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The program Auto-PARM (Automatic Piecewise AutoRegres-
sive Modeling), developed by Davis, Lee, and Rodriguez-Yam (2006),
uses the minimum description length (MDL) principle to estimate
the number and locations of change-points in a time series by fit-
ting autoregressive models to each segment. When the number of
change-points is known, Davis et al. (2006) show that the (relative)
change-point location estimates are consistent when the true under-
lying model is segmented autoregressive. In this paper, we show that
the estimates of the number of change-points and the autoregres-
sive orders obtained by minimizing the MDL are consistent for the
true values when using conditional maximum (Gaussian) likelihood
variance estimates. However, if Yule-Walker variance estimates are
used, the estimate of the number of change-points is not necessar-
ily consistent. This surprising result is due to an exact cancellation
of first-order terms in a Taylor series expansion in the conditional
maximum likelihood case, which does not occur in the Yule-Walker
case.

1. Introduction. In recent years, there has been considerable develop-
ment in non-linear time series modeling. One prominent subject in non-linear
time series modeling is the “change-point” or “structural breaks” model. In
this paper, we discuss a posteriori estimation of change-points with a fixed
sample size using minimum description length as a model fitting criterion
with minimal assumptions.

The majority of the early literature on change-point estimation assumes
independent normal data. In their seminal paper, Chernoff and Zacks (1964)
examine the problem of detecting mean changes in independent normal data
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with unit variance. Both Yao (1988) and Sullivan (2002) estimate the number
and locations of changes in the mean of independent normal data with con-
stant variance, and Chen and Gupta (1997) examine changes in the variance
of independent normal data with a constant mean. Some research considers
the change-point problem without assuming normality, but still assumes in-
dependence (see, for example, Lee (1996, 1997), Hawkins (2001), and Yao
and Au (1989)). Bayesian approaches have also been explored, e.g., Fearn-
head (2006), Perreault et al.(2000), Stephens (1994), Yao (1984), and Zhang
and Siegmund (2007).

Recent literature focuses more on detecting changes in dependent data,
though the majority of this literature concerns hypothesis testing. Davis
et al. (1995) derive the asymptotic distribution of the likelihood ratio test
for a change in the parameter values and order of an autoregressive model,
and Ling (2007) examines a general asymptotic theory on the Wald test for
change-points in a general class of time series models under the no change-
point hypothesis. Research on the estimation of the number and locations
of the change-points includes Kiihn (2001), who assumes a weak invariance
principle, and Kokoszka and Leipus (2000) on the estimation of change-
points in ARCH models. See Csorgo and Horvath (1997) for a comprehensive
review.

This paper examines the program Auto-PARM, a method developed by
Davis, Lee, and Rodriguez-Yam (2006) for estimating the number and loca-
tions of the change-points. This method does not assume independence nor
a distribution on the data, e.g., normal, and does not assume a specific type
of change. It models the data as a piecewise autoregressive (AR) process,
and can detect changes in the mean, variance, spectrum, or other model
parameters. The most important ingredient of Auto-PARM is its use of the
minimum description length criterion in fitting the model.

The estimated (relative) change-point locations are shown to be consis-
tent in Davis et al. (2006) when the number of change-points is known.
However, the paper leaves open the issue of consistency when the number of
change-points is unknown, which is the focus of the present study. When us-
ing conditional maximum (Gaussian) likelihood variance estimates, we show
that the estimated number of change-points and the estimated AR orders
are weakly consistent. However, the estimate for the number of change-
points may not even be weakly consistent if we use Yule-Walker variance
estimates. It is surprising to find that consistency breaks down in general
for Auto-PARM when using Yule-Walker estimation, but can be saved if
conditional maximum likelihood estimates are substituted for Yule-Walker.

Section 2 begins by reviewing the Auto-PARM procedure, then provides
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some preliminaries needed for the consistency proofs. Included in the pre-
liminaries are subsections on the functional law of the iterated logarithm
applied to sample autocovariance functions and on conditional maximum
likelihood estimation for piecewise autoregressive processes. Section 3 con-
tains the main results, starting by addressing the simple case of an AR
process with no change-points then moving to the more general piecewise
AR process. Lemma 3.1 states consistency under conditional maximum like-
lihood estimation when there are no change-points. Theorem 3.1 provides a
case where the Auto-PARM estimate of the number of change-points using
Yule-Walker estimation is not consistent. Theorem 3.2 returns to conditional
maximum likelihood estimation and shows consistency under a piecewise
autoregressive model. Some of the technical details are relegated to the ap-
pendix.

2. Background and Preliminaries. Before embarking on our consis-
tency results, we first discuss the modeling procedure Auto-PARM and some
preliminary topics. Of central importance to the proofs is the functional law
of the iterated logarithm for stationary time series and conditional maximum
likelihood estimation.

2.1. Automatic Piecewise Autoregressive Modeling (Auto-PARM). Davis
et al. (2006) develop a procedure for modeling a non-stationary time se-
ries by segmenting the series into blocks of different autoregressive pro-
cesses. The modeling procedure, referred to as Auto-PARM (Automatic
Piecewise AutoRegressive Modeling), uses a minimum description length
(MDL) model selection criterion to estimate the number of change-points,
the locations of the change-points, and the autoregressive model orders.

The class of piecewise autoregressive models that Auto-PARM fits to an

observed time series with n observations is as follows. For k = 1,...,m,
denote the change-point between the kth and (k + 1)st autoregressive pro-
cesses as T, where 79 := 0 and 741 := n. Let {ep+}, k= 1,...,m + 1,

be independent sequences of independent and identically distributed (iid)
random variables with mean zero and unit variance. Then for given initial
values X_p.1, ..., Xo with P a preassigned upper bound on the AR or-
der, AR coefficient parameters ¢ ;, k = 1,...,m+1, 5 =0,1,...,p;, and
noise parameters oy, ..., om+1, the piecewise autoregressive process { X} is
defined as

(2.1) Xy =ro+ k1 Xe—1+ -+ Prp Xi—pp + OkCht—my_,

for t € (7,—1,71), where ¥, = (dr0, Pk, Pkp,,0k) is the parameter
vector corresponding to the causal AR(py) process in the kth segment. No-
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tice that in each segment, the subscripting on the new noise sequence is
restarted to time one. Denoting the mean of {X;} in the kth segment by py,
the intercept ¢y o equals jux(1 — dp1 — -+ — dip, ), and for t € (1741, 7], we
can express the model as

Xi— pr = Opa (Xem1 — pg) + - + Ghpp (Xe—py — o) + Ok€lt—ry_, -

To ensure identifiability of the change-point locations, the model assumes
that ¢, # 1, for every j = 1,...,m. That is, between consecutive seg-
ments, at least one of the AR coefficients, the process mean, the white noise
variance, or the AR order must change.

Given an observed time series X1, ..., X, Auto-PARM obtains the best-
fitting model by finding the best combination of the number of change-
points m, the change-point locations 7 = (71,...,7,), and the AR orders
p = (p1,---,Pm+1) according to the MDL criterion. When estimating the
change-points, it is necessary to require sufficient separation between the
change-point locations in order to be able to estimate the AR parameters.
We define “relative change-points” A = (A1,..., \,) such that A\, = 71 /n for
k=0,...,m+ 1. Defined as such, we take throughout the convention that
Arn is an integer. Let 6 > 0 be a preassigned lower bound for the relative
length of each of the fitted segments, and define

(2.2) A = {(A, o Am) i 0< A << Ay < 1,
)\k—)\k,125,k:1,...,m+1}.

