are replaced by the best MN chromosomes from
the (j � 1)th island, j ¼ 1, . . . , NI. For j ¼ 1, the best MN chromosomes are
migrated from the NI-th island. In all our simulations, we set NI to either 10 or 20,
Mi ¼ 5, MN ¼ 2 and the sub-population size to either 10 or 20.

Declaration of convergence. At the end of each migration, the overall best
chromosome is noted. If this best chromosome does not change for 10 consecutive
migrations, or the total number of migrations exceeds 20, this best chromosome is
taken as the solution to this optimization problem.

3.2. Implementation details

This section provides an overview of our implementation of the canonical GA
tailored in the special case when cj ¼ 1 (the number of integer-valued
parameters is equal to 1) for all j. More complete details of the
implementation can be gleaned from the AR case described in Davis et al.
(2006). Recall that dj is the number of real-valued parameters in the jth segment.
For some of the nonlinear models considered here, such as the GARCH(1,1) or
the stochastic volatility process, dj corresponds to the order of the model which
is usually fixed at 2 or 1 for each j.

Chromosome representation. A chromosome should carry all the information
that completely characterizes a fitted model M̂. In our implementation, a
chromosome g ¼ (g1, . . . , gn) is a vector of length n, the number of observations
of the time series, for which its �genes� gt take on the values of �1, if there is no
break at time t or the value of dj, the dimension of the real-valued parameter in the
jth segment. That is,

gt ¼
djþ1; if t ¼ sj; j ¼ 0; 1; . . . ;m,
�1; otherwise.

�

Example 5. For a segmented autoregression model of Example 1 with n ¼ 10
observations, the chromosome g ¼ (2,�1,�1,�1,1,�1,�1,0,�1,�1) corresponds
to a model having m ¼ 2 breaks, the first at s1 ¼ 5 and the second at s2 ¼ 8. The
AR order of the first piece is p1 ¼ 2, of the second piece is p2 ¼ 1, and the last
piece is p3 ¼ 0.

In the implementation of the algorithm, a discrete random variable D with
values 0,1, . . . ,D0, is used to select the order of the model in a segment, where D0
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is the largest order model allowed. The probabilities pj :¼ P[D ¼ j], j ¼
0, 1, . . . ,D0 are predetermined and, in the absence of further information, are
often set to be 1/(D0 þ 1). To ensure that there are enough observations for
obtaining quality estimates for the parameters in each segment, a �minimum
span� constraint is imposed on g. That is, a change point will not be allowed until
there are a sufficient number, say mj, of observations to estimate a model of
order dj.

Example 6. For the SVM in Section 4.2, the distribution considered for D is 0
with probability p0 ¼ 0.5 and 1 with probability p1 ¼ 0.5. Thus, D0 ¼ 1 in this
case. Moreover, the minimum span values are m0 ¼ 20 and m1 ¼ 100.

Initial population generation. Each chromosome in the initial population is
generated according to the following strategy. First, g1 is generated from the
distribution of D. To fulfil the minimum span constraint, the next mg1

� 1 genes
(g2, g3, . . . , gmg1

) are all set to �1 indicating that no structural break is allowed for
at least mg1

observations. For the next freely chosen gene, gmp1þ1
, it will be either

initialized as a break point with a preassigned probability pbreak or assigned �1. If
a break point is selected, then gmg1

þ1 is chosen by another independent draw from
the distribution of D and the process is repeated. We use pbreak ¼
minfm1, . . . ,mD0

g/n.
Crossover and mutation. Once a set of initial random chromosomes is

generated, new chromosomes are generated by either a crossover or mutation
operation. We set the probability for conducting a crossover operation as
1 � mink(mk)/n.

Crossover. For the crossover operation, two parent chromosomes are chosen
from the current population of chromosomes. These two parents are chosen with
probabilities inversely proportional to their ranks sorted by their MDL values. In
other words, chromosomes that have smaller MDL values will have higher
chances of getting selected. From these two parents, the gene values of the child’s
chromosome will be inherited in the following manner. For the first gene, g1 will
take on the corresponding value from either the first or second parent with equal
probabilities. If this value is �1, then the same gene-inheriting process will be
repeated for the next gene in line (i.e. g2). If this value is not �1, then it is a non-
negative integer dj corresponding to the order of the model in the current segment.
In this case, the minimum span constraint will be imposed (i.e. the next
mpj
� 1 gts will be set to �1) and the same gene-inheriting process will be applied

to the next available gt.
Mutation. For mutation one child is reproduced from one parent. Again, this

process starts with t ¼ 1, and every gt (subject to the minimum span constraint)
can take on one of the following three possible values: (i) with probability pparent it
will take the corresponding gt value from the parent; (ii) with probability pnobreak

it will take the value �1; and (iii) with probability 1 � pparent � pnobreak, it will
take a new randomly generated model of order dj. In this article, we set pparent ¼
0.3 and pnobreak ¼ 0.3.
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4. SIMULATIONS

