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Differentiated Product Demand Models

Differentiated Product Demand Models

Large area of research in empirical IO past 10-15 years has been
models of differentiated product demand.

Goal is to estimate a demand system for a differentiated product
market

This has many uses in industrial organization, marketing, strategy, e.g.

◮ Own-price and cross-price elasticities, for pricing, merger analysis, etc.

◮ Elasticities w.r.t. product characteristics

◮ Welfare effects of new products or price or characteristic changes

◮ Input into many other interesting IO questions
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Differentiated Product Demand Models

Differentiated Product Demand Models, cont.

Typically have product level data on markets across time or space.

Observe prices, characteristics, and market shares of products in each
market.
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Differentiated Product Demand Models

A Dimensionality Problem

Probably the biggest econometric hurdle in these models is a
dimensionality problem:

◮ With a homogenous product, there is one demand curve to estimate:

Q = β0 + β1p + ε

◮ With J differentiated products, there are J demand curves to estimate.
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Differentiated Product Demand Models

A Dimensionality Problem, cont.

Even if one uses a linear demand system

Q1 = β0,1 + β1,1p1 + · · · + βJ,1pJ + ε1

...

QJ = β0,J + β1,Jp1 + · · · + βJ,JpJ + εJ

unless J is very small there are typically too many parameters to
estimate.
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Differentiated Product Demand Models

Solutions in the Literature

Recent approaches reduce dimensionality by parameterizing
elasticities based on observed product characteristics.

1 Direct restrictions on coefficients in linear system

⋆ Hausman (1996), Pinske, Slade, and Brett (2002), Davis (2006)

2 Hedonic utility/aggregated discrete choice approach

⋆ Bresnahan (1987), Berry, Levinsohn, and Pakes (1995) (BLP)

⋆ Specify consumer utility functions as a function of a product’s observed
and unobserved characteristics.

⋆ Aggregate demands over consumers to get product level market shares.

⋆ Typically built up from individual level discrete choice models.
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Differentiated Product Demand Models

Solutions in the Literature, cont.

Both approaches have advantages and disadvantages, although the
second approach has arguably been more popular.

We’ll focus on the second approach, “Aggregated Discrete Choice
Models”,

◮ But the basic ideas of our paper are also applicable to the first
approach.
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Examples of Aggregated Discrete Choice Models:

Types of Aggregated Discrete Choice Models

Aggregated Discrete Choice Models are very common in the empirical
literature.

There are three main types:

1 Logit Model

2 Nested Logit Model

3 Discrete-Choice Random Coefficients Model (RCM)

RCM most flexible in terms of substitution patterns.
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Examples of Aggregated Discrete Choice Models:

Logit Model

Utility function (consumer i, product j)

uij = βpj + xjθ + ξj + εij

where

◮ xj – observed (to econometrician) characteristics of product j

◮ pj – price of product j

◮ ξj – unobserved characteristic of or demand shock for product j

◮ β, θ – parameters

◮ εij – idiosyncratic taste consumer i has for product j (i.i.d Extreme
Value)
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Examples of Aggregated Discrete Choice Models:

Logit Model

Consumer i chooses the product j that gives him/her the highest
utility.

Aggregating choices over consumers leads to the “market share”
equation

sj =

∫
· · ·

∫
1 (uij > uik ∀k 6= j) p (ε1, . . . , εJ)

=
exp [βpj + xjθ + ξj ]

1 +
∑

k exp [βpk + wkθ + ξk ]
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Examples of Aggregated Discrete Choice Models:

Nested Logit

Nested Logit Model (Goldberg (1995), Bresnahan, Stern, and
Trajtenberg (1997))

uij = βpj + xjθ + ζig(j) + ξj + σεij

where

◮ ζig(j) – consumer i ’s idiosyncratic taste for products in group g .

G. Crawford (Warwick) Orthogonal Instruments November 24, 2009 11 / 68



Examples of Aggregated Discrete Choice Models:

Discrete-Choice Random Coefficients

Random Coefficients plus logit error (Berry, Levinsohn, and Pakes
(1995))

uij = βipj + xjθi + ξj + εij

where

◮ βi – consumer i ’s distaste for price;

◮ θi – consumer i ’s taste for characteristics.

◮ Typically assume parameterized distributions for βi and θi , e.g.

βi ∼ N
(
β, σ2

β

)
, θi ∼ N (θ, Σθ)
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Estimation

Estimation

Estimation of these models involves matching market shares predicted
by the model to market shares observed in the data.