(Note that the total number of change-points is bounded by M = M; :=
[1/6]—1 where [z] denotes the integer part of z.) Estimates are then obtained
by minimizing the MDL over 0 < m < M, 0 < p < P, and X\ € Afn,
where P is a preassigned upper bound for py. Using results from information
theory [20] and standard likelihood approximations, we define the minimum
description length for a piecewise autoregressive model [8] as

MDL(m’ Ty Tm;P1y - - apm+1)

m+1

(2.3) = logtm+ (m+1)logn + Z log™ py,
k=1

m+1 m+1
2
Z P+ log ny + Z %log(%r&,%),
-2 i1 2

where log™ z = max{log z, 0}, nx = 74 — 7Tx_1 is the number of observations
in the kth segment and 67 is the white noise variance estimate in the kth
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segment. Then, the parameter estimates are denoted by

R 2
(2.4) m, A\, P = arg min {MDL(m, )\;P)}-
0<m<M, 0<p<P,AcAs, T

The only dependence on the AR parameter estimates in the MDL is
through the white noise variance estimates, &i, which only involve sam-
ple autocovariance functions (ACVFs). In this paper, we show that the esti-
mates of the number of change-points and the autoregressive orders obtained
by minimizing the MDL are consistent when this white noise variance esti-
mate is obtained by conditional maximum likelihood methods. In practice,
Auto-PARM uses Yule-Walker estimates for the AR white noise variance.
However, consistency of the estimates for the number of change-points does
not necessarily hold when using Yule-Walker variance estimates.

Minimizing the criterion function in (2.4) over non-negative valued inte-
gers can be a difficult computational problem. Davis et al. (2006) use a ge-
netic algorithm to perform the optimization. Although there is no guarantee
that the procedure will find the global minimizer, the minimum produced
by Auto-PARM seems to perform quite well. Of course in our results we will
assume that the global minimizer is computable.

2.2. Functional law of the iterated logarithm. Throughout the consis-
tency proofs in this paper, we use the functional law of the iterated log-
arithm (FLIL) on the sample ACVF and sample means of autoregressive
processes. Therefore, we will first describe how to apply the FLIL to AR
processes and discuss sufficient conditions in order for the FLIL to hold.

Rio (1995) shows that the FLIL holds for stationary strong mixing se-
quences under the following condition. Suppose { X} };cz is a strictly station-
ary and strong mixing sequence of real-valued mean zero random variables,
with sequence of strong mixing coefficients {c, }~0. Define the strong mix-
ing function a(:) by a(u) = oy, and denote the quantile function of |X|
by Q. Then the FLIL holds for the sequence {X;} if

/1 o Hu)Q? (u)du < oo,
0

where f~! denotes the inverse of the monotonic function f. This condition
simplifies if the process is strong mixing at a geometric rate. In this case,
the FLIL holds if

E (X} log" |X1]) < o0
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(see [19] for proof). Therefore, assuming
(2.5) E (X{(log" [X1])?) < oo

and strong mixing with a geometric rate function allows us to apply the FLIL
of Rio to the sample ACVF calculated using the change-point locations that
minimize the MDL. In other words, e.g., for an AR(p) process {X;} with
mean p and small § > 0, we have

e (6,4) = (I8 = 51)

(2.6) sup <C as.
0SAAHISN L \/ 2 loglogn
where C' < 0o is a constant,
1 Nn
2.7 en (i, 7) i= Xi—i — p)( Xy —
( ) YA\ (’l,j) ()\, — )\)n t%;_,'_l( t—1 N)( t—j :u)a

and 7(h) is the true ACVF of the process. (Throughout A and A are as-
sumed to be such that An and X'n are integers.) Note that (2.6) also holds
if Yx.x (7, 7) is replaced by

Nn
1 _
aan (64) = Y, (Xt — Xng1—ivn—i)-
(=M, S
(2.8) (Xi—j — Xang1—jinn—j)

where X .5 := Z?:a Xi/(b—a—+1). It follows that

(2.9) sup [an (@, 5) — (i —4))| = O(y/loglogn/n),

li—7|<P, 0<A<A+HI<N <1

(2.10) sup v (@3) = (i = jDI = O(y/loglogn/n)

[i—j| <P, 0<A<A+6<N <1

for some upper bound P < oo.

When applying the FLIL to the sample ACVF of a piecewise autoregres-
sive process, we will need to assume throughout this paper that the station-
ary process generated by the parameter values and the iid noise sequence
for each of the segments

(A1) is causal and strongly mixing at a geometric rate, and
(A2) satisfies the moment condition (2.5).
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As commented in Remark 2.1 of [7], there are many sufficient conditions on
the distribution of the noise in order to ensure that {X;} is strongly mixing.
One such condition is for {¢} to be iid with a common distribution func-
tion which has a nontrivial absolutely continuous component [see Athreya
and Pantula (1986a, b)]. Under this condition, it can be shown [cf. Theo-
rems 16.0.1 and 16.1.5 in Meyn and Tweedie (1993)] that the strong mixing
function a(u) decays at a geometric rate.

2.3. Conditional maximum likelihood. In the proofs that follow, we use
conditional maximum likelihood estimates (equivalent to conditional least
squares) for the AR parameters. Here we will further discuss the assumptions
(A1) and (A2) necessary for the FLIL to hold in this case. When fitting an
AR(p) process to observations X7, ..., X, conditional maximum likelihood
estimation uses a definition of the sample ACVF that includes initial values
X_pt1,...,Xo. (Note that as a piecewise autoregressive model of order up
to P is fitted to the observations, we treat the first P observations as the
initial values.) In other words, conditional maximum likelihood estimates
use

S

A(h) = zn:(Xt — X 1) (Xi—h — X1 hin—n)
=1

for the sample ACVF. For a stationary process {X;} satisfying (Al) and
(A2), the FLIL holds for 4(h). While we may assume that the X; in the
first segment of a piecewise AR model are stationary, the X; in each of the
other segments (if any) cannot be stationary. In order to apply the FLIL to
this sample ACVF within any given segment of a piecewise AR model when
using conditional maximum likelihood estimation, we must show that the
FLIL holds for 4(h) when we condition on any initial values X_p41,..., Xo.
The following argument shows that for an AR(p) process {X;} with initial
values X_p11,...,Xo, there exists a (causal) stationary AR(p) process { X/}
generated by the same AR coefficients and the same noise sequence such
that as t — oo, X; — X, tends to zero at a geometric rate a.s. Thus, if
{X]} satisfies (2.9) and (2.10), so does {X;} where in (2.9) and (2.10),
v(h) = tlgglo Cov(Xy, Xy—p) = Cov(X], X._,) for all s.

Suppose {X;}72, follows an AR(p) process with mean p and AR coef-
ficients ¢1, ..., ¢, conditioned on some initial values X_,1,..., Xo. Then
this conditional process can be expressed as

t—1

Xe—p=>Y tjoe_j+an(Xo—p)+ -+ ap_14(X_pp1 — p),
=0
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where by the causality assumption, the 1; satisfy 3272 Y B = (1—2?21 ¢;B7 )t
(B the backward shift operator), {e;} is an iid noise sequence with mean zero

and unit variance, and a; is a function, depending on ¢, of sums and products

of ¢1,...,¢p for i =0,...,p — 1. Defining the stationary process

(o]
X{—uzzwj o€, —00 < t < 00,
i=0

which satisfies

P
X —p= Zqﬁj(Xé,j — ) + o€, —00 <t < oo,
j=1

and

t—1
X{—p = ) hjoe_j+au(Xy— p)
=0

+- 4 ap—l,t(X,—p—i-l - :U)v t> 07
it follows that
X — Xp = ao(Xo — Xg) + -+ ap-14(X py1 — XL 11)

Since each coefficient a;; tends to zero at a geometric rate, we have that as
t — 00,

(2.11) X, — X, =0(p") as.
for some constant 0 < p < 1 depending on the AR coefficients ¢1, ..., ¢p.

3. Main Results. Consistency results require an assumption of a true
model, in our case the piecewise autoregressive model (2.1). Throughout this
paper we denote the true value of a parameter with a zero in the subscript
or superscript when necessary (except for the AR coefficient parameters
¢r,; and white noise variances O',%). Thus, we denote the true number of
change-points by mg, where the AR order in the kth segment is denoted by
p%, k=1,...,mg + 1. The change-point between the kth and (k + 1)st AR
processes is denoted by 7']?, or relative change-point )\2. The )\2, k=1,...,mp,
are allowed to depend on the sample size n subject to the condition that
A =M =6k=1,..my+1(A]:=0and A), ., :=1).

Davis et al. (2006) shows that when the true number of change-points,
myg, is known, the estimated change-point locations, i, are strongly con-
sistent for the true change-point locations, )\%. That is, A — A — 0 a.s. as
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n — oco. We will show that the estimated number of change-points, m, and
the estimated AR orders, p, are also consistent estimators for mg and p°,
respectively, under conditional maximum likelihood estimation.