4.1. Financial time series

The performance of Auto-Seg is evaluated via simulation when GARCH models
introduced in Example 2 are used to study changes in the dynamics of returns of
financial assets. The set-up of this simulation is similar to that of Andreou and
Ghysels (2002), who consider piecewise processes. For these models, the pieces are
considered to be GARCH(1,1) models. When m ¼ 1, the first piece is one of the
following two GARCH(1,1) processes

Yt;k ¼ rt;ket; k ¼ 1; 2

where

r2
t;k ¼ xk þ akY 2

t�1;k þ bkr
2
t�1;k;

and et � i.i.d. N(0,1). Each two-piecewise process has a break at s1 ¼ 501 with a
total sample size of n ¼ 1000. The parameters of the second piece are obtained as
follows: for each data generation process (DGP), only one of the bks or the xks is
modified, while the other parameters remain unchanged (see column labelled as
Piecewise GARCH (1,1) Scenario in Table I). For completeness, the case of no
breaks (i.e. the second piece has the same parameters as the first piece) is included
for each DGP.

For a given two-piecewise process, let hj denote the vector of parameters of the
jth piece, j ¼ 1, 2. In the notation of Section 2, hj ¼ wj, and since the orders are
fixed at pj ¼ qj ¼ 1, the MDL is given by

MDLðm; s1; . . . ; smÞ ¼ logmþ ðmþ 1Þ log nþ c
Xmþ1
j¼1

log nj �
Xmþ1
j¼1

Lqðŵj; yjÞ ð17Þ

where Lq(wj; yj) is the quasi-likelihood function. The estimation of the
parameters wj are obtained using the quasi-maximum likelihood method (Lee
and Hansen, 1994). Notice that if one follows the derivation in Section 2, the
coefficient c of log nj in eqn (17) should be 3/2. However, as there is a strong
correlation between the estimates of wj with the other parameter estimates, this
value of c ¼ 3/2 is over-penalizing the model complexity. To overcome this
problem, we recommend using c ¼ 1, which is equivalent to suggesting that the
number of free parameters is dj ¼ 2 instead of 3.

Table I lists the relative frequencies of the number of breaks estimated by Auto-
Seg obtained from 500 replicates. The AG values were taken from Table III of
Andreou and Ghysels (2002) and are also based on 500 replicates. Their estimates
were obtained by applying the least-squares procedure of Lavielle and Moulines
(2000) to the squared values Y 2

t with the BIC as a penalty function criterion. In the
last column in this table, the unconditional variances of Yt, j, j ¼1, 2, are shown.
As a general rule, the �detection rate� is influenced by the size of the change in
these variances. The larger the change the higher the detection rate. For example,
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in scenario C, the increase in variance is 0.33, which is slightly larger than 0.25, the
increase in variance of scenario G. For Auto-Seg, the detection rates are 0.192 and
0.122, respectively, while, for AG, these values are 0.240 and 0.140.

For illustrative purposes, Figure 1 shows typical realizations of scenarios C and
D defined in Table I. Realizations of scenario C/D are shown in the top/bottom
panels of this figure. In Figure 1, the dotted vertical lines at 506 and 502 are the
breaks found by Auto-Seg for these two realizations. In Figure 2, two �versions� of
volatilities (r̂2

t s) are shown for these realizations. In the top panel, the estimated
volatilities were obtained when the realization of scenario C is modelled as a single
segment. The volatilities shown in the second panel were obtained using a two-
piece GARCH(1,1) process with a break at 506 found by Auto-Seg. In both
panels, the Auto-Seg break is shown as the vertical dotted line. The plots in the
last two panels are the analogous volatilities for the realization of scenario D (the
break is at 502). From Figure 2 we notice that for the realization of scenario D
the �one-piece� volatilities are not much different from the �two-piece� volatilities.
It is not the case for the realization of scenario C. However, notice that the
volatilities for t between 1 and 505 are in close agreement.

TABLE I

Summary of Auto-Seg Estimated Break Points Based on 500 Replications when there is a

Break at 501 of the Sample in the GARCH Process

Piecewise GARCH(1,1) scenario

No. of break points
Unconditional

Variance0 1 �2

No break points
A: (0.4, 0.1, 0.5) Auto-Seg 0.958 0.042 0.000 1.00

AG 0.960 0.030 0.010
B: (0.1, 0.1, 0.8) Auto-Seg 0.956 0.045 0.00 1.00

AG 0.880 0.070 0.050
Break in the dynamics of volatility
C: (0.4, 0.1, 0.5) ! (0.4, 0.1, 0.6) Auto-Seg 0.804 0.192 0.004 1.00, 1.33

AG 0.720 0.240 0.040
D: (0.4, 0.1, 0.5) ! (0.4, 0.1, 0.8) Auto-Seg 0.000 0.964 0.036 1.00, 4.00