This can often be quite straightforward, e.g.

◮ Logit model generates an estimating equation of the form

ln

(
sj

s0

)
= βpj + xjθ + ξj

◮ Nested Logit model

ln

(
sj

s0

)
= βpj + xjθ + σ ln(sj|g ) + ξj
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Estimation

Estimation, cont.

Random coefficients model is a bit more complicated

◮ Estimating equation looks as follows:

δj

(
{sl , wl , pl}

J

j=0 ; Σθ, σ
2
β

)
= βpj + xjθ + ξj

◮ Computing the left hand side variable typically requires simulation and
an inversion routine.

Estimation typically proceeds using either linear methods (logit,
nested logit) or GMM (random coefficients models).
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Endogeneity Issues

Estimation

Researchers have typically worried about the possible endogeneity of
price.

◮ If the residual ξj represents unobserved product characteristics or
unobserved demand shocks for product j ,

◮ Then a firm’s profit maximizing price will generally depend on ξj ,

◮ Generating correlation and endogeneity.

Estimation has typically proceeded using instruments for price,

◮ Linear IV methods in logit and nested logit cases,

◮ GMM with instruments for price in random coefficient models.
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Endogeneity Issues

Price Instruments

Commonly used instruments for price:

◮ Cost shifters

◮ Characteristics of competing products (BLP)

◮ Prices of same product in other markets

⋆ Hausman (1996), Nevo (2001)
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Endogeneity Issues

Exogenous Characteristics: Why?

By contrast, researchers have (admittedly) relied upon the
assumption that product characteristics x are exogenous.

Question: Why is this?

◮ Characteristics are choice variables just like price.

◮ Seems like these choices might also depend on ξj .

Answers:

1 There is an argument is that price may be “more endogenous” than
product characteristics

⋆ As price is often is a more flexible and variable decision than are
product characteristics (e.g. automobiles).

2 Perhaps the problem is too hard to deal with?
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Endogeneity Issues

Exogenous Characteristics: Problems

We agree with the first argument, but

1 This will clearly depend on the product under study.

2 Even if x is “less endogenous” than p, it still may be problematic.

Note also that if x is incorrectly assumed exogenous, it will generally
bias all the coefficients in the model

◮ Including the coefficient on price.

This transmitted bias, e.g. to the price coefficient, might be expected
to be less than any direct bias ...

◮ (were one not to be instrumenting for price)

But one can easily construct examples where the bias is large.
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Existing Solutions

Exogenous Characteristics: Solutions in the Lit

A few solutions have been briefly discussed in the literature.

1 Find instruments for endogenous product characteristics.

◮ Problems:

⋆ Already hard enough to find valid instruments for price

⋆ Unlike price, for which one often needs just one instrument, here one
would need at least as many instruments as characteristics

⋆ If residual ξj is an unobserved product characteristic that is chosen by
firms, it could be hard to find a valid instrument.
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Existing Solutions

Exogenous Characteristics: Solutions in the Lit, cont.

A few solutions, cont:

2 BLP briefly suggest a solution based on timing. Suppose one has
panel data, i.e. markets over time.

ln

(
sjt

s0t

)
= βpjt + wjtθ + ξjt

◮ Instead of considering a moment in ξjt , assume ξjt follows a first order
Markov process and consider a moment in the innovations in ξjt , i.e.

E [ξjt − E [ξjt | ξjt−1]|wjt , Zjt ]
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Existing Solutions

Exogenous Characteristics: Solutions in the Lit, cont.

A few solutions, cont:
2 BLP Soln, cont.:

◮ With appropriate assumptions on:

1 The timing of the choice of product characteristics, and

2 The information set of firms at various points in time

One can show that this moment should equal zero.

◮ Similar to Olley and Pakes (1996) methodology for estimating
production functions.

⋆ Reasonably demanding on the data, plus relies on fairly strong,
non-directly-testable assumptions on unobservables.

⋆ Applied in Sweeting (2007).
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Existing Solutions

Exogenous Characteristics: Solutions in the Lit, cont.

A few solutions, cont:

3 Formally model endogenous choice of product characteristics

◮ Recent paper by Crawford and Shum (2006)

◮ Using results from screening literature

⋆ e.g. Mussa and Rosen (1978), Rochet and Stole (2002)

◮ CS are able to explicitly model a multiproduct monopolist’s choices of
a one-dimensional product characteristic (and price).