We begin by focusing on the case where there are no change-points in
the underlying process. The first lemma proves that, when using conditional
maximum likelihood variance estimates in the MDL, the estimated number
of change-points is strongly consistent for the true number of change-points.
Under this simple case, we will also show that consistency does not hold
when we substitute Yule-Walker estimates for the conditional maximum
likelihood estimates.

Assume that the true process follows the causal AR(p) model (we use
p here rather than p° for simplicity) with mean p and no change-points
(mo = 0)

(31) Xt = (Z)() +¢1Xt_1 + - +¢pXt_p+0'6t, t= 1,.. N,

where ¢g = p(1 —¢1 —--- — ¢p) and the noise sequence {¢;} is iid with mean
zero and unit variance.

LEMMA 3.1. Assume the true process {X;} follows the AR(p) model
given in (8.1) with no change-points and initial values X _pyq,..., Xo. Un-
der assumptions (A1) and (A2), for any m > 1, with probability one,

MDL(0;p) < min MDL(m, X;p,...,p)
A€As,
for n large, where MDL(0; p) denotes the MDL when fitting an AR (p) model
with no change-points and MDL(m, A;p, ...,p) denotes the MDL when fit-

ting a piecewise AR(p) model with m > 1 change-points, both of which use
conditional maximum likelihood variance estimates.

PROOF. Assuming the AR order p is known, we will fit the following two
models to the data set:

Model 1: Fit an AR(p) model with no change-points.
Model 2: Fit a piecewise AR(p) model with m > 1 relative change-points,
X\ € A2 where A% is defined in (2.2).

The MDL for Model 1 is

+4 n .
MDL(0;p) = b 5 logn + logt p + 5 {log(Zw) + log 02} ,




10 DAVIS, HANCOCK AND YAO

where 62 is the conditional maximum likelihood estimate of the AR(p) noise
variance over the entire data set. The MDL for Model 2 is

4
MDL(m, X;p,...,p) = logm+ (m+1) <p%2— logn+log+p>

m+1

> log(Ak — Ap—1)
k=1

m+1
n ~
-t [mg(zw) + 3 (= Me1) log az] ,

k=1

p—|—2

where 67 is the conditional maximum likelihood estimate of the AR(p) noise
variance in the kth fitted segment, k =1,...,m + 1.

Let A = arg min { 2MDL(m, A;p, . . . ,p)}, and consider the quantity
A€AS,

9 .
~[MDL(m, A;p, .., p) = MDL(0; p)]

21lo lo 2mlog™
(3.2) = T gy Bt TORD
mn n n
+ m+1 . R
+ p+2 Z log(Ax, — Ak—1)
n
k=1
m+1 . R
+ ) (A — A1) log 67 — log 62
k=1

We will show that (3 2) is strictly positive for n large with probability one.
By assumption, § < Ay — As_1 < 1, and hence the sum of the first four terms
in (3.2) is m(p + 4)logn/n + O(l/n). Since there are no change-points in
the true process, é)—,% —o?asn —ooforallk=1,...,m+ 1. Thus, since &2
also converges to o2, the quantity

m+41

(3.3) Z Ak — Ai—1)log 62 — log 62
k=1

converges to zero as n — oo. We will use the FLIL on a Taylor series
expansion of (3.3) to show that this quantity is of order loglogn/n. Since
logn/n > loglogn/n for n large, the lemma follows.

Defining

(3.4) Xop = (Xg Xag1-+-X;)"  and

(3.5)
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1 Xoot Xeo oo Xaop 1
1 Xe Xoo1 - Xaopnr 1

Ng;b: . . . . = :Xafl:bfl---Xafp:bfp )
1 Xp1 Xoo ... Xop 1

note that né? is the squared norm of the difference between Xj.,, and its pro-
jection onto the subspace spanned by (1,...,1)" and Xi 4, i =1,...,p,
ie.,

2
(3.6) ne? = HXM —Pne (Xiin) H ;

where PN? (X1.n) is the projection of Xj., onto the (p 4+ 1)-dimensional
column space of N7, . This is the same as the squared norm of the difference
between X7., and its projection onto the subspace spanned by X7_,., _;,
i=1,...,p, where X%, is the component of Xj.,, orthogonal to (1,...,1)7T,
ie.,

XTSTL = Xl:n - (Yln)(17 ey 1)T7

and X7 i=1,...,p are defined similarly. It follows that

(3.7) 6% =Gy (3(i,5) 14, =0,...,p),
where
(3.8)
A(i, J) == Y01 (i, ) = % D (Xii = Xiin-i)(Xi—j — X1jin—yj),

t=1

is the sample ACVF (cf. (2.8)), and

Gp(uij:i,j:O,...,p):

. Up1
(3.9) ugo — (U1, - - -, Uop) [{Um }ijl}
Uop
Similarly, for k =1,...,m+ 1,
(Ak — Ap_1)no?
2
(3.10) - Hijk—m-&-l:j\kn — Py (X;\k—ln‘f'lij\k") H ’

S\k_ln+1:5\kn
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and thus,
(3.11) o = Gp (i, §) 4, = 0,...,p),

where

1 S\kn o
= T, 2 He B )
F k1 t=Ag_1n+1
(3.12) (Xt—j = X5, imt1—jheny)

is the sample ACVF in the kth segment (cf. (2.8)).

While { X} is not assumed to be stationary, recall the argument in Section
2.3 showing that {X;} can be approximated by a stationary AR(p) process
{X/} generated by the same AR coefficients and the same noise sequence
in such a way that (2.11) holds, i.e., as t — oo, X; — X; = O(p') a.s. where
0 < p < 1 depends on the AR coefficients. Let

(3.13) p = lim E(X;) and ~v(h):= lim Cov(Xy, Xi—p).
t—00 t—00

Note that

(3.14) p=E(X]) and ~(h) = Cov(X}, X;_;) for all ¢t.

Without loss of generality, we take g = 0 since the estimates of 6,% are
location invariant, and consider the p-centered sample ACVF (cf. (2.7)),

(3.15)

1 & 1 &
(i, 5) == F01(,4) = =D (Xei =) (Xij —p) = = > Xy i Xy

ni4 ni4

and

(3.16)

1 e
&k(%]) = f?j\kil;j\k (Zaj) = Z Xt—iXt—j

(;\k — S\k,l)n 3

Let né2 denote the squared norm of the difference between Xi., and its
projection onto the subspace spanned by X1_;.,—;, 7 =1,...,p, and for each
k=1,...,m+1,let (/\k—/\k,l)n&,% denote the squared norm of the difference
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between X;\k_ln len and its projection onto the subspace spanned by

Sp_yntl—idgn—is © = 1,...,p. It follows that
(3.17) % = Gp(3(i,§) :4,j =0,...,p), and
(3.18) i = Gp(k(i,4) :4,j =0,....p)

for each k = 1,...,m + 1. Since 4(i,j) — 7(i,7) = O(loglogn/n) and
Ar(i, 5) — A (i, 7) = O(loglogn/n) by the FLIL, we have log 52 — log? =
O(loglogn/n) and logéi — logGi = O(loglogn/n) for each of the m + 1
fitted segments. We now show that

m—+1
A log1
(3.19) S (A — A1) log 57 —log 62 = O (‘)gnog”) :
k=1
which then implies that
mAl < loglogn
(3.20) > (A — A1) log 63 —log 6> = O <n> :
k=1

Let v = (y([i—j|) : i,7 = 0,...,p) be the vector of true (limiting) ACVFs
ranging over lags 0, ..., p (cf. (3.13) and (3.14)). Carrying out a second order
Taylor expansion about log Gp,(y) on each of the log 57 terms and the log 52
term, we obtain

m—+1 . R
Z (M — Ap—1)log 2 — log &2
k=1
m—+1 . .
= > (A — A1) 1og Gp(7y) — log Gp(7)
k=1
m+1 R .
= | Y (= Mk—1) log Gy(7) — log Gp()
k=1
m-+1 . R
+ 1D (A = A1) V1og Gp(7) (A, = ¥) — Viog Gp () (7 — )
k=1
1 m+1 R .
+ 5] 22 Ok = M) (Fr = 1) V2 og Gp(V) (T — )
k=1
(3.21) — (7 =)V 1og G,(v)(F — )|

where 74 := (74(i,§) : 1,5 = 0,...,p) and 7 := (3(i,5) : 4,j = 0,...,p). The
variables v* and «}, are between v and 7 or between v and 7, respectively,
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for Kk =1,...,m + 1, and each variable converges to v almost surely as n
goes to infinity.