AG 0.000 0.950 0.050
E: (0.1, 0.1, 0.8) ! (0.1, 0.1, 0.7) Auto-Seg 0.370 0.626 0.004 1.00, 0.50

AG 0.210 0.750 0.030
F: (0.1, 0.1, 0.8) ! (0.1, 0.1, 0.4) Auto-Seg 0.004 0.978 0.018 1.00, 0.20

AG 0.000 0.720 0.280
Break in the constant of volatility
G: (0.4, 0.1, 0.5) ! (0.5, 0.1, 0.5) Auto-Seg 0.878 0.122 0.000 1.00, 1.25

AG 0.850 0.140 0.010
H: (0.4, 0.1, 0.5) ! (0.8, 0.1, 0.5) Auto-Seg 0.072 0.912 0.016 1.00, 2.00

AG 0.000 0.940 0.060
I: (0.1, 0.1, 0.8) ! (0.3, 0.1, 0.8) Auto-Seg 0.068 0.910 0.022 1.00, 3.00

AG 0.000 0.940 0.060
J: (0.1, 0.1, 0.8) ! (0.5, 0.1, 0.8) Auto-Seg 0.008 0.952 0.040 1.00, 5.00

AG 0.000 0.860 0.140

In the last column, the unconditional variances of both pieces (when applies) are shown. The AG
values were taken from table III, Andreou and Ghysels (2002). The length of the realizations is n ¼
1000.
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Figure 1. Typical realizations of scenarios C (top panel) and D (bottom panel) defined in Table I. The
vertical dotted lines are the break points found by Auto-Seg.
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Figure 2. Top two panels: estimated volatilities of the realization of scenario C shown in Figure 1
under the assumption of no break (first panel) and using the break (second panel) found by Auto-Seg.

The last two panels are the analogous plots for the realization of scenario D.
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Figure 3. First panel: a typical realization of scenario A defined in Table VI. Second panel: two-piece
MDL computed in a grid of points (solid line) and one-piece MDL (horizontal dashed line). Third
panel: estimated volatilities based on a single piece. Fourth panel: estimated volatilities based on two

pieces by introducing an artificial break at location 265.
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Next, we consider a different set-up in which there is no break in the DGP. The
top panel of Figure 3 contains a realization of scenario A defined in Table I and
using Auto-Seg, no breaks were found. For this realization, the MDL was
computed for a two-piece model with breaks at true locations t, t ¼
25, 30, . . . , 975. These MDL values are shown as the solid line in the second
panel of Figure 3 with an MDL value of 1410.02 at location 265. The horizontal
dashed line in this plot is the MDL with no breaks (1404.75). In the third panel,
the estimated volatilities based on a single piece are shown. In the last panel, we
show the estimated volatilities based on two GARCH(1,1) models with a break at
location 265 (minimizer of two-piece MDL values shown in the second panel).
Notice that the one-piece estimated volatilities (third panel) have smaller variance
than that based on a two-piece GARCH fit (fourth panel). In the latter, the
pattern of the volatilities in the first piece is unexpected and does not agree with
the realization in the first panel. We also compared Auto-Seg with the sequential
procedure proposed by Berkes et al. (2004). To estimate changes in the GARCH
model, Berkes et al. (2004) constructed a stopping time based on quasi-maximum
likelihood estimates. For their simulation study, they used GARCH(1,1) models
with the following sets of parameter values

model 1: x1 ¼ 0:05; a1 ¼ 0:4; b1 ¼ 0:3ðr2
Yt
¼ 0:17Þ,

model 2: x1 ¼ 0:05; a1 ¼ 0:5; b1 ¼ 0:0ðr2
Yt
¼ 0:10Þ,

model 3: x1 ¼ 1:00; a1 ¼ 0:3; b1 ¼ 0:2ðr2
Yt
¼ 2:00Þ,

where r2
Yt
is the unconditional variance of Yt, and assumed changes from model 1

to model 2 and from model 1 to model 3 at different time locations (see Table II).
Notice that unlike Andreou and Ghysels (2002), this simulation study of Berkes
et al. (2004) allows for changes to more than one parameter. For example, when
model 1 changes tomodel 3 at t ¼ 250, all three parameters are altered. In Table II,

TABLE II

Auto-Seg: Summary Statistics for the Distribution of the Estimated Location of Break

Points (Replications with only One Break)

Mean SE Min Q1 Med Q3 Max Freq

Model 1 ! model 3 at t ¼ 50
Auto-Seg 52.62 11.70 37 50 50 52 233 0.98
BERKES 71.40 12.40 50 63 71 79 135

Model 1 ! model 3 at t ¼ 250
Auto-Seg 251.18 4.50 228 250 250 252 271 0.99
BERKES 272.30 18.10 89 262 271 282 338