◮ Problems:

⋆ Very tied to assumptions of monopoly and that product characteristic
space is one dimensional (or maybe discrete).

⋆ Would be much harder to do in oligopoly or with multidimensional
characteristics. Lots of issues, including possible multiple equilibria.

⋆ Identification questions
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Our “Solution”

Our “Solution”

Certainly simpler that those described above

◮ In some cases our “solution” will imply that existing estimation
procedures provide consistent estimates of own- and cross-price
elasticities,

◮ Even if product characteristics are endogenous.

Whether or not this is the case

◮ i.e. whether existing procedures provide consistent estimates

will actually be testable.

If it is not the case, there may be alternatives
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Our “Solution”

Our “Solution”: Caveat

One important caveat:

◮ We will assume that our primary concern is estimation of own and
cross price elasticities,

⋆ i.e. we will give up on estimating elasticities w.r.t. characteristics.

⋆ ⇒ Only appropriate for answering price related (i.e. short run) policy
questions.
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Our “Solution”

Warm-up: OLS

Our solution is based on a very simple econometric result...

Consider a linear regression model

yi = x ′
i1β + x ′

i2θ + εi (1)

such that

◮ xi1 is exogenous (E [xi1εi ] = 0), but

◮ but xi2 is not (E [xi2εi ] 6= 0).

Because the regressor vector (x ′
i1, x

′
i2)

′ is not uncorrelated with the
error εi ,

◮ A textbook argument establishes that the OLS estimator of the
coefficient vector (β′, θ′)

′
is inconsistent in general.
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Our “Solution”

When is OLS estimator for β consistent?

We may ask if there are conditions under which the OLS estimator for
β is consistent.

For this purpose, write
εi = x ′

i2γ + ε∗i ,

where

◮ γ = (E [xi2x
′
i2])

−1
E [xi2εi ] is the population regression coefficient when

εi is regressed on xi2.

Note that E [xi2ε
∗
i ] = 0 by construction.
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Our “Solution”

When is OLS estimator for β consistent?, cont.

We may then write

yi = x ′
i1β + x ′

i2 (θ + γ) + ε∗i . (2)

Question: If we regress yi on (x ′
i1, x

′
i2)

′,

◮ Does the OLS estimator consistently estimate
(
β′, (θ + γ)

′)′
?

Answer: Only if E [xi1ε
∗
i ] = 0 and E [xi2ε

∗
i ] = 0.

◮ We are guaranteed that E [xi2ε
∗
i ] = 0, but

◮ E [xi1ε
∗
i ] = 0 is likely to be violated in general
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Our “Solution”

When is OLS estimator for β consistent?, cont.

Why might E [xi1ε
∗
i ] 6= 0

◮ The new error term is ε∗i = εi − x ′
i2γ

◮ As such, E [xi1ε
∗
i ] = E [xi1εi ] − E [xi1x

′
i2] γ

◮ This will not be zero unless E [xi1x
′
i2] = 0 (which is testable)

If E [xi1x
′
i2] = 0, then the OLS estimator consistently estimates(

β′, (θ + γ)′
)′

.

◮ In other words, the OLS estimator for β in the regression of yi on
(x ′

i1, x
′
i2)

′
in (1) or (2) is consistent.

Bottom Line: When xi1 and xi2 are uncorrelated, bias from an
endogenous xi2 doesn’t get transmitted to β

G. Crawford (Warwick) Orthogonal Instruments November 24, 2009 28 / 68



Orthogonal IV

What of in IV Settings?

It turns out that there is a similar result for IV models.

We consider the similar linear regression model

yi = x ′
i1β + x ′

i2θ + εi , (3)

where both xi1 and xi2 are endogenous.

◮ In IO applications, xi1 = pi , price, and xi2 = xi , characteristics.

Suppose

◮ We have an instrument zi for xi1 (E [ziεi ] = 0), but

◮ No instrument for xi2.
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Orthogonal IV

What of in IV Settings?

We consider the properties of IV regression using zi as instrument for
xi1, but incorrectly treating xi2 as exogenous.

Because (z ′i , x
′
i2)

′ is not uncorrelated with εi ,

◮ We can easily see that the IV estimator for (β′, θ′)
′
is inconsistent in

general.

Our question is whether the estimator for β may be consistent under
some conditions.

◮ It turns out that if zi is uncorrelated with xi2, one will get consistent
estimate of β, even with endogenous xi2.
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Orthogonal IV

What of in IV Settings?