Both the constant and first-order terms in the Taylor expansion (3.21)
are exactly zero due to the form of the conditional maximum likelihood
estimates; see (3.15) and (3.16). Within the second order term of the Taylor
series expansion, we can apply the FLIL to the p-centered sample ACVF. It
is then readily seen that the second order term in the Taylor series expansion
is of order loglogn/n with probability one (cf. (2.9) and (2.11)), and (3.19)
holds. (More precisely, (2.9) applies to the p-centered sample ACVF for the
stationary {X;}. Due to (2.11), it also applies to 4 and 4, for {X;}.) Thus,
by (3.20), (3.2) becomes

2 ~

— mp+4) 8" o (i) +0 <log10gn) ,

n n

which is greater than zero for large n with probability one. O

Lemma 3.1 can be extended to the case where the autoregressive order is
unknown, implying that the estimated AR order is also consistent for the
true AR order in this simple case. This result is given in Appendix A.1 as
Lemma A.1.

Since Yule-Walker estimates have the same asymptotic distribution as
the conditional maximum likelihood estimates (see Section 8.10 in [3]), one
would expect that substituting Yule-Walker estimates into the MDL would
not change the consistency result. However, due to the delicate argument
in the proof of Lemma 3.1 where the sample ACVF terms in the Taylor
expansion (3.21) cancel exactly, using Yule-Walker estimates in the MDL
does not guarantee consistency of the estimated number of change-points.
One example, where the noise has exponential tails, is stated in the next
theorem. Yule-Walker variance estimates may provide weakly consistent es-
timators for the number of change-points if the noise has normal tails, but
this needs to be explored further.

THEOREM 3.1.  Assume that the true process {X;} is a stationary mean
zero AR(1) given by

Xt = 90Xy 1+ oey,

where |¢| < 1 and the noise sequence {€;} is iid with mean zero and variance
one. Furthermore suppose that {X;} satisfies assumptions (A1) and (A2)
and that the noise € has a density function f. which satisfies
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(i) fe(z) >0 for —oo < x < 00,

(ii) fe(x) = fe(—x),
(iii) liminf, o e [ fe(x)dz > 0 for some constant ¢ > 0.
Then, using Yule-Walker estimation in the MDL, for every § > 0 and C >
0,

lim inf P (MDL(O; 1) — min MDL(1,\;1,1) > C’logn) > 0.
n—so0 S<A<1—5

PROOF. See Appendix A.2. O

Though consistency does not hold when Yule-Walker estimates are used
in the MDL, weak consistency can still be obtained for the general piecewise
AR model (2.1) when using conditional maximum likelihood estimates. The
next theorem states that the estimated number of change-points and the
estimated AR orders are weakly consistent for their respective true param-
eters when the true process follows the piecewise AR model (2.1) and meets
the assumptions for the FLIL to hold for the sample ACVF within each
segment.

An additional point that is worth noting here is that while the strong
consistency result of Lemma 3.1 holds conditionally on the initial values
X_py1,...,X0, the weak consistency version, Theorem 3.2, holds uncon-
ditionally as long as the initial values are stochastically bounded (i.e., the
Xi,t = —P 4+ 1,...,0 are allowed to depend on the sample size n with
Xi = Op(1),i = —P +1,...,0). Furthermore, assuming the initial values
are stochastically bounded, consider the case that mg > 0 and )\2 — )\2_1 >
0,k =1,...,mg+ 1. Then the initial values for the second segment are sim-
ply the last P values of the first segment, i.e., X)\? 1=20,...,P—1, which
are stochastically bounded by the causality assumption (Al). (Indeed, after
an initial transient period, the process in the first segment is nearly station-
ary.) This shows that the initial values for each of the my + 1 segments are
stochastically bounded.

n—i’

THEOREM 3.2. Assume that the true process {X;} follows the piece-
wise AR model given in (2.1) with mg change-points and initial values
X_pi1,...,Xo and that the relative length of each of the my + 1 segments
is at least 6. Further suppose assumptions (A1) and (A2) hold for the sta-
tionary process determined by the parameter values for each of the mg + 1
segmented autoregressions. Then

~ P
m — My
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and P
(b1, .- Pins1) — (Y, - 7p9no+1)’

where m is the estimated number of change-points and (P1,...,Pmr1) are
the estimated AR orders obtained by minimizing the MDL defined in (2.3)
using conditional maximum likelihood variance estimates.

PROOF. Assume that the true model is the piecewise autoregressive pro-
cess defined by (2.1). In order to prove weak consistency for the estimator
of the number of change-points and the AR order estimates, we need only
compare the following two fitted models:

Model 1': Fit a piecewise autoregressive model to the data set with myg
relative change-points, A € A%O, where the AR orders, pJ, ..., pglo 115
are known.

Model 2': Fit a piecewise autoregressive model to the data set with mg +
s relative change-points, a € Afno 1s» Where s is a positive integer.

Estimate the autoregressive orders from the data, and denote these

orders by f)l) s aﬁmo-‘rs-i—l'

If we can show that the MDL for Model 2’ is larger than the MDL for Model
1’ for large m in probability, then since for large n, the estimated number
of change-points cannot underestimate the true number of change-points
with probability one, this implies that the MDL for a model with m change-
points, where m # mg and m < M, is larger than the MDL for a model

with mg change-points for large n in probability, and thus, m Lt mo as n
tends to infinity.

We will outline the proof for the simple case where the true number
of change-points is my = 1, each segment follows an autoregressive model
with mean zero and order 1, and we fit AR(1) models to the data. Note
that, unlike the case where my = 0, the mean zero assumption is no longer
a valid simplification. We will address this along with the general case in
Appendix A.1. Let A be the true relative change-point location (we use A
here rather than A° for simplicity), i.e., 7 = An is the observation at which
the change occurs. Denote the true white noise variances in the first and
second segments by 0‘% and U%, respectively. For simplicity, we take s = 1 in
Model 2. Models 1’ and 2" then become:

Model 1': Fit AR(1) models to two segments with relative change-point
location A.

Model 2': Fit AR(1) models to three segments with relative change-point
location estimates &1 and &g obtained by minimizing MDL(2, aq, ag; 1, 1)
with respect to (a1, az) € A3, where A$ is defined in (2.2).
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We would like to show that
lim P(MDL(2, 1, d2;1,1) > MDL(1, ;1)) = 1,

n—oo

where MDL(1, \; 1) is the MDL for Model 1/, and MDL(2, &1, éi2;1,1) is the
minimized MDL for Model 2'. Equivalently, we show that

lim P(MDL(2, a1, 9;1,1) > MDL(1, \; 1)
n—oo
(3.22) VOzl,OQ:(5<Ck1<041+5§042<1—5):1.

We will prove (3.22) for the case where a; < A < ag. If A < a1 or ag < A,
the proof is analogous, with the fitted segment (0, 1) or (ag, 1), respectively,
taking the role of the fitted segment (a1, a9) in the argument that follows.
The argument will depend on how close the fitted change-points, a7 and
«, are to the true change-point \. It will suffice to address the case where
only «a; is allowed to be close to A. Therefore, (3.22) follows if each of the
following statements holds.

(1) limp—oo P(MDL(2, a1, 09;1,1) > MDL(1,\;1) V aq, g :
§ < ap < X—(loglogn)?/logn; A+6/2 < as <1-46)=1.
(ii) For each finite positive integer NV,
lim P(MDL(2, a1, 9;1,1) > MDL(1,\;1) Vay, a9 :
n—oo
A=N/n<ag <A\ A+d/2<ay<1-46)=1.
(iii) For every e > 0, there exists a positive integer N such that
P(MDL(2, a1, 9;1,1) > MDL(1, X\;1) V ay,as:
A — (loglogn)?/logn < a; < A — N/n;
A+6/2<a<1-48) > 1—c¢
for sufficiently large n.