Model 1 ! model 3 at t ¼ 500
Auto-Seg 501.22 4.76 481 500 500 502 551 0.98
BERKES 516.40 54.70 121 511 523 538 618

Model 1 ! model 2 at t ¼ 250
Auto-Seg 237.28 85.68 38 204.5 237.5 263.0 918 0.52
BERKES 612.90 66.50 89 498.0 589.0 710.0 1000

BERKES summary statistics for the distribution of the first exceedance for the 10% critical level (from
Table 4 of Berkes et al., 2004).
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we show some basic statistics for both the breaks from Auto-Seg and the
sequential method. For Auto-Seg, the statistics are from the estimated break
points based on 500 replicates of size n = 1000. In the row labelled as BERKES,
summary statistics for the distribution of the first exceedance of the 10% critical
level, taken from Table 4 of Berkes et al. (2004) are shown. For Auto-Seg
estimates, the proportion of replicates that contain one break point is shown in
the last column (Freq). Notice that for the first three configurations, the
proportion of replicates with one break is large, while, for the last configuration,
this proportion is small. This is in agreement with Berkes et al. (2004) results,
where the proportion of trajectories that crossed the 10% critical level at t � 400
is only 0.071, while for t � 500 this proportion is 0.252 (values taken from Table
III of Berkes et al. (2004)). This is also in agreement with the results from Table I.
For this latter configuration, the unconditional variance is 0.17 for the first piece
and 0.10 for the second piece. Since the change in variance is small, a high
detection rate is not expected.

For each scenario considered in Table II, with the realizations considered in this
table (i.e. realizations for which exactly one break was found using Auto-Seg), the
parameters of each piece defined by the Auto-Seg break point were computed.
For each scenario, the average and standard error of these estimates are shown in
Table III. Also included in this table is the average of the optimized MDL values.
These values are shown in column 8. In addition, in the last column, the average
of the MDL values obtained when only one piece is fitted to each realization is
shown. In all cases, the two-piece MDL average is considerably less than that of
the one-piece MDL.

TABLE III

Parameter Estimates for the scenarios B, C, D and E Based on the Replicates with Two

Fitted Pieces

Piece 1 Piece 2 MDL

x a b x a b Two-piece One-piece

Model 1 ! model 3 at t ¼ 50
True 0.05 0.40 0.30 1.00 0.30 0.20
Mean 0.07 0.37 0.23 1.02 0.30 0.19 1677.40 1702.50
SD 0.04 0.26 0.26 0.21 0.05 0.12

Model 1 ! model 3 at t ¼ 250
True 0.05 0.40 0.30 1.00 0.30 0.20
Mean 0.05 0.39 0.28 1.02 0.30 0.19 1418.53 1574.03
SD 0.02 0.15 0.15 0.23 0.06 0.13

Model 1 ! model 3 at t ¼ 500
True 0.05 0.40 0.30 1.00 0.30 0.20
Mean 0.05 0.39 0.29 1.01 0.29 0.20 1094.64 1143.83
SD 0.01 0.13 0.11 0.27 0.08 0.16

Model 1 ! model 2 at t ¼ 250
True 0.05 0.40 0.30 0.05 0.50 0.00
Mean 0.06 0.37 0.31 0.05 0.49 0.02 250.90 255.24
SD 0.03 0.17 0.17 0.01 0.01 0.04
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4.2. Stochastic volatility model

In Section 4.1, the performance of Auto-Seg on a piecewise GARCH(1,1) model
was studied. Another competing model that is often used for financial time series
is the SVM defined by the equation

yt ¼ rtnt ¼ eat=2nt;

where at ¼ c þ /at�1 þ gt, fntg � i.i.d. N(0,1) and fgtg � i.i.d. N(0, r2), t ¼
1, . . . , n and j/j < 1. This model can be written in the SSM framework given in
Example 3 in Section 1.We are unaware of anywork on break points in the SVM. In
this section, we consider the performance of Auto-Seg on a two-piece model where
each piece is the SVM. The vector of parameters of this process is w ¼ (c, /, r2).
Let us consider the models generated by the parameter values:

model 1: c ¼ �0.8106703, / ¼ 0.90, r2 ¼ 0.45560010
model 2: c ¼ �0.3738736, / ¼ 0.95, r2 ¼ 0.06758185
model 3: c ¼ �0.3973738, / ¼ 0.95, r2 ¼ 0.06758185

The two-piecewise processes considered in this section are listed in the last four
lines of Table IV. The first piece of these processes is model 1. Scenarios B and D
have one true break at 513 and scenarios C and E have true breaks at 1025. The
number of observations for each scenario is 2048. In the last column of this table,
the true unconditional variances of each piece are displayed. The unconditional
variances of the first piece are 0.0010, while the unconditional variances of the
second piece of processes B and C are 0.0008 (small decrease). The unconditional
variances of the second pieces of the processes D and E are 0.0005, which is half
the variance of the first piece.