In order to understand this result, we again write

εi = x ′
i2γ + ε∗i ,

where ε∗i denotes the residual in the projection εi on xi2.

Now, we rewrite the model

yi = x ′
i1β + x ′

i2 (θ + γ) + ε∗i (4)

Note

◮ xi2 is uncorrelated with ε∗i (E [xi2ε
∗
i ] = 0) by construction.
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Orthogonal IV

What of in IV Settings?

Note also that

E [ziε
∗
i ] = E

[
zi

(
εi − x ′

i2γ
)]

= E [ziεi ] − E
[
zix

′
i2

]
γ = 0

if E [zix
′
i2] = 0.

Following the identical logic as in the OLS case,

It follows that the IV regression of yi on (x ′
i1, x

′
i2)

′ using (z ′i , x
′
i2)

′

◮ Will produce a consistent estimator of
(
β′, (θ + γ)

′)′
.
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Orthogonal IV

A (Small) Efficiency Result

Note that we one can rewrite the model as

yi = x ′
i1β + ui ,

where ui ≡ x ′
i2θ + εi .

◮ If E [zix
′
i2] = 0,

◮ Then ui ≡ x ′
i2θ + εi satisfies E [ziui ] = E [zix

′
i2] θ + E [ziεi ] = 0,

This suggests that β could be consistently estimated by fitting this
“smaller” equation with zi as an instrument.

It turns out the asymptotic variance of this smaller IV regression is
bigger than the one in the larger IV regression.

◮ So you are better off including xi2 in the model.
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Orthogonal IV Application to DCMs

A Useful Result?

This seems to us to be much more useful than the OLS result

◮ With the OLS result, either xi1 and xi2 are correlated or they are
uncorrelated.

⋆ There is not much one can do if they are correlated.

◮ With the IV result, one often has a choice of what instrument zi to
use.

⋆ Appropriate choice of instruments may lead to a desirable result.

In our demand system context, we are suggesting looking for price
instruments, z that are uncorrelated with the potentially endogenous
product characteristics, x .

◮ A nice aspect of this condition is that it is testable, since both z and x

are observed.
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Orthogonal IV Application to DCMs

Applications to DCMs in IO: Estimation

Let’s formally apply this result to our aggregated discrete choice
models.

Start with the Logit model:

ln

(
sj

s0

)
= βpj + xjθ + ξj

Assume both pj and xj are endogenous, but we only have an
instrument zj for pj .

◮ Run IV using zj as instrument for pj but treating Xj as exogenous.

Our previous result says that this will generate consistent estimates of
the price coefficient β (but not the characteristics coefficients θ) if zj

is uncorrelated with xj .
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Orthogonal IV Application to DCMs

Applications to DCMs in IO: Elasticities

But... we are not done yet.

◮ We are typically not interested in the price coefficient in utility, β,
per-se...

◮ We are interested in own- and cross-price elasticities and derivatives.

Fortunately, in the logit model, one can easily derive

∂sj

∂pj

= −βsj (1 − sj)

∂sj

∂pk

= βsjsk

Thus, all own and cross price elasticities and derivatives can be
written as just functions of the data (s and p) and β.

◮ In other words, we do not need to consistently estimate θ to obtain
these elasticities.
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Orthogonal IV Application to DCMs

Elasticities in the Nested Logit
What about the Nested Logit model?

ln

(
sj

s0

)
= βpj + xjθ + σ ln(sj |g ) + ξj

In the nested logit model, there is another endogenous right hand side
variable, ln(sj |g ).

◮ Hence one always needs an additional instrument as compared to the
logit model.

Various possibilities here

◮ One natural additional instrument would be the price shifters of other
products in your “group”, which should be correlated with ln(sj|g ).

In any case, denote the instruments as z1j and z2j .

Again, our earlier results implies that as long as both z1j and z2j are
uncorrelated with the product characteristics xj , one will obtain
consistent estimates of β and σ.
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Orthogonal IV Application to DCMs

Elasticities in the Nested Logit

Again it also turns out that own and cross price elasticities can be
written as only functions of the data (s and p), β, and σ, i.e.