Consider the difference
2

(3.23) n: o(

+(1—ag)logds, — [)\ log 671 + (1 — A)log 6%,1} :

[MDL(2, a1, a2; 1, 1) — MDL(1, \; 1)]

logn

) + aq log 6%72 + (a2 — aq) log 6372

where &,%m is the conditional maximum likelihood variance estimate for the
kth segment when fitting a piecewise AR(1) model with m change-points.
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Again, the penalty term, O(logn/n), is positive for large n, so we need only
show that the remaining terms are of a smaller order than O(logn/n).

Partition the interval (0,1) into the intervals (0, 1), (a1, ), (A, a2), and
(a2, 1). The fundamental idea of the proof is to break the term

aq log &%72 + (ag — ) log 6572 + (1 — ) log &32)72

(3.24) —[Noga?, + (1 - \)log 63,

into a sum over our partition of intervals and examine each true segment,
(0,A) or (A, 1), separately. Within each true segment, we show that the
difference between the terms in the two fitted models is either positive or
of smaller order than logn/n. The method we use to compare terms within
each true segment will differ depending on if

(i) (loglogn)?/logn < A — az,
(ii) A — a1 < N/n for some positive integer N, or
(iii) N/n < XA —a; < (loglogn)?/logn for some positive integer N.

These three cases correspond to statements (i), (ii), and (iii) made earlier.
For the case where a; < A < ag, the only term in (3.24) that we need to
partition is (ap — o) log 63 5. Since

agmn N 2
> (Xt - ¢Xt71)
(3'2 o t=a1n+1
2,2 (062 — O[l)n )

where ¢ is the AR coefficient estimate when fitting an AR(1) model to the
second fitted segment, (a1, a2), we can use concavity of the log function and
the definition of conditional maximum likelihood estimation to show that
for large n,

(3.25) (g — ) log &%12

> (A — a1)log <()\R_Siil)n) + (a2 — \) log ((OiS_SQ/\Q)n) ;

where R
RSSz1:= Y (Xt - §51Xt—1>27
t=a1n+1

asn

RSSZQ = Z (Xt - (£2Xt—1)27
t=An+1
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b1 is the AR(1) coefficient estimate fit to the segment (aq, A], and b9 is the
AR(1) coefficient estimate fit to the segment (A, ag]. Substituting (3.25) into
(3.24), we can then group terms corresponding to each true segment and use
Taylor series expansions as in Lemma 3.1 to show statement (i).

Cases (ii) and (iii) require further argument since if the fitted change-
point « is very close to the true change-point A, we cannot use RSSs; as
defined above. In case (ii), the number of observations between a;n and
An — 1 will be finite in the limit. Therefore, using another Taylor expansion
on the log function, it can be shown that

. 1 RSS2 2
(a2 —a1)logds, > O, (n> + (az — A) log ((OQ_)\)TJ -

Again, we can substitute this into (3.24) and use Taylor series expansions to
show statement (ii). For case (iii), it can be shown that for any € > 0, there
exists a positive integer N such that with probability greater than 1 — ¢,
(g — 1) log 6%72
RSS2 2
> — 2 — _Yas
> (= an)log (oF 1) + (00 — Wog (22

for every o such that (A\—ay)n = N+1,N+2, ..., (loglogn)? and for some
n > 0. Substituting this into (3.24) and using Taylor series expansions as in
the proof of Lemma 3.1 leads to statement (iii) and the result follows. [

APPENDIX A: PROOF DETAILS

A.1. Conditional Maximum Likelihood. In this section, we prove
the extension of Lemma 3.1 to the case where the AR order is unknown and
provide further details for the proof of Theorem 3.2.

In extending Lemma 3.1, still under the assumption that the data follow
the AR(p) process defined in (3.1), now we will fit a model to the data which
does not assume that the AR order of the true process is known:

Model 3: Fit a piecewise autoregressive model to the data set with m > 1
relative change-points, A € A% . Estimate the autoregressive orders
from the data by minimizing MDL(m, X;p1, ..., pm+1) over 0 < p; <
P j=1,...,m+1, and denote these estimated orders by p1, ..., Pm+1-
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Then the minimum description length for Model 3 is

MDL(m, A; D1y - -« Pmt1)

m+1
= logm+ (m+1)logn+ Z log™ py
k=1
m+1 -
Pk + 2
#3022 108 (- decm)
k=1

O = N
+Z(k;“mm@wmm,

k=1

where 6%(p’) denotes the conditional maximum likelihood variance estimate
when fitting an AR(p’) model to the data X;, \p_1n < t < Agn. The next
lemma states that with probability one, the minimum description length for
Model 1 is strictly smaller than the minimized MDL for Model 3 for n large,
implying that the estimate of the number of change-points and the AR order
estimates are strongly consistent when there are no true change-points.

LEMMA A.1. Assume that the true process { X} follows the AR (p) model
given in (3.1) with no change-points (mo = 0) and initial values X_piq,. ..,
Xo, and satisfies assumptions (A1) and (A2). Then (i) for any m > 1, with
probability one, for n large,

MDL(0; p) < min MDL(m, A; p1, ..., Dm+1);
€A,

and (i) for any p’ # p, with probability one, for n large,
MDL(0; p) < MDL(0;p').

PROOF. Let A = argmin {MDL(m, X; p1, ..., Pms1)}. Note that
A€AS,

MDL(m, A; p1, - - -, Pms1) — MDL(0; p)
= [MDL(m,X;ﬁl,...,pmH)—MDL(m,S\;p,...,p)]
+ [MDL(m, A;p, ..., p) = MDL(0; )|
where pp = ﬁk(j\),k =1,...,m+1, depend on X. We know from Lemma

3.1 that MDL(m, A;p,...,p) — MDL(0;p) > 0 for n large with probability
one. Therefore, to prove Lemma A.1, we need only show that

MDL(m7 X;ﬁh cee 7ﬁm+1) - MDL(m7 X7p7 .. 7p) Z 0
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for n large with probability one.

It suffices to prove that for any pi,...,pm+1 not all equal to p, with
probability one, for n large,
(A.1)

)\m{iﬁg {MDL(m, X;p1,...,Pm+1) — MDL(m, X;p,...,p)} > 0.
€AN

Note by (2.3) that

MDL(m, A;p1, ...y Pm+t1) — MDL(m, X;p,...,p)
m+1

(A.2) = >~ { (o5 p1~ 1og" p) + PP log )

k=1

e — Ap—1)M . N

+(k2“)(10g 57:(pk) — log Ui(p))}-
We claim that for pg # p, with probability one, for n large,
(A.3) min {(log+ pr —logt p) + 22— Piog(nm) +

AeAéﬂ 2
()\k — )\k,l)n

5 (log & (pi) —log ffi(p))} >0,
which together with (A.2) implies (A.1).
If p; < p, we have by Lemma A.2(i) below that

o . . ~92
vipe) = lim o min oo (pk)

< lim min 62
T m—0o0o )cAd k(pk)

m
< lim max 67 (pr)
n—00 Ae A2,

< li A2. _ o
- nl—{glo 0§/\<I/\n+a5X§>\,Sl O\ (pk) U(pk) a.s

where v(py)(> 0?) is given in Lemma A.2 and 63,,,(p’) denotes the condi-
tional maximum likelihood variance estimate when fitting an AR(p') model
to the data Xy, An < t < X'n. But 67(p) converges a.s. to o2 uniformly in
X € A2 which implies that (A.3) holds for py < p.

For py > p, by Lemma A.2(ii),

0 < max{logéi(p) —logai(pr)}
A€AS

m

<

5 A loglogn
{log 0-3\:)\/ (p) - log 0—;\;)\/ (pk)} =0 (gg> a.s

max
0<SAA+6<N L] n
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implying that (A.3) holds for py > p. This proves part (i).