For each of these piecewise processes, let hj be the vector of parameters of the
jth piece. In the notation of Section 2, hj ¼ wj. Then cj ¼ 0 and dj ¼ 3 and from
eqn (11) we obtain

MDLðm; s1; . . . ; smÞ ¼ logmþ ðmþ 1Þ log nþ
Xmþ1
j¼1

3

2
log nj �

Xmþ1
j¼1

Laðŵj; yj; ajÞ;

TABLE IV

Summary of Auto-Seg Break Points Obtained from 500 Replications

Scenario

No. of break points

r2
Y0 1 �2

A: model 1 100.0 0.0 0.0 0.0010
B: model 1 ! model 2 at t ¼ 513 18.2 81.8 0.0 0.0010, 0.0008
C: model 1 ! model 2 at t ¼ 1025 0.4 99.6 0.0 0.0010, 0.0008
D: model 1 ! model 3 at t ¼ 513 17.2 82.8 0.0 0.0010, 0.0005
E: model 1 ! model 3 at t ¼ 1025 1.2 98.8 0.0 0.0010, 0.0005

The length of each realization is n ¼ 2048.
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where Laðŵj; yj; ajÞ is defined in Example 4. For each scenario, Auto-Seg
procedure was applied to 500 realizations. The relative frequencies of the number
of breaks estimated by Auto-Seg are displayed in Table IV.

As an illustration, in Figure 4, we show typical realizations of scenarios B (top
panel) and E (bottom panel). In Figure 4, for the realization of scenario B, using
Auto-Seg a break was found at location 550 (dashed vertical line) and for that of
scenario E a break at 1019 (dashed vertical line). In Figure 5, two estimates of the
posterior mode a� of the vector of states described in Example 4 are shown for
these realizations. In the top panel, the estimated modes were obtained when a
single (unsegmented) model fitted to a realization of scenario B. The estimated
modes shown in the second panel were obtained using the two-piece SVM found
by Auto-Seg (i.e. there is a break at 550). In both panels, the Auto-Seg break is
shown as the vertical dotted line. The plots in the last two panels are the
analogous modes for the realization of scenario E for which using Auto-Seg a
break was found at 1019. Although in Figure 5 there are differences between both
estimates of the posterior mode (i.e. without and with the Auto-Seg break), the
agreement of the �shapes� between these estimates is remarkable.

Now, summary statistics for those replicates of scenarios B–E from Table IV,
for which using Auto-Seg exactly one break was found, are given in Table V.

4.3. Poisson parameter-driven process

We consider the performance of Auto-Seg on a two-piecewise Poisson process, i.e.
for each piece, the observation equation p(ytjat; d) has a Poisson distribution with
rate kt :¼ ebþat, and the state equation is at ¼ /at�1 þ gt, fgtg � i.i.d.
N(0, r2), t ¼ 1, . . . , n and j/j < 1. The vector of parameters of this process is
w ¼ (b, /, r2). In particular, we consider the PDMs with the following set of
parameter values:

model 1: b ¼ �1.5702, / ¼ 0.50, r2 ¼ 1.9237
model 2: b ¼ �1.3061, / ¼ �0.50, r2 ¼ 1.5277
model 3: b ¼ �1.3061, / ¼ 0.90, r2 ¼ 0.3870
model 4: b ¼ �0.9373, / ¼ �0.50, r2 ¼ 0.9745
model 5: b ¼ �0.9373, / ¼ 0.90, r2 ¼ 0.2469

The two-piecewise PDM processes considered in this section are defined in the
first column of Table VI. The first piece of these processes is model 1 with a true
break at either 257 or 513. The total number of observations for all models is
1024. In the last column of this table, the true unconditional variances of each
piece are displayed. The unconditional variances of the first pieces are 7.5, while
the unconditional variances of the second pieces of processes B–E are 4.5 (small
decrease). The unconditional variances of the second pieces of the processes F–I
are 2.25, which consist of a larger decrease. Notice that the MDL calculation of
this piecewise process is identical to that for the SVM given in Section 4.2.
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Figure 4. Realizations from the piecewise stochastic volatility scenarios B and E defined in Table IV.
The vertical dotted lines are break points found by Auto-Seg.
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Figure 5. Top two panels: estimated posterior mode of the vector of states for the realization of
scenario C shown in Figure 4 under the assumption of no break (first panel) and using the break
(second panel) found by Auto-Seg. The last two panels are the analogous plots for the realization of

scenario E.
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For each scenario, Auto-Seg was applied to 500 realizations. The relative
frequencies of the number of breaks estimated by Auto-Seg are displayed in Table
VI. As in the GARCH case, the performance of Auto-Seg improves when the
change in variance between the pieces increases. A noteworthy comment from
Table VI is that the performance of Auto-Seg can vary for two scenarios when the
change in variances are the same. For example, the change in variances of
scenarios B and D are the same; however, the performance of Auto-Seg is better
for scenario D. In addition, the detection rate depends on the location of the
break; e.g. scenarios F and G have similar parameter values except for the
locations, which are at 257 and 513 respectively. The fact that for scenario A with
no break, an incorrect break was never found using Auto-Seg is remarkable. The
detection rates for the scenarios with one break in this table vary from 66.0% to
97.8%. Taking into consideration that for all the scenarios the sample size (1024)
is not large, the performance of Auto-Seg for these scenarios is good.