∂sj

∂pj

= −βsj

(
1

1 − σ
−

σ

1 − σ
sj|g − sj

)

∂sj

∂pk

= βsk

(
σ

1 − σ
sj|g + sj

)
if j and k in same group

∂sj

∂pk

= βsk sj if j and k in different groups

So we can again consistently estimate these quantities if our price
instruments are uncorrelated with the endogenous product
characteristics.
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Orthogonal IV Application to DCMs

Elasticities in the RCM

The Random Coefficient model is a bit more complicated:

δj

(
{sl ,wl , pl}

J
j=0 ; Σθ, σ

2
β

)
= βpj + xjθ + ξj

Estimation of these models typically proceeds using GMM, starting
from the following orthogonality condition.

E

[
ξj ⊗

(
zj

xj

)]
= 0

This implies that

E

[(
δj

(
{sl , xl , pl}

J
l=0 ; Σθ, σβ

)
− βpj − xjθ

)
⊗

(
zj

xj

)]
= 0

at the true parameters.
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Orthogonal IV Application to DCMs

Elasticities in the RCM
Again note that more instruments are required here (to identify σ and
Σ)

If xj is endogenous, this moment condition doesn’t hold, but, as
above, we can linearly project ξj on xj to get:

δj

(
{sl ,Xl , pl}

J
l=0 ; Σθ, σβ

)
= βpj + xj (θ + γ) + ξ∗j

By construction, ξ∗j is uncorrelated with xj .

The question is whether ξ∗j is uncorrelated with the instruments zj .

As above, given that ξ∗j is uncorrelated with the instruments zj , this
will be the case if the instruments zj are uncorrelated with the
product characteristics xj .

Hence, estimation can proceed using the moment

E

[
ξ∗j ⊗

(
zj

xj

)]
= 0

which will provide consistent estimates of the parameters β, σβ , Σθ,
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Orthogonal IV Application to DCMs

Elasticities in the RCM

Again, we need to show that what we actually want, i.e. price
derivatives and elasticities, do not depend on an estimate of θ.

This is a bit tougher, but can be shown using the “inversion” of Berry
(1994) and Berry, Levinsohn, and Pakes (1995)

Goal is to show that we can write price derivatives/elasticities as:

∂sj

∂pk

= fj ,k (data,Σθ, σβ, β)

i.e. can be written as a function of the data and parameters that can
be consistently estimated (i.e. can be computed without knowing θ)

The Berry/BLP inversion shows that in this class of models:

βpj + xjθ + ξj ≡ δj = h (data,Σθ, σβ)
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Orthogonal IV Application to DCMs

Elasticities in the RCM

Hence, it suffices to show that we can write price derivatives as:

∂sj

∂pk

= fj ,k

(
{δl}

J
l=0 , data,Σθ, σβ, β

)

Now, consider the RCM utility function:

uij = βipj + xjθi + ξj + εij

=
(
β + β̃i

)
pj + xj

(
θ + θ̃i

)
+ ξj + εij

= βpj + xjθ + ξj + β̃ipj + xj θ̃i + εij

= δj + β̃ipj + xj θ̃i + εij

Hence, θ only enters the model through δ, and both market shares
and market share derivatives w.r.t. p do not depend on θ (given δ’s)
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Orthogonal IV Application to DCMs

Elasticities in the RCM

Summary of argument:

◮ θ’s only enters the price elasticities/derivatives through δ’s.

◮ δ’s can be written as a function of the data given parameters
(β, σβ , Σθ).

◮ Thus, given we can consistently estimate (β, σβ , Σθ), we can compute
price elast/derivs without knowing θ.
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Orthogonal IV Application to DCMs

Plan for the rest of the talk

We’ve now established our basic results about the merits of
Orthogonal Instruments

◮ Particularly as applied to ADMs commonly used in empirical IO

The balance of the talk

◮ Introduces some of the various theory extensions we’ve obtained

◮ Presents some preliminary results applying these ideas in US
pay-television markets
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Theory Extensions

A Counter-Intuitive Efficiency Result
We can show a rather counter-intuitive result on orthogonal
instruments:

◮ Even if we have valid instruments on the endogenous regressor xi2, it
may make more sense to proceed as if xi2 were exogenous because we
may gain efficiency as a result.

Using (zi1, zi2) as instruments, we can show the asymptotic variance
for the estimator for β is

E
[
ε2
i

] (
π′

11E
[
zi1z

′
i1

]
π11

)−1
(5)

Using (zi1, xi2) as instruments, we can similarly show it is

E
[
(ε∗i )

2
] (

π′
11E

[
zi1z

′
i1

]
π11

)−1
. (6)

where εi = x ′
i2γ + ε∗i

Because E
[
ε2
i

]
≥ E

[
(ε∗i )

2
]

by construction, we conclude that it

makes sense to adopt the operating assumption that xi2 is exogenous.
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Theory Extensions

Non-Parametric Extension

The preceding discussion can be generalized to nonparametric context
immediately.