To prove part (ii), when fitting an AR(p’) model with p’ < p to the entire
data set, by Lemma A.2(i), the conditional maximum likelihood variance es-
timate 3., (p) converges a.s. to v(p’) > o2, so that MDL(0;p’) > MDL(0; p)
for n large with probability one. For p’ > p, we have by Lemma A.2(ii) that

log logn>
——— | a.s.,

log &gzl(p) - log 6—8:1(17/) =0 ( n

implying MDL(0;p') > MDL(0;p) for n large with probability one. This
proves part (ii).
O

LEMMA A.2.  Under the same assumptions as in Lemma A.1, let

v(0) := lim minE(X; — ag)?

t—oo ag
and forp' =1,2,...,

/ — 1 1 — .« e ’ ’ 2
v(p) := lim min E[X; — (a0 + a1 Xy + - + ap Xip)]”

For 0 < X< X <1, let 63.,,(p') denote the conditional maximum likelihood
variance estimate when fitting an AR(p") model to the data X, An <t < \N'n.

(i) If p' <p, then o < v(p') = Gy ((|i—j|) : 0 <i,j < 1), and 63, (1)
converges a.s. to v(p') uniformly in 0 <A< A4+ <N <1, ie.

lim mi

/\2 o
n—0oo OS)\<)\+?§)\/§1 OX:N (p,) = U(p/) a.s.,

1' ~2 / — / .
noe 0§A<I§lféxsxglam’(p> v(p) as.,

where Gy is defined as in (3.9) and y(h) := tlim Cov(X¢, Xi—p).
(i1) If p' > p, then

loglogn)
——— | a.s

(log 3 (p) ~ Lo ()} = O (<2

max
0<SAA+6<N L]

PROOF. Recall the argument in Section 2.3 showing that there exists a
causal stationary AR(p) process { X[} generated by the same AR coefficients
and the same noise sequence such that (2.11) holds. So it suffices to prove
the lemma under the additional assumption that {X;} is stationary. Then
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v(h) = Cov(Xy, X;—p) for all t. Let p denote the common mean of X;.
Letting a = An + 1 and b = X'n, we have (cf. (3.6) and (3.7))

1
X = P (X))
()\/ — A)TLH b Ngzb( b)”

= Gp/(fAY)\ZA’(iaj) : 7’7] - 07 e 7p/)7

&i:)\’ (p/) -

where Nf:b, G and Ay.x (4, j) are defined as in (3.5), (3.9) and (2.8), respec-
tively. Part (i) follows by observing that for p’ < p,
o <v@®) = min E[X;— (ap+ a1 Xi—1+ - +ayX,_p)]* (by stationarity)

a0, syt

= min E[(X; —p) — {01(Xpm1 — ) + -+ ap (Xypy — )}

A1,.esQyy
= Gy(y(li—j):4,7=0,1,....p)
and that uniformly in 0 < A< A+ <N <1,

/

Jim Anen (4,5) = (i = j]) as.,6,5 = 0,...,p'.
For part (ii), we will only prove that
(A.4)

max  {logé3. y(p) —log3 y(p + 1)} = O (

loglogn
——— ] as
0<AAHI<N <1

n

or equivalently,

. R log logn
(63 v(p) — 6% y(p+ 1)} =0 (gg) as.

max
0<AAF6<N <1 n

A similar argument can be used to show that for [ =1,2,...,

loglogn>
——— | as

{log 6%, o+ 1) ~ log o}, (p+ 1+ 1)} = 0 (22

max
0<AAHI<N LT
Without loss of generality, assume p = 0 in what follows. Letting a =
A+ 1,b= XNn, and px = p or p+ 1, denote by M?", the matrix N?, with
the first column of 1’s removed, i.e.

(A5) M;ijb = (Xa—lzb—l T X(L—p*:b—p*)*
Define

- 1
(A.6) 3 (%) = m”Xa:b - PMZTbXa;bH2a
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which can be readily shown (cf. (3.17) and (3.18)) to equal Gpi(Fax (4,7) :
i,j =0,...,px) where 4.\ (4, 7) is defined as in (2.7) with =0, i.e.

1
WZXIS th —J

t=a

TN (’Laj) =
Since uniformly in 0 < A< A+ <N <1,

2 . ~ . log logn

n

we have uniformly in 0 <A< A+6 < N <1,

5‘?\:)\/ (p*) - 5-§\:A’ (p*)

= Gp*(ﬁ/)\:)\’(iaj) : 7’3,7 = 07 cee 7p*) - Gp*(;i/)\:)\/(@j) : Z?] = Oa s ap*)
<loglogn>

=0——=—| as

n

Thus, (A.5) holds if we can show that

(A7) e (Ghp) G+ 1)} = O

loglogn
——— ] as
0<A<KAHI<N <1

n

We can express the projection of X,.;, onto the column space of MPH wh S

(A.8)
+1
Png)lXa:b = Mﬁ#ﬁ-”ﬁb

_ ¢p+1 ,1 4 ¢p+17p+1

Xa—1:-1+- —(p+1):b—(p+1)
= ¢p+11 a 1:0—1 + - +¢p+1,an —p:b—p
+1,p+1
+¢§:b Y {PMZ:b(Xaf(erl):bf(erl))

1
+ PMZ:b (Xa—(p—i-l):b—(p-‘rl))} ,

where
APl p+1,1 wpr1pr1\ T
(AQ) d)a:b = (¢ o Pazb )
-1
_ p+1 T rp+1 +1T
- (Ma:b Ma:b ) Mgzb Xa:b,
and

Parr, (Kaepsyp-p+1) = Xam(priy—(p+1)

=Py (Ko (pr1)b—(p1))-
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The projection of X;_ (1 1):6—(p+1) onto the column space of PM”,b will be
denoted as '

(AIO) PMZ:b(Xa—(p—l-l):b (p+1) ab¢ab_z¢abxa —j:b—j>
7j=1

where we use ¢ rather than & to distinguish the estimated coefficients
Pasy = (Mgnggzb) - Mngxaf(pﬂ):b*(pﬂ)
from the estimated coefficients
&Z:b = (MZ;{MfL;b> B Mﬁ:{Xa:b-
Since PMZ:bX —(p+1):b—(p+1) 18 in the column space of 1Y L

1,1 1 1 1
A GIRMIPEERRRE R A SHNVNEY At Pyr KXo (pt1)0-(+1)

= ¢a’:bXa*115*1 +eee (Zggzlgxafp:bfpa

and thus
53 (p) —F3(p+1) = #HX Y= MP &p ’2
At At ()\/ _ )\)n a: a:bPazb
+1 4p+1
B (Xi”xaib — MG, ba H
2
+1,p+1 1
= e () [P, Ko
Note that
2
1
mHPMZ:;;X“—(P“):’J—(HUH
2
Txr—1
- WHX“*(HI)@*(HUH —u V 'u,
where the components of u = (uy,...,u,) and V = {Uij}ﬁjzl are given by
1 ZX .
Y = N —n t—p—1X¢—; an
()\ )\) t=a

1
o= ———— S XX
i (A’—)\)n;t b=
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From this observation, it is readily seen that uniformly in 0 < A <A+ <
N <1,

2
Jim H =cp >0 as.,

. 1 n
i, g [P, Ketsy-00)
where

cp = almi% EXi—p—1 — (a1 Xp—1 + -+ apXt_p)]z.
e p
R 2
Therefore, if we can show that (¢§ ;Lpﬂ) = O (loglogn/n) uniformly in
0 <A< A4 < N <1, it follows that 63.,,(p) —53.,, (p+1) = O (loglogn/n)
uniformly in 0 <A <A+ <X <1 and (A.7) holds.