As an illustration, in Figure 6, we show typical realizations of scenarios C (top
panel) and H (bottom panel). In this figure, for the realization of scenario C using
Auto-Seg, a break was found at location 520 (dashed vertical line) and for that of
scenario H a break at 256 (dashed vertical line). As in the case for the SVM, we
computed two estimates of the posterior mode of the vector of states. In the top
panel of Figure 7, the estimated modes were obtained when the realization of
scenario C is not segmented. The estimatedmodes shown in the second panel of this

TABLE V

Summary Statistics for the Distribution of the Estimated Location of Break Points of

Those Replications with One Break for the Scenarios given in Table IV

Scenario Mean SE Min Q1 Med Q3 Max Freq

Unconditional variance decreases from 0.0010 to 0.0008
B 506.83 90.44 207 481 509 535 1239 409
C 1020.84 80.68 657 993 1023 1047 1525 498

Unconditional variance decreases from 0.0010 to 0.0005
D 502.59 72.04 203 479 507 527 831 414
E 1018.37 79.44 685 985 1023 1047 1469 494

TABLE VI

Summary of Estimated Auto-Seg Break Points Obtained from 500 Replications

Scenario

No. of break points

r2
Y0 1 �2

A: model 1 100.0 0.0 0.0 7.5
B: model 1 ! model 2 at t ¼ 257 34.0 66.0 0.0 7.5, 4.5
C: model 1 ! model 2 at t ¼ 513 11.6 88.4 0.0 7.5, 4.5
D: model 1 ! model 3 at t ¼ 257 31.0 69.0 0.0 7.5, 4.5
E: model 1 ! model 3 at t ¼ 513 16.8 83.2 0.0 7.5, 4.5
F: model 1 ! model 4 at t ¼ 257 13.4 86.6 0.0 7.5, 2.25
G: model 1 ! model 4 at t ¼ 513 2.2 97.8 0.0 7.5, 2.25
H: model 1 ! model 5 at t ¼ 257 16.0 84.0 0.0 7.5, 2.25
I: model 1 ! model 5 at t ¼ 513 9.0 91.0 0.0 7.5, 2.25

The length of the realizations is n ¼ 1024.

856 R. A. DAVIS, T. C. M. LEE AND G. A. RODRIGUEZ-YAM

� 2008 The Authors
Journal compilation � 2008 Blackwell Publishing Ltd.
JOURNAL OF TIME SERIES ANALYSIS Vol. 29, No. 5



Time
1 256 512 768 1024

0
2

4
6

8
10

Time
1 256 512 768 1024

0
10

5
15

Figure 6. Realizations from the piecewise Poisson processes C and H respectively (defined in the first
column of Table VI). Vertical dotted lines are break points found by Auto-Seg.
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Figure 7. Posterior mode of the realization of scenario C shown in Figure 6 under the assumption of
no break (first panel) and using the break (second panel) found by Auto-Seg. The last two panels are

the analogous plots for the realization of scenario H.
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Figure 8. First panel: a typical realization of scenario A defined in Table VI. Second panel: two-piece
MDL computed in a grid of points (solid line) and one-piece MDL (horizontal dashed line). Third
panel: estimated posterior mode based on a single piece. Fourth panel: estimated posterior mode based

on two pieces with break at location 550.
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figure were obtained using the two-piecewise PDM found by Auto-Seg (i.e. with a
break at 520). In both panels, the Auto-Seg break is shown as the vertical dotted
line. The plots in the last two panels are the analogous modes for the realization of
scenario H for which using Auto-Seg a break was found at location 256.

From Figure 7, we notice that for the realization of scenario C the estimated
modes of the vector of states does not differ too much. That is not the case for the
realization of scenario H. In this case (last two panels), the mode of the first piece
is underestimated when no breaks are considered. Notice that the modes of the
second piece look much similar.

We include now the case when there is no break in the underlying scenario. In the
first panel of Figure 8 a realization of scenarioAdefined inTableVI is shown.Using
Auto-Seg no break was found for this realization. Now, the MDL values at the
break with location at time t, t ¼ 25, 30, . . . , 995, was computed. These MDL
values are shown as the solid line in the second panel of Figure 8. Ignoring the last
few MDL values on the right, the MDL value in this grid is 1195.172 at 550. The
horizontal dashed line in this panel shows the MDL with no breaks (1183.677). In
the third panel, the estimated posteriormode of the vector of states based on a single
piece is shown. In the last panel, we show the estimate of the posteriormodebasedon
two PDM scenarios having a break at the minimizer of the two-piece MDL values
shown in the second panel of this figure. Notice that the two sets of estimates agree.