For this purpose, consider the following non-parametric model

y = g (x1, x2, ε)

where x1 is endogenous.

◮ We allow x2 to be endogenous, but

◮ Consider identification under the assumption that the instrument z is
independent of (x2, ε).

Repeating the similar logic as in the previous sections,

◮ Let F denote the conditional quantile of ε given (x2, z), and

◮ Let ε∗ = F (ε| x2, z).
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Theory Extensions

Non-Parametric Extension

Because z is independent of (x2, ε), we can write without loss of
generality

◮ F (ε| x2, z) = F (ε| x2), or ε∗ = F (ε| x2).

By construction, ε∗ is independent of (x2, z).

Note that ε = F−1 (ε∗| x2), ⇒

y = g (x1, x2, ε) = g
(
x1, x2,F

−1 (ε∗| x2)
)
≡ g∗ (x1, x2, ε

∗)

such that ε∗ is independent of (x2, z).
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Theory Extensions

Non-Parametric Extension

If we assume that g is monotonic in ε, then monotonicity of F implies
that g∗ is monotonic in ε∗ as well.

With the additional assumption that g∗ is strictly monotonic in ε∗,
we can use the result by Chernozukov, Imbens, and Newey (2007) to
conclude:

∂g∗ (x1, x2, ε
∗)

∂x1
=

∂g (x1, x2, ε)

∂x1

is identified.

Because the F (ε| x2) is not identified, the only thing we identify is the
causal effect of x1 at any quantile of ε∗ and any given value of x2.

◮ This has some significance in IO applications because it means that we
can estimate the causal effect of x1 on y for any observation in the
“dataset”, since we have an estimate of each observation’s ε∗.
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Theory Extensions

What Types of Instruments Might be Orthogonal?

In our demand system context, is there a reason to think one might
be able to find price instruments that are uncorrelated with product
characteristics?

We hope so...

◮ Recall that one interpretation of ξ is that it represents product
characteristics that are observed by firms and customers but
unobserved to the econometrician.

⋆ Standard IV condition is that z is uncorrelated with these unobserved
product characteristics.

◮ If we can find z’s that are uncorrelated with these unobserved product
characteristics...

⋆ Shouldn’t we be able to find z ’s that are uncorrelated with the
observed product characteristics?
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Theory Extensions

What Types of Instruments Might be Orthogonal?, cont.

What sort of data generating processes would generate such instruments?

We are still thinking about these issues, but can describe one
particular process.

◮ Want instruments that affect price-setting but do not affect choices of
characteristics.

◮ Perhaps the easiest way to think of such an instrument is to think of a
timing story.

⋆ Suppose product characteristics are chosen at some point in time prior
to when price is set.

⋆ Then what we optimally would want would be shocks that occur
between these points in time and that are unanticipated by firms.

⋆ For example, unanticipated shocks to input prices that occur between
these points in time would be excellent instruments. Could use
commodity or exchange rate futures markets.
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Theory Extensions

What Types of Instruments Might be Orthogonal?, cont.

DGPs to generate orthogonal instruments, cont:

This timing story is somewhat reminiscent of the Olley and Pakes
(1996)-style identification strategy, but in contrast to that, this is a
directly testable restriction.

Currently thinking through what the implications are on various types
of instruments, e.g. standard cost shifters, BLP “competitive”
instruments and Hausman/Nevo “other price” instruments.

◮ Likely depends on the interpretation of ξ.
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Theory Extensions

Uses Beyond Industrial Organization

Seems to us that Orthogonal Instruments may also be useful for
general IV situations

Seems quite common to be interested in a subset of the structural
parameters, e.g.

◮ Returns to education but not to experience, tenure, etc.

Examining correlations between instruments and “exogenous”
variables can tell you how robust your estimates are to those
“exogenous” variables actually being endogenous.

Also may provide a way of choosing between instruments.
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Theory Extensions

Bounding the Bias

What can we say when we cannot find any instrument that is
orthogonal to a potentially-endogenous x2?

◮ We can’t use our consistency and efficiency results

◮ We can, however, try to bound the magnitude of any bias

Suppose, for the model

y = x1β + x2θ + ε

◮ We have instruments z1 and z2 on x1.