We would like to apply the FLIL on the (p + 1)st component of (}_')221,
denoted by ¢"FPT! (cf. (A.8) and (A.9)). A standard argument yields

<Xa:ba X (pt1)b—(p+1) — PMZ;bXa*(P+1)Zb*(p+1)>

(ﬁp-&-l,p-i-l

ab 2
HXaf(erl):bf(erl) - PMZ:bXaf(erl):bf(erl)H

(A]_l) _ <Xa:ba Xaf(p+1):b7(p+1)> - Eg‘):l ¢§% <Xa:b7 Xafj,b7j> ’

HXaf(P+1)¢b*(P+1) - Z?zl QEaZZX“*j’b*j H2

—p -y

where Pape, X (4 1) (p+1) = Map@a = 2ot oy Xa—jb—j (cf. (A.10)).
Define s;;(r) = > iy Xy—iXy—; for r = 1,2,.... Using the projection

theorem, we can show that (A.11) is a function of the s;;(.)’s, and thus we

can apply the FLIL. That is,
(A.12)

~p+1p+1 1 .
S = (g (50) — sle = 1) i = 0L p 1)

Using a first order Taylor expansion about v = (y(|i — j|) : 4,7 =0,1,...,p+ 1)
on Qgptl,pﬂ
a:

I

" 1
p+1,p+1 _ .
(A13) G5 = h )+ V) (e = 7).

where sq.5 = (si;(b) —sij(a—1) 14,7 =0,1,...,p+ 1) and ~y* is between ~
and ﬁsa:b. By the FLIL, for ¢, = 0,1,...,p+ 1, uniformly in 0 < A\ <



CONSISTENCY OF MDL FOR PIECEWISE AR 27

A< N <,
L () — sigla— 1] = (i — 4))
b*CL‘FlSU Sijla Fir —J

_ 1 (Sijb—b’y(’i—ﬂ)_Sij(a_l)_(a_l)'V(H_jD)
N =\ n n

(@) (\/ 1 log log n) a.s.
n

Finally, to see h(v) = 0 (which implies by (A.13) and (A.14) that (¢/5"PT)2 =
O(loglogn/n) a.s. uniformly in 0 <A <A 4+46 < N < 1), let

(A.14)

(A.15)
¢ = (¢],...,¢541) = argmin E[X; — (a1 X1 + -+ + app1 Xep1)]-

al,...,ap41

Since the stationary AR(p) process {X;} satisfies (3.1) with u = 0, we have

¢ = ¢ii = 1,...,p and ¢y, = 0. By (A8), (A.9) and (A.15), ¢oy'

converges a.s. to ¢*. In particular, lim éﬁ:l’pﬂ = ¢p1 = 0 a.s. By(A.12),
n—oo °
h(vy) = 0 since (s;;(b) — sij(a —1))/(b—a+ 1) — ~(|i — j|) as. for i,j =
0,1,...,p+ 1. This completes the proof.
O
We proved Theorem 3.2 for the simple case where the true number of
change-points is my = 1, each segment follows an autoregressive model with
mean zero and order 1, and we fit AR(1) models to the data. The following
extends the proof to the general case where the true process follows the
piecewise AR model (2.1) and we compare the MDL for the following two
models:

Model 1': Fit a piecewise autoregressive model to the data set with my
relative change-points, A € Afno, where the AR orders, pJ, ..., p?no 11
are known.

Model 2': Fit a piecewise autoregressive model to the data set with mg +
s relative change-points, a € Afno 1s>» Where s is a positive integer.
Estimate the autoregressive orders from the data, and denote these

orders by ]51, s aﬁmo-‘rs-i—l'

PROOF OF THEOREM 3.2. It suffices to show that

lim P(MDL(m0 S, 0GP, Pmgtst)

n—o0

> MDL(mg, X; Y, . .. ,p?n0+1)) =1
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since this implies

lim P i MDL D1y P
nl—>Holo <mn;£720 { (m7 ;P apm+1)}
0<m<M

> MDL(my, S\;p(l), ... ,p9n0+1)> =1,

where M is a prespecified upper bound, and the result follows. Equivalently,
as the simple case outlined previously, we can show that

lim P(MDL(m0 8,05 D1, Prngtst)

n—oo

(A.16) > MDL (1m0, A% pY, ..., p0 1) V @ € A° ) —1

mo-+s

where A9, . is defined in (2.2).

Consider the difference

2 . A
E[MDL(mO + s, a5py, ... ’pm0+8+1) - MDL(m07 Ao;p% s 7p2n0+1)]

logn mo—+s+1 .
= 0 < > + Z (Oéj — ozj_l)log sz,mo—o—s

n et
mo+1
0 _ 10 ~2
(Al?) — Z ()\ — )‘k:—l) log Uk‘,mo‘
k=1
where &;mo 1 is the conditional maximum likelihood variance estimate for

the jth fitted segment when fitting a piecewise AR model with my-+s change-
points and estimated AR orders, and &,%’mo is the conditional maximum
likelihood variance estimate when fitting an AR(p) model to the kth of
mgy + 1 fitted segments. Since for large n, the estimated AR orders are
greater than or equal to the true AR orders, the O (logn/n) penalty term
in (A.17) is strictly positive for large n. Therefore, it suffices to show that
for all a € A? the term

mo+s?
mo+s+1 mo+1
(A18) > (0 —j—1)10g67 s — > (AL = A1) log 67
j=1 k=1

is either positive or is of smaller order than logn/n. This will imply (A.16),
and the theorem follows.

We will show (A.18) by combining the two summations into one sum over
the true segments, and applying the arguments demonstrated previously to
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each term within the sum. In other words, rather than summing the terms
(oj — aj_1)log 62 over the indices of the fitted change-point locations,

7,mo+s
Q1,. .., Qmts, we will break up each term and sum over the indices of the
true change-point locations, A, ..., )\9,10. Then we will examine each sum-

mand individually.

We first give the argument for the case where the true process has mean
zero in every segment, and then describe extensions to the non-zero mean
case at the end. First focus on the jth fitted segment, (oj_1, ;). If this
segment does not contain any true change-points, there is no need to par-
tition the interval further. Suppose, however, the segment contains 1 true
change-point, denoted by )\2( i) where k(j) denotes the index of the true
change-point contained in the jth fitted segment. In the case where the
fitted segment (a;_1, aj) contains one true change-point, this segment cor-
responds to (ai,asg) in the simple case demonstrated previously. In other
words, we need only consider the cases

(i) (loglogn)?/logn < /\g(j) — o1,
(i) )\2(].) — aj—1 < N/n for some positive integer N, or
(iii) N/n < )\g(j) —a;j_1 < (loglogn)?/logn for some positive integer V.

Then, using the same arguments as in the simple case, but applying Lemma
A.1 rather than Lemma 3.1 to account for the estimated AR orders, for case

(i),

RSS; 1
(aj — aj1)log 63 > (A —Oé‘—l)log( - )
3T j,mo+1 k(j) ~ % ()‘2(1) —aj-1)n
RSS; 5
+ (o — M) ) log (]> ,
T ey = Mgy
where
Xey™ . o )
= iPj PiDj )
RSSj’l T . Z 1 (Xt o ¢ajjf1n+1:)\2<j)nXt_1 - ajjjanrl:/\g(j)ntij)
=aj_1n
and
ajn 1 L 2
RSSj’2 = Z (Xt o ¢§]o n—}-l'a'nXt*l - ¢};\J0pj n+1~a.nXt—]5j>
=X )nt kK@ k()T
k(s

are the residual sum of squares over the ith sub-segment of the jth fitted
segment, but using AR coefficients estimated only within that sub-segment
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rather than using the entire jth fitted segment. For case (ii),

X 1 RSS2
(aj — aj—1)log 0'32-7m0+1 > Op () + (o5 — )\2(]-)) log _—6 )
n (o )‘k(a))

and for case (iii),

(aj — @vj—1)logd U] mo+1 = (/\k(J) —aj-1)log (Uk(ﬂ) + 77)

RSS;

0 J,2

+ (aj = Ap(j)) log ((aj — Ag(.))n> 5
j

for some small n > 0 where U}%(j) is the true variance in the k(j)th true
segment.

Suppose now that (o1, ;) contains more than one true change-point. In
the simple case, since there was only one true change-point, we only needed
to consider when either a; was close to A, or when as was close to A, but
both a1 and ag couldn’t be close to A simultaneously. Now, both «;_1 and
a;j could potentially be close to a true fitted changepoint. We will address
this case by adding a fictitious fitted change-point at the center of each true
segment completely contained within the jth fitted segment. This can only
reduce the log-likelihood term of the fitted MDL,

mo+s+1

> (g —aj1)10g 67 g s,

j=1
but we can show that even with this reduction, the MDL of the fitted model
is still greater than the MDL corresponding to the true model. With the
addition of the fictitious fitted change-points, each fitted segment will then
contain either no true change-points or one true change-point.