Summary statistics for the replicates of the two-piecewise models from Table VI
for which using Auto-Seg one break was found are given in Table VII. In general,
in Table VII the mean of the fitted breaks are close to the true value. The increase
in change in variances tends to decrease the standard error of the locations of the
breaks; e.g. the standard errors of the breaks of scenarios C and G are 49.1 and
34.9 respectively.

For illustration purposes, we obtain the densities of the estimated breaks of
scenarios B and F. The variances change from 7.5 to 4.5 for the first scenario and
from 7.5 to 2.25 for the second scenario. In Figure 9, the estimated densities are
shown as a dotted line for the density of the breaks of scenario B and as a solid
line for the density of the breaks of scenario F.

TABLE VII

Summary Statistics for the Distribution of the Estimated Location of Break Points of

those Replications with Only One Break for the Models given in Table VI

Scenario Mean SE Min Q1 Med Q3 Max Freq

Unconditional variance decreases from 7.5 to 4.5
B 245.6 40.9 107 222 240 260.0 419 66.0
C 505.9 49.1 213 487 515 526.0 772 88.4
D 265.0 66.9 117 226 246 305.0 881 69.0
E 520.8 67.7 312 491 520 540.3 905 83.2

Unconditional variance decreases from 7.5 to 2.25
F 250.1 40.2 100 229 246 258.0 571 86.6
G 509.6 34.9 318 501 516 528.0 641 97.8
H 265.8 67.0 103 224 249 308.0 747 84.0
I 522.1 60.6 136 509 522 541.0 857 91.0
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Figure 9. Estimated densities of the locations of the breaks of scenarios B (dotted line) and F
(solid line).

TABLE VIII

Parameter Estimates for the Two-Piecewise Poisson Models from Table VI

Scenario

Piece 1 Piece 2 MDL

b / r2 b / r2 Two-piece One-piece

Unconditional variance decreases from 7.5 to 4.5
B True �1.5702 0.50 1.9237 �1.3061 �0.50 1.5277

Mean �1.6535 0.45 2.1635 �1.3918 �0.46 1.8113 1122.37 1130.12
SD 0.3547 0.12 0.6467 0.1154 0.06 0.2854

C True �1.5702 0.50 1.9237 �1.3061 �0.50 1.5277
Mean �1.6442 0.41 2.1400 �1.3878 �0.46 1.8067 1107.32 1117.21
SD 0.2327 0.10 0.4576 0.1472 0.07 0.3395

D True �1.5702 0.50 1.9237 �1.3061 0.90 0.3870
Mean �1.7020 0.32 2.3957 �1.2580 0.90 0.3692 1046.14 1053.28
SD 0.3572 0.15 0.6200 0.2578 0.03 0.0833

E True �1.5702 0.50 1.9237 �1.3061 0.90 0.3870
Mean �1.6641 0.37 2.2258 �1.2717 0.90 0.3667 1052.57 1061.99
SD 0.2480 0.11 0.4715 0.3246 0.03 0.0979

Unconditional variance decreases from 7.5 to 2.25
F True �1.5702 0.50 1.9237 �0.9373 �0.50 0.9745

Mean �1.7097 0.40 2.2389 �0.9866 �0.47 1.1224 1166.49 1176.60
SD 0.3437 0.15 0.6569 0.0875 0.06 0.1626

G True �1.5702 0.50 1.9237 �0.9373 �0.50 0.9745
Mean �1.6528 0.39 2.1683 �0.9875 �0.47 1.1115 1137.65 1151.41
SD 0.2291 0.11 0.4589 0.1105 0.08 0.2135

H True �1.5702 0.50 1.9237 �0.9373 0.90 0.2469
Mean �1.6967 0.35 2.3187 �0.9309 0.89 0.2453 1092.90 1102.29
SD 0.3521 0.16 0.6283 0.2037 0.03 0.0571

I True �1.5702 0.50 1.9237 �0.9373 0.90 0.2469
Mean �1.6633 0.38 2.2065 �0.9171 0.89 0.2419 1089.66 1101.82
SD 0.2336 0.11 0.4577 0.2483 0.04 0.0743
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Notice that both densities are multimodal in spite of the fact that scenario F has
a large change in variance between the pieces. We believe that the multimodality
in these densities is due to the small sample size of the realizations of the process.

Now, let us consider the two-piecewise models from Table VI. For those
realizations for which using Auto-Seg exactly one break was found, the
parameters of each piece were estimated. The average and standard error of
these estimates are shown in Table VIII. In addition, last two columns in this table
the average of the minimized MDL values and the average of the MDL values
obtained when there are no breaks assumed.