◮ We are concerned that x2 may be endogenous as well, but we don’t
have an instrument for x2.
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Theory Extensions

Bounding the Bias, cont.

We compare the asymptotic bias for β of the two IV estimators, one
using z1 and the other one using z2.

Let β̂j , j = {1, 2} be the estimator of β using zj as an instrument

The asymptotic bias for each estimator is then

plim β̂1 − β =
−E [z1x2]

E [z1x1]E
[
x2
2

]
− E [x2x1] E [z1x2]

E [x2ε]

plim β̂2 − β =
−E [z2x2]

E [z2x1]E
[
x2
2

]
− E [x2x1] E [z2x2]

E [x2ε]

◮ If, indeed, x2 is uncorrelated with ǫ, then there is no bias.

◮ Else, as usual, that bias is transmitted to β
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Theory Extensions

Bounding the Bias: Intermediate Results

It turns out we can simplify this.

We can use the identity

−E [z1x2]

E [z1x1 ] E
[
x2
2

]
− E [x2x1 ] E [z1x2 ]

= −

E[z1x2]

E
[
x2
2

]

E [z1x1] −
E[x2x1 ]

E
[
x2
2

] E
[
x2
2

] E[z1x2 ]

E
[
x2
2

]
= −

λ1

E [z1x1 ] − E [(µx2) (λ1x2)]

where

λ1 =
E [x2z1]

E
[
x2
2

] , µ =
E [x2x1]

E
[
x2
2

]

v1 = z1 − λ1x2, u = x1 − µx2

Note:

◮ λj = the correlation between our x1-instrument and x2 (ideally this
would be zero)

◮ u, vj = x1, zj , controlling for x2.
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Theory Extensions

Bounding the Bias: Intermediate Results, cont.

Noting that

E [z1x1] − E [(µx2) (λ1x2)] = E [(λ1x2 + v1) (µx2 + u)] − E [(µx2) (λ1x2)] = E [uv1]

we can conclude that the ratio in the bias formula is just

−E [z1x2]

E [z1x1]E
[
x2
2

]
− E [x2x1] E [z1x2]

= −
λ1

E [uv1]

−E [z2x2]

E [z2x1]E
[
x2
2

]
− E [x2x1] E [z2x2]

= −
λ2

E [uv2]
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Theory Extensions

Bounding the Bias: An Intuitive Formula

plim β̂1 − β =
−E [z1x2]

E [z1x1] E [x2
2 ] − E [x2x1] E [z1x2]

E [x2ε] = −
λ1

E [uv1]
E [x2ε]

In other words, the asymptotic bias depends on three factors

◮ The correlation between our instrument and the potentially endogenous
variable (λj)

◮ The strength of our instrument for our variable of interest, controlling
for x2 (E [uvj ]), and

◮ The correlation between our the potentially endogenous variable and
the error, E [x2ε]
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Theory Extensions

Bounding the Bias: How to use?

We can use our bias results in a number of ways:
1 Selecting an instrument to minimize asymptotic bias:

◮ In particular, we may want to consider choosing an instrument
depending on whether

∣∣∣∣
λ1

E [uv1]

∣∣∣∣ ⋚
∣∣∣∣

λ2

E [uv2]

∣∣∣∣
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Theory Extensions

Bounding the Bias: How to use?

How to use our bias results, cont.:
2 Minimizing the asymptotic bias using a linear combination of

instruments

◮ Let δ1z1 + δ2z2 be an instrument.

◮ We then have the asymptotic bias proportional to

−
δ1λ1 + δ2λ2

δ1E [uv1] + δ2E [uv2]

◮ We can eliminate the asymptotic bias if δ1 = 1 and δ2 = −λ1

λ2
.

◮ Unfortunately, our efficiency results are for orthogonal instruments, not
for “estimated orthogonal instruments”.

⋆ If we have two instruments, might we not instead just do “vanilla IV”,
i.e. instrument for x1 and x2 with z1 and z2?
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Theory Extensions

Bounding the Bias: How to use?

How to use our bias results, cont.:
3 Perhaps we can bound the absolute magnitude of the bias?