For each true segment that does not contain a fitted change-point, add

a fictitious fitted change-point at the midpoint of this segment. Once we
have added the necessary fictitious fitted change-points, re-label the fitted

change-points as a7y, ay,..., oy, ., where b > 1. It follows that
mo—+s+1 mo+1
0 0 ~2
Z (aj Qj— 1) log o Jg mo+s Z ()‘ - Ak—l) log Ok.mg
j=1 k=1

mo—+1

+
> Z o — aj_1)logd UJ mo+b Z (AR = Xio1) 108 6 i,
j=1 k=1
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mo—+b
(A.19) > )

RSS; o
A+ (o — )\2 ) log (J’ )]
= j < J (J)) (a;.ng(j))n
mo+1
- Z )\0 >‘k 1 IOgUkmO,

where &32‘7m0 4p is the estimated variance within the re-labeled jth fitted seg-
ment and A; is

(i) (/\2@) —049 1) log(RSS;,1/((A] k() 053‘-1)”)%
(i) Op(1/n), or
(iii) ()‘2(3‘) —aj_q) log(aﬁ(j) + 1) for some n > 0,

depending on how close ag-_l is to /\g(j). Note that since «g := 0, if the
first fitted segment contains one true change-point, then A; must equal
A log(RSS1.1/(A)n)). Note also that if the jth fitted segment does not con-
tain any true change-points, then the term in brackets in (A.19) is simply

A9
(oz;» — a;_l) 108 675 1o +b-

The next step is to combine the two sums in (A.19) into one sum, indexed
over the true change-points. In order to make this step, we need some further
notation for the re-labeled fitted change-points contained within the kth true
segment. Consider the kth true segment, ()\271, )\%). This segment must con-
tain at least one re-labeled fitted change-point, so we can break the segment
into sub-segments, with the partition being determined by the re-labeled fit-
ted change-points contained in the kth true segment. Let r+1, 0 < ri < my,
be the number of fitted change-points contained in (A)_;, A}). Then we can
partition (A\?_,, A?] into the 7 + 2 intervals (A)_,, a;.(k)), (a;(k), O‘;'(k)ﬂ)v

o, (a;(k) g A0, where j(k) denotes the index of the first re-labeled fitted
change-point contained in the kth true segment. Then we can re-index

mo—+b

Z (O‘;’ o O‘; 1)1ogd U] mo+b
j=1
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according to the true change-points as follows:

mo+b
D (af = af1)10g 57 my 4
j=1
mo+b
RSS; 2
> N0 (o g ) o ()]
j=1 ( ! (])> G /\k(J))
motl RSS.
(k)2
= (i — )\271) log ( ! >
1;1 [ o (O‘}(k) — A_)n
k
+ D (Viy+i = Viy+i-1) 108 T35y imo-+s + Aj<k>+rk+1] :
i=1
where for k=1,....mg+1landi=1,...,7g, OA—jQ'(k)—&—i,mo-l—b is the conditional

maximum likelihood estimate of the variance when fitting an AR(p;(x)+:)
model to the (j(k)+1i)th re-labeled fitted segment, and A1y, +1 is defined
as before for the (j(k) + r + 1)st re-labeled fitted segment. Thus, (A.19)
becomes

mo—+b mo—+1
Z (a; - agfl) lOg 6']2'7m0+b - Z ()\2 - A271> lOg &Iz,mo
j=1 k=1
motl RSS;
(k),2
(A.20) > [(a( — A ) log ( J )
1€Z=:1 7 (a;'(k) —N_)n

+Z k) — Qi) ie 1) log &7 (k) +i,mo+b

+ Aj(k)—l—m—&—l - ()\2 - )‘2—1) log a-I%,mo‘| .

Now, within each summand of (A.20), we can apply the same arguments
as in the simple case using Lemma A.1 rather than Lemma 3.1, and (A.18)
follows.

For the case where the means of each segment are unknown, we can fol-
low an argument similar to that used in the simple case of one true change-
point as demonstrated previously. When calculating the estimated white
noise variances, rather than minimizing the quantity > (X; —a1 X¢—1 —...—
aﬁXt_ﬁ)z, the estimates minimize the quantity Y (X; —ag —a1 X¢y—1 — ... —
a3X¢—p)?. Since Lemmas 3.1 and A.1 hold for non-zero means, the result
follows. O
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A.2. Yule-Walker. In this section, we provide further details for the
proof of Theorem 3.1.

ProOOF OF THEOREM 3.1. The MDL for an AR(1) process with no
change-point is given by

MDL(0; 1) = glogn + glog(%'&z),

while the MDL when calculated under one change-point for an AR(1) is

MDL(1,X;1,1) = min MDL(1,A;1,1)
0<A<1-6
. 3
(A.21) = ,Jun {5logn + i(log()\) + log(1 — \))

+ g (Mog(2m6}(An)) + (1 = A) log(2763 (An))) }

where now 62 is the Yule-Walker variance estimate of the entire sequence,
62(A\n) is the Yule-Walker variance estimate from observations 1, ..., An, and
62(An) is the Yule-Walker variance estimate from observations An+1,. .., n.
The change-point estimate ) is obtained by minimizing MDL(1, A\; 1, 1) with
respect to A € AJ, AJ defined in (2.2).

Let 7 = An. Since the mean p of the process is zero, define

L, 1, Bz XtXt+1)2
(A.22) 57i==> X7 — T T
nia o 2=t X
2
1 T7—1
1 <& (; >t XtXt+1)
(A.23) Gy ==Y X2 — ,
> IS X7
2
1 n—1
. 1 n > Xe X
(A.24) G3(7) = > XP- <n T 3 ) ;
T n—r Zt:T"ﬂ'l Xt

which are p-centered versions of 62, 63(7) and 63(7), respectively. Since by
the FLIL, we have
6°—3d° = O(loglogn/n) a.s.,

691}1”&;(1_6 ‘&1-2(7') — &Z-Q(T)’ = O(loglogn/n) a.s., i =1,2,
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it suffices to prove that for every C' > 0,
(A.25)

T n—r Clogn
liminf P( logé? — mi ~log &2 log 52 }> > 0.
imin (oga omin { Tlogat(r) + T logad(n)} >

Performing a Taylor expansion about ¢ on the log of (A.22), we obtain

locg? = 1 o’ +li X2—072
ogafogl_gﬁz pa R e

i e
e+ iy, (X - 12n)

1+¢21 <& o?
_ 2 2
= logo” + 2 ;Z X; —71_(1)2

2¢ [1 7 P> XoX; loglog n
- nz%<XtXt“_1—¢>2 - +O<n )
t=
Let
1+ ¢? & 9 o2 20 "1 o?
= X7 — — X X
Sn o2 ; t T & o2 ;) R 52

so that

1
log 52 = logo? + ESn + 2

20 XoX1 L0 <loglogn> ‘
n

Similarly, for (A.23) and (A.24),

i 1 2 XoX,
6;%12)1(_6 log 52(1) — (loga2 + ;ST—i- P R ) |
and
1 2 X, X
52(7) — 2, - (g _ L9 AT AT+
égrggwl(ﬂs log 65(7) <loga + o= T(Sn Sr) + R > ‘
are both O (logl%). It follows that
T n—r
log5* — ( —log &} log &5 )
6§I£2¥76 0gao (n ogai(r) + 0g 65(7)
20 X; X log 1
(A.26) gfirﬂ 0 (Ogog”)
o n n
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Under the assumptions for the density f. of the noise, it is clear that

1

(A.27) lim P(max{et:6§t§15}>
n 2c

log n> =1.
n—oo
Let T := max{[né} +1<t<n(l—-96):¢> %logn} if the specified set is
non-empty, and define 7" := [nd] + 1 otherwise. Note by (A.27) that P(ep >
L log n) — 1 as n — oo. Moreover, X7_; and er are independent, and
2c
Xp_1 has the same (stationary) distribution as Xy since T' is a stopping
time in reverse time, which has an everywhere-positive density function by
condition (i). Therefore, from (A.26), we have

n—T+1

T-1
log 52 — < log62(T — 1) +
n
—2¢ X7 1 X7 L0 (loglog n)
n

log 55(T — 1)>

2

o n
—2¢ (X7 1 + 0 X7 _1€7) log log n
= 5 +0 | ——
o n n
= (P L) 8n 2T o (Tglosn)
logn/ n o n n
-2 logn 1 log logn
(A28) = <¢XT—1 - ) e Op(=)+0 <gg) :
o logn n n n

For every C' > 0, we have P (%%XT_l > C) > 0, implying (A.25) for every
C > 0. This completes the proof.
[
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