In general, the estimates are slightly biased. This is true for the state-space
Poisson model with no structural change even when the Monte Carlo
approximation of the likelihood is used to estimate the parameters of this model
(see, for example Sandman andKoopman, 1998;Davis andRodriguez-Yam, 2005).

5. AN APPLICATION

The Auto-Seg procedure was applied to analyse change points in the Standard
and Poors 500 index (S&P 500) over the period 4 January 1989 to 19 October
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Figure 10. Log returns of the S&P index over the period 4 January 1989 to 19 October 2001. The
dotted vertical lines are the breaks found by Auto-Seg.
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2001 at daily frequency. This stock market series was also analysed by Andreou
and Ghysels (2002) during this same period. They were interested in studying
the impact, if any, on the Asian and Russian financial crises which started in
July 1997 and continued through 1998. This section of S&P 500 consists of 3230
observations. The time series of log returns rt for this data is shown in
Figure 10. Applying Auto-Seg to the log returns series using a segmented
GARCH(1,1) model, four segments were found with break locations at 197, 726

TABLE IX

Breaks of the S&P 500 index

Process Selection criterion Number and location of breaks

Auto-Seg rt MDL 3 13/10/89, 15/11/91, 27/10/97
AG jrtj BIC 3 27/12/91, 5/1/96, 28/7/98

LWZ 2 20/8/91, 3/2/97
(rt)

2 BIC 1 14/10/97
LWZ 1 14/10/97

The AG values are taken from table VII of Andreou and Ghysels (2002). Auto-Seg: best piece-wise
GARCH(1,1) process found by Auto-Seg.
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Figure 11. Estimated volatilities of the log returns of the S&P 500 series. Top: estimated volatilities
under no breaks. Middle panel: volatilities when a break in 27/10/97 is assumed. Bottom panel:

estimated volatilities based on the Auto-Seg breaks.
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and 2229, which are shown as the vertical dotted lines in Figure 10. In Table
IX, we show the breaks found by Andreou and Ghysels (2002) when the
Lavielle and Moulines procedure is applied to the absolute and squared returns
using the BIC and LWZ. The latter is a modified BIC proposed in Liu et al.
(1997). In Table IX, the last break found by Auto-Seg is in close agreement with
the single break found by Andreou and Ghysels (2002) when squared returns
are used in the Lavielle and Moulines procedure. In Figure 11, three sets of
volatilities are shown. In the top panel the volatilities were obtained by fitting a
single GARCH(1,1) model to the log returns of the S&P 500 series. In the
middle panel, the volatilities were obtained fitting a model based on a break at
27/10/97 that is close to the single break found by Andreou and Ghysels (2002).
In the bottom panel, the volatilities were obtained using the Auto-Seg breaks.
Notice in Figure 11 that the single-break volatilities (middle panel) resemble the
estimated volatilities based on Auto-Seg (bottom panel). As a reference, the
MDL values of the fitted models in this figure are �10,688, �10,752 and
�10,705 respectively. As expected, the difference between the best Auto-Seg
MDL and the single-piece MDL is much higher than between the best Auto-Seg
MDL and the single-break MDL model.

6. CONCLUSION

In this article, we considered the problem of partitioning a nonstationary time
series into segments of stationary series. The original series was assumed to follow
a parametric nonlinear time-series model in which the parameters may change
values at fixed times. Particular attention was given to the GARCH models,
SVMs and the generalized SSMs. The MDL principle was adopted to
simultaneously estimate the number of segments, the locations of break points
and the parametric model in each segment. A new GA was developed to solve the
hard optimization problem involved. Numerical experiments were conducted to
demonstrate the good performances of the proposed approach.

APPENDIX

This appendix derives eqn (10) from eqn (9). First, we define that CL(fj) ¼ 0 if there is no
integer parameter in hj. Moreover, recall that cj and dj are the lengths of fj and wj

respectively. Now, in general, approximately log2 I, bits are needed to encode an integer I
whose value is not bounded above. Thus,

CLðmÞ ¼ log2 m and CLðfjÞ ¼
Xcj

k¼1
log2 fkj;

where fkj is the kth entry of fj. On the other hand, if the upper bound, say IU, of I is known,
approximately log2 IU bits are required. Since all njs are bounded by n,
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CLðnjÞ ¼ log2 n

for all j. To calculate CLðŵjÞ, we use the following result of Rissanen: a maximum

likelihood estimate of a real parameter computed from N observations can be effectively
encoded with 1

2 log2 N bits. Since each of the dj parameters of ŵj is computed from nj
observations, for all j we have

CLðŵjÞ ¼
dj

2
log2 nj:

Substituting these expressions back into eqn (9) we obtain eqn (10).
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