◮ If we are willing to make an assumption on ε,

⋆ For example, that sd(ε) < sd(y)

⋆ (As would be true as long as the explanatory variables and ε are not
too negatively correlated)

◮ Then

abs(cov(x2, ε)) < sd(x2)sd(ε)

< sd(x2)sd(y)

◮ And we can bound the bias:

abs(bias) <
λ1

E [uv1]
sd(x2)sd(y)
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Empirical Application (Preliminary Results)

Empirical Application: US Pay-TV Markets

Data on demand for cable systems. Goal is to estimate price elasticity
of demand.

◮ e.g. To measure cable system market power;

◮ How market power has changed in response to satellite competition,
etc.

Observe prices, service characteristics, and market shares for cross
section of approximately 4000 cable systems across the US.
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Empirical Application (Preliminary Results)

Empirical Application: US Pay-TV Markets

Keep things simple. We consider a logit demand model:

uij = Xjβ − αpj + Wjγ + ξj + εij

◮ We only consider one service characteristic Xj – the number of cable
programming networks offered

◮ Wj are other explanatory variables that are assumed exogenous.

In a given market, cable system may offer a number of alternative
products j (e.g. basic, expanded basic) characterized by different
prices and number of networks.
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Empirical Application (Preliminary Results)

Empirical Application: US Pay-TV Markets

We consider a number of potential instruments for price:

1 hp – Homes Passed – the number of homes potentially served by the
system. May create bargaining power with television networks.

2 franfee – Franchise Fees – fees paid to local governing bodies in return
for access to streets to deliver service.

3 tcx – Average Affiliate Fees – average fees charged by networks on a
particular cable system.

4 msosubs – Multiple System Operator (MSO) Subscribers - many
operators own multiple cable systems across the country (e.g.
Comcast, Cox).

⋆ This is the total number of subscribers on an operator’s systems.
Again, this could affect bargaining power.

5 tip, tipst, tipreg – prices in other markets (ala Hausman (1996) and
Nevo (2001)) of the same MSO.

⋆ Idea is that this will pick up supply shocks.
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Empirical Application (Preliminary Results)

First-Stage Results

First stage results (all instruments used separately):

Instrument Coefficient
hp -0.51

(0.06)
franfee -2.73

(0.047)
tcx 1.287

(0.110)
msosubs -0.337

(0.019)
tip 0.642

(0.017)
tipst 0.487

(0.02)
tipreg 0.454

(0.02)

◮ All highly significant (though no clustering)

◮ All except for franfee are the anticipated sign.
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Empirical Application (Preliminary Results)

Correlation of Instruments with Product Characteristic

Regression of product characteristic on the various instruments plus
bias bounds.

Regression coef Bound on abs bias
Hp 0.157 0.42

(0.008)
Franfee 0.935 0.45

(0.064)
Tcx 4.698 2.43

(0.030)
Msosubs 0.217 0.08

(0.027)
Tip -0.024 0.004

(0.027)
Tipst -0.213 0.06

(0.030)
Tipreg -0.169 0.05

(0.029)

◮ Suggests that tip may be the best instrument – insignificant regression
coefficient and very small bias.
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Empirical Application (Preliminary Results)

Estimated Price Coefficients
Estimated price coefficients using each of the instruments separately

Price Coefficient
OLS -0.038

(0.002)
Hp -0.022

(0.022)
Franfee -0.048

(0.030)
Tcx -0.024

(0.015)
msosubs -0.025

(0.010)
Tip -0.070

(0.005)
Tipst -0.090

(0.008)
Tipreg -0.078

(0.008)

◮ Fairly large differences across specifications. Implied elasticities between
-0.24 and -1. General consensus is that elasticities are closer to -1.

◮ Tip related instruments provide the most reasonable estimates,
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Empirical Application (Preliminary Results)

Conclusions

Perhaps endogenous product characteristics in differentiated product
demand models is not as problematic as commonly thought.

We derive conditions under which we can show that standard
estimation procedures provide consistent estimates of price derivatives
and elasticities

◮ These conditions are testable and have implications on what price
instruments one might want to be using use in practice.

Also sheds light on what sort of data-generating processes would be
most likely to generate such instruments.

Idea seems to work reasonably well in a simple example.
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Empirical Application (Preliminary Results)

Next Steps

Extend the data and analysis to more systems, years, etc.

◮ As in Crawford and Yurukoglu (2009)

Further develop our thinking about the timing of decisions in
pay-television markets

◮ Seems reasonable that number of channels “more exogenous” in the
short-run than prices

◮ In which case can use changes in costs / other prices / similar to
identify likely-to-be-orthognoal instruments.
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